1
|
Kavanagh T, Balcomb K, Ahmadi Rastegar D, Lourenco GF, Wisniewski T, Halliday G, Drummond E. hnRNP A1, hnRNP A2B1, and hnRNP K are dysregulated in tauopathies, but do not colocalize with tau pathology. Brain Pathol 2025; 35:e13305. [PMID: 39354671 PMCID: PMC11961206 DOI: 10.1111/bpa.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/30/2024] [Indexed: 10/03/2024] Open
Abstract
Tau interacts with multiple heterogeneous nuclear ribonucleoproteins (hnRNPs)-a family of RNA binding proteins that regulate multiple known cellular functions, including mRNA splicing, mRNA transport, and translation regulation. We have previously demonstrated particularly significant interactions between phosphorylated tau and three hnRNPs (hnRNP A1, hnRNP A2B1, and hnRNP K). Although multiple hnRNPs have been previously implicated in tauopathies, knowledge of whether these hnRNPs colocalize with tau aggregates or show cellular mislocalization in disease is limited. Here, we performed a neuropathological study examining the colocalization between hnRNP A1, hnRNP A2B1, hnRNP K, and phosphorylated tau in two brain regions (hippocampus and frontal cortex) in six disease groups (Alzheimer's disease, mild cognitive impairment, progressive supranuclear palsy, corticobasal degeneration, Pick's disease, and controls). Contrary to expectations, hnRNP A1, hnRNP A2B1, and hnRNP K did not colocalize with AT8-immunoreactive phosphorylated tau pathology in any of the tauopathies examined. However, we did observe significant cellular mislocalization of hnRNP A1, hnRNP A2B1 and hnRNP K in tauopathies, with unique patterns of mislocalization observed for each hnRNP. These data point to broad dysregulation of hnRNP A1, A2B1 and K across tauopathies with implications for disease processes and RNA regulation.
Collapse
Affiliation(s)
- Tomas Kavanagh
- Brain and Mind Centre and School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Kaleah Balcomb
- Brain and Mind Centre and School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Diba Ahmadi Rastegar
- Brain and Mind Centre and School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Guinevere F. Lourenco
- Brain and Mind Centre and School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Departments of Neurology, Pathology and PsychiatryGrossman School of Medicine, New York UniversityNew YorkNew YorkUSA
| | - Glenda Halliday
- Brain and Mind Centre and School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
2
|
Kim HG, Berdasco C, Nairn AC, Kim Y. The WAVE complex in developmental and adulthood brain disorders. Exp Mol Med 2025; 57:13-29. [PMID: 39774290 PMCID: PMC11799376 DOI: 10.1038/s12276-024-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization. WAVE proteins exist as heteropentameric complexes together with regulatory proteins, including CYFIP, NCKAP, ABI and BRK1. The activity of the WAVE complex is tightly regulated by extracellular cues and intracellular signaling to execute its roles in specific intracellular events in brain cells. Notably, dysregulation of the WAVE complex and WAVE complex-mediated cellular processes confers vulnerability to a variety of brain disorders. De novo mutations in WAVE genes and other components of the WAVE complex have been identified in patients with developmental disorders such as intellectual disability, epileptic seizures, schizophrenia, and/or autism spectrum disorder. In addition, alterations in the WAVE complex are implicated in the pathophysiology of Alzheimer's disease and Parkinson's disease, as well as in behavioral adaptations to psychostimulants or maladaptive feeding.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Clara Berdasco
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yong Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
- Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
François M, Pascovici D, Wang Y, Vu T, Liu JW, Beale D, Hor M, Hecker J, Faunt J, Maddison J, Johns S, Leifert W. Saliva Proteome, Metabolome and Microbiome Signatures for Detection of Alzheimer's Disease. Metabolites 2024; 14:714. [PMID: 39728495 DOI: 10.3390/metabo14120714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Background: As the burden of Alzheimer's disease (AD) escalates with an ageing population, the demand for early and accessible diagnostic methods becomes increasingly urgent. Saliva, with its non-invasive and cost-effective nature, presents a promising alternative to cerebrospinal fluid and plasma for biomarker discovery. Methods: In this study, we conducted a comprehensive multi-omics analysis of saliva samples (n = 20 mild cognitive impairment (MCI), n = 20 Alzheimer's disease and age- and n = 40 gender-matched cognitively normal individuals), from the South Australian Neurodegenerative Disease (SAND) cohort, integrating proteomics, metabolomics, and microbiome data with plasma measurements, including pTau181. Results: Among the most promising findings, the protein Stratifin emerged as a top candidate, showing a strong negative correlation with plasma pTau181 (r = -0.49, p < 0.001) and achieving an AUC of 0.95 in distinguishing AD and MCI combined from controls. In the metabolomics analysis, 3-chlorotyrosine and L-tyrosine exhibited high correlations with disease severity progression, with AUCs of 0.93 and 0.96, respectively. Pathway analysis revealed significant alterations in vitamin B12 metabolism, with Transcobalamin-1 levels decreasing in saliva as AD progressed despite an increase in serum vitamin B12 levels (p = 0.008). Microbiome analysis identified shifts in bacterial composition, with a microbiome cluster containing species such as Lautropia mirabilis showing a significant decrease in abundance in MCI and AD samples. The overall findings were reinforced by weighted correlation network analysis, which identified key hubs and enriched pathways associated with AD. Conclusions: Collectively, these data highlight the potential of saliva as a powerful medium for early AD diagnosis, offering a practical solution for large-scale screening and monitoring.
Collapse
Affiliation(s)
- Maxime François
- Nutrition and Health Program, Molecular Diagnostic Solutions Group, CSIRO Health & Biosecurity, Adelaide, SA 5000, Australia
| | - Dana Pascovici
- CSIRO Health & Biosecurity, Westmead, NSW 2145, Australia
| | - Yanan Wang
- CSIRO Health & Biosecurity, Microbiomes for One Systems Health-Future Science Platform, Adelaide, SA 5000, Australia
| | - Toan Vu
- Nutrition and Health Program, Molecular Diagnostic Solutions Group, CSIRO Health & Biosecurity, Adelaide, SA 5000, Australia
| | - Jian-Wei Liu
- CSIRO Environment, Agricultural and Environmental Sciences Precinct, Acton, Canberra, ACT 2601, Australia
| | - David Beale
- Metabolomics Unit, CSIRO Environment, Ecosciences Precinct, Dutton Park, QLD 4001, Australia
| | - Maryam Hor
- Nutrition and Health Program, Molecular Diagnostic Solutions Group, CSIRO Health & Biosecurity, Adelaide, SA 5000, Australia
| | - Jane Hecker
- Department of Internal Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Jeff Faunt
- Department of General Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - John Maddison
- Aged Care Rehabilitation & Palliative Care, SA Health, Modbury Hospital, Modbury, SA 5092, Australia
| | - Sally Johns
- Aged Care Rehabilitation & Palliative Care, SA Health, Modbury Hospital, Modbury, SA 5092, Australia
| | - Wayne Leifert
- Nutrition and Health Program, Molecular Diagnostic Solutions Group, CSIRO Health & Biosecurity, Adelaide, SA 5000, Australia
| |
Collapse
|
4
|
Seifar F, Fox EJ, Shantaraman A, Liu Y, Dammer EB, Modeste E, Duong DM, Yin L, Trautwig AN, Guo Q, Xu K, Ping L, Reddy JS, Allen M, Quicksall Z, Heath L, Scanlan J, Wang E, Wang M, Linden AV, Poehlman W, Chen X, Baheti S, Ho C, Nguyen T, Yepez G, Mitchell AO, Oatman SR, Wang X, Carrasquillo MM, Runnels A, Beach T, Serrano GE, Dickson DW, Lee EB, Golde TE, Prokop S, Barnes LL, Zhang B, Haroutunian V, Gearing M, Lah JJ, De Jager P, Bennett DA, Greenwood A, Ertekin‐Taner N, Levey AI, Wingo A, Wingo T, Seyfried NT. Large-scale deep proteomic analysis in Alzheimer's disease brain regions across race and ethnicity. Alzheimers Dement 2024; 20:8878-8897. [PMID: 39535480 PMCID: PMC11667503 DOI: 10.1002/alz.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/09/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within non-Hispanic White (NHW) populations. Here we provide an extensive survey of the proteomic landscape of AD across diverse racial/ethnic groups. METHODS Two cortical regions, from multiple centers, were harmonized by uniform neuropathological diagnosis. Among 998 unique donors, 273 donors self-identified as African American, 229 as Latino American, and 434 as NHW. RESULTS While amyloid precursor protein and the microtubule-associated protein tau demonstrated higher abundance in AD brains, no significant race-related differences were observed. Further proteome-wide and focused analyses (specific amyloid beta [Aβ] species and the tau domains) supported the absence of racial differences in these AD pathologies within the brain proteome. DISCUSSION Our findings indicate that the racial differences in AD risk and clinical presentation are not underpinned by dramatically divergent patterns in the brain proteome, suggesting that other determinants account for these clinical disparities. HIGHLIGHTS We present a large-scale proteome (∼10,000 proteins) of DLPFC (998) and STG (244) across AD cases. About 50% of samples were from racially and ethnically diverse brain donors. Key AD proteins (amyloid and tau) correlated with CERAD and Braak stages. No significant race-related differences in amyloid and tau protein levels were observed in AD brains. AD-associated protein changes showed a strong correlation between the brain proteomes of African American and White individuals. This dataset advances understanding of ethnoracial-specific AD pathways and potential therapies.
Collapse
|
5
|
Ma S, Wang D, Zhang M, Xu L, Fu X, Zhang T, Yan M, Huang X. Transcriptomic and Metabolomics Joint Analyses Reveal the Influence of Gene and Metabolite Expression in Blood on the Lactation Performance of Dual-Purpose Cattle ( Bos taurus). Int J Mol Sci 2024; 25:12375. [PMID: 39596441 PMCID: PMC11594596 DOI: 10.3390/ijms252212375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Blood is an important component for maintaining animal lives and synthesizing sugars, lipids, and proteins in organs. Revealing the relationship between genes and metabolite expression and milk somatic cell count (SCC), milk fat percentage, milk protein percentage, and lactose percentage in blood is helpful for understanding the molecular regulation mechanism of milk formation. Therefore, we separated the buffy coat and plasma from the blood of Xinjiang Brown cattle (XJBC) and Chinese Simmental cattle (CSC), which exhibit high and low SCC/milk fat percentage/milk protein percentage/lactose percentages, respectively. The expression of genes in blood and the metabolites in plasma was detected via RNA-Seq and LC-MS/MS, respectively. Based on the weighted gene coexpression network analysis (WGCNA) and functional enrichment analysis of differentially expressed genes (DEGs), we further found that the expression of genes in the blood mainly affected the SCC and milk fat percentage. Immune or inflammatory-response-related pathways were involved in the regulation of SCC, milk fat percentage, milk protein percentage, and lactose percentage. The joint analysis of the metabolome and transcriptome further indicated that, in blood, the metabolism pathways of purine, glutathione, glycerophospholipid, glycine, arginine, and proline are also associated with SCC, while lipid metabolism and amino-acid-related metabolism pathways are associated with milk fat percentage and milk protein percentage, respectively. Finally, related SCC, milk fat percentage, and milk protein percentage DEGs and DEMs were mainly identified in the blood.
Collapse
Affiliation(s)
- Shengchao Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830099, China; (S.M.); (D.W.); (M.Z.); (L.X.); (T.Z.); (M.Y.)
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830011, China;
| | - Dan Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830099, China; (S.M.); (D.W.); (M.Z.); (L.X.); (T.Z.); (M.Y.)
| | - Menghua Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830099, China; (S.M.); (D.W.); (M.Z.); (L.X.); (T.Z.); (M.Y.)
| | - Lei Xu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830099, China; (S.M.); (D.W.); (M.Z.); (L.X.); (T.Z.); (M.Y.)
| | - Xuefeng Fu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830011, China;
| | - Tao Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830099, China; (S.M.); (D.W.); (M.Z.); (L.X.); (T.Z.); (M.Y.)
| | - Mengjie Yan
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830099, China; (S.M.); (D.W.); (M.Z.); (L.X.); (T.Z.); (M.Y.)
