1
|
Dong X, Li Q, Li R, Li Y, Jin F, Li H, Tu K, Wu G. Inhibition of tRF- 02514 in Extracellular Vesicles Preserves Microglia Pyroptosis and Protects Against Parkinson's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04925-2. [PMID: 40254704 DOI: 10.1007/s12035-025-04925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
Extracellular vesicles (EVs), ubiquitous in peripheral blood and bodily fluids, are important regulators of neuronal communication, facilitating the intercellular transfer of bioactive molecules crucial for maintaining homeostasis. Uncovering EV-mediated mechanisms is pivotal for Parkinson's disease (PD) therapy. tRNA-derived fragments (tRFs) are a novel class of small non-coding RNAs found in EVs. They are essential for gene regulation, directly binding to target mRNAs to inhibit their translation, and hold promise as innovative therapeutic targets. We isolated EVs from the serum of patients with PD (PD-EVs) and co-cultured them with microglial cells to systematically investigate the modulation of inflammatory mediators and autophagy-related proteins. Small-RNA sequencing was performed to identify significantly differentially expressed target genes in PD-EVs. This analysis led to the identification of tRF-02514, whose associated molecular pathways were found to be involved in pyroptosis. Subsequently, the target genes of tRF-02514 were identified. To validate the findings in a physiological context, in vivo experiments were performed using mice with PD. Behavioral changes in mice were observed before and after the targeted inhibition of tRF-02514. Additionally, the whole brain tissue, substantia nigra, and peripheral blood samples of mice were collected to evaluate the expression of inflammatory factors, autophagy markers, pyroptosis-related proteins, and neuroprotective genes, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are necessary for defense against neuronal damage. tRF-02514 promoted the release of inflammatory factors, induced pyroptosis in microglia, and accelerated neuronal loss in PD by targeting ATG5 and inhibiting autophagy. Inhibition of tRF-02514 effectively mitigated these detrimental effects, protecting neurons, promoting autophagy, and delaying the progression of PD. These findings offer valuable insights into the role of tRF-02514 in the pathogenesis of PD and highlight its potential as a therapeutic target for PD.
Collapse
Affiliation(s)
- Xiaolin Dong
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Qingyun Li
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Rui Li
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Yanping Li
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Furong Jin
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Hongmei Li
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Kun Tu
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China
| | - Gang Wu
- Department of Neurology, The Affiliated Yan'an Hospital of Kunming Medical University, No. 245, Renmin East Road, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Zhan A, Zhong K, Zhang K. Novel subcellular regulatory mechanisms of protein homeostasis and its implications in amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2025; 756:151582. [PMID: 40056503 DOI: 10.1016/j.bbrc.2025.151582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disorder. Protein aggregates induce various forms of neuronal dysfunction and represent pathological hallmarks in ALS patients. Reducing protein aggregates could be a promising therapeutic strategy for ALS. While most studies have focused on cytoplasmic protein homeostasis, neurons adaptively reduce aggregates across subcellular compartments during stress through previously uncharacterized mechanisms. Here, we summarize novel compartment-specific proteostatic mechanisms: (1) the ERAD/RESET pathways, (2) HSPs-mediated nuclear sequestration, (3) mitochondrial aggregate import (MAGIC), (4) neurite-localized UPS/autophagosome and NMP, and (5) exopher-mediated extracellular disposal. These mechanisms collectively ensure cellular stress adaptation and provide novel therapeutic targets for ALS treatment.
Collapse
Affiliation(s)
- Aisheng Zhan
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Keke Zhong
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Kejing Zhang
- Institute of Translational Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| |
Collapse
|
3
|
Bai L, Yu L, Ran M, Zhong X, Sun M, Xu M, Wang Y, Yan X, Lee RJ, Tang Y, Xie J. Harnessing the Potential of Exosomes in Therapeutic Interventions for Brain Disorders. Int J Mol Sci 2025; 26:2491. [PMID: 40141135 PMCID: PMC11942545 DOI: 10.3390/ijms26062491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Exosomes, which are nano-sized natural vesicles secreted by cells, are crucial for intercellular communication and interactions, playing a significant role in various physiological and pathological processes. Their characteristics, such as low toxicity and immunogenicity, high biocompatibility, and remarkable drug delivery capabilities-particularly their capacity to traverse the blood-brain barrier-make exosomes highly promising vehicles for drug administration in the treatment of brain disorders. This review provides a comprehensive overview of exosome biogenesis and isolation techniques, strategies for the drug loading and functionalization of exosomes, and exosome-mediated blood-brain barrier penetration mechanisms, with a particular emphasis on recent advances in exosome-based drug delivery for brain disorders. Finally, we address the opportunities and challenges associated with utilizing exosomes as a drug delivery system for the brain, summarizing the barriers to clinical translation and proposing future research directions.
Collapse
Affiliation(s)
- Lu Bai
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Leijie Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Mengqiong Ran
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Xing Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Meng Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Minhao Xu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Yu Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Xinlei Yan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Robert J. Lee
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Yaqin Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| |
Collapse
|
4
|
Kostyusheva A, Romano E, Yan N, Lopus M, Zamyatnin AA, Parodi A. Breaking barriers in targeted Therapy: Advancing exosome Isolation, Engineering, and imaging. Adv Drug Deliv Rev 2025; 218:115522. [PMID: 39855273 DOI: 10.1016/j.addr.2025.115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/23/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Exosomes have emerged as promising tools for targeted drug delivery in biomedical applications and medicine. This review delves into the scientific advancements, challenges, and future prospects specifically associated with these technologies. In this work, we trace the research milestones that led to the discovery and characterization of exosomes and extracellular vesicles, and discuss strategies for optimizing the synthetic yield and the loading of these particles with various therapeutics. In addition, we report the current major issues affecting the field and hampering the clinical translation of these technologies. Highlighting the pivotal role of imaging techniques, we explore how they drive exosome therapy and development by offering insights into biodistribution and cellular trafficking dynamics. Methodologies for vesicle isolation, characterization, loading, and delivery mechanisms are thoroughly examined, alongside strategies aimed at enhancing their therapeutic efficacy. Special emphasis was dedicated to their therapeutic properties, particularly to their ability to deliver biologics into the cytoplasm. Furthermore, we delve into the intricate balance between surface modifications and targeting properties including also transgenic methods aimed at their functionalization and visualization within biological systems. This review underscores the transformative potential of these carriers in targeted drug delivery and identifies crucial areas for further research and clinical translation.
Collapse
Affiliation(s)
- Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia
| | | | - Neng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Vidyanagari, Mumbai 400098, India
| | - Andrey A Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Department of Biological Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
| | - Alessandro Parodi
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia.
| |
Collapse
|
5
|
Shipman A, Gao Y, Liu D, Sun S, Zang J, Sun P, Syed Z, Bhagavathi A, Smith E, Erickson T, Hill M, Neuhauss S, Sui SF, Nicolson T. Defects in Exosome Biogenesis Are Associated with Sensorimotor Defects in Zebrafish vps4a Mutants. J Neurosci 2024; 44:e0680242024. [PMID: 39455257 PMCID: PMC11638813 DOI: 10.1523/jneurosci.0680-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Mutations in human VPS4A are associated with neurodevelopmental defects, including motor delays and defective muscle tone. VPS4A encodes a AAA-ATPase required for membrane scission, but how mutations in VPS4A lead to impaired control of motor function is not known. Here we identified a mutation in zebrafish vps4a, T248I, that affects sensorimotor transformation. Biochemical analyses indicate that the T248I mutation reduces the ATPase activity of Vps4a and disassembly of ESCRT filaments, which mediate membrane scission. Consistent with the role for Vps4a in exosome biogenesis, vps4aT248I larvae have enlarged endosomal compartments in the CNS and decreased numbers of circulating exosomes in brain ventricles. Resembling the central form of hypotonia in VPS4A patients, motor neurons and muscle cells are functional in mutant zebrafish. Both somatosensory and vestibular inputs robustly evoke tail and eye movements, respectively. In contrast, optomotor responses, vestibulospinal, and acoustic startle reflexes are absent or strongly impaired in vps4aT248I larvae, indicating a greater sensitivity of these circuits to the T248I mutation. ERG recordings revealed intensity-dependent deficits in the retina, and in vivo calcium imaging of the auditory pathway identified a moderate reduction in afferent neuron activity, partially accounting for the severe motor impairments in mutant larvae. Further investigation of central pathways in vps4aT248I mutants showed that activation of descending vestibulospinal and midbrain motor command neurons by sensory cues is strongly reduced. Our results suggest that defects in sensorimotor transformation underlie the profound yet selective effects on motor reflexes resulting from the loss of membrane scission mediated by Vps4a.
Collapse
Affiliation(s)
- Anna Shipman
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Yan Gao
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Desheng Liu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jingjing Zang
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Peng Sun
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Zoha Syed
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Amol Bhagavathi
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Eliot Smith
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Timothy Erickson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Matthew Hill
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Stephan Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Teresa Nicolson
- Department of Otolaryngology, Stanford University, Stanford, California
| |
Collapse
|
6
|
Xue X, Mei S, Huang A, Wu Z, Zeng J, Song H, An J, Zhang L, Liu G, Zhou L, Cai Y, Xu B, Xu E, Chan P. Alzheimer's Disease Related Biomarkers Were Associated with Amnestic Cognitive Impairment in Parkinson's Disease: A Cross-Sectional Cohort Study. Brain Sci 2024; 14:787. [PMID: 39199480 PMCID: PMC11352303 DOI: 10.3390/brainsci14080787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Cognitive impairment is common in patients with Parkinson's disease (PD) and occurs through multiple mechanisms, including Alzheimer's disease (AD) pathology and the involvement of α-synucleinopathies. We aimed to investigate the pathological biomarkers of both PD and AD in plasma and neuronal extracellular vesicles (EVs) and their association with different types of cognitive impairment in PD patients. METHODS A total of 122 patients with PD and 30 healthy controls were included in this cross-sectional cohort study between March 2021 and July 2023. Non-dementia PD patients were divided into amnestic and non-amnestic groups according to the memory domain of a neuropsychological assessment. Plasma and neuronal EV biomarkers, including α-synuclein (α-syn), beta-amyloid (Aβ), total tau (T-tau), phosphorylated tau181 (p-tau181), and glial fibrillary acidic protein (GFAP), were measured using a single-molecule array and a chemiluminescence immunoassay, respectively. RESULTS Neuronal EV but not plasma α-syn levels, were significantly increased in PD as compared to healthy controls, and they were positively associated with UPDRS part III scores and the severity of cognitive impairment. A lower plasma Aβ42 level and higher neuronal EV T-tau level were found in the amnestic PD group compared to the non-amnestic PD group. CONCLUSIONS The results of the current study demonstrate that neuronal EV α-syn levels can be a sensitive biomarker for assisting in the diagnosis and disease severity prediction of PD. Both AD and PD pathologies are important factors in cognitive impairment associated with PD, and AD pathologies are more involved in amnestic memory deficit in PD.
Collapse
Affiliation(s)
- Xiaofan Xue
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; (X.X.); (S.M.); (A.H.); (Z.W.); (J.Z.); (B.X.); (E.X.)
