1
|
Arduç A, De Vries JIP, B Tan-Sindhunata M, Waisfisz Q, Pajkrt E, Linskens IH. Perinatal genetic diagnostic yield in a population of fetuses with the phenotype arthrogryposis multiplex congenita: a cohort study 2007-2021. Eur J Hum Genet 2025:10.1038/s41431-025-01848-3. [PMID: 40195522 DOI: 10.1038/s41431-025-01848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/02/2025] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
Arthrogryposis multiplex congenita (AMC) presents challenges for prenatal detection due to its heterogeneous etiology, onset, and phenotypical manifestations. This study aims to describe the genetic diagnostic yield in a population of fetuses with detailed phenotypic description over a 15-year period (2007-2021) at the Fetal Medicine Unit of Amsterdam UMC, the Netherlands. The fetal and neonatal phenotypes were classified into three clinical AMC Groups, with the exception that Groups 1 and 2 were combined in the prenatal classification. Group 1 involves limb involvement primarily, Group 2 includes musculoskeletal involvement plus other system anomalies, and Group 3 involves musculoskeletal involvement with central nervous system disability, lethality, fetal akinesia deformation sequence, and/or intellectual disability. The cohort consisted of 64 consecutive cases, 13 in Groups 1 + 2 and 51 in Group 3. Perinatal genetic testing occurred in all cases: prenatally in 56 of the 64 (88%), postnatally in 36 of the 64 (56%), and combined testing in 28 of the 64 cases (44%). The overall genetic diagnostic yield was 28% (18/64), and it increased over the 5-year period from 14% to 50%. Whole exome sequencing had the highest yield (41.7%). The yield per phenotype was 30.8% (4/13) for AMC Group 1 + 2 and 27.4% (14/51) for AMC Group 3. Detailed fetal phenotyping and perinatal genetic testing in all cases showed improved diagnostic yield over time, likely due to the introduction of Next-generation sequencing-based tests. The availability of stored DNA will be beneficial for future investigations since further improvements in genetic testing possibilities are expected.
Collapse
Affiliation(s)
- Arda Arduç
- Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands.
- Amsterdam UMC Expertise Center FADS and AMC, Amsterdam, UMC, the Netherlands.
| | - Johanna I P De Vries
- Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Amsterdam UMC Expertise Center FADS and AMC, Amsterdam, UMC, the Netherlands
| | - Maria B Tan-Sindhunata
- Amsterdam UMC Expertise Center FADS and AMC, Amsterdam, UMC, the Netherlands
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Amsterdam UMC Expertise Center FADS and AMC, Amsterdam, UMC, the Netherlands
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eva Pajkrt
- Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Amsterdam UMC Expertise Center FADS and AMC, Amsterdam, UMC, the Netherlands
| | - Ingeborg H Linskens
- Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Amsterdam UMC Expertise Center FADS and AMC, Amsterdam, UMC, the Netherlands
| |
Collapse
|
2
|
Maksiutenko EM, Barbitoff YA, Nasykhova YA, Pachuliia OV, Lazareva TE, Bespalova ON, Glotov AS. The Landscape of Point Mutations in Human Protein Coding Genes Leading to Pregnancy Loss. Int J Mol Sci 2023; 24:17572. [PMID: 38139401 PMCID: PMC10743817 DOI: 10.3390/ijms242417572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Pregnancy loss is the most frequent complication of a pregnancy which is devastating for affected families and poses a significant challenge for the health care system. Genetic factors are known to play an important role in the etiology of pregnancy loss; however, despite advances in diagnostics, the causes remain unexplained in more than 30% of cases. In this review, we aggregated the results of the decade-long studies into the genetic risk factors of pregnancy loss (including miscarriage, termination for fetal abnormality, and recurrent pregnancy loss) in euploid pregnancies, focusing on the spectrum of point mutations associated with these conditions. We reviewed the evolution of molecular genetics methods used for the genetic research into causes of pregnancy loss, and collected information about 270 individual genetic variants in 196 unique genes reported as genetic cause of pregnancy loss. Among these, variants in 18 genes have been reported by multiple studies, and two or more variants were reported as causing pregnancy loss for 57 genes. Further analysis of the properties of all known pregnancy loss genes showed that they correspond to broadly expressed, highly evolutionary conserved genes involved in crucial cell differentiation and developmental processes and related signaling pathways. Given the features of known genes, we made an effort to construct a list of candidate genes, variants in which may be expected to contribute to pregnancy loss. We believe that our results may be useful for prediction of pregnancy loss risk in couples, as well as for further investigation and revealing genetic etiology of pregnancy loss.