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830099, China; (S.M.); (D.W.); (M.Z.); (L.X.); (T.Z.); (M.Y.)
| |
Collapse
|
6
|
Górska AM, Santos-García I, Eiriz I, Brüning T, Nyman T, Pahnke J. Evaluation of cerebrospinal fluid (CSF) and interstitial fluid (ISF) mouse proteomes for the validation and description of Alzheimer's disease biomarkers. J Neurosci Methods 2024; 411:110239. [PMID: 39102902 DOI: 10.1016/j.jneumeth.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Mass spectrometry (MS)-based cerebrospinal fluid (CSF) proteomics is an important method for discovering biomarkers of neurodegenerative diseases. CSF serves as a reservoir for interstitial fluid (ISF), and extensive communication between the two fluid compartments helps to remove waste products from the brain. NEW METHOD We performed proteomic analyses of both CSF and ISF fluid compartments using intracerebral microdialysis to validate and detect novel biomarkers of Alzheimer's disease (AD) in APPtg and C57Bl/6J control mice. RESULTS We identified up to 625 proteins in ISF and 4483 proteins in CSF samples. By comparing the biofluid profiles of APPtg and C57Bl/6J mice, we detected 37 and 108 significantly up- and downregulated candidates, respectively. In ISF, 7 highly regulated proteins, such as Gfap, Aldh1l1, Gstm1, and Txn, have already been implicated in AD progression, whereas in CSF, 9 out of 14 highly regulated proteins, such as Apba2, Syt12, Pgs1 and Vsnl1, have also been validated to be involved in AD pathogenesis. In addition, we also detected new interesting regulated proteins related to the control of synapses and neurotransmission (Kcna2, Cacng3, and Clcn6) whose roles as AD biomarkers should be further investigated. COMPARISON WITH EXISTING METHODS This newly established combined protocol provides better insight into the mutual communication between ISF and CSF as an analysis of tissue or CSF compartments alone. CONCLUSIONS The use of multiple fluid compartments, ISF and CSF, for the detection of their biological communication enables better detection of new promising AD biomarkers.
Collapse
Affiliation(s)
- Anna Maria Górska
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Irene Santos-García
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Ivan Eiriz
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Thomas Brüning
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Tuula Nyman
- Proteomics Core Facility, Department of Immunology, Oslo University Hospital (OUS) and University of Oslo (UiO), Faculty of Medicine, Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, Lübeck D-23538, Germany; Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, Rīga LV-1004, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv IL-6997801, Israel.
| |
Collapse
|
7
|
Dong Y, Song X, Wang X, Wang S, He Z. The early diagnosis of Alzheimer's disease: Blood-based panel biomarker discovery by proteomics and metabolomics. CNS Neurosci Ther 2024; 30:e70060. [PMID: 39572036 PMCID: PMC11581788 DOI: 10.1111/cns.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 11/25/2024] Open
Abstract
Diagnosis and prediction of Alzheimer's disease (AD) are increasingly pressing in the early stage of the disease because the biomarker-targeted therapies may be most effective. Diagnosis of AD largely depends on the clinical symptoms of AD. Currently, cerebrospinal fluid biomarkers and neuroimaging techniques are considered for clinical detection and diagnosis. However, these clinical diagnosis results could provide indications of the middle and/or late stages of AD rather than the early stage, and another limitation is the complexity attached to limited access, cost, and perceived invasiveness. Therefore, the prediction of AD still poses immense challenges, and the development of novel biomarkers is needed for early diagnosis and urgent intervention before the onset of obvious phenotypes of AD. Blood-based biomarkers may enable earlier diagnose and aid detection and prognosis for AD because various substances in the blood are vulnerable to AD pathophysiology. The application of a systematic biological paradigm based on high-throughput techniques has demonstrated accurate alterations of molecular levels during AD onset processes, such as protein levels and metabolite levels, which may facilitate the identification of AD at an early stage. Notably, proteomics and metabolomics have been used to identify candidate biomarkers in blood for AD diagnosis. This review summarizes data on potential blood-based biomarkers identified by proteomics and metabolomics that are closest to clinical implementation and discusses the current challenges and the future work of blood-based candidates to achieve the aim of early screening for AD. We also provide an overview of early diagnosis, drug target discovery and even promising therapeutic approaches for AD.
Collapse
Affiliation(s)
- Yun Dong
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| | - Xun Song
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| | - Xiao Wang
- Department of PharmacyShenzhen People's Hospital (The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology)ShenzhenChina
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Health Science CenterShenzhen UniversityShenzhenChina
| | - Zhendan He
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| |
Collapse
|
8
|
Marmolejo-Garza A, Chatre L, Croteau DL, Herron-Bedoya A, Luu MDA, Bernay B, Pontin J, Bohr VA, Boddeke E, Dolga AM. Nicotinamide riboside modulates the reactive species interactome, bioenergetic status and proteomic landscape in a brain-region-specific manner. Neurobiol Dis 2024; 200:106645. [PMID: 39179121 DOI: 10.1016/j.nbd.2024.106645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Nicotinamide riboside (NR), a precursor of nicotinamide adenine dinucleotide (NAD+), has robust cognitive benefits and alleviates neuroinflammation in Alzheimer's Disease (AD) mouse models without decreasing beta-amyloid plaque pathology. Such effects may be mediated by the reactive species interactome (RSI), at the metabolome level. In this study, we employed in vitro and in vivo models of oxidative stress, aging and AD to profile the effects of NR on neuronal survival, RSI, and the whole proteome characterization of cortex and hippocampus. RSI analysis yielded a complex modulation upon NR treatment. We constructed protein co-expression networks and correlated them to NR treatment and all measured reactive species. We observed brain-area specific effects of NR on co-expressed protein modules of oxidative phosphorylation, fatty acid oxidation, and neurotransmitter regulation pathways, which correlated with RSI components. The current study contributes to the understanding of modulation of the metabolome, specifically after NR treatment in AD and how it may play disease-modifying roles.
Collapse
Affiliation(s)
- Alejandro Marmolejo-Garza
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713, AV, Groningen, the Netherlands; Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Laurent Chatre
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP CYCERON, F-14000 Caen, France
| | - Deborah L Croteau
- Section on DNA repair, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD, USA; Laboratory of Genetics and Genomics, Computational Biology and Genomics Core, National Institute on Aging, 251 Bayview Blvd, Baltimore, USA
| | - Alejandro Herron-Bedoya
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713, AV, Groningen, the Netherlands
| | - Minh Danh Anh Luu
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713, AV, Groningen, the Netherlands
| | - Benoit Bernay
- Université de Caen Normandie, US EMerode, Plateform Proteogen, F-14000 Caen, France
| | - Julien Pontin
- Université de Caen Normandie, US EMerode, Plateform Proteogen, F-14000 Caen, France
| | - Vilhelm A Bohr
- Section on DNA repair, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD, USA; Center for Healthy Aging, Department of Cellular and Molecular Medicine, SUND, University of Copenhagen, 2200, Copenhagen N, Denmark; Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Erik Boddeke
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713, AV, Groningen, the Netherlands.
| |
Collapse
|
9
|
Li YB, Fu Q, Guo M, Du Y, Chen Y, Cheng Y. MicroRNAs: pioneering regulators in Alzheimer's disease pathogenesis, diagnosis, and therapy. Transl Psychiatry 2024; 14:367. [PMID: 39256358 PMCID: PMC11387755 DOI: 10.1038/s41398-024-03075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
This article delves into Alzheimer's disease (AD), a prevalent neurodegenerative condition primarily affecting the elderly. It is characterized by progressive memory and cognitive impairments, severely disrupting daily life. Recent research highlights the potential involvement of microRNAs in the pathogenesis of AD. MicroRNAs (MiRNAs), short non-coding RNAs comprising 20-24 nucleotides, significantly influence gene regulation by hindering translation or promoting degradation of target genes. This review explores the role of specific miRNAs in AD progression, focusing on their impact on β-amyloid (Aβ) peptide accumulation, intracellular aggregation of hyperphosphorylated tau proteins, mitochondrial dysfunction, neuroinflammation, oxidative stress, and the expression of the APOE4 gene. Our insights contribute to understanding AD's pathology, offering new avenues for identifying diagnostic markers and developing novel therapeutic targets.
Collapse
Affiliation(s)
- Yao-Bo Li
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Qiang Fu
- Institute of National Security, Minzu University of China, Beijing, China
| | - Mei Guo
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Institute of National Security, Minzu University of China, Beijing, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China.
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
- Institute of National Security, Minzu University of China, Beijing, China.
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China.
| |
Collapse
|
10
|
P A H, Basavaraju N, Chandran M, Jaleel A, Bennett DA, Kommaddi RP. Mitigation of synaptic and memory impairments via F-actin stabilization in Alzheimer's disease. Alzheimers Res Ther 2024; 16:200. [PMID: 39244567 PMCID: PMC11380428 DOI: 10.1186/s13195-024-01558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Synaptic dysfunction, characterized by synapse loss and structural alterations, emerges as a prominent correlate of cognitive decline in Alzheimer's disease (AD). Actin cytoskeleton, which serves as the structural backbone of synaptic architecture, is observed to be lost from synapses in AD. Actin cytoskeleton loss compromises synaptic integrity, affecting glutamatergic receptor levels, neurotransmission, and synaptic strength. Understanding these molecular changes is crucial for developing interventions targeting synaptic dysfunction, potentially mitigating cognitive decline in AD. METHODS In this study, we investigated the synaptic actin interactome using mass spectrometry in a mouse model of AD, APP/PS1. Our objective was to explore how alterations in synaptic actin dynamics, particularly the interaction between PSD-95 and actin, contribute to synaptic and cognitive impairment in AD. To assess the impact of restoring F-actin levels on synaptic and cognitive functions in APP/PS1 mice, we administered F-actin stabilizing agent, jasplakinolide. Behavioral deficits in the mice were evaluated using the contextual fear conditioning paradigm. We utilized primary neuronal cultures to study the synaptic levels of AMPA and NMDA receptors and the dynamics of PSD-95 actin association. Furthermore, we analyzed postmortem brain tissue samples from subjects with no cognitive impairment (NCI), mild cognitive impairment (MCI), and Alzheimer's dementia (AD) to determine the association between PSD-95 and actin. RESULTS We found a significant reduction in PSD-95-actin association in synaptosomes from middle-aged APP/PS1 mice compared to wild-type (WT) mice. Treatment with jasplakinolide, an actin stabilizer, reversed deficits in memory recall, restored PSD-95-actin association, and increased synaptic F-actin levels in APP/PS1 mice. Additionally, actin stabilization led to elevated synaptic levels of AMPA and NMDA receptors, enhanced dendritic spine density, suggesting improved neurotransmission and synaptic strength in primary cortical neurons from APP/PS1 mice. Furthermore, analysis of postmortem human tissue with NCI, MCI and AD subjects revealed disrupted PSD-95-actin interactions, underscoring the clinical relevance of our preclinical studies. CONCLUSION Our study elucidates disrupted PSD-95 actin interactions across different models, highlighting potential therapeutic targets for AD. Stabilizing F-actin restores synaptic integrity and ameliorates cognitive deficits in APP/PS1 mice, suggesting that targeting synaptic actin regulation could be a promising therapeutic strategy to mitigate cognitive decline in AD.
Collapse
Affiliation(s)
- Haseena P A
- Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka, 560012, India
- Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nimisha Basavaraju
- Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka, 560012, India
- Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mahesh Chandran
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Abdul Jaleel
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Reddy Peera Kommaddi
- Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
11
|
Al Sultan A, Rattray Z, Rattray NJW. Cytotoxicity and toxicoproteomics analysis of thiazolidinedione exposure in human-derived cardiomyocytes. J Appl Toxicol 2024; 44:1214-1235. [PMID: 38654465 DOI: 10.1002/jat.4613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/16/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Thiazolidinediones (TZDs) (e.g. pioglitazone and rosiglitazone), known insulin sensitiser agents for type II diabetes mellitus, exhibit controversial effects on cardiac tissue. Despite consensus on their association with increased heart failure risk, limiting TZD use in diabetes management, the underlying mechanisms remain uncharacterised. Herein, we report a comprehensive in vitro investigation utilising a novel toxicoproteomics pipeline coupled with cytotoxicity assays in human adult cardiomyocytes to elucidate mechanistic insights into TZD cardiotoxicity. The cytotoxicity assay findings showed a significant loss of mitochondrial adenosine triphosphate production upon exposure to either TZD agents, which may underpin TZD cardiotoxicity. Our toxicoproteomics analysis revealed that mitochondrial dysfunction primarily stems from oxidative phosphorylation impairment, with distinct signalling mechanisms observed for both agents. The type of cell death differed strikingly between the two agents, with rosiglitazone exhibiting features of caspase-dependent apoptosis and pioglitazone implicating mitochondrial-mediated necroptosis, as evidenced by the protein upregulation in the phosphoglycerate mutase family 5-dynamin-related protein 1 axis. Furthermore, our analysis revealed additional mechanistic aspects of cardiotoxicity, showcasing drug specificity. The downregulation of various proteins involved in protein machinery and protein processing in the endoplasmic reticulum was observed in rosiglitazone-treated cells, implicating proteostasis in the rosiglitazone cardiotoxicity. Regarding pioglitazone, the findings suggested the potential activation of the interplay between the complement and coagulation systems and the disruption of the cytoskeletal architecture, which was primarily mediated through the integrin-signalling pathways responsible for pioglitazone-induced myocardial contractile failure. Collectively, this study unlocks substantial mechanistic insight into TZD cardiotoxicity, providing the rationale for future optimisation of antidiabetic therapies.