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China;
| | - Shanshan Mei
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; (X.X.); (S.M.); (A.H.); (Z.W.); (J.Z.); (B.X.); (E.X.)
| | - Anqi Huang
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; (X.X.); (S.M.); (A.H.); (Z.W.); (J.Z.); (B.X.); (E.X.)
| | - Zhiyue Wu
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; (X.X.); (S.M.); (A.H.); (Z.W.); (J.Z.); (B.X.); (E.X.)
| | - Jingrong Zeng
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; (X.X.); (S.M.); (A.H.); (Z.W.); (J.Z.); (B.X.); (E.X.)
| | - Haixia Song
- Department of Neurology, The People’s Hospital of Shijiazhuang, Shijiazhuang 050000, China;
| | - Jing An
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China;
| | - Lijuan Zhang
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing 100053, China;
| | - Guozhen Liu
- Parkinson’s Disease Cloud Medical Technology Company, Beijing 100055, China;
| | - Lichun Zhou
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China;
| | - Yanning Cai
- Department of Clinical Biobank and Central Laboratory, Xuanwu Hospital of Capital Medical University, Beijing 100053, China;
| | - Baolei Xu
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; (X.X.); (S.M.); (A.H.); (Z.W.); (J.Z.); (B.X.); (E.X.)
| | - Erhe Xu
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; (X.X.); (S.M.); (A.H.); (Z.W.); (J.Z.); (B.X.); (E.X.)
| | - Piu Chan
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; (X.X.); (S.M.); (A.H.); (Z.W.); (J.Z.); (B.X.); (E.X.)
| |
Collapse
|
7
|
Romanò S, Nele V, Campani V, De Rosa G, Cinti S. A comprehensive guide to extract information from extracellular vesicles: a tutorial review towards novel analytical developments. Anal Chim Acta 2024; 1302:342473. [PMID: 38580402 DOI: 10.1016/j.aca.2024.342473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
In the medical field, extracellular vesicles (EVs) are gaining importance as they act as cells mediators. These are phospholipid bilayer vesicles and contain crucial biochemical information about their mother cells being carrier of different biomolecules such as small molecules, proteins, lipids, and nucleic acids. After release into the extracellular matrix, they enter the systemic circulation and can be found in all human biofluids. Since EVs reflect the state of the cell of origin, there is exponential attention as potential source of new circulating biomarkers for liquid biopsy. The use of EVs in clinical practice faces several challenges that need to be addressed: these include the standardization of lysis protocols, the availability of low-cost reagents and the development of analytical tools capable of detecting biomarkers. The process of lysis is a crucial step that can impact all subsequent analyses, towards the development of novel analytical strategies. To aid researchers to support the evolution of measurement science technology, this tutorial review evaluates and discuss the most commonly protocols used to characterize the contents of EVs, including their advantages and disadvantages in terms of experimental procedures, time and equipment. The purpose of this tutorial review is to offer practical guide to researchers which are intended to develop novel analytical approaches. Some of the most significant applications are considered, highlighting their main characteristics divided per mechanism of action. Finally, comprehensive tables which provide an overview at a glance are provided to readers.
Collapse
Affiliation(s)
- Sabrina Romanò
- Department of Pharmacy, University of Naples Federico II, Italy.
| | - Valeria Nele
- Department of Pharmacy, University of Naples Federico II, Italy
| | | | | | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Italy.
| |
Collapse
|
8
|
Palomar-Alonso N, Lee M, Kim M. Exosomes: Membrane-associated proteins, challenges and perspectives. Biochem Biophys Rep 2024; 37:101599. [PMID: 38145105 PMCID: PMC10746368 DOI: 10.1016/j.bbrep.2023.101599] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Membrane proteins determine the precise function of each membrane and, therefore, the function of each cell type. These proteins essential roles in cell physiology, participating in the maintenance of the cell metabolism, its homeostasis or promoting proper cell growth. Membrane proteins, as has long been described, are located both in the plasma membrane and in complex subcellular structures. However, they can also be released into the extracellular environment associated with extracellular vesicles (EVs). To date, most of the research have been focused on understanding the role of exosomal RNA in several processes. Recently, there has been increasing interest in studying the function of exosome membrane proteins for exosome-based therapy, but not much research has been done yet on the function of exosome membrane proteins. One of the major limitations of studying exosome membrane proteins and their application to translational research of exosome-based therapeutics is the low yield of exosome isolation. Here, we have introduced a new perspective on exosome membrane protein research by reviewing studies showing the important role of exosome membrane proteins in exosome-based therapies. Furthermore, we have proposed a new strategy to boost the yield of exosome isolation: hybridization of liposomes with exosome-derived membrane. Liposomes have already been reported to affect the cell excitation to increase exosome production in tumor cells. Therefore, increasing cellular uptake of these liposomes would enhance exosome release by increasing cellular excitation. This new perspective could be a breakthrough in exosome-based therapeutic research.
Collapse
Affiliation(s)
- Nuria Palomar-Alonso
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Mijung Lee
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Neuroscience Dementia Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
9
|
Hivare P, Mujmer K, Swarup G, Gupta S, Bhatia D. Endocytic pathways of pathogenic protein aggregates in neurodegenerative diseases. Traffic 2023; 24:434-452. [PMID: 37392160 DOI: 10.1111/tra.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/14/2023] [Accepted: 06/11/2023] [Indexed: 07/03/2023]
Abstract
Endocytosis is the fundamental uptake process through which cells internalize extracellular materials and species. Neurodegenerative diseases (NDs) are characterized by a progressive accumulation of intrinsically disordered protein species, leading to neuronal death. Misfolding in many proteins leads to various NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other disorders. Despite the significance of disordered protein species in neurodegeneration, their spread between cells and the cellular uptake of extracellular species is not entirely understood. This review discusses the major internalization mechanisms of the different conformer species of these proteins and their endocytic mechanisms. We briefly introduce the broad types of endocytic mechanisms found in cells and then summarize what is known about the endocytosis of monomeric, oligomeric and aggregated conformations of tau, Aβ, α-Syn, Huntingtin, Prions, SOD1, TDP-43 and other proteins associated with neurodegeneration. We also highlight the key players involved in internalizing these disordered proteins and the several techniques and approaches to identify their endocytic mechanisms. Finally, we discuss the obstacles involved in studying the endocytosis of these protein species and the need to develop better techniques to elucidate the uptake mechanisms of a particular disordered protein species.
Collapse
Affiliation(s)
- Pravin Hivare
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Kratika Mujmer
- Center for Brain and Cognitive Sciences, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Gitanjali Swarup
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Sharad Gupta
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| |
Collapse
|
10
|
Mitra S, Harvey-Jones K, Kraev I, Verma V, Meehan C, Mintoft A, Norris G, Campbell E, Tucker K, Robertson NJ, Hristova M, Lange S. The Extracellular Vesicle Citrullinome and Signature in a Piglet Model of Neonatal Seizures. Int J Mol Sci 2023; 24:11529. [PMID: 37511288 PMCID: PMC10380774 DOI: 10.3390/ijms241411529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Neonatal seizures are commonly associated with acute perinatal brain injury, while understanding regarding the downstream molecular pathways related to seizures remains unclear. Furthermore, effective treatment and reliable biomarkers are still lacking. Post-translational modifications can contribute to changes in protein function, and post-translational citrullination, which is caused by modification of arginine to citrulline via the calcium-mediated activation of the peptidylarginine deiminase (PAD) enzyme family, is being increasingly linked to neurological injury. Extracellular vesicles (EVs) are lipid-bilayer structures released from cells; they can be isolated from most body fluids and act as potential liquid biomarkers for disease conditions and response to treatment. As EVs carry a range of genetic and protein cargo that can be characteristic of pathological processes, the current study assessed modified citrullinated protein cargo in EVs isolated from plasma and CSF in a piglet neonatal seizure model, also following phenobarbitone treatment. Our findings provide novel insights into roles for PAD-mediated changes on EV signatures in neonatal seizures and highlight the potential of plasma- and CSF-EVs to monitor responses to treatment.
Collapse
Affiliation(s)
- Subhabrata Mitra
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Kelly Harvey-Jones
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Vinita Verma
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Christopher Meehan
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Alison Mintoft
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Georgina Norris
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Ellie Campbell
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Katie Tucker
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Nicola J. Robertson
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Neonatology, UCL Institute for Women’s Health, London WC1E 6HU, UK;
| | - Sigrun Lange
- Perinatal Brain Repair Group, Department of Neonatology, UCL Institute for Women’s Health, London WC1E 6HU, UK;
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Pathobiology and Extracellular Vesicle Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
11
|
Streubel-Gallasch L, Seibler P. Neuron-Derived Misfolded α-Synuclein in Blood: A Potential Biomarker for Parkinson's Disease? Mov Disord 2023; 38:385. [PMID: 36718670 DOI: 10.1002/mds.29331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
12
|
Li M, Li L, Zheng J, Li Z, Li S, Wang K, Chen X. Liquid biopsy at the frontier in renal cell carcinoma: recent analysis of techniques and clinical application. Mol Cancer 2023; 22:37. [PMID: 36810071 PMCID: PMC9942319 DOI: 10.1186/s12943-023-01745-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/11/2023] [Indexed: 02/23/2023] Open
Abstract
Renal cell carcinoma (RCC) is a major pathological type of kidney cancer and is one of the most common malignancies worldwide. The unremarkable symptoms of early stages, proneness to postoperative metastasis or recurrence, and low sensitivity to radiotherapy and chemotherapy pose a challenge for the diagnosis and treatment of RCC. Liquid biopsy is an emerging test that measures patient biomarkers, including circulating tumor cells, cell-free DNA/cell-free tumor DNA, cell-free RNA, exosomes, and tumor-derived metabolites and proteins. Owing to its non-invasiveness, liquid biopsy enables continuous and real-time collection of patient information for diagnosis, prognostic assessment, treatment monitoring, and response evaluation. Therefore, the selection of appropriate biomarkers for liquid biopsy is crucial for identifying high-risk patients, developing personalized therapeutic plans, and practicing precision medicine. In recent years, owing to the rapid development and iteration of extraction and analysis technologies, liquid biopsy has emerged as a low cost, high efficiency, and high accuracy clinical detection method. Here, we comprehensively review liquid biopsy components and their clinical applications over the past 5 years. Additionally, we discuss its limitations and predict its future prospects.
Collapse
Affiliation(s)
- Mingyang Li
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning Shenyang, 110004 People’s Republic of China
| | - Lei Li
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning Shenyang, 110004 People’s Republic of China
| | - Jianyi Zheng
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning Shenyang, 110004 People’s Republic of China
| | - Zeyu Li
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning Shenyang, 110004 People’s Republic of China
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
13
|
Herman S, Djaldetti R, Mollenhauer B, Offen D. CSF-derived extracellular vesicles from patients with Parkinson's disease induce symptoms and pathology. Brain 2023; 146:209-224. [PMID: 35881523 DOI: 10.1093/brain/awac261] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease is characterized by the gradual appearance of intraneuronal inclusions that are primarily composed of misfolded α-synuclein protein, leading to cytotoxicity and neural death. Recent in vitro and in vivo studies suggest that misfolded α-synuclein may spread transcellularly in a prion-like manner, inducing pathological aggregates in healthy neurons, and is disseminated via secretion of extracellular vesicles. Accordingly, extracellular vesicles derived from brain lysates and CSF of patients with Parkinson's disease were shown to facilitate α-synuclein aggregation in healthy cells. Prompted by the hypothesis of Braak and colleagues that the olfactory bulb is one of the primary propagation sites for the initiation of Parkinson's disease, we sought to investigate the role of extracellular vesicles in the spread of α-synuclein and progression of Parkinson's disease through the olfactory bulb. Extracellular vesicles derived from the CSF of patients diagnosed with Parkinson's disease or with a non-synucleinopathy neurodegenerative disorder were administered intranasally to healthy mice, once daily over 4 days. Three months later, mice were subjected to motor and non-motor tests. Functional impairments were elucidated by histochemical analysis of midbrain structures relevant to Parkinson's disease pathology, 8 months after EVs treatment. Mice treated with extracellular vesicles from the patients with Parkinson's disease displayed multiple symptoms consistent with prodromal and clinical-phase Parkinson's disease such as hyposmia, motor behaviour impairments and high anxiety levels. Furthermore, their midbrains showed widespread α-synuclein aggregations, dopaminergic neurodegeneration, neuroinflammation and altered autophagy activity. Several unconventional pathologies were also observed, such as α-synuclein aggregations in the red nucleus, growth of premature grey hair and astrogliosis. Collectively, these data indicate that intranasally administered extracellular vesicles derived from the CSF of patients with Parkinson's disease can propagate α-synuclein aggregation in vivo and trigger Parkinson's disease-like symptoms and pathology in healthy mice.