Collapse
Affiliation(s)
| | - Yury A. Barbitoff
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.N.); (O.V.P.); (T.E.L.); (O.N.B.)
| | | | | | | | | | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.N.); (O.V.P.); (T.E.L.); (O.N.B.)
| |
Collapse
|
3
|
Zhao Q, Li X, Liu L, Zhang X, Pan X, Yao H, Ma Y, Tan B. Prenatal diagnosis identifies compound heterozygous variants in RYR1 that causes ultrasound abnormalities in a fetus. BMC Med Genomics 2022; 15:202. [PMID: 36131268 PMCID: PMC9490926 DOI: 10.1186/s12920-022-01358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Objective We presented a non-consanguineous healthy Chinese couple with five pregnancies, three early miscarriages, the fetus II-2 and II-5 with similar abnormal phenotypes of fetal hydrops, scoliosis, fetal akinesia and polyhydramnios. This study aimed to uncover the molecular etiology of this family with a history of multiple adverse pregnancies. Materials and methods DNA extracted from the fifth fetal umbilical cord and parents’ peripheral blood were subjected to SNP-array and whole exome sequencing. The result was verified by Sanger sequencing. Functional characterization of the c.2682G > C (p.Ile860_Pro894del) variant was completed by minigene splicing assay. Results Trio whole-exome sequencing has identified compound heterozygous variants in RYR1 (c.2682G > C; p.Ile860_Pro894del and c.12572G > A; p.Arg4191His) in fetus II-5. The variant c.2682G > C (p.Ile860_Pro894del) comes from the father and the c.12572G > A (p.Arg4191His) comes from the mother. The c.2682G > C (p.Ile860_Pro894del) affects the splice site resulting in exon 21 skipping, therefore is classified as likely pathogenic. The c.12572G > A (p.Arg4191His) locates in the C-terminal hot spots region of the RYR1, classified as of uncertain significance. Conclusions We report the first prenatal case of RYR1-related disorders in Chinese population, expanding the variant spectrum of RYR1 in fetuses. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01358-x.
Collapse
Affiliation(s)
- Qiuling Zhao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoduo Li
- Qijiang Maternal and Child Health Hospital, Chongqing, China
| | - Li Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Pan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Yao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongyi Ma
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Bo Tan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Sherlaw-Sturrock CA, Willis T, Kiely N, Houge G, Vogt J. PIEZO2-related distal arthrogryposis type 5: Longitudinal follow-up of a three-generation family broadens phenotypic spectrum, complications, and health surveillance recommendations for this patient group. Am J Med Genet A 2022; 188:2790-2795. [PMID: 35698866 DOI: 10.1002/ajmg.a.62868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 01/25/2023]
Abstract
Arthrogryposis is a heterogenous condition with a wide variety of etiological causes. It has been subdivided clinically based on the presence of additional features. Dominant gain of function (GoF) pathogenic variants in PIEZO2 have been associated with several forms of arthrogryposis. Previous reports have focused on diagnosis and clinical features. We report a three-generation family with four affected individuals with a known pathogenic GoF change p.(Glu2727del) in PIEZO2. All family members presented at birth with distal arthrogryposis and ophthalmoplegia but have varied in their subsequent clinical course with differences in mobility and joint restriction. In the longer term, other features have presented including dysphagia, back pain and spinal stenosis-like symptoms, raised intraocular pressure, and progressive restrictive lung disease. As far as we know, this is the first report detailing the longitudinal follow-up of a three-generation family which highlights potential long-term complications in patients with PIEZO2-related arthrogryposis. We present this family to demonstrate the importance of long-term follow-up for the clinical management of this group of patients.
Collapse
Affiliation(s)
| | - Tracey Willis
- Neuromuscular Service, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Nigel Kiely
- Department of Orthopaedic Surgery, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
5
|
Dahan-Oliel N, Dieterich K, Rauch F, Bardai G, Blondell TN, Gustafson AG, Hamdy R, Latypova X, Shazand K, Giampietro PF, van Bosse H. The Clinical and Genotypic Spectrum of Scoliosis in Multiple Pterygium Syndrome: A Case Series on 12 Children. Genes (Basel) 2021; 12:genes12081220. [PMID: 34440395 PMCID: PMC8391526 DOI: 10.3390/genes12081220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Multiple pterygium syndrome (MPS) is a genetically heterogeneous rare form of arthrogryposis multiplex congenita characterized by joint contractures and webbing or pterygia, as well as distinctive facial features related to diminished fetal movement. It is divided into prenatally lethal (LMPS, MIM253290) and nonlethal (Escobar variant MPS, MIM 265000) types. Developmental spine deformities are common, may present early and progress rapidly, requiring regular fo llow-up and orthopedic management. Methods: Retrospective chart review and prospective data collection were conducted at three hospital centers. Molecular diagnosis was confirmed with whole exome or whole genome sequencing. Results: This case series describes the clinical features and scoliosis treatment on 12 patients from 11 unrelated families. A molecular diagnosis was confirmed in seven; two with MYH3 variants and five with CHRNG. Scoliosis was present in all but our youngest patient. The remaining 11 patients spanned the spectrum between mild (curve ≤ 25°) and malignant scoliosis (≥50° curve before 4 years of age); the two patients with MYH3 mutations presented with malignant scoliosis. Bracing and serial spine casting appear to be beneficial for a few years; non-fusion spinal instrumentation may be needed to modulate more severe curves during growth and spontaneous spine fusions may occur in those cases. Conclusions: Molecular diagnosis and careful monitoring of the spine is needed in children with MPS.
