1
|
Li W, Yong-Yan X, Jia-Xin M, Shu-Chao G, Li-Ping H. Senescent microglia: The hidden culprits accelerating Alzheimer's disease. Brain Res 2025; 1851:149480. [PMID: 39884491 DOI: 10.1016/j.brainres.2025.149480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/07/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Ageing is a major risk factor for neurodegenerative diseases like Alzheimer's disease (AD). Microglia, as the principal innate immune cells within the brain, exert homeostatic and active immunological defense functions throughout human lifespan. The age-related dysfunction of microglia is currently recognized as a pivotal trigger for brain diseases associated with aging. In AD, microglia exhibit alterations in gene expression, cellular morphology, and functional behavior. By focusing on the immunomodulatory functions of factors secreted by senescent microglia, such as cytokines, chemokines, complement factors, and reactive oxygen species (ROS), we explore the diverse detrimental effects of microglia in aging and AD pathogenesis, including Aβ accumulation, Tau deposition, synaptic dysfunction, and neuroinflammation. These collectively contribute to hastening the progression of. In this review, we highlight the key role of senescent microglia in the pathological processes of AD. Then we propose that targeting senescent microglia holds great promise for therapeutic interventions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Wu Li
- School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, NanChang, China
| | - Xie Yong-Yan
- School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, NanChang, China
| | - Mu Jia-Xin
- School of Pharmacy, Jiangxi University of Chinese Medicine, NanChang, China
| | - Ge Shu-Chao
- School of Pharmacy, Jiangxi University of Chinese Medicine, NanChang, China.
| | - Huang Li-Ping
- Jiangxi Provincial Key Laboratory of Pharmacology of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, NanChang, China; School of Pharmacy, Jiangxi University of Chinese Medicine, NanChang, China.
| |
Collapse
|
2
|
Kushawaha SK, Ashawat MS, Baldi A. Auranofin-loaded PLGA nanoparticles alleviate cognitive deficit induced by streptozotocin in rats model: modulation of oxidative stress, neuroinflammatory markers, and neurotransmitters. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:10031-10047. [PMID: 38967827 DOI: 10.1007/s00210-024-03253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Alzheimer's disease remains an unsolved neurological puzzle with no cure. Current therapies offer only symptomatic relief, hindered by limited uptake through the blood-brain barrier. Auranofin, an FDA-approved compound, exhibits potent antioxidative and anti-inflammatory properties targeting brain disorders. Yet, its oral bioavailability challenge prompts the exploration of nanoformulation-based solutions enhancing blood-brain barrier penetrability. The study aimed to investigate the neuroprotective potential of auranofin nanoparticles in streptozotocin-induced AD rats. Auranofin-containing polylactic-co-glycolic acid nanoparticles were formulated by the multiple emulsion solvent evaporation method. Characterization was done by determining entrapment efficiency, particle size distribution, surface charge, and morphology. An in vivo study was performed by administering streptozotocin (3 mg/kg/i.c.v., days 1 and 3), auranofin (5 and 10 mg/kg), auranofin nanoparticles (2.5 and 5 mg/kg), and donepezil (2 mg/kg) for 14 days orally. Behavioral deficits were evaluated using the open field test, Morris water maze, objective recognition test, change in oxidative stress levels, and AD markers in the brain. Following the decapitation of the rats, the brains were excised to isolate the hippocampus. Subsequent analyses included the quantification of biochemical and neuroinflammatory markers, as well as the assessment of neurotransmitter levels. The characterization of auranofin nanoparticles showed an entrapment efficiency of 98%, an average particle size of 101.5 ± 10.3 nm, a surface charge of 27.5 ± 5.10 mV, and a polydispersity index of 0.438 ± 0.12. In vivo, administration of auranofin and auranofin nanoparticles significantly reversed streptozotocin-induced cognitive deficits, biochemical alteration, neuroinflammatory markers, and neurotransmitter levels. The present finding suggests that auranofin nanoparticles have more significant neuroprotective potential than auranofin alone. The therapeutic efficacy may be attributed to its antioxidant and anti-inflammatory properties, as well as its positive neuromodulatory effects. Therefore, our findings suggest that it could be a promising candidate for Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Shiv Kumar Kushawaha
- Pharma Innovation Lab, Department of Pharmaceutical Sciences &Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India
| | - Mahendra Singh Ashawat
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Distt. Kangra, Kathog, H.P., 176031, India
| | - Ashish Baldi
- Pharma Innovation Lab, Department of Pharmaceutical Sciences &Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India.
| |
Collapse
|
3
|
Li D, Han X, Farrer LA, Stein TD, Jun GR. Transcriptome Signatures for Cognitive Resilience Among Individuals with Pathologically Confirmed Alzheimer Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.12.24317218. [PMID: 39606402 PMCID: PMC11601734 DOI: 10.1101/2024.11.12.24317218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Limited success to date in development of drugs that target hallmark Alzheimer disease (AD) proteins as a means to slow AD-related cognitive decline has sparked interest in approaches focused on cognitive resilience. We sought to identify transcriptome signatures among brain donors with neuropathologically confirmed AD that distinguish those with cognitive impairment from those that were cognitively intact. METHODS We compared gene expression patterns in brain tissue from donors in four cohorts who were cognitively and pathologically normal (controls), met clinical and pathological criteria for AD (SymAD), or were cognitively normal prior to death despite pathological evidence of AD (cognitively resilient or AsymAD). Differentially expressed genes (DEGs) at the transcriptome-wide significance (TWS) level (P<10 -6 ) in the total sample and nominally significant (P<0.05) in at least two datasets were further evaluated in analyses testing association of gene expression with co-calibrated and harmonized cognitive domain scores and AD-related neuropathological traits. RESULTS We identified 52 TWS DEGs, including 14 that surpassed a significance threshold of P<5×10 -8 . The three most significant DEGs, ADAMTS2 (Log2 fold change [Log2FC]=0.46, P=2.94×10 -14 ), S100A4 (Log2FC=0.61, P=3.98×10 -11 ) and NRIP2 (Log2FC=0.32, P=9.52×10 -11 ) were up-regulated in SymAD compared to AsymAD brains. ADAMTS2 and SLC6A9 were also significantly and nominally differentially expressed between AsymAD cases and controls (FDR P=0.45 and FDR P=0.57, respectively). Significant associations (P<0.0038) were identified for executive function with expression of ADAMTS2 (P=4.15×10 -8 ) and ARSG (P=1.09×10 -3 ), and for memory with PRELP (P=3.92×10 -5 ) and EMP3 (P=7.75×10 -4 ), and for language with SLC38A2 (P=6.76×10 -5 ) and SLC6A9 (P=2.13 ×10 -3 ). Expression of ARSG and FHIP1B were associated with measures of Tau pathology (AT8: P=1.5×10 -3 , and pTau181: P=3.64×10 -3 , respectively), and SLC6A9 expression was associated with multiple pTau isoforms including pTau181 (P=1.5×10 -3 ) and pTau396 (P=2.05×10 -3 ). PRELP expression was associated with synaptic density (PSD.95: P=6.18 ×10 -6 ). DEGs were significantly enriched in pathways involving E2F targets, cholesterol homeostasis, and oxidative phosphorylation. CONCLUSION We identified multiple DEGs that differentiate neuropathologically confirmed AD cases with and without cognitive impairment prior to death. Expression of several of these genes was also associated with measures of cognitive performance and AD-related neuropathological traits, thus providing important insights into cognitive resilience mechanisms and strategies for delaying clinical symptoms of AD.
Collapse
|
4
|
Goldberg D, Wadhwani AR, Dehghani N, Sreepada LP, Fu H, De Jager PL, Bennett DA, Wolk DA, Lee EB, Farrell K, Crary JF, Zhou W, McMillan CT. Epigenetic signatures of regional tau pathology and cognition in the aging and pathological brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.07.24316933. [PMID: 39606399 PMCID: PMC11601699 DOI: 10.1101/2024.11.07.24316933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Primary age-related tauopathy (PART) and Alzheimer's disease (AD) share hippocampal phospho-tau (p-tau) pathology but differ in p-tau extent and amyloid presence. As a result, PART uniquely enables investigation of amyloid-independent p-tau mechanisms during brain aging. We conducted the first epigenome-wide association (EWAS) study of PART, which yielded 13 new and robust p-tau/methylation associations. We then jointly analyzed PART and AD epigenomes to develop "TauAge", novel epigenetic clocks that predict p-tau severity in region-specific, age-, and amyloid-independent manners. Integrative transcriptomic analyses revealed that genes involved in synaptic transmission are related to hippocampal p-tau severity in both PART and AD, while neuroinflammatory genes are related to frontal cortex p-tau severity in AD only. Further, a machine learning classifier based on PART-vs-AD epigenetic differences discriminates neuropathological diagnoses and stratifies indeterminate cases into subgroups with disparity in cognitive impairment. Together, these findings demonstrate the brain epigenome's substantial role in linking tau pathology to cognitive outcomes in aging and AD.