Collapse
Affiliation(s)
- Shay Herman
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, and Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ruth Djaldetti
- Department of Neurology, Rabin Medical Center-Beilinson Hospital, Petach Tikva 4941492, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| | - Daniel Offen
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, and Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
14
|
Noori L, Filip K, Nazmara Z, Mahakizadeh S, Hassanzadeh G, Caruso Bavisotto C, Bucchieri F, Marino Gammazza A, Cappello F, Wnuk M, Scalia F. Contribution of Extracellular Vesicles and Molecular Chaperones in Age-Related Neurodegenerative Disorders of the CNS. Int J Mol Sci 2023; 24:927. [PMID: 36674442 PMCID: PMC9861359 DOI: 10.3390/ijms24020927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Many neurodegenerative disorders are characterized by the abnormal aggregation of misfolded proteins that form amyloid deposits which possess prion-like behavior such as self-replication, intercellular transmission, and consequent induction of native forms of the same protein in surrounding cells. The distribution of the accumulated proteins and their correlated toxicity seem to be involved in the progression of nervous system degeneration. Molecular chaperones are known to maintain proteostasis, contribute to protein refolding to protect their function, and eliminate fatally misfolded proteins, prohibiting harmful effects. However, chaperone network efficiency declines during aging, prompting the onset and the development of neurological disorders. Extracellular vesicles (EVs) are tiny membranous structures produced by a wide range of cells under physiological and pathological conditions, suggesting their significant role in fundamental processes particularly in cellular communication. They modulate the behavior of nearby and distant cells through their biological cargo. In the pathological context, EVs transport disease-causing entities, including prions, α-syn, and tau, helping to spread damage to non-affected areas and accelerating the progression of neurodegeneration. However, EVs are considered effective for delivering therapeutic factors to the nervous system, since they are capable of crossing the blood-brain barrier (BBB) and are involved in the transportation of a variety of cellular entities. Here, we review the neurodegeneration process caused mainly by the inefficiency of chaperone systems as well as EV performance in neuropathies, their potential as diagnostic biomarkers and a promising EV-based therapeutic approach.
Collapse
Affiliation(s)
- Leila Noori
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Kamila Filip
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Zohreh Nazmara
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Simin Mahakizadeh
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj 3149779453, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
15
|
Natale F, Fusco S, Grassi C. Dual role of brain-derived extracellular vesicles in dementia-related neurodegenerative disorders: cargo of disease spreading signals and diagnostic-therapeutic molecules. Transl Neurodegener 2022; 11:50. [PMID: 36437458 PMCID: PMC9701396 DOI: 10.1186/s40035-022-00326-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022] Open
Abstract
Neurodegenerative disorders are one of the most common causes of disability and represent 6.3% of the global burden of disease. Among them, Alzheimer's, Parkinson's, and Huntington's diseases cause cognitive decline, representing the most disabling symptom on both personal and social levels. The molecular mechanisms underlying the onset and progression of dementia are still poorly understood, and include secretory factors potentially affecting differentiated neurons, glial cells and neural stem cell niche. In the last decade, much attention has been devoted to exosomes as novel carriers of information exchanged among both neighbouring and distant cells. These vesicles can be generated and internalized by different brain cells including neurons, neural stem cells, astrocytes, and microglia, thereby affecting neural plasticity and cognitive functions in physiological and pathological conditions. Here, we review data on the roles of exosomes as carriers of bioactive molecules potentially involved in the pathogenesis of neurodegenerative disorders and detectable in biological fluids as biomarkers of dementia. We also discuss the experimental evidence of the therapeutic potential of stem cell-derived vesicles in experimental models of neurodegeneration-dependent cognitive decline.
Collapse
Affiliation(s)
- Francesca Natale
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Salvatore Fusco
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Grassi
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
16
|
Mercer A, Jaunmuktane Z, Hristova M, Lange S. Differential, Stage Dependent Detection of Peptidylarginine Deiminases and Protein Deimination in Lewy Body Diseases-Findings from a Pilot Study. Int J Mol Sci 2022; 23:13117. [PMID: 36361903 PMCID: PMC9658624 DOI: 10.3390/ijms232113117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Over 10 million people worldwide live with Parkinson's disease (PD) and 4% of affected people are diagnosed before the age of 50. Research on early PD-related pathways is therefore of considerable importance. Peptidylarginine deiminases (PADs) are a family of calcium-activated enzymes that, through post-translational deimination of arginine to citrulline, contribute to changes in protein function, including in pathological processes. Recent studies have highlighted roles for PADs in a range of neurological disorders including PD, but overall, investigations on PADs in Lewy body disease (LBD), including PD, are still scarce. Hence, the current pilot study aimed at performing an immunohistochemistry screen of post-mortem human brain sections from Braak stages 4-6 from PD patients, as well as patients with incidental LBD (ILBD). We assessed differences in PAD isozyme detection (assessing all five PADs), in total protein deimination/citrullination and histone H3 deimination-which is an indicator of epigenetic changes and extracellular trap formation (ETosis), which can elicit immune responses and has involvement in pathogenic conditions. The findings of our pilot study indicate that PADs and deimination are increased in cingulate cortex and hippocampus, particularly in earlier stages of the disease. PAD2 and PAD3 were the most strongly upregulated PAD isozymes, with some elevation also observed for PAD1, while PAD4 and PAD6 increase was less marked in PD brains. Total protein deimination and histone H3 deimination were furthermore increased in PD brains, with a considerable increase at earlier Braak stages, compared with controls. Our findings point to a significant contribution of PADs, which may further aid early disease biomarker discovery, in PD and other LBDs.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Neonatology, UCL Institute for Women’s Health, London WC1E 6HU, UK
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK
| |
Collapse
|
17
|
Current status and outlook of advances in exosome isolation. Anal Bioanal Chem 2022; 414:7123-7141. [PMID: 35962791 PMCID: PMC9375199 DOI: 10.1007/s00216-022-04253-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022]
Abstract
Exosomes are extracellular vesicles with a diameter ranging from 30 to 150 nm, which are an important medium for intercellular communication and are closely related to the progression of certain diseases. Therefore, exosomes are considered promising biomarkers for the diagnosis of specific diseases, and thereby, treatments based on exosomes are being widely examined. For exosome-related research, a rapid, simple, high-purity, and recovery isolation method is the primary prerequisite for exosomal large-scale application in medical practice. Although there are no standardized methods for exosome separation and analysis, various techniques have been established to explore their biochemical and physicochemical properties. In this review, we analyzed the progress in exosomal isolation strategies and proposed our views on the development prospects of various exosomal isolation techniques.
Collapse
|
18
|
Gosset P, Camu W, Raoul C, Mezghrani A. Prionoids in amyotrophic lateral sclerosis. Brain Commun 2022; 4:fcac145. [PMID: 35783556 PMCID: PMC9242622 DOI: 10.1093/braincomms/fcac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/16/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most frequent neurodegenerative disease after Alzheimer’s and Parkinson’s disease. ALS is characterized by the selective and progressive loss of motoneurons in the spinal cord, brainstem and cerebral cortex. Clinical manifestations typically occur in midlife and start with focal muscle weakness, followed by the rapid and progressive wasting of muscles and subsequent paralysis. As with other neurodegenerative diseases, the condition typically begins at an initial point and then spreads along neuroanatomical tracts. This feature of disease progression suggests the spreading of prion-like proteins called prionoids in the affected tissues, which is similar to the spread of prion observed in Creutzfeldt-Jakob disease. Intensive research over the last decade has proposed the ALS-causing gene products Cu/Zn superoxide dismutase 1, TAR DNA-binding protein of 43 kDa, and fused in sarcoma as very plausible prionoids contributing to the spread of the pathology. In this review, we will discuss the molecular and cellular mechanisms leading to the propagation of these prionoids in ALS.
Collapse
Affiliation(s)
- Philippe Gosset
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - William Camu
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - Cedric Raoul
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | | |
Collapse
|
19
|
Kim G, Chen X, Yang Y. Pathogenic Extracellular Vesicle (EV) Signaling in Amyotrophic Lateral Sclerosis (ALS). Neurotherapeutics 2022; 19:1119-1132. [PMID: 35426061 PMCID: PMC9587178 DOI: 10.1007/s13311-022-01232-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs), once considered a pathway for cells to remove waste, have now emerged as an important mechanism for intercellular communication. EVs are particularly appealing in understanding the central nervous system (CNS) communication, given that there are very diverse cell types in the CNS and constant communications among various cells to respond to the frequently changing environment. While they are heterogeneous and new vesicles are continuously to be discovered, EVs are primarily classified as plasma membrane-derived microvesicles (MVs) and endosome-derived exosomes. Secretion of EVs has been shown from all CNS cell types in vitro and intercellular EV signaling has been implicated in neural development, axon integrity, neuron to glia communication, and propagation of protein aggregates formed by disease pathogenic proteins. However, significant hurdles remain to be tackled in understanding their physiological and pathological roles as well as how they can be developed as biomarkers or new therapeutics. Here we provide our summary on the known cell biology of EVs and discuss opportunities and challenges in understanding EV biology in the CNS and particularly their involvement in ALS pathogenesis.
Collapse
Affiliation(s)
- Gloria Kim
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Xuan Chen
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA.
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
20
|
Thome AD, Thonhoff JR, Zhao W, Faridar A, Wang J, Beers DR, Appel SH. Extracellular Vesicles Derived From Ex Vivo Expanded Regulatory T Cells Modulate In Vitro and In Vivo Inflammation. Front Immunol 2022; 13:875825. [PMID: 35812435 PMCID: PMC9258040 DOI: 10.3389/fimmu.2022.875825] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vehicles (EVs) are efficient biomarkers of disease and participate in disease pathogenesis; however, their use as clinical therapies to modify disease outcomes remains to be determined. Cell-based immune therapies, including regulatory T cells (Tregs), are currently being clinically evaluated for their usefulness in suppressing pro-inflammatory processes. The present study demonstrates that ex vivo expanded Tregs generate a large pool of EVs that express Treg-associated markers and suppress pro-inflammatory responses in vitro and in vivo. Intravenous injection of Treg EVs into an LPS-induced mouse model of inflammation reduced peripheral pro-inflammatory transcripts and increased anti-inflammatory transcripts in myeloid cells as well as Tregs. Intranasal administration of enriched Treg EVs in this model also reduced pro-inflammatory transcripts and the associated neuroinflammatory responses. In a mouse model of amyotrophic lateral sclerosis, intranasal administration of enriched Treg EVs slowed disease progression, increased survival, and modulated inflammation within the diseased spinal cord. These findings support the therapeutic potential of expanded Treg EVs to suppress pro-inflammatory responses in human disease.