Collapse
Affiliation(s)
- Noémi Dahan-Oliel
- Shriners Hospitals for Children, Montreal, QC H4A 0A9, Canada; (F.R.); (G.B.); (R.H.)
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
- Correspondence: (N.D.-O.); (H.v.B.)
| | - Klaus Dieterich
- Inserm, U1216, Grenoble Institut Neurosciences, Génétique médicale, Université Grenoble Alpes, CHU Grenoble Alpes, 38000 Grenoble, France; (K.D.); (X.L.)
| | - Frank Rauch
- Shriners Hospitals for Children, Montreal, QC H4A 0A9, Canada; (F.R.); (G.B.); (R.H.)
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | - Ghalib Bardai
- Shriners Hospitals for Children, Montreal, QC H4A 0A9, Canada; (F.R.); (G.B.); (R.H.)
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | | | | | - Reggie Hamdy
- Shriners Hospitals for Children, Montreal, QC H4A 0A9, Canada; (F.R.); (G.B.); (R.H.)
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | - Xenia Latypova
- Inserm, U1216, Grenoble Institut Neurosciences, Génétique médicale, Université Grenoble Alpes, CHU Grenoble Alpes, 38000 Grenoble, France; (K.D.); (X.L.)
| | - Kamran Shazand
- Shriners Hospitals for Children Headquarters, Tampa, FL 33607, USA; (A.G.G.); (K.S.)
| | | | - Harold van Bosse
- Shriners Hospitals for Children, Philadelphia, PA 19140, USA;
- Correspondence: (N.D.-O.); (H.v.B.)
| |
Collapse
|
6
|
Vogt J, Al-Saedi A, Willis T, Male A, McKie A, Kiely N, Maher ER. A recurrent pathogenic variant in TPM2 reveals further phenotypic and genetic heterogeneity in multiple pterygium syndrome-related disorders. Clin Genet 2020; 97:908-914. [PMID: 32092148 DOI: 10.1111/cge.13728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/28/2020] [Accepted: 02/16/2020] [Indexed: 12/24/2022]
Abstract
Multiple pterygium syndrome (MPS) disorders are a phenotypically and genetically heterogeneous group of conditions characterized by multiple joint contractures (arthrogryposis), pterygia (joint webbing) and other developmental defects. MPS is most frequently inherited in an autosomal recessive fashion but X-linked and autosomal dominant forms also occur. Advances in genomic technologies have identified many genetic causes of MPS-related disorders and genetic diagnosis requires large targeted next generation sequencing gene panels or genome-wide sequencing approaches. Using the Illumina TruSightOne clinical exome assay, we identified a recurrent heterozygous missense substitution in TPM2 (encoding beta tropomyosin) in three unrelated individuals. This was confirmed to have arisen as a de novo event in the two patients with parental samples. TPM2 mutations have previously been described in association with a variety of dominantly inherited neuromuscular phenotypes including nemaline myopathy, congenital fibre-type disproportion, distal arthrogryposis and trismus pseudocamptodactyly, and in a patient with autosomal recessive Escobar syndrome and a nemaline myopathy. The three cases reported here had overlapping but variable features. Our findings expand the range of TMP2-related phenotypes and indicate that de novo TMP2 mutations should be considered in isolated cases of MPS-related conditions.
Collapse
Affiliation(s)
- Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Atif Al-Saedi
- Centre for Rare Diseases and Personalised Medicine, University of Birmingham, Birmingham, UK
| | - Tracey Willis
- Neuromuscular Service, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Alison Male
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Arthur McKie
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Nigel Kiely
- Neuromuscular Service, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Eamonn R Maher
- Centre for Rare Diseases and Personalised Medicine, University of Birmingham, Birmingham, UK.,Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| |
Collapse
|
7
|
Xu L, Harms FL, Chirasani VR, Pasek DA, Kortüm F, Meinecke P, Dokholyan NV, Kutsche K, Meissner G. Single-channel properties of skeletal muscle ryanodine receptor pore Δ 4923FF 4924 in two brothers with a lethal form of fetal akinesia. Cell Calcium 2020; 87:102182. [PMID: 32097819 DOI: 10.1016/j.ceca.2020.102182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 11/26/2022]
Abstract
Ryanodine receptor ion channels (RyR1s) release Ca2+ ions from the sarcoplasmic reticulum to regulate skeletal muscle contraction. By whole-exome sequencing, we identified the heterozygous RYR1 variant c.14767_14772del resulting in the in-frame deletion p.(Phe4923_Phe4924del) in two brothers with a lethal form of the fetal akinesia deformation syndrome (FADS). The two deleted phenylalanines (RyR1-Δ4923FF4924) are located in the S6 pore-lining helix of RyR1. Clinical features in one of the two siblings included severe hypotonia, thin ribs, swallowing inability, and respiratory insufficiency that caused early death. Functional consequences of the RyR1-Δ4923FF4924 variant were determined using recombinant 2,200-kDa homotetrameric and heterotetrameric RyR1 channel complexes that were expressed in HEK293 cells and characterized by cellular, electrophysiological, and computational methods. Cellular Ca2+ release in response to caffeine indicated that the homotetrameric variant formed caffeine-sensitive Ca2+ conducting channels in HEK293 cells. In contrast, the homotetrameric channel complex was not activated by Ca2+ and did not conduct Ca2+ based on single-channel measurements. The computational analysis suggested decreased protein stability and loss of salt bridge interactions between RyR1-R4944 and RyR1-D4938, increasing the electrostatic interaction energy of Ca2+ in a region 20 Å from the mutant site. Co-expression of wild-type and mutant RyR1s resulted in Ca2+-dependent channel activities that displayed intermediate Ca2+ conductances and suggested maintenance of a reduced Ca2+ release in the two patients. Our findings reveal that the RYR1 pore variant p.(Phe4923_Phe4924del) attenuates the flow of Ca2+ through heterotetrameric channels, but alone was not sufficient to cause FADS, indicating additional genetic factors to be involved.