Collapse
|
5
|
Park S, Shin J, Kim K, Kim D, Lee WS, Lee J, Cho I, Park IW, Yoon S, Lee S, Kim HY, Lee JH, Hong KB, Kim Y. Modulation of Amyloid and Tau Aggregation to Alleviate Cognitive Impairment in a Transgenic Mouse Model of Alzheimer's Disease. ACS Pharmacol Transl Sci 2024; 7:2650-2661. [PMID: 39296253 PMCID: PMC11406698 DOI: 10.1021/acsptsci.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 09/21/2024]
Abstract
Aggregation of misfolded amyloid-β (Aβ) and hyperphosphorylated tau proteins to plaques and tangles, respectively, is the major drug target of Alzheimer's disease (AD), as the former is an onset biomarker and the latter is associated with neurodegeneration. Thus, we report a small molecule drug candidate, DN5355, with a dual-targeting function toward aggregates of both Aβ and tau. DN5355 was selected through a series of four screenings assessing 52 chemicals for their functions to inhibit and reverse the aggregation of Aβ and tau by utilizing thioflavin T. When orally administered to AD transgenic mouse model 5XFAD, DN5355 significantly reduced cerebral Aβ plaques and hyperphosphorylated tau tangles. In Y-maze spontaneous alteration and contextual fear conditioning tests, 5XFAD mice showed amelioration of cognitive deficits upon the oral administration of DN5355.
Collapse
Affiliation(s)
- Sohui Park
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Jisu Shin
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Kyeonghwan Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Darong Kim
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Won Seok Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Jusuk Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Illhwan Cho
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - In Wook Park
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Soljee Yoon
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Songmin Lee
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Ji Hoon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Ki Bum Hong
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Greenberg EF, Voorbach MJ, Smith A, Reuter DR, Zhuang Y, Wang JQ, Wooten DW, Asque E, Hu M, Hoft C, Duggan R, Townsend M, Orsi K, Dalecki K, Amberg W, Duggan L, Knight H, Spina JS, He Y, Marsh K, Zhao V, Ybarra S, Mollon J, Fang Y, Vasanthakumar A, Westmoreland S, Droescher M, Finnema SJ, Florian H. Navitoclax safety, tolerability, and effect on biomarkers of senescence and neurodegeneration in aged nonhuman primates. Heliyon 2024; 10:e36483. [PMID: 39253182 PMCID: PMC11382177 DOI: 10.1016/j.heliyon.2024.e36483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Alzheimer's disease (AD) is the most common global dementia and is universally fatal. Most late-stage AD disease-modifying therapies are intravenous and target amyloid beta (Aβ), with only modest effects on disease progression: there remains a high unmet need for convenient, safe, and effective therapeutics. Senescent cells (SC) and the senescence-associated secretory phenotype (SASP) drive AD pathology and increase with AD severity. Preclinical senolytic studies have shown improvements in neuroinflammation, tau, Aβ, and CNS damage; most were conducted in transgenic rodent models with uncertain human translational relevance. In this study, aged cynomolgus monkeys had significant elevation of biomarkers of senescence, SASP, and neurological damage. Intermittent treatment with the senolytic navitoclax induced modest reversible thrombocytopenia; no serious drug-related toxicity was noted. Navitoclax reduced several senescence and SASP biomarkers, with CSF concentrations sufficient for senolysis. Finally, navitoclax reduced TSPO-PET frontal cortex binding and showed trends of improvement in CSF biomarkers of neuroinflammation, neuronal damage, and synaptic dysfunction. Overall, navitoclax administration was safe and well tolerated in aged monkeys, inducing trends of biomarker changes relevant to human neurodegenerative disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Min Hu
- AbbVie Inc., North Chicago, IL, United States
| | - Carolin Hoft
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Ryan Duggan
- AbbVie Inc., North Chicago, IL, United States
| | - Matthew Townsend
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, United States
| | - Karin Orsi
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | | | - Willi Amberg
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Lori Duggan
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Heather Knight
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Joseph S Spina
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Yupeng He
- AbbVie Inc., North Chicago, IL, United States
| | | | - Vivian Zhao
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | - Suzanne Ybarra
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | - Jennifer Mollon
- AbbVie Deutschland GmbH & Co. KG, Statistical Sciences and Analytics, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Yuni Fang
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | | | - Susan Westmoreland
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Mathias Droescher
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | | | | |
Collapse
|
7
|
Chan JP, Tanprasertsuk J, Johnson EJ, Dey P, Bruno RS, Johnson MA, Poon LW, Davey A, Woodard JL, Kuchan MJ. Associations between Brain Alpha-Tocopherol Stereoisomer Profile and Hallmarks of Brain Aging in Centenarians. Antioxidants (Basel) 2024; 13:997. [PMID: 39199242 PMCID: PMC11351880 DOI: 10.3390/antiox13080997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Brain alpha-tocopherol (αT) concentration was previously reported to be inversely associated with neurofibrillary tangle (NFT) counts in specific brain structures from centenarians. However, the contribution of natural or synthetic αT stereoisomers to this relationship is unknown. In this study, αT stereoisomers were quantified in the temporal cortex (TC) of 47 centenarians in the Georgia Centenarian Study (age: 102.2 ± 2.5 years, BMI: 22.1 ± 3.9 kg/m2) and then correlated with amyloid plaques (diffuse and neuritic plaques; DPs, NPs) and NFTs in seven brain regions. The natural stereoisomer, RRR-αT, was the primary stereoisomer in all subjects, accounting for >50% of total αT in all but five subjects. %RRR was inversely correlated with DPs in the frontal cortex (FC) (ρ = -0.35, p = 0.032) and TC (ρ = -0.34, p = 0.038). %RSS (a synthetic αT stereoisomer) was positively correlated with DPs in the TC (ρ = 0.39, p = 0.017) and with NFTs in the FC (ρ = 0.37, p = 0.024), TC (ρ = 0.42, p = 0.009), and amygdala (ρ = 0.43, p = 0.008) after controlling for covariates. Neither RRR- nor RSS-αT were associated with premortem global cognition. Even with the narrow and normal range of BMIs, BMI was correlated with %RRR-αT (ρ = 0.34, p = 0.021) and %RSS-αT (ρ = -0.45, p = 0.002). These results providing the first characterization of TC αT stereoisomer profiles in centenarians suggest that DP and NFT counts, but not premortem global cognition, are influenced by the brain accumulation of specific αT stereoisomers. Further study is needed to confirm these findings and to determine the potential role of BMI in mediating this relationship.
Collapse
Affiliation(s)
| | - Jirayu Tanprasertsuk
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA;
| | - Elizabeth J. Johnson
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA;
| | - Priyankar Dey
- College of Education and Human Ecology, The Ohio State University, Columbus, OH 43210, USA; (P.D.); (R.S.B.)
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India
| | - Richard S. Bruno
- College of Education and Human Ecology, The Ohio State University, Columbus, OH 43210, USA; (P.D.); (R.S.B.)
| | - Mary Ann Johnson
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Leonard W. Poon
- Institute of Gerontology, University of Georgia-Athens, Athens, GA 30602, USA;
| | - Adam Davey
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE 19716, USA;
| | - John L. Woodard
- Department of Psychology, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI 48202, USA;
| | | |
Collapse
|
8
|
Balusu S, De Strooper B. The necroptosis cell death pathway drives neurodegeneration in Alzheimer's disease. Acta Neuropathol 2024; 147:96. [PMID: 38852117 PMCID: PMC11162975 DOI: 10.1007/s00401-024-02747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Although apoptosis, pyroptosis, and ferroptosis have been implicated in AD, none fully explains the extensive neuronal loss observed in AD brains. Recent evidence shows that necroptosis is abundant in AD, that necroptosis is closely linked to the appearance of Tau pathology, and that necroptosis markers accumulate in granulovacuolar neurodegeneration vesicles (GVD). We review here the neuron-specific activation of the granulovacuolar mediated neuronal-necroptosis pathway, the potential AD-relevant triggers upstream of this pathway, and the interaction of the necrosome with the endo-lysosomal pathway, possibly providing links to Tau pathology. In addition, we underscore the therapeutic potential of inhibiting necroptosis in neurodegenerative diseases such as AD, as this presents a novel avenue for drug development targeting neuronal loss to preserve cognitive abilities. Such an approach seems particularly relevant when combined with amyloid-lowering drugs.