Collapse
Affiliation(s)
- Abdullah Al Sultan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Nicholas J W Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
12
|
Tilliole P, Fix S, Godin JD. hnRNPs: roles in neurodevelopment and implication for brain disorders. Front Mol Neurosci 2024; 17:1411639. [PMID: 39086926 PMCID: PMC11288931 DOI: 10.3389/fnmol.2024.1411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a family of multifunctional RNA-binding proteins able to process nuclear pre-mRNAs into mature mRNAs and regulate gene expression in multiple ways. They comprise at least 20 different members in mammals, named from A (HNRNP A1) to U (HNRNP U). Many of these proteins are components of the spliceosome complex and can modulate alternative splicing in a tissue-specific manner. Notably, while genes encoding hnRNPs exhibit ubiquitous expression, increasing evidence associate these proteins to various neurodevelopmental and neurodegenerative disorders, such as intellectual disability, epilepsy, microcephaly, amyotrophic lateral sclerosis, or dementias, highlighting their crucial role in the central nervous system. This review explores the evolution of the hnRNPs family, highlighting the emergence of numerous new members within this family, and sheds light on their implications for brain development.
Collapse
Affiliation(s)
- Pierre Tilliole
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Simon Fix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Juliette D. Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
13
|
Adeoye T, Shah SI, Ullah G. Systematic Analysis of Biological Processes Reveals Gene Co-expression Modules Driving Pathway Dysregulation in Alzheimer's Disease. Aging Dis 2024:AD.2024.0429. [PMID: 38913039 DOI: 10.14336/ad.2024.0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) manifests as a complex systems pathology with intricate interplay among various genes and biological processes. Traditional differential gene expression (DEG) analysis, while commonly employed to characterize AD-driven perturbations, does not sufficiently capture the full spectrum of underlying biological processes. Utilizing single-nucleus RNA-sequencing data from postmortem brain samples across key regions-middle temporal gyrus, superior frontal gyrus, and entorhinal cortex-we provide a comprehensive systematic analysis of disrupted processes in AD. We go beyond the DEG-centric analysis by integrating pathway activity analysis with weighted gene co-expression patterns to comprehensively map gene interconnectivity, identifying region- and cell-type-specific drivers of biological processes associated with AD. Our analysis reveals profound modular heterogeneity in neurons and glia as well as extensive AD-related functional disruptions. Co-expression networks highlighted the extended involvement of astrocytes and microglia in biological processes beyond neuroinflammation, such as calcium homeostasis, glutamate regulation, lipid metabolism, vesicle-mediated transport, and TOR signaling. We find limited representation of DEGs within dysregulated pathways across neurons and glial cells, suggesting that differential gene expression alone may not adequately represent the disease complexity. Further dissection of inferred gene modules revealed distinct dynamics of hub DEGs in neurons versus glia, suggesting that DEGs exert more impact on neurons compared to glial cells in driving modular dysregulations underlying perturbed biological processes. Interestingly, we observe an overall downregulation of astrocyte and microglia modules across all brain regions in AD, indicating a prevailing trend of functional repression in glial cells across these regions. Notable genes from the CALM and HSP90 families emerged as hub genes across neuronal modules in all brain regions, suggesting conserved roles as drivers of synaptic dysfunction in AD. Our findings demonstrate the importance of an integrated, systems-oriented approach combining pathway and network analysis to comprehensively understand the cell-type-specific roles of genes in AD-related biological processes.
Collapse
|
14
|
Pu X, Ma S, Zhao B, Tang S, Lu Q, Liu W, Wang Y, Cen Y, Wu C, Fu X. Transcriptome meta-analysis reveals the hair genetic rules in six animal breeds and genes associated with wool fineness. Front Genet 2024; 15:1401369. [PMID: 38948362 PMCID: PMC11211574 DOI: 10.3389/fgene.2024.1401369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
Wool plays an irreplaceable role in the lives of livestock and the textile industry. The variety of hair quality and shape leads to the diversity of its functions and applications, and the finer wool has a higher economic value. In this study, 10 coarse and 10 fine ordos fine wool sheep skin samples were collected for RNA-seq, and coarse and fine skin/hair follicle RNA-seq datasets of other five animal breeds were obtained from NCBI. Weighted gene co-expression network analysis showed that the common genes were clustered into eight modules. Similar gene expression patterns in sheep and rabbits with the same wool types, different gene expression patterns in animal species with different hair types, and brown modules were significantly correlated with species and breeds. GO and KEGG enrichment analyses showed that, most genes in the brown module associated with hair follicle development. Hence, gene expression patterns in skin tissues may determine hair morphology in animal. The analysis of differentially expressed genes revealed that 32 highly expressed candidate genes associated with the wool fineness of Ordos fine wool sheep. Among them, KAZALD1 (grey module), MYOC (brown module), C1QTNF6 (brown module), FOS (tan module), ITGAM, MX2, MX1, and IFI6 genes have been reported to be involved in the regulation of the hair follicle cycle or hair loss. Additionally, 12 genes, including KAZALD1, MYOC, C1QTNF6, and FOS, are differentially expressed across various animal breeds and species. The above results suggest that different sheep breeds share a similar molecular regulatory basis of wool fineness. Finally, the study provides a theoretical reference for molecular breeding of sheep breeds as well as for the investigation of the origin and evolution of animal hair.
Collapse
Affiliation(s)
- Xue Pu
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, China
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Shengchao Ma
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Bingru Zhao
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Sen Tang
- Key Laboratory of Herbivorous Livestock Genetics, Ministry of Agriculture, Institute of Biotechnology, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Qingwei Lu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Wenna Liu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yaqian Wang
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yunlin Cen
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, China
| | - Cuiling Wu
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-Sheep Cashmere-Goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
15
|
Brandão-Teles C, Antunes ASLM, de Moraes Vrechi TA, Martins-de-Souza D. The Roles of hnRNP Family in the Brain and Brain-Related Disorders. Mol Neurobiol 2024; 61:3578-3595. [PMID: 37999871 DOI: 10.1007/s12035-023-03747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) belong to a complex family of RNA-binding proteins that are essential to control alternative splicing, mRNA trafficking, synaptic plasticity, stress granule formation, cell cycle regulation, and axonal transport. Over the past decade, hnRNPs have been associated with different brain disorders such as Alzheimer's disease, multiple sclerosis, and schizophrenia. Given their essential role in maintaining cell function and integrity, it is not surprising that dysregulated hnRNP levels lead to neurological implications. This review aims to explore the primary functions of hnRNPs in neurons, oligodendrocytes, microglia, and astrocytes, and their roles in brain disorders. We also discuss proteomics and other technologies and their potential for studying and evaluating hnRNPs in brain disorders, including the discovery of new therapeutic targets and possible pharmacological interventions.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - André S L M Antunes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Talita Aparecida de Moraes Vrechi
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil.
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil.
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Instituto Nacional de Biomarcadores em Neuropsiquiatria, São Paulo, Brazil.
| |
Collapse
|
16
|
Targa Dias Anastacio H, Matosin N, Ooi L. Familial Alzheimer's Disease Neurons Bearing Mutations in PSEN1 Display Increased Calcium Responses to AMPA as an Early Calcium Dysregulation Phenotype. Life (Basel) 2024; 14:625. [PMID: 38792645 PMCID: PMC11123496 DOI: 10.3390/life14050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Familial Alzheimer's disease (FAD) can be caused by mutations in PSEN1 that encode presenilin-1, a component of the gamma-secretase complex that cleaves amyloid precursor protein. Alterations in calcium (Ca2+) homeostasis and glutamate signaling are implicated in the pathogenesis of FAD; however, it has been difficult to assess in humans whether or not these phenotypes are the result of amyloid or tau pathology. This study aimed to assess the early calcium and glutamate phenotypes of FAD by measuring the Ca2+ response of induced pluripotent stem cell (iPSC)-derived neurons bearing PSEN1 mutations to glutamate and the ionotropic glutamate receptor agonists NMDA, AMPA, and kainate compared to isogenic control and healthy lines. The data show that in early neurons, even in the absence of amyloid and tau phenotypes, FAD neurons exhibit increased Ca2+ responses to glutamate and AMPA, but not NMDA or kainate. Together, this suggests that PSEN1 mutations alter Ca2+ and glutamate signaling as an early phenotype of FAD.
Collapse
Affiliation(s)
- Helena Targa Dias Anastacio
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia;
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
| | - Lezanne Ooi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia;
| |
Collapse
|
17
|
Liang Z, Zhuang H, Cao X, Ma G, Shen L. Subcellular proteomics insights into Alzheimer's disease development. Proteomics Clin Appl 2024; 18:e2200112. [PMID: 37650321 DOI: 10.1002/prca.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
Alzheimer's disease (AD), one of the most common dementias, is a neurodegenerative disease characterized by cognitive impairment and decreased judgment function. The expected number of AD patient is increasing in the context of the world's advancing medical care and increasing human life expectancy. Since current molecular mechanism studies on AD pathogenesis are incomplete, there is no specific and effective therapeutic agent. Mass spectrometry (MS)-based unbiased proteomics studies provide an effective and comprehensive approach. Many advances have been made in the study of the mechanism, diagnostic markers, and drug targets of AD using proteomics. This paper focus on subcellular level studies, reviews studies using proteomics to study AD-associated mitochondrial dysfunction, synaptic, and myelin damage, the protein composition of amyloid plaques (APs) and neurofibrillary tangles (NFTs), changes in tissue extracellular vehicles (EVs) and exosome proteome, and the protein changes in ribosomes and lysosomes. The methods of sample separation and preparation and proteomic analysis as well as the main findings of these studies are involved. The results of these proteomics studies provide insights into the pathogenesis of AD and provide theoretical resource and direction for future research in AD, helping to identify new biomarkers and drugs targets for AD.
Collapse
Affiliation(s)
- Zhiyuan Liang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Hongbin Zhuang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Xueshan Cao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, P. R. China
| |
Collapse
|
18
|
Sun S, Liu Q, Wang Z, Huang YY, Sublette ME, Dwork AJ, Rosoklija G, Ge Y, Galfalvy H, Mann JJ, Haghighi F. Brain and blood transcriptome profiles delineate common genetic pathways across suicidal ideation and suicide. Mol Psychiatry 2024; 29:1417-1426. [PMID: 38278992 PMCID: PMC11189724 DOI: 10.1038/s41380-024-02420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/28/2024]
Abstract
Human genetic studies indicate that suicidal ideation and behavior are both heritable. Most studies have examined associations between aberrant gene expression and suicide behavior, but behavior risk is linked to the severity of suicidal ideation. Through a gene network approach, this study investigates how gene co-expression patterns are associated with suicidal ideation and severity using RNA-seq data in peripheral blood from 46 live participants with elevated suicidal ideation and 46 with no ideation. Associations with the presence of suicidal ideation were found within 18 co-expressed modules (p < 0.05), as well as in 3 co-expressed modules associated with suicidal ideation severity (p < 0.05, not explained by severity of depression). Suicidal ideation presence and severity-related gene modules with enrichment of genes involved in defense against microbial infection, inflammation, and adaptive immune response were identified and investigated using RNA-seq data from postmortem brain that revealed gene expression differences with moderate effect sizes in suicide decedents vs. non-suicides in white matter, but not gray matter. Findings support a role of brain and peripheral blood inflammation in suicide risk, showing that suicidal ideation presence and severity are associated with an inflammatory signature detectable in blood and brain, indicating a biological continuity between ideation and suicidal behavior that may underlie a common heritability.
Collapse
Affiliation(s)
- Shengnan Sun
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Qingkun Liu
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Zhaoyu Wang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Yung-Yu Huang
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - M Elizabeth Sublette
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hanga Galfalvy
- James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Fatemeh Haghighi
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- James J. Peters VA Medical Center, Bronx, NY, 10468, USA.
| |
Collapse
|
19
|
Seifar F, Fox EJ, Shantaraman A, Liu Y, Dammer EB, Modeste E, Duong DM, Yin L, Trautwig AN, Guo Q, Xu K, Ping L, Reddy JS, Allen M, Quicksall Z, Heath L, Scanlan J, Wang E, Wang M, Linden AV, Poehlman W, Chen X, Baheti S, Ho C, Nguyen T, Yepez G, Mitchell AO, Oatman SR, Wang X, Carrasquillo MM, Runnels A, Beach T, Serrano GE, Dickson DW, Lee EB, Golde TE, Prokop S, Barnes LL, Zhang B, Haroutunian V, Gearing M, Lah JJ, Jager PD, Bennett DA, Greenwood A, Ertekin-Taner N, Levey AI, Wingo A, Wingo T, Seyfried NT. Large-scale Deep Proteomic Analysis in Alzheimer's Disease Brain Regions Across Race and Ethnicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590547. [PMID: 38712030 PMCID: PMC11071432 DOI: 10.1101/2024.04.22.590547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Introduction Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within the non-Hispanic White (NHW) population. Here we aimed to provide comprehensive insights into the proteomic landscape of AD across diverse racial and ethnic groups. Methods Dorsolateral prefrontal cortex (DLPFC) and superior temporal gyrus (STG) brain tissues were donated from multiple centers (Mayo Clinic, Emory University, Rush University, Mt. Sinai School of Medicine) and were harmonized through neuropathological evaluation, specifically adhering to the Braak staging and CERAD criteria. Among 1105 DLPFC tissue samples (998 unique individuals), 333 were from African American donors, 223 from Latino Americans, 529 from NHW donors, and the rest were from a mixed or unknown racial background. Among 280 STG tissue samples (244 unique individuals), 86 were African American, 76 Latino American, 116 NHW and the rest were mixed or unknown ethnicity. All tissues were uniformly homogenized and analyzed by tandem mass tag mass spectrometry (TMT-MS). Results As a Quality control (QC) measure, proteins with more than 50% missing values were removed and iterative principal component analysis was conducted to remove outliers within brain regions. After QC, 9,180 and 9,734 proteins remained in the DLPC and STG proteome, respectively, of which approximately 9,000 proteins were shared between regions. Protein levels of microtubule-associated protein tau (MAPT) and amyloid-precursor protein (APP) demonstrated AD-related elevations in DLPFC tissues with a strong association with CERAD and Braak across racial groups. APOE4 protein levels in brain were highly concordant with APOE genotype of the individuals. Discussion This comprehensive region resolved large-scale proteomic dataset provides a resource for the understanding of ethnoracial-specific protein differences in AD brain.