Collapse
Affiliation(s)
- Aaron D Thome
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Jason R Thonhoff
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Weihua Zhao
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Alireza Faridar
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Jinghong Wang
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - David R Beers
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Stanley H Appel
- Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
21
|
Wu YY, Shan SK, Lin X, Xu F, Zhong JY, Wu F, Duan JY, Guo B, Li FXZ, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Tang KX, Li CC, Ullah MHE, Yuan LQ. Cellular Crosstalk in the Vascular Wall Microenvironment: The Role of Exosomes in Vascular Calcification. Front Cardiovasc Med 2022; 9:912358. [PMID: 35677687 PMCID: PMC9168031 DOI: 10.3389/fcvm.2022.912358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 07/20/2023] Open
Abstract
Vascular calcification is prevalent in aging, diabetes, chronic kidney disease, cardiovascular disease, and certain genetic disorders. However, the pathogenesis of vascular calcification is not well-understood. It has been progressively recognized that vascular calcification depends on the bidirectional interactions between vascular cells and their microenvironment. Exosomes are an essential bridge to mediate crosstalk between cells and organisms, and thus they have attracted increased research attention in recent years. Accumulating evidence has indicated that exosomes play an important role in cardiovascular disease, especially in vascular calcification. In this review, we introduce vascular biology and focus on the crosstalk between the different vessel layers and how their interplay controls the process of vascular calcification.
Collapse
Affiliation(s)
- Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yu Zhong
- Department of Nuclear Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang-Chun Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Hasnain Ehsan Ullah
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Chen R, Wu W, Yang P, Qiu Y. Hsa_circ_0009057 can be a novel potential diagnostic biomarker and a therapeutic target for premature brain injury. Neurosci Lett 2022; 775:136551. [DOI: 10.1016/j.neulet.2022.136551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/28/2022] [Accepted: 02/24/2022] [Indexed: 10/19/2022]
|
23
|
Kaur S, Verma H, Dhiman M, Tell G, Gigli GL, Janes F, Mantha AK. Brain Exosomes: Friend or Foe in Alzheimer's Disease? Mol Neurobiol 2021; 58:6610-6624. [PMID: 34595669 DOI: 10.1007/s12035-021-02547-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/23/2021] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. It is known to be a multifactorial disease and several causes are associated with its occurrence as well as progression. However, the accumulation of amyloid beta (Aβ) is widely considered its major pathogenic hallmark. Additionally, neurofibrillary tangles (NFT), mitochondrial dysfunction, oxidative stress, and aging (cellular senescence) are considered as additional hits affecting the disease pathology. Several studies are now suggesting important role of inflammation in AD, which shifts our thought towards the brain's resident immune cells, microglia, and astrocytes; how they interact with neurons; and how these interactions are affected by intra and extracellular stressful factors. These interactions can be modulated by different mechanisms and pathways, in which exosomes could play an important role. Exosomes are multivesicular bodies secreted by nearly all types of cells. The exosomes secreted by glial cells or neurons affect the interactions and thus the physiology of these cells by transmitting miRNAs, proteins, and lipids. Exosomes can serve as a friend or foe to the neuron function, depending upon the carried signals. Exosomes, from the healthy microenvironment, may assist neuron function and health, whereas, from the stressed microenvironment, they carry oxidative and inflammatory signals to the neurons and thus prove detrimental to the neuronal function. Furthermore, exosomes can cross the blood-brain barrier (BBB), and from the blood plasma they can enter the brain cells and activate microglia and astrocytes. Exosomes can transport Aβ or Tau, cytokines, miRNAs between the cells, and alter the physiology of recipient cells. They can also assist in Aβ clearance and regulation of synaptic activity. The exosomes derived from different cells play different roles, and this field is still in its infancy stage. This review advocates exosomes' role as a friend or foe in neurodegenerative diseases, especially in the case of Alzheimer's disease.
Collapse
Affiliation(s)
- Sharanjot Kaur
- Department of Microbiology, School of Biological Sciences , Central University of Punjab, Bathinda, Punjab, India
| | - Harkomal Verma
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Village Ghudda151 401, Punjab, Bathinda, India
| | - Monisha Dhiman
- Department of Microbiology, School of Biological Sciences , Central University of Punjab, Bathinda, Punjab, India
| | - Gianluca Tell
- Department of Medicine, University of Udine, Udine, Italy
| | - Gian Luigi Gigli
- Department of Medicine, University of Udine, Udine, Italy
- Clinical Neurology, Udine University Hospital, Udine, Italy
| | | | - Anil K Mantha
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Village Ghudda151 401, Punjab, Bathinda, India.
| |
Collapse
|
24
|
Liu S, Hossinger A, Heumüller SE, Hornberger A, Buravlova O, Konstantoulea K, Müller SA, Paulsen L, Rousseau F, Schymkowitz J, Lichtenthaler SF, Neumann M, Denner P, Vorberg IM. Highly efficient intercellular spreading of protein misfolding mediated by viral ligand-receptor interactions. Nat Commun 2021; 12:5739. [PMID: 34667166 PMCID: PMC8526834 DOI: 10.1038/s41467-021-25855-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Protein aggregates associated with neurodegenerative diseases have the ability to transmit to unaffected cells, thereby templating their own aberrant conformation onto soluble homotypic proteins. Proteopathic seeds can be released into the extracellular space, secreted in association with extracellular vesicles (EV) or exchanged by direct cell-to-cell contact. The extent to which each of these pathways contribute to the prion-like spreading of protein misfolding is unclear. Exchange of cellular cargo by both direct cell contact or via EV depends on receptor-ligand interactions. We hypothesized that enabling these interactions through viral ligands enhances intercellular proteopathic seed transmission. Using different cellular models propagating prions or pathogenic Tau aggregates, we demonstrate that vesicular stomatitis virus glycoprotein and SARS-CoV-2 spike S increase aggregate induction by cell contact or ligand-decorated EV. Thus, receptor-ligand interactions are important determinants of intercellular aggregate dissemination. Our data raise the possibility that viral infections contribute to proteopathic seed spreading by facilitating intercellular cargo transfer.
Collapse
Affiliation(s)
- Shu Liu
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127 Bonn, Germany ,grid.417830.90000 0000 8852 3623Present Address: German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - André Hossinger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127 Bonn, Germany
| | - Stefanie-Elisabeth Heumüller
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127 Bonn, Germany
| | - Annika Hornberger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127 Bonn, Germany
| | - Oleksandra Buravlova
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127 Bonn, Germany
| | - Katerina Konstantoulea
- grid.511015.1VIB Center for Brain and Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stephan A. Müller
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Lydia Paulsen
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127 Bonn, Germany
| | - Frederic Rousseau
- grid.511015.1VIB Center for Brain and Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- grid.511015.1VIB Center for Brain and Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan F. Lichtenthaler
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Manuela Neumann
- grid.411544.10000 0001 0196 8249Department of Neuropathology, University Hospital Tübingen, Tübingen, Germany ,grid.424247.30000 0004 0438 0426Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Philip Denner
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127 Bonn, Germany
| | - Ina M. Vorberg
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases Bonn (DZNE), Venusberg Campus 1/ 99, 53127 Bonn, Germany ,grid.10388.320000 0001 2240 3300Rheinische Friedrich-Wilhelms-Universität Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| |
Collapse
|
25
|
Qin B, Hu XM, Su ZH, Zeng XB, Ma HY, Xiong K. Tissue-derived extracellular vesicles: Research progress from isolation to application. Pathol Res Pract 2021; 226:153604. [PMID: 34500372 DOI: 10.1016/j.prp.2021.153604] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are the structures that all cells release into the environment. They are separated by a lipid bilayer and contain the cellular components that release them. To date, most studies have been performed on EVs derived from cell supernatants or different body fluids, while the number of studies on EV isolation directly from tissues is still limited. Studies of EV isolation directly from tissues may provide us with better information. This review summarizes the role of EV in the extracellular matrix, the protocol for isolation of EV in the tissue interstitium, and the application of the protocol in different tissues.
Collapse
Affiliation(s)
- Bo Qin
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District Guilin North Road No.16, Huangshi 435003, China
| | - Xi-Min Hu
- Clinical Medicine Eight-year Program, 02 Class, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Zhen-Hong Su
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District Guilin North Road No.16, Huangshi 435003, China
| | - Xiao-Bo Zeng
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District Guilin North Road No.16, Huangshi 435003, China
| | - Hong-Ying Ma
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District Guilin North Road No.16, Huangshi 435003, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, China.
| |
Collapse
|
26
|
Upadhya R, Shetty AK. Extracellular Vesicles for the Diagnosis and Treatment of Parkinson's Disease. Aging Dis 2021; 12:1438-1450. [PMID: 34527420 PMCID: PMC8407884 DOI: 10.14336/ad.2021.0516] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/16/2021] [Indexed: 12/25/2022] Open
Abstract
Extracellular vesicles (EVs) shed by neurons and glia in the central nervous system carry a cargo of specific bioactive molecules, facilitating intercellular communication. However, in neurodegenerative disease conditions, EVs carry pathological miRNAs and/or proteins involved in spreading the disease. Such EVs are also found in the cerebrospinal fluid (CSF) or the circulating blood, the characterization of which could identify biomarkers linked to specific neurodegenerative diseases. Moreover, EVs secreted by various stem/progenitor cells carry therapeutic miRNAs and proteins, which have shown promise to alleviate symptoms and slow down the progression of neurodegenerative diseases. The ability of exogenously administered EVs to easily cross the blood-brain barrier with no risk for thrombosis and incorporate into neurons and glia has also opened up the possibility of using nano-sized EVs as carriers of therapeutic drugs or bioactive proteins. This review summarizes the role and function of EVs in alpha-synuclein-mediated neurodegeneration and the spread of alpha-synuclein from neurons to glia, leading to the activation of the inflammatory response in Parkinson’s disease (PD). Moreover, the promise of brain-derived EVs in the CSF and the circulating blood for biomarker discovery and the efficacy of stem/progenitor cell-derived EVs or EVs loaded with bioactive molecules such as dopamine, catalase, curcumin, and siRNAs, in alleviating Parkinsonian symptoms are discussed.
Collapse
Affiliation(s)
- Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| |
Collapse
|
27
|
Zheng H, Xie Z, Zhang X, Mao J, Wang M, Wei S, Fu Y, Zheng H, He Y, Chen H, Xu Y. Investigation of α-Synuclein Species in Plasma Exosomes and the Oligomeric and Phosphorylated α-Synuclein as Potential Peripheral Biomarker of Parkinson's Disease. Neuroscience 2021; 469:79-90. [PMID: 34186110 DOI: 10.1016/j.neuroscience.2021.06.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
α-Synuclein (α-syn), especially its abnormal oligomeric and phosphorylated form, plays a critical role in the pathogenesis of Parkinson's disease (PD). Plasma exosomal α-syn species have been shown to be a promising PD biomarker. However, whether different α-syn species in plasma exosomes (the oligomeric α-syn and the Ser129 phosphorylated α-syn (p-α-syn)) which represent the PD pathogenesis in the brain could be specific peripheral PD biomarker haven't been well elucidated. In this study, we successfully extracted and identified the human plasma exosomes, and the CNS-derived exosomes were detected. The different aggregation status, localization and degradation characteristics of α-syn and p-α-syn in the plasma exosomes between PD patients and healthy controls were further analyzed. The results suggested that α-syn and p-α-syn in the plasma exosomes of PD patients showed poor solubility after protease K (PK) treatment. Aggregated α-syn and p-α-syn existed both inside and on the membrane surface of plasma exosomes. The Receiver operating characteristic (ROC) performance of α-syn oligomer/total α-syn in exosomes was moderately helpful in PD diagnosis (AUC = 0.71, sensitivity = 60.5%, specificity = 59.4%), and the ratio of p-α-syn oligomer/total p-α-syn showed similar result (AUC = 0.69, sensitivity = 60.0%, specificity = 59.5%). This study indicates that the oligomeric α-syn/total α-syn and oligomeric p-α-syn/total p-α-syn ratio in plasma exosomes may be applied to assist the PD diagnosis, which needs further research.