Collapse
Affiliation(s)
- Sriram Balusu
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
de Vries LE, Huitinga I, Kessels HW, Swaab DF, Verhaagen J. The concept of resilience to Alzheimer's Disease: current definitions and cellular and molecular mechanisms. Mol Neurodegener 2024; 19:33. [PMID: 38589893 PMCID: PMC11003087 DOI: 10.1186/s13024-024-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Some individuals are able to maintain their cognitive abilities despite the presence of significant Alzheimer's Disease (AD) neuropathological changes. This discrepancy between cognition and pathology has been labeled as resilience and has evolved into a widely debated concept. External factors such as cognitive stimulation are associated with resilience to AD, but the exact cellular and molecular underpinnings are not completely understood. In this review, we discuss the current definitions used in the field, highlight the translational approaches used to investigate resilience to AD and summarize the underlying cellular and molecular substrates of resilience that have been derived from human and animal studies, which have received more and more attention in the last few years. From these studies the picture emerges that resilient individuals are different from AD patients in terms of specific pathological species and their cellular reaction to AD pathology, which possibly helps to maintain cognition up to a certain tipping point. Studying these rare resilient individuals can be of great importance as it could pave the way to novel therapeutic avenues for AD.
Collapse
Affiliation(s)
- Luuk E de Vries
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Wharton SB, Simpson JE, Ince PG, Richardson CD, Merrick R, Matthews FE, Brayne C. Insights into the pathological basis of dementia from population-based neuropathology studies. Neuropathol Appl Neurobiol 2023; 49:e12923. [PMID: 37462105 PMCID: PMC10946587 DOI: 10.1111/nan.12923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
The epidemiological neuropathology perspective of population and community-based studies allows unbiased assessment of the prevalence of various pathologies and their relationships to late-life dementia. In addition, this approach provides complementary insights to conventional case-control studies, which tend to be more representative of a younger clinical cohort. The Cognitive Function and Ageing Study (CFAS) is a longitudinal study of cognitive impairment and frailty in the general United Kingdom population. In this review, we provide an overview of the major findings from CFAS, alongside other studies, which have demonstrated a high prevalence of pathology in the ageing brain, particularly Alzheimer's disease neuropathological change and vascular pathology. Increasing burdens of these pathologies are the major correlates of dementia, especially neurofibrillary tangles, but there is substantial overlap in pathology between those with and without dementia, particularly at intermediate burdens of pathology and also at the oldest ages. Furthermore, additional pathologies such as limbic-predominant age-related TDP-43 encephalopathy, ageing-related tau astrogliopathy and primary age-related tauopathies contribute to late-life dementia. Findings from ageing population-representative studies have implications for the understanding of dementia pathology in the community. The high prevalence of pathology and variable relationship to dementia status has implications for disease definition and indicate a role for modulating factors on cognitive outcome. The complexity of late-life dementia, with mixed pathologies, indicates a need for a better understanding of these processes across the life-course to direct the best research for reducing risk in later life of avoidable clinical dementia syndromes.
Collapse
Affiliation(s)
- Stephen B. Wharton
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Julie E. Simpson
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Paul G. Ince
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | | | - Richard Merrick
- Cambridge Public Health, School of Clinical MedicineUniversity of CambridgeSheffieldUK
| | | | - Carol Brayne
- Cambridge Public Health, School of Clinical MedicineUniversity of CambridgeSheffieldUK
| | | |
Collapse
|
11
|
Neuville RS, Biswas R, Ho CC, Bukhari S, Sajjadi SA, Paganini-Hill A, Montine TJ, Corrada MM, Kawas CH. Study of neuropathological changes and dementia in 100 centenarians in The 90+ Study. Alzheimers Dement 2023; 19:3417-3425. [PMID: 36795955 PMCID: PMC10427735 DOI: 10.1002/alz.12981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/18/2023]
Abstract
INTRODUCTION The association between neuropathological changes and dementia among centenarians and nonagenarians remains unclear. METHODS We examined brain tissue from 100 centenarians and 297 nonagenarians from The 90+ Study, a community-based longitudinal study of aging. We determined the prevalence of 10 neuropathological changes and compared their associations with dementia and cognitive performance between centenarians and nonagenarians. RESULTS A total of 59% of centenarians and 47% of nonagenarians had at least four neuropathological changes. In centenarians, neuropathological changes were associated with higher odds of dementia and, compared to nonagenarians, the odds were not attenuated. For each additional neuropathological change, the Mini-Mental State Examination score was lower by 2 points for both groups. DISCUSSION Neuropathological changes continue to be strongly related to dementia in centenarians, highlighting the importance of slowing or preventing the development of multiple neuropathological changes in the aging brain to maintain cognitive health. HIGHLIGHTS Individual and multiple neuropathological changes are frequent in centenarians. These neuropathological changes are strongly associated with dementia. There is no attenuation of this association with age.
Collapse
Affiliation(s)
- Raumin S. Neuville
- School of Medicine, University of California, Irvine,
Irvine, CA 92617, USA
| | - Roshni Biswas
- Department of Neurology, University of California, Irvine,
Hewitt Hall, Irvine, CA 92697, USA
| | - Chu-Ching Ho
- Institute for Memory Impairments and Neurological
Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Syed Bukhari
- Department of Pathology, Stanford University, 300 Pasteur
Drive, Stanford, CA 94305, USA
| | - S. Ahmad Sajjadi
- Department of Neurology, University of California, Irvine,
Hewitt Hall, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological
Disorders, University of California, Irvine, Irvine, CA 92697, USA
- Department of Neurobiology & Behavior, University of
California, Irvine, Gillespie NRF, Irvine, CA 92697, USA
| | - Annlia Paganini-Hill
- Department of Neurology, University of California, Irvine,
Hewitt Hall, Irvine, CA 92697, USA
| | - Thomas J. Montine
- Department of Pathology, Stanford University, 300 Pasteur
Drive, Stanford, CA 94305, USA
| | - María M. Corrada
- Department of Neurology, University of California, Irvine,
Hewitt Hall, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological
Disorders, University of California, Irvine, Irvine, CA 92697, USA
- Department of Epidemiology, University of California,
Irvine, Anteater Instruction & Research Offices (AIRB), 653 E. Peltason Drive,
Irvine, CA 92697, USA
| | - Claudia H. Kawas
- Department of Neurology, University of California, Irvine,
Hewitt Hall, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological
Disorders, University of California, Irvine, Irvine, CA 92697, USA
- Department of Neurobiology & Behavior, University of
California, Irvine, Gillespie NRF, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Jorge-Oliva M, van Weering JRT, Scheper W. Structurally and Morphologically Distinct Pathological Tau Assemblies Differentially Affect GVB Accumulation. Int J Mol Sci 2023; 24:10865. [PMID: 37446051 DOI: 10.3390/ijms241310865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Tau aggregation is central to the pathogenesis of a large group of neurodegenerative diseases termed tauopathies, but it is still unclear in which way neurons respond to tau pathology and how tau accumulation leads to neurodegeneration. A striking neuron-specific response to tau pathology is presented by granulovacuolar degeneration bodies (GVBs), lysosomal structures that accumulate specific cargo in a dense core. Here we employed different tau aggregation models in primary neurons to investigate which properties of pathological tau assemblies affect GVB accumulation using a combination of confocal microscopy, transmission electron microscopy, and quantitative automated high-content microscopy. Employing GFP-tagged and untagged tau variants that spontaneously form intraneuronal aggregates, we induced pathological tau assemblies with a distinct subcellular localization, morphology, and ultrastructure depending on the presence or absence of the GFP tag. The quantification of the GVB load in the different models showed that an increased GVB accumulation is associated with the untagged tau aggregation model, characterized by shorter and more randomly distributed tau filaments in the neuronal soma. Our data indicate that tau aggregate structure and/or subcellular localization may be key determinants of GVB accumulation.
Collapse
Affiliation(s)
- Marta Jorge-Oliva
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience-Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience-Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit, Amsterdam Neuroscience-Neurodegeneration, 1081 HZ Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience-Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit, Amsterdam Neuroscience-Neurodegeneration, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
13
|
Kater MSJ, Huffels CFM, Oshima T, Renckens NS, Middeldorp J, Boddeke EWGM, Smit AB, Eggen BJL, Hol EM, Verheijen MHG. Prevention of microgliosis halts early memory loss in a mouse model of Alzheimer's disease. Brain Behav Immun 2023; 107:225-241. [PMID: 36270437 DOI: 10.1016/j.bbi.2022.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline, the neuropathological formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles. The best cellular correlates of the early cognitive deficits in AD patients are synapse loss and gliosis. In particular, it is unclear whether the activation of microglia (microgliosis) has a neuroprotective or pathological role early in AD. Here we report that microgliosis is an early mediator of synaptic dysfunction and cognitive impairment in APP/PS1 mice, a mouse model of increased amyloidosis. We found that the appearance of microgliosis, synaptic dysfunction and behavioral impairment coincided with increased soluble Aβ42 levels, and occurred well before the presence of Aβ plaques. Inhibition of microglial activity by treatment with minocycline (MC) reduced gliosis, synaptic deficits and cognitive impairments at early pathological stages and was most effective when provided preventive, i.e., before the onset of microgliosis. Interestingly, soluble Aβ levels or Aβ plaques deposition were not affected by preventive MC treatment at an early pathological stage (4 months) whereas these were reduced upon treatment at a later stage (6 months). In conclusion, this study demonstrates the importance of early-stage prevention of microgliosis on the development of cognitive impairment in APP/PS1 mice, which might be clinically relevant in preventing memory loss and delaying AD pathogenesis.