Collapse
Affiliation(s)
- Le Xu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States
| | - Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Venkat R Chirasani
- Departments of Pharmacology, and Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, United States
| | - Daniel A Pasek
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter Meinecke
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nikolay V Dokholyan
- Departments of Pharmacology, and Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, United States
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States.
| |
Collapse
|
8
|
Sabbagh R, Van den Veyver IB. The current and future impact of genome-wide sequencing on fetal precision medicine. Hum Genet 2019; 139:1121-1130. [PMID: 31754893 DOI: 10.1007/s00439-019-02088-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
Next-generation sequencing and other genomic technologies are transforming prenatal and reproductive screening and testing for fetal genetic disorders at an unprecedented pace. Original approaches of screening and testing for fetal genetic and genomic disorders were focused on a few more prevalent conditions that were easily diagnosable with pre-genomic era diagnostic tools. First, chromosomal microarray analysis and then next-generation sequencing brought technology capable of more detailed genomic evaluation to prenatal genetic screening and diagnosis. This has facilitated parallel introduction of a variety of new tests on maternal blood samples, including expanded carrier screening and cell-free DNA-based non-invasive screening for fetal aneuploidy, selected copy number variants, and single-gene disorders. Genomic tests on fetal DNA samples, obtained primarily through amniocentesis or chorionic villus sampling, include chromosomal microarray analysis and gene panel and exome sequencing. All these form the diagnostic pillar of the emerging field of fetal precision medicine, but their implementation is associated with ethical, counseling and healthcare resource utilization challenges. We discuss where in the reproductive and prenatal care continuum these exciting new technologies are integrated, along with associated challenges. We propose areas of priority for research to gain the data in support of their responsible implementation into clinical reproductive and prenatal care.
Collapse
Affiliation(s)
- Riwa Sabbagh
- Department of Obstetrics and Gynecology, Baylor College of Medicine, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA.,Pavilion for Women, Texas Children's Hospital, Houston, TX, USA
| | - Ignatia B Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, 1250 Moursund Street, Room 1025.14, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. .,Pavilion for Women, Texas Children's Hospital, Houston, TX, USA. .,Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
9
|
Colley E, Hamilton S, Smith P, Morgan NV, Coomarasamy A, Allen S. Potential genetic causes of miscarriage in euploid pregnancies: a systematic review. Hum Reprod Update 2019; 25:452-472. [PMID: 31150545 DOI: 10.1093/humupd/dmz015] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
Abstract
BACKGROUND
Approximately 50% of pregnancy losses are caused by chromosomal abnormalities, such as aneuploidy. The remainder has an apparent euploid karyotype, but it is plausible that there are cases of pregnancy loss with other genetic aberrations that are not currently routinely detected. Studies investigating the use of exome sequencing and chromosomal microarrays in structurally abnormal pregnancies and developmental disorders have demonstrated their clinical application and/or potential utility in these groups of patients. Similarly, there have been several studies that have sought to identify genes that are potentially causative of, or associated with, spontaneous pregnancy loss, but the evidence has not yet been synthesized.
OBJECTIVE AND RATIONALE
The objective was to identify studies that have recorded monogenic genetic contributions to pregnancy loss in euploid pregnancies, establish evidence for genetic causes of pregnancy loss, identify the limitations of current evidence, and make recommendations for future studies. This evidence is important in considering additional research into Mendelian causes of pregnancy loss and appropriate genetic investigations for couples experiencing recurrent pregnancy loss.
SEARCH METHODS
A systematic review was conducted in MEDLINE (1946 to May 2018) and Embase (1974 to May 2018). The search terms ‘spontaneous abortion’, ‘miscarriage’, ‘pregnancy loss’, or ‘lethal’ were used to identify pregnancy loss terms. These were combined with search terms to identify the genetic contribution including ‘exome’, ‘human genome’, ‘sequencing analysis’, ‘sequencing’, ‘copy number variation’, ‘single-nucleotide polymorphism’, ‘microarray analysis’, and ‘comparative genomic hybridization’. Studies were limited to pregnancy loss up to 20 weeks in humans and excluded if the genetic content included genes that are not lethal in utero, PGD studies, infertility studies, expression studies, aneuploidy with no recurrence risk, methodologies where there is no clinical relevance, and complex genetic studies. The quality of the studies was assessed using a modified version of the Newcastle–Ottawa scale.