Collapse
Affiliation(s)
- Hengxing Zheng
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenhua Xie
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xuran Zhang
- The First Affiliated Hospital of Henan University of CM, Zhengzhou, China
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Mengyuan Wang
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sijia Wei
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yiwen Fu
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong Zheng
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying He
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hui Chen
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Yan Xu
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
28
|
Zhu C, Bilousova T, Focht S, Jun M, Elias CJ, Melnik M, Chandra S, Campagna J, Cohn W, Hatami A, Spilman P, Gylys KH, John V. Pharmacological inhibition of nSMase2 reduces brain exosome release and α-synuclein pathology in a Parkinson's disease model. Mol Brain 2021; 14:70. [PMID: 33875010 PMCID: PMC8056538 DOI: 10.1186/s13041-021-00776-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Aim We have previously reported that cambinol (DDL-112), a known inhibitor of neutral sphingomyelinase-2 (nSMase2), suppressed extracellular vesicle (EV)/exosome production in vitro in a cell model and reduced tau seed propagation. The enzyme nSMase2 is involved in the production of exosomes carrying proteopathic seeds and could contribute to cell-to-cell transmission of pathological protein aggregates implicated in neurodegenerative diseases such as Parkinson’s disease (PD). Here, we performed in vivo studies to determine if DDL-112 can reduce brain EV/exosome production and proteopathic alpha synuclein (αSyn) spread in a PD mouse model. Methods The acute effects of single-dose treatment with DDL-112 on interleukin-1β-induced extracellular vesicle (EV) release in brain tissue of Thy1-αSyn PD model mice and chronic effects of 5 week DDL-112 treatment on behavioral/motor function and proteinase K-resistant αSyn aggregates in the PD model were determined. Results/discussion In the acute study, pre-treatment with DDL-112 reduced EV/exosome biogenesis and in the chronic study, treatment with DDL-112 was associated with a reduction in αSyn aggregates in the substantia nigra and improvement in motor function. Inhibition of nSMase2 thus offers a new approach to therapeutic development for neurodegenerative diseases with the potential to reduce the spread of disease-specific proteopathic proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s13041-021-00776-9.
Collapse
Affiliation(s)
- Chunni Zhu
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, 90095, USA
| | - Tina Bilousova
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, 90095, USA.,School of Nursing, University of California, Los Angeles, CA, 90095, USA
| | - Samantha Focht
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, 90095, USA
| | - Michael Jun
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, 90095, USA
| | - Chris Jean Elias
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, 90095, USA
| | - Mikhail Melnik
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, 90095, USA
| | - Sujyoti Chandra
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, 90095, USA
| | - Jesus Campagna
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, 90095, USA
| | - Whitaker Cohn
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, 90095, USA
| | - Asa Hatami
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, 90095, USA
| | - Patricia Spilman
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, 90095, USA
| | | | - Varghese John
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
29
|
Nguyen BY, Azam T, Wang X. Cellular signaling cross-talk between different cardiac cell populations: an insight into the role of exosomes in the heart diseases and therapy. Am J Physiol Heart Circ Physiol 2021; 320:H1213-H1234. [PMID: 33513083 DOI: 10.1152/ajpheart.00718.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exosomes are a subgroup of extracellular bilayer membrane nanovesicles that are enriched in a variety of bioactive lipids, receptors, transcription factors, surface proteins, DNA, and noncoding RNAs. They have been well recognized to play essential roles in mediating intercellular signaling by delivering bioactive molecules from host cells to regulate the physiological processes of recipient cells. In the context of heart diseases, accumulating studies have indicated that exosome-carried cellular proteins and noncoding RNA derived from different types of cardiac cells, including cardiomyocytes, fibroblasts, endothelial cells, immune cells, adipocytes, and resident stem cells, have pivotal roles in cardiac remodeling under disease conditions such as cardiac hypertrophy, diabetic cardiomyopathy, and myocardial infarction. In addition, exosomal contents derived from stem cells have been shown to be beneficial for regenerative potential of the heart. In this review, we discuss current understanding of the role of exosomes in cardiac communication, with a focus on cardiovascular pathophysiology and perspectives for their potential uses as cardiac therapies.
Collapse
Affiliation(s)
- Binh Yen Nguyen
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tayyiba Azam
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Wang
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
30
|
Küçükgüven MB, Çelebi-Saltik B. Stem Cell Based Exosomes: Are They Effective in Disease or Health? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1341:45-65. [PMID: 33782904 DOI: 10.1007/5584_2021_630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Exosomes are nano-sized vesicles involved in intercellular communication via delivery of molecules including lipids, nucleic acids, proteins, or other cellular components to distant or neighboring sites. Their ability to pass biological barriers, stability in physiological fluids without degradation, and distinctive affinity to target cells make exosomes very remarkable therapeutic vehicles. Virus-based approaches are some of the most widely used gene therapy methods; however, there are many issues need to be clarified such as high immunogenicity. Using of the exosomes procures the functional transfer of their cargo with minimal intervention from the immune system and it has been reported to be secure and well-tolerated. When the regenerative medicine is taken into consideration, stem cell-based approaches have been aimed to utilize but the general efficacy and safety profile of stem cell therapy has still not been enlightened. At this point, stem cell-derived exosomes exhibit a way to procure cell-free regenerative medicine with their unique characteristics. Exosomes are considered as appropriate and highly stable biological nano-vectors taking part in a wide variety of healthy and pathological processes for advanced targeted therapies. However, there are still crucial obstacles to achieve efficient isolation of large amount of specific and pure exosomes. Thus, large-scale exosome production under good manufacturing practice is required. The purpose of this review is to focus on stem cell-based exosomes for gene delivery and to introduce synthetic exosome-mimics as a potential alternative in the field of targeted gene therapies. Further, we aim to highlight the biobanking and large-scale manufacturing methods of exosomes.
Collapse
Affiliation(s)
- Meriç Bilgiç Küçükgüven
- Department of Oral and Maxillofacial Surgery, Hacettepe University Faculty of Dentistry, Ankara, Turkey.,Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey.,Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey. .,Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
31
|
Chung CC, Chan L, Chen JH, Bamodu OA, Hong CT. Neurofilament light chain level in plasma extracellular vesicles and Parkinson's disease. Ther Adv Neurol Disord 2020; 13:1756286420975917. [PMID: 33335563 PMCID: PMC7724268 DOI: 10.1177/1756286420975917] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neurofilament light chain (NfL) is essential for axonal maintenance and reflects neuronal damage. Extracellular vesicles (EVs), especially exosomes, secreted by cells into the blood, are emerging as novel biomedical research platforms of physiological and pathological processes. The present study investigated the possible association between plasma EV NfL and Parkinson's disease (PD). METHODS One hundred and sixteen patients with mild to moderate PD and 46 non-PD, neurological controls were recruited, and their clinical motor symptoms and cognitive function were evaluated. Plasma EVs were isolated using an exoEasy kit, and immunomagnetic reduction assay was used to assess EV NfL level. Statistical analysis was performed using SPSS 25.0, and p < 0.05 was considered significant. RESULTS The isolated plasma EVs were validated according to size and the presence of specific surface markers. Compared with the neurological control group, the levels of plasma EV NfL in patients with PD were not significantly different (PD: 9.42 ± 3.89, control: 9.53 ± 3.62 pg/mL plasma, p = 0.71). On the other hand, plasma EV NfL in patients with PD trendwise correlated with the severity of akinetic rigidity (p = 0.05). PD patients with optimal EV NfL (lowest quartile) had 6.66 ± 2.08 lower Unified Parkinson's Disease Rating Scale-III score after adjustment for age, sex, and disease duration. CONCLUSION Plasma EV NfL levels did not distinguish patients with PD from the neurological control group. The possible correlation between plasma EV NfL with the severity of motor symptoms within the PD patients, especially with akinetic rigidity, was noted. Further clinical validation of the blood EV NfL by a longitudinal follow-up study of PD patients is warranted.
Collapse
Affiliation(s)
- Chen-Chih Chung
- Department of Neurology, Shuang Ho Hospital,
Taipei Medical University, New Taipei City Department of Neurology, School
of Medicine, College of Medicine, Taipei Medical University, Taipei City
Graduate Institute of Biomedical Informatics, Taipei Medical University,
Taipei City
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital,
Taipei Medical University, New Taipei City Department of Neurology, School
of Medicine, College of Medicine, Taipei Medical University, Taipei
City
| | - Jia-Hung Chen
- Department of Neurology, Shuang Ho Hospital,
Taipei Medical University, New Taipei City
| | - Oluwaseun Adebayo Bamodu
- Department of Hematology & Oncology, Shuang
Ho Hospital, Taipei Medical University, New Taipei City Department of
Medical Research & Education, Shuang Ho Hospital, Taipei Medical
University, New Taipei City Department of Urology, Shuang Ho Hospital,
Taipei Medical University, New Taipei City
| | - Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital,
Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New
Taipei City 23561 Department of Neurology, School of Medicine, College of
Medicine, Taipei Medical University, Taipei City
| |
Collapse
|
32
|
Bu LL, Huang KX, Zheng DZ, Lin DY, Chen Y, Jing XN, Liang YR, Tao EX. Alpha-Synuclein Accumulation and Its Phosphorylation in the Enteric Nervous System of Patients Without Neurodegeneration: An Explorative Study. Front Aging Neurosci 2020; 12:575481. [PMID: 33328957 PMCID: PMC7719782 DOI: 10.3389/fnagi.2020.575481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
Alpha-synuclein (α-Syn) is widely distributed and involved in the regulation of the nervous system. The phosphorylation of α-Syn at serine 129 (pSer129α-Syn) is known to be closely associated with α-Synucleinopathies, especially Parkinson's disease (PD). The present study aimed to explore the α-Syn accumulation and its phosphorylation in the enteric nervous system (ENS) in patients without neurodegeneration. Patients who underwent colorectal surgery for either malignant or benign tumors that were not suitable for endoscopic resection (n = 19) were recruited to obtain normal intestinal specimens, which were used to assess α-Syn immunoreactivity patterns using α-Syn and pSer129α-Syn antibodies. Furthermore, the sub-location of α-Syn in neurons was identified by α-Syn/neurofilament double staining. Semi-quantitative counting was used to evaluate the expression of α-Syn and pSer129α-Syn in the ENS. Positive staining of α-Syn was detected in all intestinal layers in patients with non-neurodegenerative diseases. There was no significant correlation between the distribution of α-Syn and age (p = 0.554) or tumor stage (p = 0.751). Positive staining for pSer129α-Syn was only observed in the submucosa and myenteric plexus layers. The accumulation of pSer129α-Syn increased with age. In addition, we found that the degenerative changes of the ENS were related to the degree of tumor malignancy (p = 0.022). The deposits of α-Syn were present in the ENS of patients with non-neurodegenerative disorders; particularly the age-dependent expression of pSer129α-Syn in the submucosa and myenteric plexus. The current findings of α-Syn immunostaining in the ENS under near non-pathological conditions weaken the basis of using α-Syn pathology as a suitable hallmark to diagnose α-Synucleinopathies including PD. However, our data provided unique perspectives to study gastrointestinal dysfunction in non-neurodegenerative disorders. These findings provide new evidence to elucidate the neuropathological characteristics and α-Syn pathology pattern of the ENS in non-neurodegenerative conditions.