Collapse
Affiliation(s)
- Mandy S J Kater
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christiaan F M Huffels
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Takuya Oshima
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niek S Renckens
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands; Department of Neurobiology & Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Erik W G M Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Center for Healthy Ageing, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Muzio L, Viotti A, Martino G. Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Front Neurosci 2021; 15:742065. [PMID: 34630027 PMCID: PMC8497816 DOI: 10.3389/fnins.2021.742065] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Microglia are the resident macrophages of the central nervous system (CNS) acting as the first line of defense in the brain by phagocytosing harmful pathogens and cellular debris. Microglia emerge from early erythromyeloid progenitors of the yolk sac and enter the developing brain before the establishment of a fully mature blood-brain barrier. In physiological conditions, during brain development, microglia contribute to CNS homeostasis by supporting cell proliferation of neural precursors. In post-natal life, such cells contribute to preserving the integrity of neuronal circuits by sculpting synapses. After a CNS injury, microglia change their morphology and down-regulate those genes supporting homeostatic functions. However, it is still unclear whether such changes are accompanied by molecular and functional modifications that might contribute to the pathological process. While comprehensive transcriptome analyses at the single-cell level have identified specific gene perturbations occurring in the "pathological" microglia, still the precise protective/detrimental role of microglia in neurological disorders is far from being fully elucidated. In this review, the results so far obtained regarding the role of microglia in neurodegenerative disorders will be discussed. There is solid and sound evidence suggesting that regulating microglia functions during disease pathology might represent a strategy to develop future therapies aimed at counteracting brain degeneration in multiple sclerosis, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Luca Muzio
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | | | | |
Collapse
|
15
|
Novel Pharmacotherapies in Parkinson's Disease. Neurotox Res 2021; 39:1381-1390. [PMID: 34003454 PMCID: PMC8129607 DOI: 10.1007/s12640-021-00375-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Parkinson’s disease (PD), an age-related progressive neurodegenerative condition, is associated with loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), which results in motor deficits characterized by the following: akinesia, rigidity, resting tremor, and postural instability, as well as nonmotor symptoms such as emotional changes, particularly depression, cognitive impairment, gastrointestinal, and autonomic dysfunction. The most common treatment for PD is focused on dopamine (DA) replacement (e.g., levodopa = L-Dopa), which unfortunately losses its efficacy over months or years and can induce severe dyskinesia. Hence, more efficacious interventions without such adverse effects are urgently needed. In this review, following a general description of PD, potential novel therapeutic interventions for this devastating disease are examined. Specifically, the focus is on nicotine and nicotinic cholinergic system, as well as butyrate, a short chain fatty acid (SCFA), and fatty acid receptors.
Collapse
|
16
|
Kaeser SA, Lehallier B, Thinggaard M, Häsler LM, Apel A, Bergmann C, Berdnik D, Jeune B, Christensen K, Grönke S, Partridge L, Wyss-Coray T, Mengel-From J, Jucker M. A neuronal blood marker is associated with mortality in old age. ACTA ACUST UNITED AC 2021; 1:218-225. [PMID: 37118632 DOI: 10.1038/s43587-021-00028-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022]
Abstract
Neurofilament light chain (NfL) has emerged as a promising blood biomarker for the progression of various neurological diseases. NfL is a structural protein of nerve cells, and elevated NfL levels in blood are thought to mirror damage to the nervous system. We find that plasma NfL levels increase in humans with age (n = 122; 21-107 years of age) and correlate with changes in other plasma proteins linked to neural pathways. In centenarians (n = 135), plasma NfL levels are associated with mortality equally or better than previously described multi-item scales of cognitive or physical functioning, and this observation was replicated in an independent cohort of nonagenarians (n = 180). Plasma NfL levels also increase in aging mice (n = 114; 2-30 months of age), and dietary restriction, a paradigm that extends lifespan in mice, attenuates the age-related increase in plasma NfL levels. These observations suggest a contribution of nervous system functional deterioration to late-life mortality.
Collapse
|
17
|
Beker N, Ganz A, Hulsman M, Klausch T, Schmand BA, Scheltens P, Sikkes SAM, Holstege H. Association of Cognitive Function Trajectories in Centenarians With Postmortem Neuropathology, Physical Health, and Other Risk Factors for Cognitive Decline. JAMA Netw Open 2021; 4:e2031654. [PMID: 33449094 PMCID: PMC7811180 DOI: 10.1001/jamanetworkopen.2020.31654] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
IMPORTANCE Understanding mechanisms associated with prolonged cognitive health in combination with exceptional longevity might lead to approaches to enable successful aging. OBJECTIVE To investigate trajectories of cognitive functioning in centenarians across domains, and to examine the association of these trajectories with factors underlying cognitive reserve, physical health, and postmortem levels of Alzheimer disease (AD)-associated neuropathology. DESIGN, SETTING, AND PARTICIPANTS This cohort study used neuropsychological test data and postmortem neuropathological reports from Dutch centenarians who were drawn from the 100-plus Study between January 2013 and April 2019. Eligible participants self-reported being cognitively healthy, which was confirmed by a proxy. Data analysis was performed between June 2019 and June 2020. EXPOSURES Age, sex, APOE ε genotype, factors of cognitive reserve, physical health, and AD-associated neuropathology (ie, amyloid-β, neurofibrillary tangles, and neuritic plaques). MAIN OUTCOMES AND MEASURES In annual visits (until death or until participation was no longer possible), centenarians underwent an extensive neuropsychological test battery, from which an mean z score of global cognition, memory, executive functions, verbal fluency, visuospatial functions, and attention/processing speed was calculated. Linear mixed models with a random intercept and time as independent variable were used to investigate cognitive trajectories, adjusted for sex, age, education, and vision and hearing capacities. In a second step, linear mixed models were used to associate cognitive trajectories with factors underlying cognitive reserve, physical health at baseline, and AD-associated neuropathology. RESULTS Of the 1023 centenarians approached, 340 were included in the study. We analyzed 330 centenarians for whom cognitive tests were available at baseline (239 [72.4%] women; median [interquartile range] age of 100.5 [100.2-101.7] years), with a mean (SD) follow-up duration of 1.6 (0.8) years. We observed no decline across investigated cognitive domains, with the exception of a slight decline in memory function (β, -0.10 SD per year; 95% CI, -0.14 to -0.05 SD; P < .001). Cognitive performance was associated with factors of physical health (eg, higher Barthel index: β, 0.37 SD per year; 95% CI, 0.24-0.49; P < .001) and cognitive reserve (eg, higher education: β, 0.41 SD per year; 95% CI, 0.29-0.53; P < .001), but none of these factors were associated with the rate of decline. Neuropathological reports were available for 44 participants. While centenarian brains revealed varying loads of postmortem neuropathological hallmarks of AD, this was not associated with cognitive performance or rate of decline. CONCLUSIONS AND RELEVANCE While we observed a slight vulnerability for decline in memory function, centenarians maintained high levels of performance in all other investigated cognitive domains for up to 4 years despite the presence of risk factors of cognitive decline. These findings suggest that mechanisms of resilience may underlie the prolongation of cognitive health until exceptional ages.
Collapse
Affiliation(s)
- Nina Beker
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Andrea Ganz
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neuroscience, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marc Hulsman
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Thomas Klausch
- Amsterdam Public Health Research Institute, Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ben A. Schmand
- Brain & Cognition, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sietske A. M. Sikkes
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Psychology, Neuropsychology and Developmental Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Tanprasertsuk J, Scott TM, Johnson MA, Poon LW, Nelson PT, Davey A, Woodard JL, Vishwanathan R, Barbey AK, Barger K, Wang XD, Johnson EJ. Brain Α-Tocopherol Concentration is Inversely Associated with Neurofibrillary Tangle Counts in Brain Regions Affected in Earlier Braak Stages: A Cross-Sectional Finding in the Oldest Old. JAR LIFE 2021; 10:8-16. [PMID: 36923512 PMCID: PMC10002902 DOI: 10.14283/jarlife.2021.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 11/11/2022]
Abstract
Objectives Higher vitamin E status has been associated with lower risk of Alzheimer's disease (AD). However, evidence of the association of vitamin E concentration in neural tissue with AD pathologies is limited. Design The cross-sectional relationship between the human brain concentrations of α- and γ-tocopherol and the severity of AD pathologies - neurofibrillary tangle (NFT) and neuritic plaque (NP) - was investigated. Setting & Participants Brains from 43 centenarians (≥ 98 years at death) enrolled in the Phase III of the Georgia Centenarian Study were collected at autopsy. Measurements Brain α- and γ-tocopherol concentrations (previously reported) were averaged from frontal, temporal, and occipital cortices. NP and NFT counts (previously reported) were assessed in frontal, temporal, parietal, entorhinal cortices, amygdala, hippocampus, and subiculum. NFT topological progression was assessed using Braak staging. Multiple linear regression was performed to assess the relationship between tocopherol concentrations and NP or NFT counts, with and without adjustment for covariates. Results Brain α-tocopherol concentrations were inversely associated with NFT but not NP counts in amygdala (β = -2.67, 95% CI [-4.57, -0.79]), entorhinal cortex (β = -2.01, 95% CI [-3.72, -0.30]), hippocampus (β = -2.23, 95% CI [-3.82, -0.64]), and subiculum (β = -2.52, 95% CI [-4.42, -0.62]) where NFT present earlier in its topological progression, but not in neocortices. Subjects with Braak III-IV had lower α-tocopherol (median = 69,622 pmol/g, IQR = 54,389-72,155 pmol/g) than those with Braak I-II (median = 72,108 pmol/g, IQR = 64,056-82,430 pmol/g), but the difference was of borderline significance (p = 0.063). γ-Tocopherol concentrations were not associated with either NFT or NP counts in any brain regions assessed. Conclusions Higher brain α-tocopherol level is specifically associated with lower NFT counts in brain structures affected in earlier Braak stages. Our findings emphasize the possible importance of α-tocopherol intervention timing in tauopathy progression and warrant future clinical trials.