OUTCOMES
A total of 50 studies were identified and categorized into three themes: whole-exome sequencing studies; copy number variation studies; and other studies related to pregnancy loss including recurrent molar pregnancies, epigenetics, and mitochondrial DNA aberrations. Putatively causative variants were found in a range of genes, including CHRNA1 (cholinergic receptor, nicotinic, alpha polypeptide 1), DYNC2H1 (dynein, cytoplasmic 2, heavy chain 1), and RYR1 (ryanodine receptor 1), which were identified in multiple studies. Copy number variants were also identified to have a causal or associated link with recurrent miscarriage.
WIDER IMPLICATIONS
Identification of genes that are causative of or predisposing to pregnancy loss will be of significant individual patient impact with respect to counselling and treatment. In addition, knowledge of specific genes that contribute to pregnancy loss could also be of importance in designing a diagnostic sequencing panel for patients with recurrent pregnancy loss and also in understanding the biological pathways that can cause pregnancy loss.
Collapse
Affiliation(s)
- Emily Colley
- Tommy’s National Centre for Miscarriage Research, Birmingham Women’s and Children’s Hospital, Birmingham, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Susan Hamilton
- Tommy’s National Centre for Miscarriage Research, Birmingham Women’s and Children’s Hospital, Birmingham, UK
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s Hospital, Birmingham, UK
| | - Paul Smith
- Tommy’s National Centre for Miscarriage Research, Birmingham Women’s and Children’s Hospital, Birmingham, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Arri Coomarasamy
- Tommy’s National Centre for Miscarriage Research, Birmingham Women’s and Children’s Hospital, Birmingham, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Stephanie Allen
- Tommy’s National Centre for Miscarriage Research, Birmingham Women’s and Children’s Hospital, Birmingham, UK
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s Hospital, Birmingham, UK
| |
Collapse
|
10
|
Alkhunaizi E, Shuster S, Shannon P, Siu VM, Darilek S, Mohila CA, Boissel S, Ellezam B, Fallet-Bianco C, Laberge AM, Zandberg J, Injeyan M, Hazrati LN, Hamdan F, Chitayat D. Homozygous/compound heterozygote RYR1 gene variants: Expanding the clinical spectrum. Am J Med Genet A 2019; 179:386-396. [PMID: 30652412 DOI: 10.1002/ajmg.a.61025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
The ryanodine receptor 1 (RYR1) is a calcium release channel essential for excitation-contraction coupling in the sarcoplasmic reticulum of skeletal muscles. Dominant variants in the RYR1 have been well associated with the known pharmacogenetic ryanodinopathy and malignant hyperthermia. With the era of next-generation gene sequencing and growing number of causative variants, the spectrum of ryanodinopathies has been evolving with dominant and recessive variants presenting with RYR1-related congenital myopathies such as central core disease, minicore myopathy with external ophthalmoplegia, core-rod myopathy, and congenital neuromuscular disease. Lately, the spectrum was broadened to include fetal manifestations, causing a rare recessive and lethal form of fetal akinesia deformation sequence syndrome (FADS)/arthrogryposis multiplex congenita (AMC) and lethal multiple pterygium syndrome. Here we broaden the spectrum of clinical manifestations associated with homozygous/compound heterozygous RYR1 gene variants to include a wide range of manifestations from FADS through neonatal hypotonia to a 35-year-old male with AMC and PhD degree. We report five unrelated families in which three presented with FADS. One of these families was consanguineous and had three affected fetuses with FADS, one patient with neonatal hypotonia who is alive, and one individual with AMC who is 35 years old with normal intellectual development and uses a wheelchair. Muscle biopsies on these cases demonstrated a variety of histopathological abnormalities, which did not assist with the diagnostic process. Neither the affected living individuals nor the parents who are obligate heterozygotes had history of malignant hyperthermia.
Collapse
Affiliation(s)
- Ebba Alkhunaizi
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Shirley Shuster
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Victoria Mok Siu
- Division of Medical Genetics, Department of Pediatrics, London Health Sciences Centre, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Sandra Darilek
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Carrie A Mohila
- Department of Pathology, Texas Children's Hospital, Houston, Texas.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Sarah Boissel
- Department of Medical Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Benjamin Ellezam
- Department of Medical Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | | | - Anne-Marie Laberge
- Department of Medical Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Julianne Zandberg
- Division of Medical Genetics, Department of Pediatrics, London Health Sciences Centre, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Marie Injeyan
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Fadi Hamdan
- Department of Medical Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Adam S, Coetzee M, Honey EM. Pena-Shokeir syndrome: current management strategies and palliative care. APPLICATION OF CLINICAL GENETICS 2018; 11:111-120. [PMID: 30498368 PMCID: PMC6207248 DOI: 10.2147/tacg.s154643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pena-Shokeir syndrome (PSS) type 1, also known as fetal akinesia deformation sequence, is a rare genetic syndrome that almost always results in intrauterine or early neonatal death. It is characterized by markedly decreased fetal movements, intrauterine growth restriction, joint contractures, short umbilical cord, and features of pulmonary hypoplasia. Antenatal diagnosis can be difficult. Ultrasound features are varied and may overlap with those of Trisomy 18. The poor prognosis of PSS is due to pulmonary hypoplasia, which is an important feature that distinguishes PSS from arthrogryposis multiplex congenital without pulmonary hypoplasia, which has a better prognosis. If diagnosed in the antenatal period, a late termination of pregnancy can be considered following ethical discussion (if the law allows). In most cases, a diagnosis is only made in the neonatal period. Parents of a baby affected with PSS require detailed counseling that includes information on the imprecise recurrence risks and a plan for subsequent pregnancies.