Collapse
Affiliation(s)
| | - Edward J Fox
- Emory University School of Medicine, Atlanta, GA USA
| | | | - Yue Liu
- Emory University School of Medicine, Atlanta, GA USA
| | - Eric B Dammer
- Emory University School of Medicine, Atlanta, GA USA
| | - Erica Modeste
- Emory University School of Medicine, Atlanta, GA USA
| | - Duc M Duong
- Emory University School of Medicine, Atlanta, GA USA
| | - Luming Yin
- Emory University School of Medicine, Atlanta, GA USA
| | | | - Qi Guo
- Emory University School of Medicine, Atlanta, GA USA
| | - Kaiming Xu
- Emory University School of Medicine, Atlanta, GA USA
| | - Lingyan Ping
- Emory University School of Medicine, Atlanta, GA USA
| | - Joseph S Reddy
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | - Mariet Allen
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | - Zachary Quicksall
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | | | | | - Erming Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | | | - Xianfeng Chen
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | - Saurabh Baheti
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | - Charlotte Ho
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | - Thuy Nguyen
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | - Geovanna Yepez
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | | | | | - Xue Wang
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | | | | | - Thomas Beach
- Banner Sun Health Research Institute, Sun City, AR USA
| | | | - Dennis W Dickson
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelpha, PA, USA
| | - Todd E Golde
- Emory University School of Medicine, Atlanta, GA USA
| | | | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Varham Haroutunian
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Marla Gearing
- Emory University School of Medicine, Atlanta, GA USA
| | - James J Lah
- Emory University School of Medicine, Atlanta, GA USA
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL USA
| | | | - Nilüfer Ertekin-Taner
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL USA
- Mayo Clinic Florida, Department of Neurology, Jacksonville, FL USA
| | - Allan I Levey
- Emory University School of Medicine, Atlanta, GA USA
| | - Aliza Wingo
- Emory University School of Medicine, Atlanta, GA USA
| | - Thomas Wingo
- Emory University School of Medicine, Atlanta, GA USA
| | | |
Collapse
|
20
|
Williams A. Multiomics data integration, limitations, and prospects to reveal the metabolic activity of the coral holobiont. FEMS Microbiol Ecol 2024; 100:fiae058. [PMID: 38653719 PMCID: PMC11067971 DOI: 10.1093/femsec/fiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
Since their radiation in the Middle Triassic period ∼240 million years ago, stony corals have survived past climate fluctuations and five mass extinctions. Their long-term survival underscores the inherent resilience of corals, particularly when considering the nutrient-poor marine environments in which they have thrived. However, coral bleaching has emerged as a global threat to coral survival, requiring rapid advancements in coral research to understand holobiont stress responses and allow for interventions before extensive bleaching occurs. This review encompasses the potential, as well as the limits, of multiomics data applications when applied to the coral holobiont. Synopses for how different omics tools have been applied to date and their current restrictions are discussed, in addition to ways these restrictions may be overcome, such as recruiting new technology to studies, utilizing novel bioinformatics approaches, and generally integrating omics data. Lastly, this review presents considerations for the design of holobiont multiomics studies to support lab-to-field advancements of coral stress marker monitoring systems. Although much of the bleaching mechanism has eluded investigation to date, multiomic studies have already produced key findings regarding the holobiont's stress response, and have the potential to advance the field further.
Collapse
Affiliation(s)
- Amanda Williams
- Microbial Biology Graduate Program, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
| |
Collapse
|
21
|
Zhang Q, Ma C, Chin LS, Pan S, Li L. Human brain glycoform coregulation network and glycan modification alterations in Alzheimer's disease. SCIENCE ADVANCES 2024; 10:eadk6911. [PMID: 38579000 PMCID: PMC10997212 DOI: 10.1126/sciadv.adk6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Despite the importance of protein glycosylation to brain health, current knowledge of glycosylated proteoforms or glycoforms in human brain and their alterations in Alzheimer's disease (AD) is limited. Here, we report a proteome-wide glycoform profiling study of human AD and control brains using intact glycopeptide-based quantitative glycoproteomics coupled with systems biology. Our study identified more than 10,000 human brain N-glycoforms from nearly 1200 glycoproteins and uncovered disease signatures of altered glycoforms and glycan modifications, including reduced sialylation and N-glycan branching and elongation as well as elevated mannosylation and N-glycan truncation in AD. Network analyses revealed a higher-order organization of brain glycoproteome into networks of coregulated glycoforms and glycans and discovered glycoform and glycan modules associated with AD clinical phenotype, amyloid-β accumulation, and tau pathology. Our findings provide valuable insights into disease pathogenesis and a rich resource of glycoform and glycan changes in AD and pave the way forward for developing glycosylation-based therapies and biomarkers for AD.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cheng Ma
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lih-Shen Chin
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lian Li
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
22
|
Adeoye T, Shah SI, Ullah G. Systematic Analysis of Biological Processes Reveals Gene Co-expression Modules Driving Pathway Dysregulation in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585267. [PMID: 38559218 PMCID: PMC10980062 DOI: 10.1101/2024.03.15.585267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) manifests as a complex systems pathology with intricate interplay among various genes and biological processes. Traditional differential gene expression (DEG) analysis, while commonly employed to characterize AD-driven perturbations, does not sufficiently capture the full spectrum of underlying biological processes. Utilizing single-nucleus RNA-sequencing data from postmortem brain samples across key regions-middle temporal gyrus, superior frontal gyrus, and entorhinal cortex-we provide a comprehensive systematic analysis of disrupted processes in AD. We go beyond the DEG-centric analysis by integrating pathway activity analysis with weighted gene co-expression patterns to comprehensively map gene interconnectivity, identifying region- and cell-type-specific drivers of biological processes associated with AD. Our analysis reveals profound modular heterogeneity in neurons and glia as well as extensive AD-related functional disruptions. Co-expression networks highlighted the extended involvement of astrocytes and microglia in biological processes beyond neuroinflammation, such as calcium homeostasis, glutamate regulation, lipid metabolism, vesicle-mediated transport, and TOR signaling. We find limited representation of DEGs within dysregulated pathways across neurons and glial cells, indicating that differential gene expression alone may not adequately represent the disease complexity. Further dissection of inferred gene modules revealed distinct dynamics of hub DEGs in neurons versus glia, highlighting the differential impact of DEGs on neurons compared to glial cells in driving modular dysregulations underlying perturbed biological processes. Interestingly, we note an overall downregulation of both astrocyte and microglia modules in AD across all brain regions, suggesting a prevailing trend of functional repression in glial cells across these regions. Notable genes, including those of the CALM and HSP90 family genes emerged as hub genes across neuronal modules in all brain regions, indicating conserved roles as drivers of synaptic dysfunction in AD. Our findings demonstrate the importance of an integrated, systems-oriented approach combining pathway and network analysis for a comprehensive understanding of the cell-type-specific roles of genes in AD-related biological processes.
Collapse
Affiliation(s)
- Temitope Adeoye
- Department of Physics, University of South Florida, Tampa, FL 33620
| | - Syed I Shah
- Department of Physics, University of South Florida, Tampa, FL 33620
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620
| |
Collapse
|
23
|
Shaik SM, Cao Y, Gogola JV, Dodiya HB, Zhang X, Boutej H, Han W, Kriz J, Sisodia SS. Translational profiling identifies sex-specific metabolic and epigenetic reprogramming of cortical microglia/macrophages in APPPS1-21 mice with an antibiotic-perturbed-microbiome. Mol Neurodegener 2023; 18:95. [PMID: 38104136 PMCID: PMC10725591 DOI: 10.1186/s13024-023-00668-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/14/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Microglia, the brain-resident macrophages perform immune surveillance and engage with pathological processes resulting in phenotype changes necessary for maintaining homeostasis. In preceding studies, we showed that antibiotic-induced perturbations of the gut microbiome of APPPS1-21 mice resulted in significant attenuation in Aβ amyloidosis and altered microglial phenotypes that are specific to male mice. The molecular events underlying microglial phenotypic transitions remain unclear. Here, by generating 'APPPS1-21-CD11br' reporter mice, we investigated the translational state of microglial/macrophage ribosomes during their phenotypic transition and in a sex-specific manner. METHODS Six groups of mice that included WT-CD11br, antibiotic (ABX) or vehicle-treated APPPS1-21-CD11br males and females were sacrificed at 7-weeks of age (n = 15/group) and used for immunoprecipitation of microglial/macrophage polysomes from cortical homogenates using anti-FLAG antibody. Liquid chromatography coupled to tandem mass spectrometry and label-free quantification was used to identify newly synthesized peptides isolated from polysomes. RESULTS We show that ABX-treatment leads to decreased Aβ levels in male APPPS1-21-CD11br mice with no significant changes in females. We identified microglial/macrophage polypeptides involved in mitochondrial dysfunction and altered calcium signaling that are associated with Aβ-induced oxidative stress. Notably, female mice also showed downregulation of newly-synthesized ribosomal proteins. Furthermore, male mice showed an increase in newly-synthesized polypeptides involved in FcγR-mediated phagocytosis, while females showed an increase in newly-synthesized polypeptides responsible for actin organization associated with microglial activation. Next, we show that ABX-treatment resulted in substantial remodeling of the epigenetic landscape, leading to a metabolic shift that accommodates the increased bioenergetic and biosynthetic demands associated with microglial polarization in a sex-specific manner. While microglia in ABX-treated male mice exhibited a metabolic shift towards a neuroprotective phenotype that promotes Aβ clearance, microglia in ABX-treated female mice exhibited loss of energy homeostasis due to persistent mitochondrial dysfunction and impaired lysosomal clearance that was associated with inflammatory phenotypes. CONCLUSIONS Our studies provide the first snapshot of the translational state of microglial/macrophage cells in a mouse model of Aβ amyloidosis that was subject to ABX treatment. ABX-mediated changes resulted in metabolic reprogramming of microglial phenotypes to modulate immune responses and amyloid clearance in a sex-specific manner. This microglial plasticity to support neuro-energetic homeostasis for its function based on sex paves the path for therapeutic modulation of immunometabolism for neurodegeneration.
Collapse
Affiliation(s)
- Shabana M Shaik
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Yajun Cao
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Joseph V Gogola
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Hemraj B Dodiya
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Xulun Zhang
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Hejer Boutej
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Laval University, Québec, QC, Canada
| | - Weinong Han
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Jasna Kriz
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Laval University, Québec, QC, Canada
| | | |
Collapse
|
24
|
Chen X, Xie L, Sheehy R, Xiong Y, Muneer A, Wrobel J, Park KS, Liu J, Velez J, Luo Y, Li YD, Quintanilla L, Li Y, Xu C, Wen Z, Song J, Jin J, Deshmukh M. Novel brain-penetrant inhibitor of G9a methylase blocks Alzheimer's disease proteopathology for precision medication. RESEARCH SQUARE 2023:rs.3.rs-2743792. [PMID: 38045363 PMCID: PMC10690335 DOI: 10.21203/rs.3.rs-2743792/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Current amyloid beta-targeting approaches for Alzheimer's disease (AD) therapeutics only slow cognitive decline for small numbers of patients. This limited efficacy exists because AD is a multifactorial disease whose pathological mechanism(s) and diagnostic biomarkers are largely unknown. Here we report a new mechanism of AD pathogenesis in which the histone methyltransferase G9a noncanonically regulates translation of a hippocampal proteome that defines the proteopathic nature of AD. Accordingly, we developed a novel brain-penetrant inhibitor of G9a, MS1262, across the blood-brain barrier to block this G9a-regulated, proteopathologic mechanism. Intermittent MS1262 treatment of multiple AD mouse models consistently restored both cognitive and noncognitive functions to healthy levels. Comparison of proteomic/phosphoproteomic analyses of MS1262-treated AD mice with human AD patient data identified multiple pathological brain pathways that elaborate amyloid beta and neurofibrillary tangles as well as blood coagulation, from which biomarkers of early stage of AD including SMOC1 were found to be affected by MS1262 treatment. Notably, these results indicated that MS1262 treatment may reduce or avoid the risk of blood clot burst for brain bleeding or a stroke. This mouse-to-human conservation of G9a-translated AD proteopathology suggests that the global, multifaceted effects of MS1262 in mice could extend to relieve all symptoms of AD patients with minimum side effect. In addition, our mechanistically derived biomarkers can be used for stage-specific AD diagnosis and companion diagnosis of individualized drug effects.