Collapse
Affiliation(s)
- J Tanprasertsuk
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, 02111, United States of America
| | - T M Scott
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, 02111, United States of America
| | - M A Johnson
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE, 68583, United States of America
| | - L W Poon
- Institute of Gerontology, University of Georgia, Athens, GA, 30602, United States of America
| | - P T Nelson
- Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, 40536, United States of America
| | - A Davey
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, DE, 19716, United States of America
| | - J L Woodard
- Department of Psychology, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, 48202, United States of America
| | - R Vishwanathan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, United States of America
| | - A K Barbey
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - K Barger
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, United States of America
| | - X-D Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, United States of America
| | - E J Johnson
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, 02111, United States of America
| |
Collapse
|
19
|
Lanni C, Masi M, Racchi M, Govoni S. Cancer and Alzheimer's disease inverse relationship: an age-associated diverging derailment of shared pathways. Mol Psychiatry 2021; 26:280-295. [PMID: 32382138 DOI: 10.1038/s41380-020-0760-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Several epidemiological studies show an inverse association between cancer and Alzheimer's disease (AD). It is debated whether this association is the consequence of biological mechanisms shared by both these conditions or may be related to the pharmacological treatments carried out on the patients. The latter hypothesis, however, is not sustained by the available evidence. Hence, the focus of this review is to analyze common biological mechanisms for both cancer and AD and to build up a biological theory useful to explain the inverse correlation between AD and cancer. The review proposes a hypothesis, according to which several molecular players, prominently PIN1 and p53, have been investigated and considered involved in complex molecular interactions putatively associated with the inverse correlation. On the other hand, p53 involvement in both diseases seems to be a consequence of the aberrant activation of other proteins. Instead, PIN1 may be identified as a novel key regulator at the crossroad between cancer and AD. PIN1 is a peptidyl-prolyl cis-trans isomerase that catalyzes the cis-trans isomerization, thus regulating the conformation of different protein substrates after phosphorylation and modulating protein function. In particular, trans-conformations of Amyloid Precursor Protein (APP) and tau are functional and "healthy", while cis-conformations, triggered after phosphorylation, are pathogenic. As an example, PIN1 accelerates APP cis-to-trans isomerization thus favoring the non-amyloidogenic pathway, while, in the absence of PIN1, APP is processed through the amyloidogenic pathway, thus predisposing to neurodegeneration. Furthermore, a link between PIN1 and tau regulation has been found, since when PIN1 function is inhibited, tau is hyperphosphorylated. Data from brain specimens of subjects affected by mild cognitive impairment and AD have revealed a very low PIN1 expression. Moreover, polymorphisms in PIN1 promoter correlated with an increased PIN1 expression are associated with a delay of sporadic AD age of onset, while a polymorphism related to a reduced PIN1 expression is associated with a decreased risk of multiple cancers. In the case of dementias, in particular of Alzheimer's disease, new biological markers and targets based on the discussed players can be developed based on a theoretical approach relying on different grounds compared to the past. An unbiased expansion of the rationale and of the targets may help to achieve in the field of neurodegenerative dementias similar advances to those attained in the case of cancer treatment.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.
| |
Collapse
|
20
|
Castellani RJ. The Significance of Tau Aggregates in the Human Brain. Brain Sci 2020; 10:brainsci10120972. [PMID: 33322544 PMCID: PMC7763851 DOI: 10.3390/brainsci10120972] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Neurofibrillary degeneration has attracted the attention of neuroscientists as both a hallmark of the disease and a subject for experimentation for more than a century. Recent studies implicate phosphorylated tau (p-tau) directly in neurodegenerative disease pathogenesis, although the human data continue to raise questions. P-tau accumulates with age in a roughly hierarchical manner, but avoids abundance in the neocortex unless co-occurring with amyloid-β. Neurodegenerative tauopathies tend to have p-tau morphologies that differ from aging and Alzheimer’s disease. Tau isoforms (3R vs. 4R) have a tendency to vary with tauopathy phenotype for unknown reasons. Selective vulnerability to p-tau and spatial-temporal disconnect from amyloid-β are evident in aging. P-tau assessment at autopsy involves tissue decomposition, which may skew microanatomical observations toward limited biological meaning. Two major consensus guidelines for interpreting p-tau at autopsy emphasize the challenges of clinicopathologic correlation, and reinforce the observation that regional neurodegeneration is a better correlate of clinical signs than is proteinopathy. Despite the proliferation of interesting and novel theories related to tau-mediated pathogenesis, the weight of the human observations suggests that neurofibrillary degeneration is an epiphenomenal hallmark of aging and disease rather than an epicenter of neurotoxicity. This is consistent with numerous tau-targeted therapeutic strategies that have been unsuccessful to date.
Collapse
Affiliation(s)
- Rudy J. Castellani
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University, Morgantown, WV 26506, USA;
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
21
|
The relation between tau pathology and granulovacuolar degeneration of neurons. Neurobiol Dis 2020; 147:105138. [PMID: 33069844 DOI: 10.1016/j.nbd.2020.105138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Neurofibrillary tangles arising from aggregated microtubule-associated protein tau occur in aged brains and are hallmarks of neurodegenerative diseases. A subset of neurons containing aggregated tau displays granulovacuolar degeneration (GVD) that is characterized by membrane-bound cytoplasmic vacuoles, each containing an electron-dense granule (GVB). Tau pathology induces GVBs in experimental models, but GVD does not generally follow tau pathology in the human brain. The entorhinal cortex, DRN, and LC are among the regions that display pathological changes of tau earliest, whereas neurons with GVBs occur first in the hippocampus and have been found in oral raphe nuclei only at the most advanced GVD stage. To date, there is no detailed report about neurons with GVD in aminergic nuclei. We studied the relation between tau pathology and GVD in field CA1 of the hippocampus, entorhinal cortex, dorsal (DRN) and median (MRN) raphe nucleus, and locus coeruleus from elderly subjects with Braak & Braak stages of tau pathology ranging from 0 to VI. Tau pathology and GVBs were visualized by means of immunolabeling and quantified. Percentages of neurons containing GVBs were significantly related to percentages of AT8-positive neurons in the regions examined. GVD and tau pathology were found together in neurons to a different extent in regions of the brain. 53.2% of AT8-immunoreactive neurons in CA1, 19.8% in layer II of the entorhinal cortex, 29.6% in the DRN, and 31.4% in the locus coeruleus contained GVBs. Age-related factors, the percentage of neurons with pretangles in a region of the brain, and the metabolism of a neuron possibly influence the prevalence of neurons with GVBs.
Collapse
|
22
|
Bartels T, De Schepper S, Hong S. Microglia modulate neurodegeneration in Alzheimer's and Parkinson's diseases. Science 2020; 370:66-69. [PMID: 33004513 DOI: 10.1126/science.abb8587] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dementia is a rapidly rising global health crisis that silently disables families and ends lives and livelihoods around the world. To date, however, no early biomarkers or effective therapies exist. It is now clear that brain microglia are more than mere bystanders or amyloid phagocytes; they can act as governors of neuronal function and homeostasis in the adult brain. Here, we highlight the fundamental role of microglia as tissue-resident macrophages in neuronal health. Then, we suggest how chronic impairment in microglia-neuron cross-talk may secure the permanence of the failure of synaptic and neuronal function and health in Alzheimer's and Parkinson's diseases. Understanding how to assess and modulate microglia-neuron interactions critical for brain health will be key to developing effective therapies for dementia.