Collapse
Affiliation(s)
- Lu-Lu Bu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai-Xun Huang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - De-Zhi Zheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan-Yu Lin
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ying Chen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiu-Na Jing
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan-Ran Liang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - En-Xiang Tao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Czystowska-Kuzmicz M, Whiteside TL. The potential role of tumor-derived exosomes in diagnosis, prognosis, and response to therapy in cancer. Expert Opin Biol Ther 2020; 21:241-258. [PMID: 32813990 DOI: 10.1080/14712598.2020.1813276] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Small extracellular vesicles (sEV) produced by tumors and called TEX mediate communication and regulate the tumor microenvironment. As a 'liquid tumor biopsy' and with the ability to induce pro-tumor reprogramming, TEX offer a promising approach to monitoring cancer progression or response to therapy. AREAS COVERED TEX isolation from body fluids and separation by immunoaffinity capture from other EVs enables TEX molecular and functional characterization in vitro and in vivo. TEX carry membrane-bound PD-L1 and a rich cargo of other proteins and nucleic acids that reflect the tumor content and activity. TEX transfer this cargo to recipient cells, activating various molecular pathways and inducing pro-tumor transcriptional changes. TEX may interfere with immune therapies, and TEX plasma levels correlate with patients' responses to therapy. TEX induce local and systemic alterations in immune cells which may have a prognostic value. EXPERT OPINION TEX have a special advantage as potential cancer biomarkers. Their cargo emerges as a correlate of developing or progressing malignant disease; their phenotype mimics that of the tumor; and their functional reprogramming of immune cells provides a reading of the patients' immune status prior and post immunotherapy. Validation of TEX and T-cell-derived sEV as cancer biomarkers is an impending future task.
Collapse
Affiliation(s)
| | - Theresa L Whiteside
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center , Pittsburgh, PA, USA
| |
Collapse
|
34
|
Khodayari N, Oshins R, Holliday LS, Clark V, Xiao Q, Marek G, Mehrad B, Brantly M. Alpha-1 antitrypsin deficient individuals have circulating extracellular vesicles with profibrogenic cargo. Cell Commun Signal 2020; 18:140. [PMID: 32887613 PMCID: PMC7487708 DOI: 10.1186/s12964-020-00648-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Alpha-1 antitrypsin deficiency (AATD)-mediated liver disease is a toxic “gain-of-function” inflammation in the liver associated with intracellular retention of mutant alpha-1 antitrypsin. The clinical presentation of the disease includes fibrosis, cirrhosis and liver failure. However, the pathogenic mechanism of AATD-mediated liver disease is not well understood. Here, we investigated the role of plasma extracellular vesicles (EVs) in progression of AATD-mediated liver disease. Methods EVs were isolated from plasma of AATD individuals with liver disease and healthy controls. Their cytokines and miRNA content were examined by multiplex assay and small RNA sequencing. The bioactivity of EVs was assessed by qPCR, western blot analysis and immunofluorescent experiments using human hepatic stellate cells (HSCs) treated with EVs isolated from control or AATD plasma samples. Results We have found that AATD individuals have a distinct population of EVs with pathological cytokine and miRNA contents. When HSCs were cultured with AATD plasma derived-EVs, the expression of genes related to the development of fibrosis were significantly amplified compared to those treated with healthy control plasma EVs. Conclusion AATD individuals have a distinct population of EVs with abnormal cytokine and miRNA contents and the capacity to activate HSCs and mediate fibrosis. Better understanding of the components which cause liver inflammation and fibrogenesis, leading to further liver injury, has the potential to lead to the development of new treatments or preventive strategies to prevent AATD-mediated liver disease. Video abstract
Collapse
Affiliation(s)
- Nazli Khodayari
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, USA.
| | - Regina Oshins
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, USA
| | | | - Virginia Clark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, USA
| | | | - George Marek
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, USA
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, USA
| | - Mark Brantly
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, USA.
| |
Collapse
|
35
|
Induced Pluripotent Stem Cells: Hope in the Treatment of Diseases, including Muscular Dystrophies. Int J Mol Sci 2020; 21:ijms21155467. [PMID: 32751747 PMCID: PMC7432218 DOI: 10.3390/ijms21155467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem (iPS) cells are laboratory-produced cells that combine the biological advantages of somatic adult and stem cells for cell-based therapy. The reprogramming of cells, such as fibroblasts, to an embryonic stem cell-like state is done by the ectopic expression of transcription factors responsible for generating embryonic stem cell properties. These primary factors are octamer-binding transcription factor 4 (Oct3/4), sex-determining region Y-box 2 (Sox2), Krüppel-like factor 4 (Klf4), and the proto-oncogene protein homolog of avian myelocytomatosis (c-Myc). The somatic cells can be easily obtained from the patient who will be subjected to cellular therapy and be reprogrammed to acquire the necessary high plasticity of embryonic stem cells. These cells have no ethical limitations involved, as in the case of embryonic stem cells, and display minimal immunological rejection risks after transplant. Currently, several clinical trials are in progress, most of them in phase I or II. Still, some inherent risks, such as chromosomal instability, insertional tumors, and teratoma formation, must be overcome to reach full clinical translation. However, with the clinical trials and extensive basic research studying the biology of these cells, a promising future for human cell-based therapies using iPS cells seems to be increasingly clear and close.
Collapse
|
36
|
Orefice NS. Development of New Strategies Using Extracellular Vesicles Loaded with Exogenous Nucleic Acid. Pharmaceutics 2020; 12:E705. [PMID: 32722622 PMCID: PMC7464422 DOI: 10.3390/pharmaceutics12080705] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is a therapeutic strategy of delivering foreign genetic material (encoding for an important protein) into a patient's target cell to replace a defective gene. Nucleic acids are embedded within the adeno-associated virus (AAVs) vectors; however, preexisting immunity to AAVs remains a significant concern that impairs their clinical application. Extracellular vesicles (EVs) hold great potential for therapeutic applications as vectors of nucleic acids due to their endogenous intercellular communication functions through their cargo delivery, including lipids and proteins. So far, small RNAs (siRNA and micro (mi)RNA) have been mainly loaded into EVs to treat several diseases, but the potential use of EVs to load and deliver exogenous plasmid DNA has not been thoroughly described. This review provides a comprehensive overview of the principal methodologies currently employed to load foreign genetic material into EVs, highlighting the need to find the most effective strategies for their successful clinical translations.
Collapse
Affiliation(s)
- Nicola Salvatore Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; or ; Tel.: +1-608-262-21-89
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
37
|
Schuster J, Cheng SB, Padbury J, Sharma S. Placental extracellular vesicles and pre-eclampsia. Am J Reprod Immunol 2020; 85:e13297. [PMID: 32619308 DOI: 10.1111/aji.13297] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Pre-eclampsia is a hypertensive disease of pregnancy characterized by new-onset hypertension, with either proteinuria and/or organ dysfunction. Pre-eclampsia is a leading cause of maternal morbidity and mortality; however, the underlying cellular and molecular mechanisms are not well understood. There is consensus that the underlying mechanism(s) resulting in pre-eclampsia is centered around abnormal placentation, inadequate spiral-artery remodeling, and deficiency in trophoblast invasion, resulting in impaired maternal blood flow to the placenta and a release of signals and/or inflammatory mediators into maternal circulation triggering the systemic manifestations of pre-eclampsia. ER stress, resulting in impaired autophagy and placental release of aggregated proteins, may also confer systemic stress to maternal organs in pre-eclampsia. Extracellular vesicles (EVs), lipid-bilayer enclosed structures containing macromolecules including proteins, miRNA, and other important nucleotides, have been suggested to play an important role in this maternal-fetal communication. Circulating EVs are present in greater quantity in the plasma of pre-eclampsia subjects compared to normal pregnancy, and the placental derived EVs have been shown to have altered protein and RNA cargo. In this review, we will focus on EVs and their role in pre-eclampsia, specifically their role in immune responses, inflammation, altered angiogenesis, and endothelial dysfunction.