Collapse
|
25
|
Zhang Q, Ma C, Chin LS, Pan S, Li L. Human brain glycoform co-regulation network and glycan modification alterations in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566889. [PMID: 38014218 PMCID: PMC10680592 DOI: 10.1101/2023.11.13.566889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Despite the importance of protein glycosylation to brain health, current knowledge of glycosylated proteoforms or glycoforms in human brain and their alterations in Alzheimer's disease (AD) is limited. Here, we present a new paradigm of proteome-wide glycoform profiling study of human AD and control brains using intact glycopeptide-based quantitative glycoproteomics coupled with systems biology. Our study identified over 10,000 human brain N-glycoforms from nearly 1200 glycoproteins and uncovered disease signatures of altered glycoforms and glycan modifications, including reduced sialylation and N-glycan branching as well as elevated mannosylation and N-glycan truncation in AD. Network analyses revealed a higher-order organization of brain glycoproteome into networks of co-regulated glycoforms and glycans and discovered glycoform and glycan modules associated with AD clinical phenotype, amyloid-β accumulation, and tau pathology. Our findings provide novel insights and a rich resource of glycoform and glycan changes in AD and pave the way forward for developing glycosylation-based therapies and biomarkers for AD.
Collapse
|
26
|
Ravagnani FG, Valerio HP, Maués JHS, de Oliveira AN, Puga RD, Griesi-Oliveira K, Picosse FR, Ferraz HB, Catharino RR, Ronsein GE, de Carvalho Aguiar P. Omics profile of iPSC-derived astrocytes from Progressive Supranuclear Palsy (PSP) patients. Parkinsonism Relat Disord 2023; 116:105847. [PMID: 37844348 DOI: 10.1016/j.parkreldis.2023.105847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/28/2023] [Accepted: 09/03/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Progressive Supranuclear Palsy (PSP) is a neurodegenerative tauopathy and, to date, the pathophysiological mechanisms in PSP that lead to Tau hyperphosphorylation and neurodegeneration are not clear. In some brain areas, Tau pathology in glial cells appears to precede Tau aggregation in neurons. The development of a model using astrocyte cell lines derived from patients has the potential to identify molecules and pathways that contribute to early events of neurodegeneration. We developed a model of induced pluripotent stem cells (iPSC)-derived astrocytes to investigate the pathophysiology of PSP, particularly early events that might contribute to Tau hyperphosphorylation, applying omics approach to detect differentially expressed genes, metabolites, and proteins, including those from the secretome. METHODS Skin fibroblasts from PSP patients (without MAPT mutations) and controls were reprogrammed to iPSCs, further differentiated into neuroprogenitor cells (NPCs) and astrocytes. In the 5th passage, astrocytes were harvested for total RNA sequencing. Intracellular and secreted proteins were processed for proteomics experiments. Metabolomics profiling was obtained from supernatants only. RESULTS We identified hundreds of differentially expressed genes. The main networks were related to cell cycle re-activation in PSP. Several proteins were found exclusively secreted by the PSP group. The cellular processes related to the cell cycle and mitotic proteins, TriC/CCT pathway, and redox signaling were enriched in the secretome of PSP. Moreover, we found distinct sets of metabolites between PSP and controls. CONCLUSION Our iPSC-derived astrocyte model can provide distinct molecular signatures for PSP patients and it is useful to elucidate the initial stages of PSP pathogenesis.
Collapse
Affiliation(s)
| | - Hellen P Valerio
- Institute of Chemistry, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Jersey H S Maués
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Arthur N de Oliveira
- Innovare Laboratory, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Fabíola R Picosse
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Henrique B Ferraz
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo R Catharino
- Innovare Laboratory, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | - Patrícia de Carvalho Aguiar
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
27
|
Xie L, Sheehy RN, Xiong Y, Muneer A, Wrobel JA, Park KS, Velez J, Liu J, Luo YJ, Li YD, Quintanilla L, Li Y, Xu C, Deshmukh M, Wen Z, Jin J, Song J, Chen X. Novel brain-penetrant inhibitor of G9a methylase blocks Alzheimer's disease proteopathology for precision medication. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.25.23297491. [PMID: 37961307 PMCID: PMC10635198 DOI: 10.1101/2023.10.25.23297491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Current amyloid beta-targeting approaches for Alzheimer's disease (AD) therapeutics only slow cognitive decline for small numbers of patients. This limited efficacy exists because AD is a multifactorial disease whose pathological mechanism(s) and diagnostic biomarkers are largely unknown. Here we report a new mechanism of AD pathogenesis in which the histone methyltransferase G9a noncanonically regulates translation of a hippocampal proteome that defines the proteopathic nature of AD. Accordingly, we developed a novel brain-penetrant inhibitor of G9a, MS1262, across the blood-brain barrier to block this G9a-regulated, proteopathologic mechanism. Intermittent MS1262 treatment of multiple AD mouse models consistently restored both cognitive and noncognitive functions to healthy levels. Comparison of proteomic/phosphoproteomic analyses of MS1262-treated AD mice with human AD patient data identified multiple pathological brain pathways that elaborate amyloid beta and neurofibrillary tangles as well as blood coagulation, from which biomarkers of early stage of AD including SMOC1 were found to be affected by MS1262 treatment. Notably, these results indicated that MS1262 treatment may reduce or avoid the risk of blood clot burst for brain bleeding or a stroke. This mouse-to-human conservation of G9a-translated AD proteopathology suggests that the global, multifaceted effects of MS1262 in mice could extend to relieve all symptoms of AD patients with minimum side effect. In addition, our mechanistically derived biomarkers can be used for stage-specific AD diagnosis and companion diagnosis of individualized drug effects. One-Sentence Summary A brain-penetrant inhibitor of G9a methylase blocks G9a translational mechanism to reverse Alzheimer's disease related proteome for effective therapy.
Collapse
|
28
|
Godfrey RK, Alsop E, Bjork RT, Chauhan BS, Ruvalcaba HC, Antone J, Gittings LM, Michael AF, Williams C, Hala'ufia G, Blythe AD, Hall M, Sattler R, Van Keuren-Jensen K, Zarnescu DC. Modelling TDP-43 proteinopathy in Drosophila uncovers shared and neuron-specific targets across ALS and FTD relevant circuits. Acta Neuropathol Commun 2023; 11:168. [PMID: 37864255 PMCID: PMC10588218 DOI: 10.1186/s40478-023-01656-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comprise a spectrum of neurodegenerative diseases linked to TDP-43 proteinopathy, which at the cellular level, is characterized by loss of nuclear TDP-43 and accumulation of cytoplasmic TDP-43 inclusions that ultimately cause RNA processing defects including dysregulation of splicing, mRNA transport and translation. Complementing our previous work in motor neurons, here we report a novel model of TDP-43 proteinopathy based on overexpression of TDP-43 in a subset of Drosophila Kenyon cells of the mushroom body (MB), a circuit with structural characteristics reminiscent of vertebrate cortical networks. This model recapitulates several aspects of dementia-relevant pathological features including age-dependent neuronal loss, nuclear depletion and cytoplasmic accumulation of TDP-43, and behavioral deficits in working memory and sleep that occur prior to axonal degeneration. RNA immunoprecipitations identify several candidate mRNA targets of TDP-43 in MBs, some of which are unique to the MB circuit and others that are shared with motor neurons. Among the latter is the glypican Dally-like-protein (Dlp), which exhibits significant TDP-43 associated reduction in expression during aging. Using genetic interactions we show that overexpression of Dlp in MBs mitigates TDP-43 dependent working memory deficits, conistent with Dlp acting as a mediator of TDP-43 toxicity. Substantiating our findings in the fly model, we find that the expression of GPC6 mRNA, a human ortholog of dlp, is specifically altered in neurons exhibiting the molecular signature of TDP-43 pathology in FTD patient brains. These findings suggest that circuit-specific Drosophila models provide a platform for uncovering shared or disease-specific molecular mechanisms and vulnerabilities across the spectrum of TDP-43 proteinopathies.
Collapse
Affiliation(s)
- R Keating Godfrey
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA.
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL, 32611, USA.
| | - Eric Alsop
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Reed T Bjork
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Brijesh S Chauhan
- Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive Crescent Building C4605, Hershey, PA, 17033, USA
| | - Hillary C Ruvalcaba
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Jerry Antone
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Lauren M Gittings
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Allison F Michael
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Christi Williams
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Grace Hala'ufia
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Alexander D Blythe
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Megan Hall
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | | | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA.
- Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive Crescent Building C4605, Hershey, PA, 17033, USA.
| |
Collapse
|
29
|
Zhang X, Li Z, Zhang Q, Yin Z, Lu Z, Li Y. A new weakly supervised deep neural network for recognizing Alzheimer's disease. Comput Biol Med 2023; 163:107079. [PMID: 37321100 DOI: 10.1016/j.compbiomed.2023.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that mainly affects older adults, causing memory loss and decline in thinking skills. In recent years, many traditional machine learning and deep learning methods have been used to assist in the diagnosis of AD, and most existing methods focus on early prediction of disease on a supervised basis. In reality, there is a massive amount of medical data available. However, some of those data have problems with the low-quality or lack of labels, and the cost of labeling them will be too high. To solve above problem, a new Weakly Supervised Deep Learning model (WSDL) is proposed, which adds attention mechanisms and consistency regularization to the EfficientNet framework and uses data augmentation techniques on the original data that can take full advantage of this unlabeled data. Validation of the proposed WSDL method on the brain MRI datasets of the Alzheimer's Disease Neuroimaging Program by setting five different unlabeled ratios to complete weakly supervised training showed better performance according to the compared experimental results with others baselines.
Collapse
Affiliation(s)
- Xiaobo Zhang
- School of Computing and Artificial Intelligence, SouthWest JiaoTong University, Chengdu 611756, China; Engineering Research Center of Sustainable Urban Intelligent Transportation, Ministry of Education, Chengdu 611756, China; National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University, Chengdu 611756, China
| | - Zhimin Li
- School of Computing and Artificial Intelligence, SouthWest JiaoTong University, Chengdu 611756, China
| | - Qian Zhang
- School of Economics and Management, Chengdu Textile College, Chengdu 611731, China.
| | - Zegang Yin
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Zhijie Lu
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yang Li
- School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
| |
Collapse
|
30
|
Downs M, Zaia J, Sethi MK. Mass spectrometry methods for analysis of extracellular matrix components in neurological diseases. MASS SPECTROMETRY REVIEWS 2023; 42:1848-1875. [PMID: 35719114 PMCID: PMC9763553 DOI: 10.1002/mas.21792] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The brain extracellular matrix (ECM) is a highly glycosylated environment and plays important roles in many processes including cell communication, growth factor binding, and scaffolding. The formation of structures such as perineuronal nets (PNNs) is critical in neuroprotection and neural plasticity, and the formation of molecular networks is dependent in part on glycans. The ECM is also implicated in the neuropathophysiology of disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Schizophrenia (SZ). As such, it is of interest to understand both the proteomic and glycomic makeup of healthy and diseased brain ECM. Further, there is a growing need for site-specific glycoproteomic information. Over the past decade, sample preparation, mass spectrometry, and bioinformatic methods have been developed and refined to provide comprehensive information about the glycoproteome. Core ECM molecules including versican, hyaluronan and proteoglycan link proteins, and tenascin are dysregulated in AD, PD, and SZ. Glycomic changes such as differential sialylation, sulfation, and branching are also associated with neurodegeneration. A more thorough understanding of the ECM and its proteomic, glycomic, and glycoproteomic changes in brain diseases may provide pathways to new therapeutic options.
Collapse
Affiliation(s)
- Margaret Downs
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Manveen K Sethi
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Askenazi M, Kavanagh T, Pires G, Ueberheide B, Wisniewski T, Drummond E. Compilation of reported protein changes in the brain in Alzheimer's disease. Nat Commun 2023; 14:4466. [PMID: 37491476 PMCID: PMC10368642 DOI: 10.1038/s41467-023-40208-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
Proteomic studies of human Alzheimer's disease brain tissue have potential to identify protein changes that drive disease, and to identify new drug targets. Here, we analyse 38 published Alzheimer's disease proteomic studies, generating a map of protein changes in human brain tissue across thirteen brain regions, three disease stages (preclinical Alzheimer's disease, mild cognitive impairment, advanced Alzheimer's disease), and proteins enriched in amyloid plaques, neurofibrillary tangles, and cerebral amyloid angiopathy. Our dataset is compiled into a searchable database (NeuroPro). We found 848 proteins were consistently altered in 5 or more studies. Comparison of protein changes in early-stage and advanced Alzheimer's disease revealed proteins associated with synapse, vesicle, and lysosomal pathways show change early in disease, but widespread changes in mitochondrial associated protein expression change are only seen in advanced Alzheimer's disease. Protein changes were similar for brain regions considered vulnerable and regions considered resistant. This resource provides insight into Alzheimer's disease brain protein changes and highlights proteins of interest for further study.