Collapse
Affiliation(s)
- Tim Bartels
- UK Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK
| | - Sebastiaan De Schepper
- UK Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
23
|
Tanprasertsuk J, Johnson EJ, Johnson MA, Poon LW, Nelson PT, Davey A, Martin P, Barbey AK, Barger K, Wang XD, Scott TM. Clinico-Neuropathological Findings in the Oldest Old from the Georgia Centenarian Study. J Alzheimers Dis 2020; 70:35-49. [PMID: 31177211 DOI: 10.3233/jad-181110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Centenarian studies are important sources for understanding of factors that contribute to longevity and healthy aging. Clinico-neuropathological finding is a key in identifying pathology and factors contributing to age-related cognitive decline and dementia in the oldest old. OBJECTIVE To characterize the cross-sectional relationship between neuropathologies and measures of premortem cognitive performance in centenarians. METHODS Data were acquired from 49 centenarians (≥98 years) from the Georgia Centenarian Study. Cognitive assessment from the time point closest to mortality was used (<1 year for all subjects) and scores for cognitive domains were established. Neuropathologies [cerebral atrophy, ventricular dilation, atherosclerosis, cerebral amyloid angiopathy (CAA), Lewy bodies, hippocampal sclerosis (HS), hippocampal TDP-43 proteinopathy, neuritic plaque (NP) and neurofibrillary tangle (NFT) counts, Braak staging, and National Institute on Aging-Reagan Institute (NIARI) criteria for the neuropathological diagnosis of Alzheimer's disease (AD)] were compared among subjects with different ratings of dementia. Linear regression was applied to evaluate the association between cognitive domain scores and neuropathologies. RESULTS Wide ranges of AD-type neuropathological changes were observed in both non-demented and demented subjects. Neocortical NFT and Braak staging were related to clinical dementia rating. Neocortical NFT and NP, Braak and NIARI staging, cerebral and ventricular atrophy, HS, CAA, and TDP-43 proteinopathy were differentially associated with poor performance in multiple cognitive domains and activities of daily living. CONCLUSION AD-type pathology was associated with severe dementia and poor cognition but was not the only variable that explained cognitive impairment, indicating the complexity and heterogeneity of pathophysiology of dementia in the oldest old.
Collapse
Affiliation(s)
- Jirayu Tanprasertsuk
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.,Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Elizabeth J Johnson
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Mary Ann Johnson
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE, USA
| | - Leonard W Poon
- Institute of Gerontology, University of Georgia, Athens, GA, USA
| | - Peter T Nelson
- Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, USA
| | - Adam Davey
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - Peter Martin
- Human Development & Family Studies, Iowa State University, Ames, IA, USA
| | - Aron K Barbey
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kathryn Barger
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Xiang-Dong Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Tammy M Scott
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
24
|
Wiersma VI, Hoozemans JJM, Scheper W. Untangling the origin and function of granulovacuolar degeneration bodies in neurodegenerative proteinopathies. Acta Neuropathol Commun 2020; 8:153. [PMID: 32883341 PMCID: PMC7469111 DOI: 10.1186/s40478-020-00996-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
In the brains of tauopathy patients, tau pathology coincides with the presence of granulovacuolar degeneration bodies (GVBs) both at the regional and cellular level. Recently, it was shown that intracellular tau pathology causes GVB formation in experimental models thus explaining the strong correlation between these neuropathological hallmarks in the human brain. These novel models of GVB formation provide opportunities for future research into GVB biology, but also urge reevaluation of previous post-mortem observations. Here, we review neuropathological data on GVBs in tauopathies and other neurodegenerative proteinopathies. We discuss the possibility that intracellular aggregates composed of proteins other than tau are also able to induce GVB formation. Furthermore, the potential mechanisms of GVB formation and the downstream functional implications hereof are outlined in view of the current available data. In addition, we provide guidelines for the identification of GVBs in tissue and cell models that will help to facilitate and streamline research towards the elucidation of the role of these enigmatic and understudied structures in neurodegeneration.
Collapse
|
25
|
Subchronic administration of auranofin reduced amyloid-β plaque pathology in a transgenic APP NL-G-F/NL-G-F mouse model. Brain Res 2020; 1746:147022. [PMID: 32707043 DOI: 10.1016/j.brainres.2020.147022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Neuropathological processes, including the accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles, and neuroinflammation, lead to cognitive impairment at middle and eventually later stages of AD progression. Over the last decade, focused efforts have explored repurposed drug approaches for AD pathophysiological mechanisms. Recently, auranofin, an anti-inflammatory drug, was shown to have therapeutic potential in a number of diseases in addition to rheumatoid arthritis. Surprisingly, no data regarding the effects of auranofin on cognitive deficits in AD mice or the influence of auranofin on Aβ pathology and neuroinflammatory processes are available. In the present study, we used 14-month-old transgenic male APPNL-G-F/NL-G-F mice to assess the effects of subchronic administration of auranofin at low doses (1 and 5 mg/kg, intraperitoneal) on spatial memory, Aβ pathology and the expression of cortical and hippocampal proteins (glial fibrillary acidic protein (GFAP), ionized calcium binding adaptor molecule-1 (Iba-1)) and proteins related to synaptic plasticity (glutamic acid decarboxylase 67 (GAD67), homer proteins homologue-1 (Homer-1)). The data demonstrated that auranofin significantly decreased Aβ deposition in the hippocampus and the number of Aβ plaques in the cingulate cortex, but it did not have memory-enhancing effects or induce changes in the expression of the studied proteins. Our current results highlight the importance of considering further pre-clinical research to investigate the possible beneficial effects of auranofin on the other pathological aspects of AD.
Collapse
|
26
|
Hickman RA, Flowers XE, Wisniewski T. Primary Age-Related Tauopathy (PART): Addressing the Spectrum of Neuronal Tauopathic Changes in the Aging Brain. Curr Neurol Neurosci Rep 2020; 20:39. [PMID: 32666342 DOI: 10.1007/s11910-020-01063-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Primary age-related tauopathy (PART) was recently proposed as a pathologic diagnosis for brains that harbor neurofibrillary tangles (Braak stage ≤ 4) with little, if any, amyloid burden. We sought to review the clinicopathologic findings related to PART. RECENT FINDINGS Most adult human brains show at least focal tauopathic changes, and the majority of individuals with PART do not progress to dementia. Older age and cognitive impairment correlate with increased Braak stage, and multivariate analyses suggest that the rate of cognitive decline is less than matched patients with Alzheimer disease (AD). It remains unclear whether PART is a distinct tauopathic entity separate from AD or rather represents an earlier histologic stage of AD. Cognitive decline in PART is usually milder than AD and correlates with tauopathic burden. Biomarker and ligand-based radiologic studies will be important to define PART antemortem and prospectively follow its natural history.
Collapse
Affiliation(s)
- Richard A Hickman
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, PH 15-124, New York, NY, 10032, USA.
| | - Xena E Flowers
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, PH 15-124, New York, NY, 10032, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, NYU School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| |
Collapse
|
27
|
Abstract
The majority of research to understand the pathogenesis of and contributors to Alzheimer’s disease (AD) pathology, dementia, and disease progression has focused on studying individuals who have the disease or are at increased risk of having the disease. Yet there may be much to learn from individuals who have a paradoxical decreased risk of AD suggesting underlying protective factors. Centenarians demonstrate exceptional longevity that for a subset of the cohort is associated with an increased health span characterized by the delay or escape of age-related diseases including dementia. Here, I give evidence of the association of exceptional longevity with resistance and resilience to AD and describe how cohorts of centenarians and their offspring may serve as models of neuroprotection from AD. Discoveries of novel genetic, environmental, and behavioral factors that are associated with a decreased risk of AD may inform the development of interventions to slow or prevent AD in the general population. Centenarian cohorts may also be instrumental in serving as controls to individuals with AD to identify additional risk factors.
Collapse
|
28
|
Longitudinal Cognitive Decline in a Novel Rodent Model of Cerebral Amyloid Angiopathy Type-1. Int J Mol Sci 2020; 21:ijms21072348. [PMID: 32231123 PMCID: PMC7177469 DOI: 10.3390/ijms21072348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a small vessel disease characterized by β-amyloid (Aβ) accumulation in and around the cerebral blood vessels and capillaries and is highly comorbid with Alzheimer’s disease (AD). Familial forms of CAA result from mutations within the Aβ domain of the amyloid β precursor protein (AβPP). Numerous transgenic mouse models have been generated around expression of human AβPP mutants and used to study cerebral amyloid pathologies. While behavioral deficits have been observed in many AβPP transgenic mouse lines, relative to rats, mice are limited in behavioral expression within specific cognitive domains. Recently, we generated a novel rat model, rTg-DI, which expresses Dutch/Iowa familial CAA Aβ in brain, develops progressive and robust accumulation of cerebral microvascular fibrillar Aβ beginning at 3 months, and mimics many pathological features of the human disease. The novel rTg-DI model provides a unique opportunity to evaluate the severity and forms of cognitive deficits that develop over the emergence and progression of CAA pathology. Here, we present an in-depth, longitudinal study aimed to complete a comprehensive assessment detailing phenotypic disease expression through extensive and sophisticated operant testing. Cohorts of rTg-DI and wild-type (WT) rats underwent operant testing from 6 to 12 months of age. Non-operant behavior was assessed prior to operant training at 4 months and after completion of training at 12 months. By 6 months, rTg-DI animals demonstrated speed–accuracy tradeoffs that later manifested across multiple operant tasks. rTg-DI animals also demonstrated delayed reaction times beginning at 7 months. Although non-operant assessments at 4 and 12 months indicated comparable mobility and balance, rTg-DI showed evidence of slowed environmental interaction. Overall, this suggests a form of sensorimotor slowing is the likely core functional impairment in rTg-DI rats and reflects similar deficits observed in human CAA.