Collapse
Affiliation(s)
- Sumaiya Adam
- Department of Obstetrics and Gynaecology, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa,
| | - Melantha Coetzee
- Division of Neonatology, Department of Pediatrics and Child Health, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Engela Magdalena Honey
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
12
|
Fu XN, Xiong H. Genetic and Clinical Advances of Congenital Muscular Dystrophy. Chin Med J (Engl) 2018; 130:2624-2631. [PMID: 29067961 PMCID: PMC5678264 DOI: 10.4103/0366-6999.217091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective: The aim was to update the genetic and clinical advances of congenital muscular dystrophy (CMD), based on a systematic review of the literature from 1991 to 2017. Data Sources: Articles in English published in PubMed from 1991 to 2017 English were searched. The terms used in the literature searches were CMD. Study Selection: The task force initially identified citations for 98 published articles. Of the 98 articles, 52 studies were selected after further detailed review. Three articles, which were not written in English, were excluded from the study. This study referred to all the important and English literature in full. Results: CMD is a group of early-onset disorders encompassing great clinical and genetic heterogeneity. Patients present with muscle weakness typically from birth to early infancy, delay or arrest of gross motor development, and joint and/or spinal rigidity. The diagnosis of CMD relies on clinical findings, brain and muscle imaging, muscle biopsy histology, muscle and/or skin immunohistochemical staining, and molecular genetic testing. Conclusions: Advances in next-generation sequencing and histopathological techniques have enabled the recognition of distinct CMD subtypes supported by specific gene identification. Genetic counseling and multidisciplinary management of CMD play an important role in help patients and their family. Further elucidation of the significant clinical and genetic heterogeneity, therapeutic targets, and the clinical care for patients remains our challenge for the future.
Collapse
Affiliation(s)
- Xiao-Na Fu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
13
|
Filipova D, Henry M, Rotshteyn T, Brunn A, Carstov M, Deckert M, Hescheler J, Sachinidis A, Pfitzer G, Papadopoulos S. Distinct transcriptomic changes in E14.5 mouse skeletal muscle lacking RYR1 or Cav1.1 converge at E18.5. PLoS One 2018; 13:e0194428. [PMID: 29543863 PMCID: PMC5854361 DOI: 10.1371/journal.pone.0194428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/04/2018] [Indexed: 12/20/2022] Open
Abstract
In skeletal muscle the coordinated actions of two mechanically coupled Ca2+ channels-the 1,4-dihydropyridine receptor (Cav1.1) and the type 1 ryanodine receptor (RYR1)-underlie the molecular mechanism of rapid cytosolic [Ca2+] increase leading to contraction. While both [Ca2+]i and contractile activity have been implicated in the regulation of myogenesis, less is known about potential specific roles of Cav1.1 and RYR1 in skeletal muscle development. In this study, we analyzed the histology and the transcriptomic changes occurring at E14.5 -the end of primary myogenesis and around the onset of intrauterine limb movement, and at E18.5 -the end of secondary myogenesis, in WT, RYR1-/-, and Cav1.1-/- murine limb skeletal muscle. At E14.5 the muscle histology of both mutants exhibited initial alterations, which became much more severe at E18.5. Immunohistological analysis also revealed higher levels of activated caspase-3 in the Cav1.1-/- muscles at E14.5, indicating an increase in apoptosis. With WT littermates as controls, microarray analyses identified 61 and 97 differentially regulated genes (DEGs) at E14.5, and 493 and 1047 DEGs at E18.5, in RYR1-/- and Cav1.1-/- samples, respectively. Gene enrichment analysis detected no overlap in the affected biological processes and pathways in the two mutants at E14.5, whereas at E18.5 there was a significant overlap of DEGs in both mutants, affecting predominantly processes linked to muscle contraction. Moreover, the E18.5 vs. E14.5 comparison revealed multiple genotype-specific DEGs involved in contraction, cell cycle and miRNA-mediated signaling in WT, neuronal and bone development in RYR1-/-, and lipid metabolism in Cav1.1-/- samples. Taken together, our study reveals discrete changes in the global transcriptome occurring in limb skeletal muscle from E14.5 to E18.5 in WT, RYR1-/- and Cav1.1-/- mice. Our results suggest distinct functional roles for RYR1 and Cav1.1 in skeletal primary and secondary myogenesis.