Collapse
Affiliation(s)
- Jessica Schuster
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI, USA
| | - Shi-Bin Cheng
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI, USA
| | - James Padbury
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI, USA
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI, USA
| |
Collapse
|
38
|
Zhuo CJ, Hou WH, Jiang DG, Tian HJ, Wang LN, Jia F, Zhou CH, Zhu JJ. Circular RNAs in early brain development and their influence and clinical significance in neuropsychiatric disorders. Neural Regen Res 2020; 15:817-823. [PMID: 31719241 PMCID: PMC6990782 DOI: 10.4103/1673-5374.268969] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/22/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Neuropsychiatric disorders represent a set of severe and complex mental illnesses, and the exact etiologies of which are unknown. It has been well documented that impairments in the early development of the brain contribute to the pathogenesis of many neuropsychiatric disorders. Currently, the diagnosis of neuropsychiatric disorders largely relies on subjective cognitive assessment, because there are no widely accepted biochemical or genetic biomarkers for diagnosing mental illness. Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNA (ncRNA) with a closed-loop structure. In recent years, there have been tremendous advances in our understanding of the expression profiles and biological roles of circRNAs. In the brain, circRNAs are particularly enriched and are expressed more abundantly in contrast to linear counterpart transcripts. They are highly active at neuronal synapses. These features make circRNAs uniquely crucial for understanding brain health, disease, and neuropsychiatric disorders. This review focuses on the role of circRNAs in early brain development and other brain-related processes that have been associated with the development of neuropsychiatric disorders. In addition, we discuss the potential for blood or cerebrospinal fluid circRNAs to be used as novel biomarkers in the early diagnosis of neuropsychiatric disorders. The findings reviewed here may provide new insight into the pathological mechanisms underlying the onset and progression of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chuan-Jun Zhuo
- Department of Psychiatry and Genetics, School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Department of Psychiatry and Molecular Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, China
- Department of Psychiatry and Imaging-Genetics and Co-morbidity (PNGC-Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University; Department of Psychiatry, School of Basic Medical Research, Tianjin Medical University, Tianjin, China
| | - Wei-Hong Hou
- Department of Biochemistry and Molecular Biology, Medical College of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - De-Guo Jiang
- Department of Psychiatry and Molecular Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, China
| | - Hong-Jun Tian
- Department of Psychiatry and Imaging-Genetics and Co-morbidity (PNGC-Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University; Department of Psychiatry, School of Basic Medical Research, Tianjin Medical University, Tianjin, China
| | - Li-Na Wang
- Department of Psychiatry and Imaging-Genetics and Co-morbidity (PNGC-Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University; Department of Psychiatry, School of Basic Medical Research, Tianjin Medical University, Tianjin, China
| | - Feng Jia
- Department of Psychiatry and Imaging-Genetics and Co-morbidity (PNGC-Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University; Department of Psychiatry, School of Basic Medical Research, Tianjin Medical University, Tianjin, China
| | - Chun-Hua Zhou
- Department of Pharmacy, First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jing-Jing Zhu
- Department of Psychiatry and Molecular Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, China
| |
Collapse
|
39
|
Jeske R, Bejoy J, Marzano M, Li Y. Human Pluripotent Stem Cell-Derived Extracellular Vesicles: Characteristics and Applications. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:129-144. [PMID: 31847715 PMCID: PMC7187972 DOI: 10.1089/ten.teb.2019.0252] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are found to play an important role in various biological processes and maintaining tissue homeostasis. Because of the protective effects, stem cell-derived EVs can be used to reduce oxidative stress and apoptosis in the recipient cells. In addition, EVs/exosomes have been used as directional communication tools between stem cells and parenchymal cells, giving them the ability to serve as biomarkers. Likewise, altered EVs/exosomes can be utilized for drug delivery by loading with proteins, small interfering RNAs, and viral vectors, in particular, because EVs/exosomes are able to cross the blood-brain barrier. In this review article, the properties of human induced pluripotent stem cell (iPSC)-derived EVs are discussed. The biogenesis, that is, how EVs originate in the endosomal compartment or from the cell layer of microvesicles, EV composition, the available methods of purification, and characterizations of EVs/exosomes are summarized. In particular, EVs/exosomes derived from iPSCs of different lineage specifications and the applications of these stem cell-derived exosomes in neurological diseases are discussed. Impact statement In this review, we summarized the work related to extracellular vesicles (EVs) derived from human pluripotent stem cells (hPSCs). In particular, EVs/exosomes derived from hPSCs of different lineage specifications and the applications of these stem cell-derived exosomes in neurological diseases are discussed. The results highlight the important role of cell-cell interactions in neural cellular phenotype and neurodegeneration. The findings reported in this article are significant for pluripotent stem cell-derived cell-free products toward applications in stem cell-based therapies.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| | - Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| | - Mark Marzano
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| |
Collapse
|
40
|
Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, Larcher LM, Chen S, Liu N, Zhao Q, Tran PH, Chen C, Veedu RN, Wang T. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics 2020; 10:3684-3707. [PMID: 32206116 PMCID: PMC7069071 DOI: 10.7150/thno.41580] [Citation(s) in RCA: 637] [Impact Index Per Article: 127.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/08/2020] [Indexed: 12/18/2022] Open
Abstract
Exosomes are small extracellular vesicles with diameters of 30-150 nm. In both physiological and pathological conditions, nearly all types of cells can release exosomes, which play important roles in cell communication and epigenetic regulation by transporting crucial protein and genetic materials such as miRNA, mRNA, and DNA. Consequently, exosome-based disease diagnosis and therapeutic methods have been intensively investigated. However, as in any natural science field, the in-depth investigation of exosomes relies heavily on technological advances. Historically, the two main technical hindrances that have restricted the basic and applied researches of exosomes include, first, how to simplify the extraction and improve the yield of exosomes and, second, how to effectively distinguish exosomes from other extracellular vesicles, especially functional microvesicles. Over the past few decades, although a standardized exosome isolation method has still not become available, a number of techniques have been established through exploration of the biochemical and physicochemical features of exosomes. In this work, by comprehensively analyzing the progresses in exosome separation strategies, we provide a panoramic view of current exosome isolation techniques, providing perspectives toward the development of novel approaches for high-efficient exosome isolation from various types of biological matrices. In addition, from the perspective of exosome-based diagnosis and therapeutics, we emphasize the issue of quantitative exosome and microvesicle separation.
Collapse
Affiliation(s)
- Dongbin Yang
- Department of Neurosurgery of Hebi People's Hospital; Hebi Neuroanatomical Laboratory, Hebi, 458030, China
| | - Weihong Zhang
- School of Nursing, Zhengzhou University, Zhengzhou, 450001, China
| | - Huanyun Zhang
- Department of Neurosurgery of Hebi People's Hospital; Hebi Neuroanatomical Laboratory, Hebi, 458030, China
| | - Fengqiu Zhang
- Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou, China, 450000
| | - Lanmei Chen
- Guangdong Key Laboratory for Research and Development of Nature Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Lixia Ma
- School of Statistics, Henan University of Economics and Law, Zhengzhou 450046, China
| | - Leon M. Larcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
| | - Nan Liu
- General Practice Centre, Nanhai Hospital, Southern Medical University, 528244, Foshan, China
| | - Qingxia Zhao
- School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA
| | - Phuong H.L. Tran
- School of Medicine, and Centre for Molecular and Medical Research, Deakin University, 3216, Australia
| | - Changying Chen
- The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450001, China
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Tao Wang
- School of Nursing, Zhengzhou University, Zhengzhou, 450001, China
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| |
Collapse
|
41
|
Oshima M, Seki T, Kurauchi Y, Hisatsune A, Katsuki H. Reciprocal Regulation of Chaperone-Mediated Autophagy/Microautophagy and Exosome Release. Biol Pharm Bull 2020; 42:1394-1401. [PMID: 31366874 DOI: 10.1248/bpb.b19-00316] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autophagy-lysosome proteolysis is involved in protein quality control and classified into macroautophagy (MA), microautophagy (mA) and chaperone-mediated autophagy (CMA), by the routes of substrate delivery to lysosomes. Both autophagy-lysosome proteolysis and exosome release are strongly associated with membrane trafficking. In the present study, we investigated how chemical and small interfering RNA (siRNA)-mediated activation and inhibition of these autophagic pathways affect exosome release in AD293 cells. Activation of MA and mA by rapamycin and activation of CMA by mycophenolic acid significantly decreased exosome release. Although lysosomal inhibitors, NH4Cl and bafilomycin A1, significantly increased exosome release, a MA inhibitor, 3-methyladenine, did not affect. Exosome release was significantly increased by the siRNA-mediated knockdown of LAMP2A, which is crucial for CMA. Inversely, activity of CMA/mA was significantly increased by the prevention of exosome release, which was induced by siRNA-mediated knockdown of Rab27a. These findings indicate that CMA/mA and exosome release are reciprocally regulated. This regulation would be the molecular basis of extracellular release and propagation of misfolded proteins in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Mutsumi Oshima
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Akinori Hisatsune
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Priority Organization for Innovation and Excellence, Kumamoto University.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program," Kumamoto University
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
42
|
Zhou T, Lin D, Chen Y, Peng S, Jing X, Lei M, Tao E, Liang Y. α-synuclein accumulation in SH-SY5Y cell impairs autophagy in microglia by exosomes overloading miR-19a-3p. Epigenomics 2019; 11:1661-1677. [PMID: 31646884 DOI: 10.2217/epi-2019-0222] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aims: To reveal whether miRNAs in exosomes from α-synuclein transgenic SH-SY5Y cells are able to regulate autophagy in recipient microglia. Materials & methods: Microarray analysis and experimental verification were adopted to assess the significance of autophagy-associated miRNAs in exosomes from neuronal model of α-synucleinopathies. Results: We found that miR-19a-3p increased remarkably in the exosomes from α-synuclein gene transgenic SH-SY5Y cells. Further study inferred that α-synuclein gene transgenic SH-SY5Y cell-derived exosomes and miR-19a-3p mimic consistently inhibited the expression of phosphatase and tensin homolog and increased the phosphorylation of AKT and mTOR, both of which ultimately lead to the dysfunction of autophagy in recipient microglia. Conclusion: The data suggested that enhanced expression of miR-19a-3p in exosomes suppress autophagy in recipient microglia by targeting the phosphatase and tensin homolog/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Tianen Zhou
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Danyu Lin
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, PR China
| | - Ying Chen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Sudan Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Xiuna Jing
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Ming Lei
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Enxiang Tao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Yanran Liang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| |
Collapse
|
43
|
D'Anca M, Fenoglio C, Serpente M, Arosio B, Cesari M, Scarpini EA, Galimberti D. Exosome Determinants of Physiological Aging and Age-Related Neurodegenerative Diseases. Front Aging Neurosci 2019; 11:232. [PMID: 31555123 PMCID: PMC6722391 DOI: 10.3389/fnagi.2019.00232] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/13/2019] [Indexed: 01/08/2023] Open
Abstract
Aging is consistently reported as the most important independent risk factor for neurodegenerative diseases. As life expectancy has significantly increased during the last decades, neurodegenerative diseases became one of the most critical public health problem in our society. The most investigated neurodegenerative diseases during aging are Alzheimer disease (AD), Frontotemporal Dementia (FTD) and Parkinson disease (PD). The search for biomarkers has been focused so far on cerebrospinal fluid (CSF) and blood. Recently, exosomes emerged as novel biological source with increasing interest for age-related neurodegenerative disease biomarkers. Exosomes are tiny Extracellular vesicles (EVs; 30-100 nm in size) released by all cell types which originate from the endosomal compartment. They constitute important vesicles for the release and transfer of multiple (signaling, toxic, and regulatory) molecules among cells. Initially considered with merely waste disposal function, instead exosomes have been recently recognized as fundamental mediators of intercellular communication. They can move from the site of release by diffusion and be retrieved in several body fluids, where they may dynamically reflect pathological changes of cells present in inaccessible sites such as the brain. Multiple evidence has implicated exosomes in age-associated neurodegenerative processes, which lead to cognitive impairment in later life. Critically, consolidated evidence indicates that pathological protein aggregates, including Aβ, tau, and α-synuclein are released from brain cells in association with exosomes. Importantly, exosomes act as vehicles between cells not only of proteins but also of nucleic acids [DNA, mRNA transcripts, miRNA, and non-coding RNAs (ncRNAs)] thus potentially influencing gene expression in target cells. In this framework, exosomes could contribute to elucidate the molecular mechanisms underneath neurodegenerative diseases and could represent a promising source of biomarkers. Despite the involvement of exosomes in age-associated neurodegeneration, the study of exosomes and their genetic cargo in physiological aging and in neurodegenerative diseases is still in its infancy. Here, we review, the current knowledge on protein and ncRNAs cargo of exosomes in normal aging and in age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Marianna D'Anca
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Chiara Fenoglio
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Maria Serpente
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, Faculty of Medicine and Surgery, University of Milan, Milan, Italy.,Geriatrics Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Angelo Scarpini
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy.,Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| |
Collapse
|
44
|
Subedi P, Schneider M, Philipp J, Azimzadeh O, Metzger F, Moertl S, Atkinson MJ, Tapio S. Comparison of methods to isolate proteins from extracellular vesicles for mass spectrometry-based proteomic analyses. Anal Biochem 2019; 584:113390. [PMID: 31401005 DOI: 10.1016/j.ab.2019.113390] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-bound organelles that have generated interest as they reflect the physiological condition of their source. Mass spectrometric (MS) analyses of protein cargo of EVs may lead to the discovery of biomarkers for diseases. However, for a comprehensive MS-based proteomics analysis, an optimal lysis of the EVs is required. Six methods for the protein extraction from EVs secreted by the head and neck cell line BHY were compared. Commercial radioimmunoprecipitation assay (RIPA) buffer outperformed the other buffers investigated in this study (Tris-SDS, Tris-Triton, GuHCl, urea-thiourea, and commercial Cell-lysis buffer). Following lysis with RIPA buffer, 310 proteins and 1469 peptides were identified using LTQ OrbitrapXL mass spectrometer. Among these, 86% of proteins and 72% of peptides were identified in all three replicates. In the case of other buffers, Tris-Triton identified on average 277 proteins, Cell-lysis buffer 257 proteins, and Tris-SDS, GuHCl and urea-thiourea each 267 proteins. In total, 399 proteins including 74 of the top EV markers (Exocarta) were identified, the most of the latter (73) using RIPA. The proteins exclusively identified using RIPA represented all Gene Ontology cell compartments. This study suggests that RIPA is an optimal lysis buffer for EVs in combination with MS.