Collapse
|
29
|
Necrosome complex detected in granulovacuolar degeneration is associated with neuronal loss in Alzheimer's disease. Acta Neuropathol 2020; 139:463-484. [PMID: 31802237 DOI: 10.1007/s00401-019-02103-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by a specific pattern of neuropathological changes, including extracellular amyloid β (Aβ) deposits, intracellular neurofibrillary tangles (NFTs), granulovacuolar degeneration (GVD) representing cytoplasmic vacuolar lesions, synapse dysfunction and neuronal loss. Necroptosis, a programmed form of necrosis characterized by the assembly of the necrosome complex composed of phosphorylated proteins, i.e. receptor-interacting serine/threonine-protein kinase 1 and 3 (pRIPK1 and pRIPK3) and mixed lineage kinase domain-like protein (pMLKL), has recently been shown to be involved in AD. However, it is not yet clear whether necrosome assembly takes place in brain regions showing AD-related neuronal loss and whether it is associated with AD-related neuropathological changes. Here, we analyzed brains of AD, pathologically defined preclinical AD (p-preAD) and non-AD control cases to determine the neuropathological characteristics and distribution pattern of the necrosome components. We demonstrated that all three activated necrosome components can be detected in GVD lesions (GVDn+, i.e. GVD with activated necrosome) in neurons, that they colocalize with classical GVD markers, such as pTDP-43 and CK1δ, and similarly to these markers detect GVD lesions. GVDn + neurons inversely correlated with neuronal density in the early affected CA1 region of the hippocampus and in the late affected frontal cortex layer III. Additionally, AD-related GVD lesions were associated with AD-defining parameters, showing the strongest correlation and partial colocalization with NFT pathology. Therefore, we conclude that the presence of the necrosome in GVD plays a role in AD, possibly by representing an AD-specific form of necroptosis-related neuron death. Hence, necroptosis-related neuron loss could be an interesting therapeutic target for treating AD.
Collapse
|
30
|
Beker N, Sikkes SAM, Hulsman M, Tesi N, van der Lee SJ, Scheltens P, Holstege H. Longitudinal Maintenance of Cognitive Health in Centenarians in the 100-plus Study. JAMA Netw Open 2020; 3:e200094. [PMID: 32101309 PMCID: PMC7137688 DOI: 10.1001/jamanetworkopen.2020.0094] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
IMPORTANCE Some individuals who reach ages beyond 100 years in good cognitive health may be resilient against risk factors associated with cognitive decline. Exploring the processes underlying resilience may contribute to the development of therapeutic strategies that help to maintain cognitive health while aging. OBJECTIVE To identify individuals who escape cognitive decline until extreme ages and to investigate the prevalence of associated risk factors. DESIGN, SETTING, AND PARTICIPANTS The 100-plus Study is a prospective observational cohort study of community-based Dutch centenarians enrolled between 2013 and 2019 who were visited annually until death or until participation was no longer possible. The centenarians self-reported their cognitive health, as confirmed by a proxy. Of the 1023 centenarians approached for study inclusion, 340 fulfilled the study criteria and were included in analyses. Data analysis was performed from April 2019 to December 2019. MAIN OUTCOMES AND MEASURES Cognition was assessed using the Mini-Mental State Examination (MMSE). To identify centenarians who escape cognitive decline, this study investigated the association of baseline cognition with survivorship and cognitive trajectories for at least 2 years of follow-up using linear mixed models, adjusted for sex, age, and education. This study investigated the prevalence of apolipoprotein E (APOE) genotypes and cardiovascular disease as risk factors associated with cognitive decline. RESULTS At baseline, the median age of 340 centenarians was 100.5 years (range, 100.0-108.2 years); 245 participants (72.1%) were female. The maximum survival estimate plateaued at 82% per year (95% CI, 77% to 87%) across centenarians who scored 26 to 30 points on the baseline MMSE (hazard ratio, 0.56; 95% CI, 0.42 to 0.75; P < .001), suggesting that an MMSE score of 26 or higher is representative of both cognitive and physical health. Among the 79 centenarians who were followed up for 2 years or longer, those with baseline MMSE score less than 26 experienced a decline in MMSE score of 1.68 points per year (95% CI, -2.45 to -0.92 points per year; P = .02), whereas centenarians with MMSE scores of 26 or higher at baseline experienced a decline of 0.71 point per year (95% CI, -1.08 to -0.35 points per year). For 73% of the centenarians with baseline MMSE scores of 26 or higher, no cognitive changes were observed, which often extended to ensuing years or until death. It is estimated that this group is representative of less than 10% of Dutch centenarians. In this group, 18.6% carried at least 1 APOE-ε4 allele, compared with 5.6% of the centenarians with lower and/or declining cognitive performance. CONCLUSIONS AND RELEVANCE Most centenarians who scored 26 or higher on the MMSE at baseline maintained high levels of cognitive performance for at least 2 years, in some cases despite the presence of risk factors associated with cognitive decline. Investigation of this group might reveal the processes underlying resilience against risk factors associated with cognitive decline.
Collapse
Affiliation(s)
- Nina Beker
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sietske A. M. Sikkes
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Psychology, Neuropsychology, and Developmental Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Niccolò Tesi
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sven J. van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Marcon G, Manganotti P, Tettamanti M. Is Parkinson’s Disease a Very Rare Pathology in Centenarians? A Clinical Study in a Cohort of Subjects. J Alzheimers Dis 2020; 73:73-76. [DOI: 10.3233/jad-190717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gabriella Marcon
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
- DAME, University of Udine, Udine, Italy
- ASUITS (Azienda Sanitaria Universitaria Integrata di Trieste), Trieste, Italy
| | - Paolo Manganotti
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
- ASUITS (Azienda Sanitaria Universitaria Integrata di Trieste), Trieste, Italy
| | - Mauro Tettamanti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| |
Collapse
|
32
|
Wharton SB, Wang D, Parikh C, Matthews FE, Brayne C, Ince PG. Epidemiological pathology of Aβ deposition in the ageing brain in CFAS: addition of multiple Aβ-derived measures does not improve dementia assessment using logistic regression and machine learning approaches. Acta Neuropathol Commun 2019; 7:198. [PMID: 31806014 PMCID: PMC6896261 DOI: 10.1186/s40478-019-0858-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 02/03/2023] Open
Abstract
Aβ-amyloid deposition is a key feature of Alzheimer’s disease, but Consortium to Establish a Registry for Alzheimer's Disease (CERAD) assessment, based on neuritic plaque density, shows a limited relationships to dementia. Thal phase is based on a neuroanatomical hierarchy of Aβ-deposition, and in combination with Braak neurofibrillary tangle staging also allows derivation of primary age-related tauopathy (PART). We sought to determine whether Thal Aβ phase predicts dementia better than CERAD in a population-representative cohort (n = 186) derived from the Cognitive Function and Ageing Study (CFAS). Cerebral amyloid angiopathy (CAA) was quantitied as the number of neuroanatomical areas involved and cases meeting criteria for PART were defined to determine if they are a distinct pathological group within the ageing population. Agreement with the Thal scheme was excellent. In univariate analysis Thal phase performed less well as a predictor of dementia than CERAD, Braak or CAA. Logistic regression, decision tree and linear discriminant analysis were performed for multivariable analysis, with similar results. Thal phase did not provide a better explanation of dementia than CERAD, and there was no additional benefit to including more than one assessment of Aβ in the model. Number of areas involved by CAA was highly correlated with assessment based on a severity score (p < 0.001). The presence of capillary involvement (CAA type I) was associated with higher Thal phase and Braak stage (p < 0.001). CAA was not associated with microinfarcts (p = 0.1). Cases satisfying pathological criteria for PART were present at a frequency of 10.2% but were not older and did not have a higher likelihood of dementia than a comparison group of individuals with similar Braak stage but with more Aβ. They also did not have higher hippocampal-tau stage, although PART was weakly associated with increased presence of thorn-shaped astrocytes (p = 0.048), suggesting common age-related mechanisms. Thal phase is highly applicable in a population-representative setting and allows definition of pathological subgroups, such as PART. Thal phase, plaque density, and extent and type of CAA measure different aspects of Aβ pathology, but addition of more than one Aβ measure does not improve dementia prediction, probably because these variables are highly correlated. Machine learning predictions reveal the importance of combining neuropathological measurements for the assessment of dementia.