Collapse
Affiliation(s)
- Dilyana Filipova
- Institute of Vegetative Physiology, Center of Physiology and Pathophysiology, University of Cologne, Cologne, Germany
| | - Margit Henry
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tamara Rotshteyn
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Anna Brunn
- Department of Neuropathology, University of Cologne, Cologne, Germany
| | - Mariana Carstov
- Department of Neuropathology, University of Cologne, Cologne, Germany
| | - Martina Deckert
- Department of Neuropathology, University of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, Center of Physiology and Pathophysiology, University of Cologne, Cologne, Germany
| | - Symeon Papadopoulos
- Institute of Vegetative Physiology, Center of Physiology and Pathophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Meier N, Bruder E, Filges I. A novel homozygous splice‐site mutation in
RYR1
causes fetal hydrops and affects skeletal and smooth muscle development. Prenat Diagn 2017; 37:720-724. [DOI: 10.1002/pd.5073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 05/14/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Nicole Meier
- Medical Genetics University Hospital Basel Basel Switzerland
- Department of Clinical Research University Hospital Basel Basel Switzerland
- University of Basel Basel Switzerland
| | - Elisabeth Bruder
- University of Basel Basel Switzerland
- Pathology University Hospital Basel Basel Switzerland
| | - Isabel Filges
- Medical Genetics University Hospital Basel Basel Switzerland
- Department of Clinical Research University Hospital Basel Basel Switzerland
- University of Basel Basel Switzerland
| |
Collapse
|
15
|
Abdalla E, Ravenscroft G, Zayed L, Beecroft SJ, Laing NG. Lethal multiple pterygium syndrome: A severe phenotype associated with a novel mutation in the nebulin gene. Neuromuscul Disord 2017; 27:537-541. [DOI: 10.1016/j.nmd.2017.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/21/2016] [Accepted: 01/15/2017] [Indexed: 11/27/2022]
|
16
|
Casey J, Flood K, Ennis S, Doyle E, Farrell M, Lynch SA. Intra-familial variability associated with recessive RYR1 mutation diagnosed prenatally by exome sequencing. Prenat Diagn 2016; 36:1020-1026. [PMID: 27616680 DOI: 10.1002/pd.4925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine the underlying molecular aetiology in a non-consanguineous Irish family who have had three fetal losses because of a primary myopathy characterised by fetal akinesia, arthrogryposis multiplex, bilateral pulmonary hypoplasia and reduced muscle bulk. METHODS Fetal DNA extracted from amniotic cells was whole genome amplified and subjected to whole exome sequencing. RESULTS Whole exome sequencing identified compound heterozygous variants in RYR1 as the cause of the lethal myopathy in this family. All three fetuses were compound heterozygous for a paternally inherited missense variant (c.2113G > A; p.Gly705Arg) and a novel maternally inherited truncating frameshift deletion (c.8843delC; p.Ser2948Cysfs*58). This family did not have the classic cores and fibre type disproportion typically associated with RYR1 mutation. The RYR1 exome finding was made during the couple's third pregnancy and enabled prenatal genetic testing to be undertaken. CONCLUSION We show that recessive RYR1 mutations can be associated with significant intra-familial variability in clinical presentation which can complicate prediction of clinical outcome. RYR1 mutations can also cause diverse muscle pathologies which thwarts diagnosis. This study demonstrates the impact that exome-based diagnoses can have for families with lethal disorders. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jillian Casey
- Clinical Genetics, Temple Street Children's University Hospital, Dublin, Ireland.,UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Karen Flood
- Royal College of Surgeons in Ireland, RCSI Unit, Rotunda Hospital, Dublin, Ireland
| | - Sean Ennis
- UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | | | - Michael Farrell
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Sally Ann Lynch
- Clinical Genetics, Temple Street Children's University Hospital, Dublin, Ireland.,UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Pittyanont S, Jatavan P, Suwansirikul S, Tongsong T. Prenatal features of Pena-Shokeir sequence with atypical response to acoustic stimulation. JOURNAL OF CLINICAL ULTRASOUND : JCU 2016; 44:459-462. [PMID: 27312123 DOI: 10.1002/jcu.22373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/02/2016] [Indexed: 06/06/2023]
Abstract
A fetal sonographic screening examination performed at 23 weeks showed polyhydramnios, micrognathia, fixed postures of all long bones, but no movement and no breathing. The fetus showed fetal heart rate acceleration but no movement when acoustic stimulation was applied with artificial larynx. All these findings persisted on serial examinations. The neonate was stillborn at 37 weeks and a final diagnosis of Pena-Shokeir sequence was made. In addition to typical sonographic features of Pena-Shokeir sequence, fetal heart rate accelerations with no movement in response to acoustic stimulation suggests that peripheral myopathy may possibly play an important role in the pathogenesis of the disease. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 44:459-462, 2016.