Collapse
Affiliation(s)
- Prabal Subedi
- Helmholtz Zentrum München, German Research Centre for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany.
| | - Michael Schneider
- Helmholtz Zentrum München, German Research Centre for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| | - Jos Philipp
- Helmholtz Zentrum München, German Research Centre for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Centre for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| | - Fabian Metzger
- Helmholtz Zentrum München, German Research Centre for Environmental Health GmbH, Research Unit Protein Science, Munich, Germany
| | - Simone Moertl
- Helmholtz Zentrum München, German Research Centre for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| | - Michael J Atkinson
- Helmholtz Zentrum München, German Research Centre for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Centre for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| |
Collapse
|
45
|
Zhuo C, Hou W, Li G, Mao F, Li S, Lin X, Jiang D, Xu Y, Tian H, Wang W, Cheng L. The genomics of schizophrenia: Shortcomings and solutions. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:71-76. [PMID: 30904563 DOI: 10.1016/j.pnpbp.2019.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/20/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
Due to recent advances in human genomic technologies, there have been explosive interests and extensive research on the genomics of schizophrenia, a severe psychiatric disorder characterized by social cognitive deficits, hallucinations, and delusions. These new technologies, including next-generation sequencing (NGS), genome-wide association studies (GWAS), and the Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease 9 (CRISPR/Cas9) genome editing platform are capable of interrogating and editing the genome directly. In the past few years, these efforts have led to the identification of important loci and genes susceptible to schizophrenia. The findings have increased our understanding of the underlying genetic causes of schizophrenia and aided in the development of new approaches for more effectively diagnosing and treating schizophrenia. Despite the substantial progress, there are several unanswered questions about the genomics of schizophrenia, and there are a number of potential shortcomings in the current literature considering the complexity of the disease and limits of the current technologies. In the present review, we assessed the existing literature on the genomics of schizophrenia, identifying the strengths and study design shortcomings from the following aspects: elucidation of the pathogenesis, early risk prediction and diagnosis, and the treatment of schizophrenia. Moreover, we have proposed solutions to overcome the shortcomings of past studies. Lastly, we have discussed the importance of developing multidisciplinary teams and global research groups in order to improve the lives of schizophrenic patients globally.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou 325000, China; Department of Psychiatry, Institute of Mental Health, Psychiatric Genetics Laboratory (PSYG-Lab), Jining Medical University, Jining 272191, China; Department of Psychiatry, College of Basic Medical Research, Tianjin Medical University, Tianjin 300000, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China, MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China, National Key Disciplines, Key Laboratory for Cellular Physiology, Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan 030001, China; Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin 300222, China; Department of China-Canada Biological Psychiatry Lab, Xiamen Xianyue Hospital, Xiamen 361000, China.
| | - Weihong Hou
- Department of Biochemistry and Molecular Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Gongying Li
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou 325000, China
| | - Fuqiang Mao
- Department of Psychiatry, College of Basic Medical Research, Tianjin Medical University, Tianjin 300000, China
| | - Shen Li
- Department of Psychiatry, College of Basic Medical Research, Tianjin Medical University, Tianjin 300000, China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou 325000, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou 325000, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China, MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China, National Key Disciplines, Key Laboratory for Cellular Physiology, Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan 030001, China
| | - Hongjun Tian
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin 300222, China
| | - Wenqiang Wang
- Department of China-Canada Biological Psychiatry Lab, Xiamen Xianyue Hospital, Xiamen 361000, China
| | - Langlang Cheng
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou 325000, China
| |
Collapse
|
46
|
Rosas-Hernandez H, Cuevas E, Raymick JB, Robinson BL, Ali SF, Hanig J, Sarkar S. Characterization of Serum Exosomes from a Transgenic Mouse Model of Alzheimer’s Disease. Curr Alzheimer Res 2019; 16:388-395. [DOI: 10.2174/1567205016666190321155422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer’s Disease (AD) is the most common type of dementia characterized
by amyloid plaques containing Amyloid Beta (Aβ) peptides and neurofibrillary tangles containing tau
protein. In addition to neuronal loss, Cerebral Amyloid Angiopathy (CAA) commonly occurs in AD.
CAA is characterized by Aβ deposition in brain microvessels. Recent studies have suggested that
exosomes (cell-derived vesicles containing a diverse cargo) may be involved in the pathogenesis of AD.
Objective:
Isolate and characterize brain-derived exosomes from a transgenic mouse model of AD that
presents CAA.
Methods:
Exosomes were isolated from serum obtained from 13-month-old wild type and AD transgenic
female mice using an exosome precipitation solution. Characterization of exosomal proteins was
performed by western blots and dot blots.
Results:
Serum exosomes were increased in transgenic mice compared to wild types as determined by
increased levels of the exosome markers flotillin and alix. High levels of neuronal markers were found
in exosomes, without any difference any between the 2 groups. Markers for endothelial-derived
exosomes were decreased in the transgenic model, while astrocytic-derived exosomes were increased.
Exosome characterization showed increased levels of oligomeric Aβ and oligomeric and monomeric
forms tau on the transgenic animals. Levels of amyloid precursor protein were also increased. In addition,
pathological and phosphorylated forms of tau were detected, but no difference was observed between
the groups.
Conclusion:
These data suggest that monomeric and oligomeric forms of Aβ and tau are secreted into
serum via brain exosomes, most likely derived from astrocytes in the transgenic mouse model of AD
with CAA. Studies on the implication of this event in the propagation of AD are underway.
Collapse
Affiliation(s)
- Hector Rosas-Hernandez
- Division of Neurotoxicology National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR. 72079, United States
| | - Elvis Cuevas
- Division of Neurotoxicology National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR. 72079, United States
| | - James B. Raymick
- Division of Neurotoxicology National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR. 72079, United States
| | - Bonnie L. Robinson
- Division of Neurotoxicology National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR. 72079, United States
| | - Syed F. Ali
- Division of Neurotoxicology National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR. 72079, United States
| | - Joseph Hanig
- Office of Testing & Research, CDER/FDA, White Oak, MD-20993, United States
| | - Sumit Sarkar
- Division of Neurotoxicology National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR. 72079, United States
| |
Collapse
|
47
|
Zhang Q, Higginbotham JN, Jeppesen DK, Yang YP, Li W, McKinley ET, Graves-Deal R, Ping J, Britain CM, Dorsett KA, Hartman CL, Ford DA, Allen RM, Vickers KC, Liu Q, Franklin JL, Bellis SL, Coffey RJ. Transfer of Functional Cargo in Exomeres. Cell Rep 2019; 27:940-954.e6. [PMID: 30956133 PMCID: PMC6559347 DOI: 10.1016/j.celrep.2019.01.009] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/02/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023] Open
Abstract
Exomeres are a recently discovered type of extracellular nanoparticle with no known biological function. Herein, we describe a simple ultracentrifugation-based method for separation of exomeres from exosomes. Exomeres are enriched in Argonaute 1-3 and amyloid precursor protein. We identify distinct functions of exomeres mediated by two of their cargo, the β-galactoside α2,6-sialyltransferase 1 (ST6Gal-I) that α2,6- sialylates N-glycans, and the EGFR ligand, amphiregulin (AREG). Functional ST6Gal-I in exomeres can be transferred to cells, resulting in hypersialylation of recipient cell-surface proteins including β1-integrin. AREG-containing exomeres elicit prolonged EGFR and downstream signaling in recipient cells, modulate EGFR trafficking in normal intestinal organoids, and dramatically enhance the growth of colonic tumor organoids. This study provides a simplified method of exomere isolation and demonstrates that exomeres contain and can transfer functional cargo. These findings underscore the heterogeneity of nanoparticles and should accelerate advances in determining the composition and biological functions of exomeres.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James N Higginbotham
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dennis K Jeppesen
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu-Ping Yang
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wei Li
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ramona Graves-Deal
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jie Ping
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Britain
- Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Kaitlyn A Dorsett
- Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Celine L Hartman
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ryan M Allen
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kasey C Vickers
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey L Franklin
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Veterans Affairs Medical Center, Nashville, Vanderbilt University, TN 37212, USA
| | - Susan L Bellis
- Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Robert J Coffey
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Veterans Affairs Medical Center, Nashville, Vanderbilt University, TN 37212, USA.
| |
Collapse
|
48
|
Affiliation(s)
- Dena B. Dubal
- Weill Institute of Neurosciences and Biomedical Sciences Graduate Program, Department of Neurology, University of California, San Francisco
| | - Samuel J. Pleasure
- Weill Institute of Neurosciences and Biomedical Sciences Graduate Program, Department of Neurology, University of California, San Francisco
| |
Collapse
|
49
|
Picciolini S, Gualerzi A, Vanna R, Sguassero A, Gramatica F, Bedoni M, Masserini M, Morasso C. Detection and Characterization of Different Brain-Derived Subpopulations of Plasma Exosomes by Surface Plasmon Resonance Imaging. Anal Chem 2018; 90:8873-8880. [DOI: 10.1021/acs.analchem.8b00941] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Silvia Picciolini
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
- Nanomedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Alice Gualerzi
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Renzo Vanna
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Andrea Sguassero
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Furio Gramatica
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Marzia Bedoni
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Massimo Masserini
- Nanomedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Carlo Morasso
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| |
Collapse
|
50
|
Hurwitz SN, Sun L, Cole KY, Ford CR, Olcese JM, Meckes DG. An optimized method for enrichment of whole brain-derived extracellular vesicles reveals insight into neurodegenerative processes in a mouse model of Alzheimer's disease. J Neurosci Methods 2018; 307:210-220. [PMID: 29894726 DOI: 10.1016/j.jneumeth.2018.05.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the major cause of dementia that has increased dramatically in prevalence over the past several decades. Yet many questions still surround the etiology of AD. Recently, extracellular vesicles (EVs) that transport protein, lipid, and nucleic acids from cell to cell have been implicated in the clearance and propagation of misfolded proteins. Investigation of EVs in AD progression, and their potential diagnostic utility may contribute to understanding and treating AD. However, the challenges of isolating brain-derived EVs have in part hindered these studies. NEW METHOD Here, we provide an optimized method for the enrichment of brain-derived EVs by iodixanol floatation density gradient for mass spectrometry analysis. RESULTS We demonstrate the isolation of these vesicles and the enrichment of EV proteins compared to sedimentation gradient isolation of vesicles. Moreover, comparative proteomic analysis of brain-derived EVs from healthy and AD mouse brains revealed differences in vesicular content including proteins involved in aging, immune response, and oxidation-reduction maintenance. These changes provide insight into AD-associated neurodegeneration and potential biomarkers of AD. Comparison with existing methods: Recent techniques have used sedimentation sucrose gradients to isolate EVs from brain tissue. However, here we demonstrate the advantages of floatation iodixanol density gradient isolation of small EVs, and provide evidence of EV enrichment by electron microscopy, immunoblot analysis, and quantitative mass spectrometry. CONCLUSIONS Together these findings offer a rigorous technique for enriching whole tissue-derived EVs for downstream analyses, and application of this approach to uncovering molecular changes in AD progression and other neurological conditions.
Collapse
Affiliation(s)
- Stephanie N Hurwitz
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, United States
| | - Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, United States
| | - Kalonji Y Cole
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, United States
| | - Charles R Ford
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, United States
| | - James M Olcese
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, United States.
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, United States.
| |
Collapse
|