Collapse
Affiliation(s)
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Geoffrey Pires
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Beatrix Ueberheide
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Biochemistry and Molecular Pharmacology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA.
| |
Collapse
|
32
|
Kamalian A, Ho SG, Patel M, Lewis A, Bakker A, Albert M, O’Brien RJ, Moghekar A, Lutz MW. Exploratory Assessment of Proteomic Network Changes in Cerebrospinal Fluid of Mild Cognitive Impairment Patients: A Pilot Study. Biomolecules 2023; 13:1094. [PMID: 37509130 PMCID: PMC10377001 DOI: 10.3390/biom13071094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Despite the existence of well-established, CSF-based biomarkers such as amyloid-β and phosphorylated-tau, the pathways involved in the pathophysiology of Alzheimer's disease (AD) remain an active area of research. (2) Methods: We measured 3072 proteins in CSF samples of AD-biomarker positive mild cognitive impairment (MCI) participants (n = 38) and controls (n = 48), using the Explore panel of the Olink proximity extension assay (PEA). We performed group comparisons, association studies with diagnosis, age, and APOE ε4 status, overrepresentation analysis (ORA), and gene set enrichment analysis (GSEA) to determine differentially expressed proteins and dysregulated pathways. (3) Results: GSEA results demonstrated an enrichment of granulocyte-related and chemotactic pathways (core enrichment proteins: ITGB2, ITGAM, ICAM1, SELL, SELP, C5, IL1A). Moreover, some of the well-replicated, differentially expressed proteins in CSF included: ITGAM, ITGB2, C1QA, TREM2, GFAP, NEFL, MMP-10, and a novel tau-related marker, SCRN1. (4) Conclusion: Our results highlight the upregulation of neuroinflammatory pathways, especially chemotactic and granulocyte recruitment in CSF of early AD patients.
Collapse
Affiliation(s)
- Aida Kamalian
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (A.K.)
| | - Sara G. Ho
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (A.K.)
| | - Megha Patel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (A.K.)
| | - Alexandria Lewis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (A.K.)
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (A.K.)
| | - Richard J. O’Brien
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (A.K.)
| | - Michael W. Lutz
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
33
|
Roberts JA, Varma VR, Candia J, Tanaka T, Ferrucci L, Bennett DA, Thambisetty M. Unbiased proteomics and multivariable regularized regression techniques identify SMOC1, NOG, APCS, and NTN1 in an Alzheimer's disease brain proteomic signature. NPJ AGING 2023; 9:18. [PMID: 37414805 PMCID: PMC10326005 DOI: 10.1038/s41514-023-00112-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
Advancements in omics methodologies have generated a wealth of high-dimensional Alzheimer's disease (AD) datasets, creating significant opportunities and challenges for data interpretation. In this study, we utilized multivariable regularized regression techniques to identify a reduced set of proteins that could discriminate between AD and cognitively normal (CN) brain samples. Utilizing eNetXplorer, an R package that tests the accuracy and significance of a family of elastic net generalized linear models, we identified 4 proteins (SMOC1, NOG, APCS, NTN1) that accurately discriminated between AD (n = 31) and CN (n = 22) middle frontal gyrus (MFG) tissue samples from Religious Orders Study participants with 83 percent accuracy. We then validated this signature in MFG samples from Baltimore Longitudinal Study of Aging participants using leave-one-out logistic regression cross-validation, finding that the signature again accurately discriminated AD (n = 31) and CN (n = 19) participants with a receiver operating characteristic curve area under the curve of 0.863. These proteins were strongly correlated with the burden of neurofibrillary tangle and amyloid pathology in both study cohorts. We additionally tested whether these proteins differed between AD and CN inferior temporal gyrus (ITG) samples and blood serum samples at the time of AD diagnosis in ROS and BLSA, finding that the proteins differed between AD and CN ITG samples but not in blood serum samples. The identified proteins may provide mechanistic insights into the pathophysiology of AD, and the methods utilized in this study may serve as the basis for further work with additional high-dimensional datasets in AD.
Collapse
Affiliation(s)
- Jackson A Roberts
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Vijay R Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Julián Candia
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Toshiko Tanaka
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
34
|
Sun S, Liu Q, Wang Z, Huang YY, Sublette M, Dwork A, Rosoklija G, Ge Y, Galfalvy H, Mann JJ, Haghighi F. Functional Architecture of Brain and Blood Transcriptome Delineate Biological Continuity Between Suicidal Ideation and Suicide. RESEARCH SQUARE 2023:rs.3.rs-2958575. [PMID: 37398042 PMCID: PMC10312911 DOI: 10.21203/rs.3.rs-2958575/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Human genetic studies indicate that suicidal ideation and behavior are both heritable. Most studies have examined associations between aberrant gene expression and suicide behavior, but behavior risk is linked to severity of suicidal ideation. Through a gene network approach, this study investigates how gene co-expression patterns are associated with suicidal ideation and severity using RNA-seq data in peripheral blood from 46 live participants with elevated suicidal ideation and 46 with no ideation. Associations with presence and severity of suicidal ideation were found within 18 and 3 co-expressed modules respectively (p < 0.05), not explained by severity of depression. Suicidal ideation presence and severity-related gene modules with enrichment of genes involved in defense against microbial infection, inflammation, and adaptive immune response were identified, and tested using RNA-seq data from postmortem brain that revealed gene expression differences in suicide decedents vs. non-suicides in white matter, but not gray matter. Findings support a role of brain and peripheral blood inflammation in suicide risk, showing that suicidal ideation presence and severity is associated with an inflammatory signature detectable in blood and brain, indicating a biological continuity between ideation and suicidal behavior that may underlie a common heritability.
Collapse
|
35
|
Walker CK, Greathouse KM, Tuscher JJ, Dammer EB, Weber AJ, Liu E, Curtis KA, Boros BD, Freeman CD, Seo JV, Ramdas R, Hurst C, Duong DM, Gearing M, Murchison CF, Day JJ, Seyfried NT, Herskowitz JH. Cross-Platform Synaptic Network Analysis of Human Entorhinal Cortex Identifies TWF2 as a Modulator of Dendritic Spine Length. J Neurosci 2023; 43:3764-3785. [PMID: 37055180 PMCID: PMC10198456 DOI: 10.1523/jneurosci.2102-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Proteomic studies using postmortem human brain tissue samples have yielded robust assessments of the aging and neurodegenerative disease(s) proteomes. While these analyses provide lists of molecular alterations in human conditions, like Alzheimer's disease (AD), identifying individual proteins that affect biological processes remains a challenge. To complicate matters, protein targets may be highly understudied and have limited information on their function. To address these hurdles, we sought to establish a blueprint to aid selection and functional validation of targets from proteomic datasets. A cross-platform pipeline was engineered to focus on synaptic processes in the entorhinal cortex (EC) of human patients, including controls, preclinical AD, and AD cases. Label-free quantification mass spectrometry (MS) data (n = 2260 proteins) was generated on synaptosome fractionated tissue from Brodmann area 28 (BA28; n = 58 samples). In parallel, dendritic spine density and morphology was measured in the same individuals. Weighted gene co-expression network analysis was used to construct a network of protein co-expression modules that were correlated with dendritic spine metrics. Module-trait correlations were used to guide unbiased selection of Twinfilin-2 (TWF2), which was the top hub protein of a module that positively correlated with thin spine length. Using CRISPR-dCas9 activation strategies, we demonstrated that boosting endogenous TWF2 protein levels in primary hippocampal neurons increased thin spine length, thus providing experimental validation for the human network analysis. Collectively, this study describes alterations in dendritic spine density and morphology as well as synaptic proteins and phosphorylated tau from the entorhinal cortex of preclinical and advanced stage AD patients.SIGNIFICANCE STATEMENT Proteomic studies can yield vast lists of molecules that are altered under various experimental or disease conditions. Here, we provide a blueprint to facilitate mechanistic validation of protein targets from human brain proteomic datasets. We conducted a proteomic analysis of human entorhinal cortex (EC) samples spanning cognitively normal and Alzheimer's disease (AD) cases with a comparison of dendritic spine morphology in the same samples. Network integration of proteomics with dendritic spine measurements allowed for unbiased discovery of Twinfilin-2 (TWF2) as a regulator of dendritic spine length. A proof-of-concept experiment in cultured neurons demonstrated that altering Twinfilin-2 protein level induced corresponding changes in dendritic spine length, thus providing experimental validation for the computational framework.
Collapse
Affiliation(s)
- Courtney K Walker
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kelsey M Greathouse
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jennifer J Tuscher
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Audrey J Weber
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Evan Liu
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kendall A Curtis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Benjamin D Boros
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Cameron D Freeman
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jung Vin Seo
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Raksha Ramdas
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Cheyenne Hurst
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Charles F Murchison
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jeremy H Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
36
|
van Haeringen M, Milaneschi Y, Lamers F, Penninx BW, Jansen R. Dissection of depression heterogeneity using proteomic clusters. Psychol Med 2023; 53:2904-2912. [PMID: 35039097 PMCID: PMC10235664 DOI: 10.1017/s0033291721004888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 09/23/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND The search for relevant biomarkers of major depressive disorder (MDD) is challenged by heterogeneity; biological alterations may vary in patients expressing different symptom profiles. Moreover, most research considers a limited number of biomarkers, which may not be adequate for tagging complex network-level mechanisms. Here we studied clusters of proteins and examined their relation with MDD and individual depressive symptoms. METHODS The sample consisted of 1621 subjects from the Netherlands Study of Depression and Anxiety (NESDA). MDD diagnoses were based on DSM-IV criteria and the Inventory of Depressive Symptomatology questionnaire measured endorsement of 30 symptoms. Serum protein levels were detected using a multi-analyte platform (171 analytes, immunoassay, Myriad RBM DiscoveryMAP 250+). Proteomic clusters were computed using weighted correlation network analysis (WGCNA). RESULTS Six proteomic clusters were identified, of which one was nominally significantly associated with current MDD (p = 9.62E-03, Bonferroni adj. p = 0.057). This cluster contained 21 analytes and was enriched with pathways involved in inflammation and metabolism [including C-reactive protein (CRP), leptin and insulin]. At the individual symptom level, this proteomic cluster was associated with ten symptoms, among which were five atypical, energy-related symptoms. After correcting for several health and lifestyle covariates, hypersomnia, increased appetite, panic and weight gain remained significantly associated with the cluster. CONCLUSIONS Our findings support the idea that alterations in a network of proteins involved in inflammatory and metabolic processes are present in MDD, but these alterations map predominantly to clinical symptoms reflecting an imbalance between energy intake and expenditure.
Collapse
Affiliation(s)
- Marije van Haeringen
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Femke Lamers
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Brenda W.J.H. Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Rick Jansen
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Winther AR, da Silva Duarte V, Porcellato D. Metataxonomic analysis and host proteome response in dairy cows with high and low somatic cell count: a quarter level investigation. Vet Res 2023; 54:32. [PMID: 37016420 PMCID: PMC10074679 DOI: 10.1186/s13567-023-01162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/01/2023] [Indexed: 04/06/2023] Open
Abstract
Host response to invasive microbes in the bovine udder has an important role on the animal health and is essential to the dairy industry to ensure production of high-quality milk and reduce the mastitis incidence. To better understand the biology behind these host-microbiome interactions, we investigated the somatic cell proteomes at quarter level for four cows (collected before and after milking) using a shotgun proteomics approach. Simultaneously, we identified the quarter microbiota by amplicon sequencing to detect presence of mastitis pathogens or other commensal taxa. In total, 32 quarter milk samples were analyzed divided in two groups depending on the somatic cell count (SCC). The high SCC group (>100,000 cell/mL) included 10 samples and significant different proteome profiles were detected. Differential abundance analysis uncovers a specific expression pattern in high SCC samples revealing pathways involved in immune responses such as inflammation, activation of the complement system, migration of immune cells, and tight junctions. Interestingly, different proteome profiles were also identified in quarter samples containing one of the two mastitis pathogens, Staphylococcus aureus and Streptococcus uberis, indicating a different response of the host depending on the pathogen. Weighted correlation network analysis identified three modules of co-expressed proteins which were correlated with the SCC in the quarters. These modules contained proteins assigned to different aspects of the immune response, but also amino sugar and nucleotide sugar metabolism, and biosynthesis of amino acids. The results of this study provide deeper insights on how the proteome expression changes at quarter level in naturally infected cows and pinpoint potential interactions and important biological functions during host-microbe interaction.
Collapse
Affiliation(s)
- Anja Ruud Winther
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway.