Collapse
Affiliation(s)
- Sirida Pittyanont
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phudit Jatavan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Songkiat Suwansirikul
- Department of Pathology, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, 50200, Thailand
| | - Theera Tongsong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
18
|
Kariminejad A, Ghaderi-Sohi S, Hossein-Nejad Nedai H, Varasteh V, Moslemi AR, Tajsharghi H. Lethal multiple pterygium syndrome, the extreme end of the RYR1 spectrum. BMC Musculoskelet Disord 2016; 17:109. [PMID: 26932181 PMCID: PMC4774121 DOI: 10.1186/s12891-016-0947-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 02/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background Lethal multiple pterygium syndrome (LMPS, OMIM 253290), is a fatal disorder associated with anomalies of the skin, muscles and skeleton. It is characterised by prenatal growth failure with pterygium present in multiple areas and akinesia, leading to muscle weakness and severe arthrogryposis. Foetal hydrops with cystic hygroma develops in affected foetuses with LMPS. This study aimed to uncover the aetiology of LMPS in a family with two affected foetuses. Methods and results Whole exome sequencing studies have identified novel compound heterozygous mutations in RYR1 in two affected foetuses with pterygium, severe arthrogryposis and foetal hydrops with cystic hygroma, characteristic features compatible with LMPS. The result was confirmed by Sanger sequencing and restriction fragment length polymorphism analysis. Conclusions RYR1 encodes the skeletal muscle isoform ryanodine receptor 1, an intracellular calcium channel with a central role in muscle contraction. Mutations in RYR1 have been associated with congenital myopathies, which form a continuous spectrum of pathological features including a severe variant with onset in utero with fetal akinesia and arthrogryposis. Here, the results indicate that LMPS can be considered as the extreme end of the RYR1-related neonatal myopathy spectrum. This further supports the concept that LMPS is a severe disorder associated with defects in the process known as excitation-contraction coupling.
Collapse
Affiliation(s)
| | | | | | - Vahid Varasteh
- Division of Thoracic Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali-Reza Moslemi
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Homa Tajsharghi
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden. .,Department of Clinical and Medical Genetics, University of Gothenburg, SE-405 30, Gothenburg, Sweden. .,Systems Biology Research Centre, School of Biomedicine, University of Skövde, SE-541 28, Skövde, Sweden.
| |
Collapse
|
19
|
Prenatal diagnosis of fetal akinesia deformation sequence (FADS): a study of 79 consecutive cases. Arch Gynecol Obstet 2016; 294:697-707. [DOI: 10.1007/s00404-016-4017-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
|
20
|
Bayram Y, Karaca E, Coban Akdemir Z, Yilmaz EO, Tayfun GA, Aydin H, Torun D, Bozdogan ST, Gezdirici A, Isikay S, Atik MM, Gambin T, Harel T, El-Hattab AW, Charng WL, Pehlivan D, Jhangiani SN, Muzny DM, Karaman A, Celik T, Yuregir OO, Yildirim T, Bayhan IA, Boerwinkle E, Gibbs RA, Elcioglu N, Tuysuz B, Lupski JR. Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin. J Clin Invest 2016; 126:762-78. [PMID: 26752647 DOI: 10.1172/jci84457] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/25/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Arthrogryposis, defined as congenital joint contractures in 2 or more body areas, is a clinical sign rather than a specific disease diagnosis. To date, more than 400 different disorders have been described that present with arthrogryposis, and variants of more than 220 genes have been associated with these disorders; however, the underlying molecular etiology remains unknown in the considerable majority of these cases. METHODS We performed whole exome sequencing (WES) of 52 patients with clinical presentation of arthrogryposis from 48 different families. RESULTS Affected individuals from 17 families (35.4%) had variants in known arthrogryposis-associated genes, including homozygous variants of cholinergic γ nicotinic receptor (CHRNG, 6 subjects) and endothelin converting enzyme-like 1 (ECEL1, 4 subjects). Deleterious variants in candidate arthrogryposis-causing genes (fibrillin 3 [FBN3], myosin IXA [MYO9A], and pleckstrin and Sec7 domain containing 3 [PSD3]) were identified in 3 families (6.2%). Moreover, in 8 families with a homozygous mutation in an arthrogryposis-associated gene, we identified a second locus with either a homozygous or compound heterozygous variant in a candidate gene (myosin binding protein C, fast type [MYBPC2] and vacuolar protein sorting 8 [VPS8], 2 families, 4.2%) or in another disease-associated genes (6 families, 12.5%), indicating a potential mutational burden contributing to disease expression. CONCLUSION In 58.3% of families, the arthrogryposis manifestation could be explained by a molecular diagnosis; however, the molecular etiology in subjects from 20 families remained unsolved by WES. Only 5 of these 20 unrelated subjects had a clinical presentation consistent with amyoplasia; a phenotype not thought to be of genetic origin. Our results indicate that increased use of genome-wide technologies will provide opportunities to better understand genetic models for diseases and molecular mechanisms of genetically heterogeneous disorders, such as arthrogryposis. FUNDING This work was supported in part by US National Human Genome Research Institute (NHGRI)/National Heart, Lung, and Blood Institute (NHLBI) grant U54HG006542 to the Baylor-Hopkins Center for Mendelian Genomics, and US National Institute of Neurological Disorders and Stroke (NINDS) grant R01NS058529 to J.R. Lupski.
Collapse
|