Collapse
|
33
|
Li KW, Ganz AB, Smit AB. Proteomics of neurodegenerative diseases: analysis of human post-mortem brain. J Neurochem 2019; 151:435-445. [PMID: 30289976 PMCID: PMC6899881 DOI: 10.1111/jnc.14603] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/15/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Dementias are prevalent brain disorders in the aged population. Dementias pose major socio-medical burden, but currently there is no cure available. Novel proteomics approaches hold promise to identify alterations of the brain proteome that could provide clues on disease etiology, and identify candidate proteins to develop further as a biomarker. In this review, we focus on recent proteomics findings from brains affected with Alzheimer's Disease, Parkinson Disease Dementia, Frontotemporal Dementia, and Amyotrophic Lateral Sclerosis. These studies confirmed known cellular changes, and in addition identified novel proteins that may underlie distinct aspects of the diseases. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- K. W. Li
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije UniversiteitAmsterdamThe Netherlands
| | - Andrea B. Ganz
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije UniversiteitAmsterdamThe Netherlands
| | - August B. Smit
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije UniversiteitAmsterdamThe Netherlands
| |
Collapse
|
34
|
Chrzan R, Gleń A, Bryll A, Urbanik A. Computed Tomography Assessment of Brain Atrophy in Centenarians. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193659. [PMID: 31569457 PMCID: PMC6801833 DOI: 10.3390/ijerph16193659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/08/2019] [Accepted: 09/20/2019] [Indexed: 11/30/2022]
Abstract
The aim of our study was to compare the degree of brain atrophy in centenarians and in seniors 70–99 years old. The study group consisted of 23 patients aged 100–106 years. The control group consisted of 90 patients, 30 in each age subgroup 90–99, 80–89, 70–79. In all the patients, the brain atrophy linear parameters were measured on computed tomography scans, in relation to both “subcortical atrophy”, evaluated as progressive widening of the ventricular system, and “cortical atrophy”, defined as widening of subarachnoid space. Secondary indices based on the parameters were calculated. Correlations between the above parameters/indices and age were tested. Significantly different values between the centenarians and the control group were found in the brain atrophy parameters: A, B, C, E, FI, ICR, ICL, SW, CFW, F/A ‘frontal horn index’, A/G ‘Evans index’, D/A ‘ventricular index’, H/E ‘cella media Schiersmann index’, A+B ‘Huckman number’. Correlations between parameter/index and age were found for: A, B, C, FI, ICR, ICL, SW, F/A ‘frontal horn index’, A/G ‘Evans index’, D/A ‘ventricular index’, H/E ‘cella media Schiersmann index’, A+B ‘Huckman number’. Brain atrophy associated with aging is a continuously advancing process, affecting centenarians even more than people before the “magic” threshold of 100 years.
Collapse
Affiliation(s)
- Robert Chrzan
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland.
| | - Agnieszka Gleń
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland.
| | - Amira Bryll
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland.
| | - Andrzej Urbanik
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland.
| |
Collapse
|
35
|
Wahl D, Solon-Biet SM, Cogger VC, Fontana L, Simpson SJ, Le Couteur DG, Ribeiro RV. Aging, lifestyle and dementia. Neurobiol Dis 2019; 130:104481. [PMID: 31136814 DOI: 10.1016/j.nbd.2019.104481] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Aging is the greatest risk factor for most diseases including cancer, cardiovascular disorders, and neurodegenerative disease. There is emerging evidence that interventions that improve metabolic health with aging may also be effective for brain health. The most robust interventions are non-pharmacological and include limiting calorie or protein intake, increasing aerobic exercise, or environmental enrichment. In humans, dietary patterns including the Mediterranean, Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) and Okinawan diets are associated with improved age-related health and may reduce neurodegenerative disease including dementia. Rapamycin, metformin and resveratrol act on nutrient sensing pathways that improve cardiometabolic health and decrease the risk for age-associated disease. There is some evidence that they may reduce the risk for dementia in rodents. There is a growing recognition that improving metabolic function may be an effective way to optimize brain health during aging.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia.
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Luigi Fontana
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Rosilene V Ribeiro
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
36
|
Saito S, Yamamoto Y, Ihara M. Development of a Multicomponent Intervention to Prevent Alzheimer's Disease. Front Neurol 2019; 10:490. [PMID: 31139139 PMCID: PMC6518668 DOI: 10.3389/fneur.2019.00490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Recent advances in vascular risk management have successfully reduced the prevalence of Alzheimer's Disease (AD) in several epidemiologic investigations. It is now widely accepted that cerebrovascular disease is both directly and indirectly involved in AD pathogenesis. Herein, we review the non-pharmacological and pharmacological therapeutic approaches for AD treatment. MIND [Mediterranean and DASH (Dietary Approaches to Stop Hypertension) Intervention for Neurodegenerative Delay] diet is an important dietary treatment for prevention of AD. Multi domain intervention including diet, exercise, cognitive training, and intensive risk managements also prevented cognitive decline in the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) study. To confirm these favorable effects of life-style intervention, replica studies are being planned worldwide. Promotion of β-amyloid (Aβ) clearance has emerged as a promising pharmacological approach because insufficient removal of Aβ is more important than excessive Aβ production in the pathogenesis of the majority of AD patients. Most AD brains exhibit accompanying cerebral amyloid angiopathy, and Aβ distribution in cerebral amyloid angiopathy closely corresponds with the intramural periarterial drainage (IPAD) route, emphasizing the importance of Aβ clearance. In view of these facts, promotion of the major vascular-mediated Aβ elimination systems, including capillary transcytosis, the glymphatic system, and IPAD, have emerged as new treatment strategies in AD. In particular, the beneficial effects of cilostazol were shown in several clinical observation studies, and cilostazol facilitated IPAD in a rodent AD model. The COMCID (Cilostazol for prevention of Conversion from MCI to Dementia) trial, evaluating the efficacy of cilostazol for patients with mild cognitive impairment is currently ongoing in Japan. Such therapeutic approaches involving maintenance of cerebrovascular integrity and promotion of vascular-mediated Aβ clearance have the potential to be mainstream treatments for sporadic AD.
Collapse
Affiliation(s)
- Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.,Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yumi Yamamoto
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
37
|
Melikyan ZA, Corrada MM, Dick MB, Whittle C, Paganini-Hill A, Kawas CH. Neuropsychological Test Norms in Cognitively Intact Oldest-Old. J Int Neuropsychol Soc 2019; 25:530-545. [PMID: 31122309 PMCID: PMC6538395 DOI: 10.1017/s1355617719000122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Individuals aged 90 or older (oldest-old), the fastest growing segment of the population, are at increased risk of developing cognitive impairment compared with younger old. Neuropsychological evaluation of the oldest-old is important yet challenging in part because of the scarcity of test norms for this group. We provide neuropsychological test norms for cognitively intact oldest-old. METHODS Test norms were derived from 403 cognitively intact participants of The 90+ Study, an ongoing study of aging and dementia in the oldest-old. Cognitive status of intact oldest-old was determined at baseline using cross-sectional approach. Individuals with cognitive impairment no dementia or dementia (according to DSM-IV criteria) were excluded. Participants ranged in age from 90 to 102 years (mean=94). The neuropsychological battery included 11 tests (Mini-Mental Status Examination, Modified Mini-Mental State Examination, Boston Naming Test - Short Form, Letter Fluency Test, Animal Fluency Test, California Verbal Learning Test-II Short Form, Trail Making Tests A/B/C, Digit Span Forward and Backwards Test, Clock Drawing Test, CERAD Construction Subtests), and the Geriatric Depression Scale. RESULTS Data show significantly lower scores with increasing age on most tests. Education level, sex, and symptoms of depression were associated with performance on several tests after accounting for age. CONCLUSIONS Provided test norms will help to distinguish cognitively intact oldest-old from those with cognitive impairment. (JINS, 2019, 25, 530-545).
Collapse
Affiliation(s)
- Zarui A Melikyan
- 1Institute for Memory Impairments and Neurological Disorders,University of California,Irvine,California
| | - Maria M Corrada
- 1Institute for Memory Impairments and Neurological Disorders,University of California,Irvine,California
| | - Malcolm B Dick
- 1Institute for Memory Impairments and Neurological Disorders,University of California,Irvine,California
| | - Christina Whittle
- 1Institute for Memory Impairments and Neurological Disorders,University of California,Irvine,California
| | | | - Claudia H Kawas
- 1Institute for Memory Impairments and Neurological Disorders,University of California,Irvine,California
| |
Collapse
|
38
|
[Brain pathology of centenarians and supercentenarians]. Nihon Ronen Igakkai Zasshi 2018; 55:562-569. [PMID: 30542021 DOI: 10.3143/geriatrics.55.562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|