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| |
Collapse
|
38
|
Kumar T, Sethuraman R, Mitra S, Ravindran B, Narayanan M. MultiCens: Multilayer network centrality measures to uncover molecular mediators of tissue-tissue communication. PLoS Comput Biol 2023; 19:e1011022. [PMID: 37093889 PMCID: PMC10159362 DOI: 10.1371/journal.pcbi.1011022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/04/2023] [Accepted: 03/12/2023] [Indexed: 04/25/2023] Open
Abstract
With the evolution of multicellularity, communication among cells in different tissues and organs became pivotal to life. Molecular basis of such communication has long been studied, but genome-wide screens for genes and other biomolecules mediating tissue-tissue signaling are lacking. To systematically identify inter-tissue mediators, we present a novel computational approach MultiCens (Multilayer/Multi-tissue network Centrality measures). Unlike single-layer network methods, MultiCens can distinguish within- vs. across-layer connectivity to quantify the "influence" of any gene in a tissue on a query set of genes of interest in another tissue. MultiCens enjoys theoretical guarantees on convergence and decomposability, and performs well on synthetic benchmarks. On human multi-tissue datasets, MultiCens predicts known and novel genes linked to hormones. MultiCens further reveals shifts in gene network architecture among four brain regions in Alzheimer's disease. MultiCens-prioritized hypotheses from these two diverse applications, and potential future ones like "Multi-tissue-expanded Gene Ontology" analysis, can enable whole-body yet molecular-level systems investigations in humans.
Collapse
Affiliation(s)
- Tarun Kumar
- Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
- The Centre for Integrative Biology and Systems medicinE (IBSE), IIT Madras, Chennai, India
- Robert Bosch Center for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
| | | | - Sanga Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Balaraman Ravindran
- Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
- The Centre for Integrative Biology and Systems medicinE (IBSE), IIT Madras, Chennai, India
- Robert Bosch Center for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
| | - Manikandan Narayanan
- Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
- The Centre for Integrative Biology and Systems medicinE (IBSE), IIT Madras, Chennai, India
- Robert Bosch Center for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
- Multiscale Digital Neuroanatomy (MDN), IIT Madras, Chennai, India
| |
Collapse
|
39
|
Ozsan McMillan I, Li JP, Wang L. Heparan sulfate proteoglycan in Alzheimer's disease: aberrant expression and functions in molecular pathways related to amyloid-β metabolism. Am J Physiol Cell Physiol 2023; 324:C893-C909. [PMID: 36878848 PMCID: PMC10069967 DOI: 10.1152/ajpcell.00247.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Currently, there is no effective treatment for AD, as its etiology remains poorly understood. Mounting evidence suggests that the accumulation and aggregation of amyloid-β peptides (Aβ), which constitute amyloid plaques in the brain, is critical for initiating and accelerating AD pathogenesis. Considerable efforts have been dedicated to shedding light on the molecular basis and fundamental origins of the impaired Aβ metabolism in AD. Heparan sulfate (HS), a linear polysaccharide of the glycosaminoglycan family, co-deposits with Aβ in plaques in the AD brain, directly binds and accelerates Aβ aggregation, and mediates Aβ internalization and cytotoxicity. Mouse model studies demonstrate that HS regulates Aβ clearance and neuroinflammation in vivo. Previous reviews have extensively explored these discoveries. Here, this review focuses on the recent advancements in understanding abnormal HS expression in the AD brain, the structural aspects of HS-Aβ interaction, and the molecules involved in modulating Aβ metabolism through HS interaction. Furthermore, this review presents a perspective on the potential effects of abnormal HS expression on Aβ metabolism and AD pathogenesis. In addition, the review highlights the importance of conducting further research to differentiate the spatiotemporal components of HS structure and function in the brain and AD pathogenesis.
Collapse
Affiliation(s)
- Ilayda Ozsan McMillan
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology & The Biomedical Center, University of Uppsala, Uppsala, Sweden
- SciLifeLab Uppsala, University of Uppsala, Uppsala, Sweden
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
40
|
The Protein Network in Subcutaneous Fat Biopsies from Patients with AL Amyloidosis: More Than Diagnosis? Cells 2023; 12:cells12050699. [PMID: 36899835 PMCID: PMC10000381 DOI: 10.3390/cells12050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
AL amyloidosis is caused by the misfolding of immunoglobulin light chains leading to an impaired function of tissues and organs in which they accumulate. Due to the paucity of -omics profiles from undissected samples, few studies have addressed amyloid-related damage system wide. To fill this gap, we evaluated proteome changes in the abdominal subcutaneous adipose tissue of patients affected by the AL isotypes κ and λ. Through our retrospective analysis based on graph theory, we have herein deduced new insights representing a step forward from the pioneering proteomic investigations previously published by our group. ECM/cytoskeleton, oxidative stress and proteostasis were confirmed as leading processes. In this scenario, some proteins, including glutathione peroxidase 1 (GPX1), tubulins and the TRiC complex, were classified as biologically and topologically relevant. These and other results overlap with those already reported for other amyloidoses, supporting the hypothesis that amyloidogenic proteins could induce similar mechanisms independently of the main fibril precursor and of the target tissues/organs. Of course, further studies based on larger patient cohorts and different tissues/organs will be essential, which would be a key point that would allow for a more robust selection of the main molecular players and a more accurate correlation with clinical aspects.
Collapse
|
41
|
Pan X, Yun J, Coban Akdemir ZH, Jiang X, Wu E, Huang JH, Sahni N, Yi SS. AI-DrugNet: A network-based deep learning model for drug repurposing and combination therapy in neurological disorders. Comput Struct Biotechnol J 2023; 21:1533-1542. [PMID: 36879885 PMCID: PMC9984442 DOI: 10.1016/j.csbj.2023.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Discovering effective therapies is difficult for neurological and developmental disorders in that disease progression is often associated with a complex and interactive mechanism. Over the past few decades, few drugs have been identified for treating Alzheimer's disease (AD), especially for impacting the causes of cell death in AD. Although drug repurposing is gaining more success in developing therapeutic efficacy for complex diseases such as common cancer, the complications behind AD require further study. Here, we developed a novel prediction framework based on deep learning to identify potential repurposed drug therapies for AD, and more importantly, our framework is broadly applicable and may generalize to identifying potential drug combinations in other diseases. Our prediction framework is as follows: we first built a drug-target pair (DTP) network based on multiple drug features and target features, as well as the associations between DTP nodes where drug-target pairs are the DTP nodes and the associations between DTP nodes are represented as the edges in the AD disease network; furthermore, we incorporated the drug-target feature from the DTP network and the relationship information between drug-drug, target-target, drug-target within and outside of drug-target pairs, representing each drug-combination as a quartet to generate corresponding integrated features; finally, we developed an AI-based Drug discovery Network (AI-DrugNet), which exhibits robust predictive performance. The implementation of our network model help identify potential repurposed and combination drug options that may serve to treat AD and other diseases.
Collapse
Affiliation(s)
- Xingxin Pan
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Yun
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, USA
| | - Zeynep H. Coban Akdemir
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoqian Jiang
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Erxi Wu
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, TX 76508, USA
- Department of Pharmaceutical Sciences, Texas A & M University Health Science Center, College of Pharmacy, College Station, TX 77843, USA
| | - Jason H. Huang
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, TX 76508, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - S. Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, USA
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
42
|
Direct and Indirect Effects of Filamin A on Tau Pathology in Neuronal Cells. Mol Neurobiol 2023; 60:1021-1039. [PMID: 36399251 PMCID: PMC9849303 DOI: 10.1007/s12035-022-03121-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
In Alzheimer disease (AD), Tau, an axonal microtubule-associated protein, becomes hyperphosphorylated, detaches from microtubules, accumulates, and self-aggregates in the somatodendritic (SD) compartment. The accumulation of hyperphosphorylated and aggregated Tau is also seen in other neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD-Tau). Previous studies reported a link between filamin A (FLNA), an actin-binding protein found in the SD compartment, and Tau pathology. In the present study, we further explored this link. We confirmed the interaction of Tau with FLNA in neuroblastoma 2a (N2a) cells. This interaction was mediated by a domain located between the 157 and 383 amino acids (a.a.) of Tau. Our results also revealed that the overexpression of FLNA resulted in an intracellular accumulation of wild-type Tau and Tau mutants (P301L, V337M, and R406W) in N2a cells. Tau phosphorylation and cleavage by caspase-3 but not its aggregation were increased upon FLNA overexpression in N2a cells. In the parietal cortex of AD brain, insoluble FLNA was increased compared to control brain, but it did not correlate with Tau pathology. Interestingly, Tau binding to microtubules and F-actin was preserved upon FLNA overexpression in N2a cells. Lastly, our results revealed that FLNA also induced the accumulation of annexin A2, a Tau interacting partner involved in its axonal localization. Collectively, our data indicated that in Tauopathies, FLNA could contribute to Tau pathology by acting on Tau and annexin A2.
Collapse
|
43
|
Short MI, Fohner AE, Skjellegrind HK, Beiser A, Gonzales MM, Satizabal CL, Austin TR, Longstreth W, Bis JC, Lopez O, Hveem K, Selbæk G, Larson MG, Yang Q, Aparicio HJ, McGrath ER, Gerszten RE, DeCarli CS, Psaty BM, Vasan RS, Zare H, Seshadri S. Proteome Network Analysis Identifies Potential Biomarkers for Brain Aging. J Alzheimers Dis 2023; 96:1767-1780. [PMID: 38007645 PMCID: PMC10741337 DOI: 10.3233/jad-230145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Alzheimer's disease and related dementias (ADRD) involve biological processes that begin years to decades before onset of clinical symptoms. The plasma proteome can offer insight into brain aging and risk of incident dementia among cognitively healthy adults. OBJECTIVE To identify biomarkers and biological pathways associated with neuroimaging measures and incident dementia in two large community-based cohorts by applying a correlation-based network analysis to the plasma proteome. METHODS Weighted co-expression network analysis of 1,305 plasma proteins identified four modules of co-expressed proteins, which were related to MRI brain volumes and risk of incident dementia over a median 20-year follow-up in Framingham Heart Study (FHS) Offspring cohort participants (n = 1,861). Analyses were replicated in the Cardiovascular Health Study (CHS) (n = 2,117, mean 6-year follow-up). RESULTS Two proteomic modules, one related to protein clearance and synaptic maintenance (M2) and a second to inflammation (M4), were associated with total brain volume in FHS (M2: p = 0.014; M4: p = 4.2×10-5). These modules were not significantly associated with hippocampal volume, white matter hyperintensities, or incident all-cause or AD dementia. Associations with TCBV did not replicate in CHS, an older cohort with a greater burden of comorbidities. CONCLUSIONS Proteome networks implicate an early role for biological pathways involving inflammation and synaptic function in preclinical brain atrophy, with implications for clinical dementia.
Collapse
Affiliation(s)
- Meghan I. Short
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Alison E. Fohner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Håvard K. Skjellegrind
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Alexa Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
| | - Thomas R. Austin
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - W.T. Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Oscar Lopez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristian Hveem
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Levanger, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Selbæk
- Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Martin G. Larson
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Hugo J. Aparicio
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Emer R. McGrath
- Framingham Heart Study, Framingham, MA, USA
- School of Medicine, National University of Ireland Galway, Galway, Ireland
- HRB Clinical Research Facility, National University of Ireland Galway, Galway, Ireland
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Charles S. DeCarli
- Department of Neurology, School of Medicine and Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California, Davis, Sacramento, CA, USA
| | - Bruce M. Psaty
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Ramachandran S. Vasan
- Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Boston University Center for Computing and Data Science, Boston, MA, USA
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
44
|
Proteomics of the dentate gyrus reveals semantic dementia specific molecular pathology. Acta Neuropathol Commun 2022; 10:190. [PMID: 36578035 PMCID: PMC9795759 DOI: 10.1186/s40478-022-01499-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Semantic dementia (SD) is a clinical subtype of frontotemporal dementia consistent with the neuropathological diagnosis frontotemporal lobar degeneration (FTLD) TDP type C, with characteristic round TDP-43 protein inclusions in the dentate gyrus. Despite this striking clinicopathological concordance, the pathogenic mechanisms are largely unexplained forestalling the development of targeted therapeutics. To address this, we carried out laser capture microdissection of the dentate gyrus of 15 SD patients and 17 non-demented controls, and assessed relative protein abundance changes by label-free quantitative mass spectrometry. To identify SD specific proteins, we compared our results to eight other FTLD and Alzheimer's disease (AD) proteomic datasets of cortical brain tissue, parallel with functional enrichment analyses and protein-protein interactions (PPI). Of the total 5,354 quantified proteins, 151 showed differential abundance in SD patients (adjusted P-value < 0.01). Seventy-nine proteins were considered potentially SD specific as these were not detected, or demonstrated insignificant or opposite change in FTLD/AD. Functional enrichment indicated an overrepresentation of pathways related to the immune response, metabolic processes, and cell-junction assembly. PPI analysis highlighted a cluster of interacting proteins associated with adherens junction and cadherin binding, the cadherin-catenin complex. Multiple proteins in this complex showed significant upregulation in SD, including β-catenin (CTNNB1), γ-catenin (JUP), and N-cadherin (CDH2), which were not observed in other neurodegenerative proteomic studies, and hence may resemble SD specific involvement. A trend of upregulation of all three proteins was observed by immunoblotting of whole hippocampus tissue, albeit only significant for N-cadherin. In summary, we discovered a specific increase of cell adhesion proteins in SD constituting the cadherin-catenin complex at the synaptic membrane, essential for synaptic signaling. Although further investigation and validation are warranted, we anticipate that these findings will help unravel the disease processes underlying SD.
Collapse
|
45
|
Bartolo ND, Mortimer N, Manter MA, Sanchez N, Riley M, O'Malley TT, Hooker JM. Identification and Prioritization of PET Neuroimaging Targets for Microglial Phenotypes Associated with Microglial Activity in Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3641-3660. [PMID: 36473177 DOI: 10.1021/acschemneuro.2c00607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activation of microglial cells accompanies the progression of many neurodegenerative disorders, including Alzheimer's disease (AD). Development of molecular imaging tools specific to microglia can help elucidate the mechanism through which microglia contribute to the pathogenesis and progression of neurodegenerative disorders. Through analysis of published genetic, transcriptomic, and proteomic data sets, we identified 19 genes with microglia-specific expression that we then ranked based on association with the AD characteristics, change in expression, and potential druggability of the target. We believe that the process we used to identify and rank microglia-specific genes is broadly applicable to the identification and evaluation of targets in other disease areas and for applications beyond molecular imaging.
Collapse
Affiliation(s)
- Nicole D Bartolo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Niall Mortimer
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Mariah A Manter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Nicholas Sanchez
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Misha Riley
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Tiernan T O'Malley
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
46
|
Shang Y, Sun X, Chen X, Wang Q, Wang EJ, Miller E, Xu R, Pieper AA, Qi X. A CHCHD6-APP axis connects amyloid and mitochondrial pathology in Alzheimer's disease. Acta Neuropathol 2022; 144:911-938. [PMID: 36104602 PMCID: PMC9547808 DOI: 10.1007/s00401-022-02499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023]
Abstract
The mechanistic relationship between amyloid-beta precursor protein (APP) processing and mitochondrial dysfunction in Alzheimer's disease (AD) has long eluded the field. Here, we report that coiled-coil-helix-coiled-coil-helix domain containing 6 (CHCHD6), a core protein of the mammalian mitochondrial contact site and cristae organizing system, mechanistically connects these AD features through a circular feedback loop that lowers CHCHD6 and raises APP processing. In cellular and animal AD models and human AD brains, the APP intracellular domain fragment inhibits CHCHD6 transcription by binding its promoter. CHCHD6 and APP bind and stabilize one another. Reduced CHCHD6 enhances APP accumulation on mitochondria-associated ER membranes and accelerates APP processing, and induces mitochondrial dysfunction and neuronal cholesterol accumulation, promoting amyloid pathology. Compensation for CHCHD6 loss in an AD mouse model reduces AD-associated neuropathology and cognitive impairment. Thus, CHCHD6 connects APP processing and mitochondrial dysfunction in AD. This provides a potential new therapeutic target for patients.
Collapse
Affiliation(s)
- Yutong Shang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA
| | - Xiaoyan Sun
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA
| | - Xiaoqin Chen
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA
| | - Quanqiu Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Evan J Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Beachwood High School, Beachwood, OH, 44122, USA
| | - Emiko Miller
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Geriatric Research Education and Clinical Centers, Case Western Reserve University, Louis Stokes Cleveland VAMC, Cleveland, OH, 44106, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Geriatric Research Education and Clinical Centers, Case Western Reserve University, Louis Stokes Cleveland VAMC, Cleveland, OH, 44106, USA
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
47
|
Mofrad RB, Del Campo M, Peeters CFW, Meeter LHH, Seelaar H, Koel-Simmelink M, Ramakers IHGB, Middelkoop HAM, De Deyn PP, Claassen JAHR, van Swieten JC, Bridel C, Hoozemans JJM, Scheltens P, van der Flier WM, Pijnenburg YAL, Teunissen CE. Plasma proteome profiling identifies changes associated to AD but not to FTD. Acta Neuropathol Commun 2022; 10:148. [PMID: 36273219 PMCID: PMC9587555 DOI: 10.1186/s40478-022-01458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frontotemporal dementia (FTD) is caused by frontotemporal lobar degeneration (FTLD), characterized mainly by inclusions of Tau (FTLD-Tau) or TAR DNA binding43 (FTLD-TDP) proteins. Plasma biomarkers are strongly needed for specific diagnosis and potential treatment monitoring of FTD. We aimed to identify specific FTD plasma biomarker profiles discriminating FTD from AD and controls, and between FTD pathological subtypes. In addition, we compared plasma results with results in post-mortem frontal cortex of FTD cases to understand the underlying process. METHODS Plasma proteins (n = 1303) from pathologically and/or genetically confirmed FTD patients (n = 56; FTLD-Tau n = 16; age = 58.2 ± 6.2; 44% female, FTLD-TDP n = 40; age = 59.8 ± 7.9; 45% female), AD patients (n = 57; age = 65.5 ± 8.0; 39% female), and non-demented controls (n = 148; 61.3 ± 7.9; 41% female) were measured using an aptamer-based proteomic technology (SomaScan). In addition, exploratory analysis in post-mortem frontal brain cortex of FTD (n = 10; FTLD-Tau n = 5; age = 56.2 ± 6.9, 60% female, and FTLD-TDP n = 5; age = 64.0 ± 7.7, 60% female) and non-demented controls (n = 4; age = 61.3 ± 8.1; 75% female) were also performed. Differentially regulated plasma and tissue proteins were identified by global testing adjusting for demographic variables and multiple testing. Logistic lasso regression was used to identify plasma protein panels discriminating FTD from non-demented controls and AD, or FTLD-Tau from FTLD-TDP. Performance of the discriminatory plasma protein panels was based on predictions obtained from bootstrapping with 1000 resampled analysis. RESULTS Overall plasma protein expression profiles differed between FTD, AD and controls (6 proteins; p = 0.005), but none of the plasma proteins was specifically associated to FTD. The overall tissue protein expression profile differed between FTD and controls (7-proteins; p = 0.003). There was no difference in overall plasma or tissue expression profile between FTD subtypes. Regression analysis revealed a panel of 12-plasma proteins discriminating FTD from AD with high accuracy (AUC: 0.99). No plasma protein panels discriminating FTD from controls or FTD pathological subtypes were identified. CONCLUSIONS We identified a promising plasma protein panel as a minimally-invasive tool to aid in the differential diagnosis of FTD from AD, which was primarily associated to AD pathophysiology. The lack of plasma profiles specifically associated to FTD or its pathological subtypes might be explained by FTD heterogeneity, calling for FTD studies using large and well-characterize cohorts.
Collapse
Affiliation(s)
- R Babapour Mofrad
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.,Alzheimer Center and Department of Neurology Amsterdam, Department of Neurology, Neuroscience Campus Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M Del Campo
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.,Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - C F W Peeters
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Mathematical and Statistical Methods Group (Biometris), Wageningen University and Research Wageningen, Wageningen, The Netherlands
| | - L H H Meeter
- Alzheimer Center Erasmus MC and Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - H Seelaar
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Koel-Simmelink
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - I H G B Ramakers
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - H A M Middelkoop
- Institute of Psychology, Health, Medical and Neuropsychology Unit, Leiden University, Leiden, the Netherlands.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - P P De Deyn
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J A H R Claassen
- Department of Geriatric Medicine, Radboud University Medical Center, Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - J C van Swieten
- Alzheimer Center Erasmus MC and Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - C Bridel
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - J J M Hoozemans
- Department of Pathology, Amsterdam University Medical Centers Location VUmc, Amsterdam, The Netherlands
| | - P Scheltens
- Alzheimer Center and Department of Neurology Amsterdam, Department of Neurology, Neuroscience Campus Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - W M van der Flier
- Alzheimer Center and Department of Neurology Amsterdam, Department of Neurology, Neuroscience Campus Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Y A L Pijnenburg
- Alzheimer Center and Department of Neurology Amsterdam, Department of Neurology, Neuroscience Campus Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Zhao N, Quicksall Z, Asmann YW, Ren Y. Network approaches for omics studies of neurodegenerative diseases. Front Genet 2022; 13:984338. [PMID: 36186441 PMCID: PMC9523597 DOI: 10.3389/fgene.2022.984338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
The recent methodological advances in multi-omics approaches, including genomic, transcriptomic, metabolomic, lipidomic, and proteomic, have revolutionized the research field by generating “big data” which greatly enhanced our understanding of the molecular complexity of the brain and disease states. Network approaches have been routinely applied to single-omics data to provide critical insight into disease biology. Furthermore, multi-omics integration has emerged as both a vital need and a new direction to connect the different layers of information underlying disease mechanisms. In this review article, we summarize popular network analytic approaches for single-omics data and multi-omics integration and discuss how these approaches have been utilized in studying neurodegenerative diseases.
Collapse
Affiliation(s)
- Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Zachary Quicksall
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Yan W. Asmann
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
- *Correspondence: Yingxue Ren,
| |
Collapse
|
49
|
Tsumagari K, Sato Y, Shimozawa A, Aoyagi H, Okano H, Kuromitsu J. Co-expression network analysis of human tau-transgenic mice reveals protein modules associated with tau-induced pathologies. iScience 2022; 25:104832. [PMID: 35992067 PMCID: PMC9382322 DOI: 10.1016/j.isci.2022.104832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/03/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Abnormally accumulated tau protein aggregates are one of the hallmarks of neurodegenerative diseases, including Alzheimer's disease (AD). In order to investigate proteomic alteration driven by tau aggregates, we implemented quantitative proteomics to analyze disease model mice expressing human MAPT P301S transgene (hTau-Tg) and quantified more than 9,000 proteins in total. We applied the weighted gene co-expression analysis (WGCNA) algorithm to the datasets and explored protein co-expression modules that were associated with the accumulation of tau aggregates and were preserved in proteomes of AD brains. This led us to identify four modules with functions related to neuroinflammatory responses, mitochondrial energy production processes (including the tricarboxylic acid cycle and oxidative phosphorylation), cholesterol biosynthesis, and postsynaptic density. Furthermore, a phosphoproteomics study uncovered phosphorylation sites that were highly correlated with these modules. Our datasets represent resources for understanding the molecular basis of tau-induced neurodegeneration, including AD.
Collapse
Affiliation(s)
- Kazuya Tsumagari
- Center for Integrated Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshiaki Sato
- Eisai-Keio Innovation Laboratory for Dementia, hhc Data Creation Center, Eisai Co., Ltd., Shinjuku-ku, Tokyo 160-8582, Japan
| | - Aki Shimozawa
- Center for Integrated Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hirofumi Aoyagi
- Eisai-Keio Innovation Laboratory for Dementia, hhc Data Creation Center, Eisai Co., Ltd., Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Junro Kuromitsu
- Eisai-Keio Innovation Laboratory for Dementia, hhc Data Creation Center, Eisai Co., Ltd., Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
50
|
Oliveira LM, Fernandes-Junior SA, Cabral LMC, Miranda NCS, Czeisler CM, Otero JJ, Moreira TS, Takakura AC. Regulation of blood vessels by ATP in the ventral medullary surface in a rat model of Parkinson's disease. Brain Res Bull 2022; 187:138-154. [PMID: 35777704 DOI: 10.1016/j.brainresbull.2022.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/26/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) patients often experience impairment of autonomic and respiratory functions. These include conditions such as orthostatic hypotension and sleep apnea, which are highly correlated with dysfunctional central chemoreception. Blood flow is a fundamental determinant of tissue CO2/H+, yet the extent to which blood flow regulation within chemoreceptor regions contributes to respiratory behavior during neurological disease remains unknown. Here, we tested the hypothesis that 6-hydroxydopamine injection to inducing a known model of PD results in dysfunctional vascular homeostasis, biochemical dysregulation, and glial morphology of the ventral medullary surface (VMS). We show that hypercapnia (FiCO2 = 10%) induced elevated VMS pial vessel constriction in PD animals through a P2-receptor dependent mechanism. Similarly, we found a greater CO2-induced vascular constriction after ARL67156 (an ectonucleotidase inhibitor) in control and PD-induced animals. In addition, we also report that weighted gene correlational network analysis of the proteomic data showed a protein expression module differentially represented between both groups. This module showed that gene ontology enrichment for components of the ATP machinery were reduced in our PD-model compared to control animals. Altogether, our data indicate that dysfunction in purinergic signaling, potentially through altered ATP bioavailability in the VMS region, may compromise the RTN neuroglial vascular unit in a PD animal model.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Silvio A Fernandes-Junior
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil; The Ohio State University College of Medicine, Department of Pathology, USA
| | - Laís M C Cabral
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Nicole C S Miranda
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | | | - José J Otero
- The Ohio State University College of Medicine, Department of Pathology, USA
| | - Thiago S Moreira
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Ana C Takakura
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|