1
|
Mukherjee A, Biswas S, Roy I. Exploring immunotherapeutic strategies for neurodegenerative diseases: a focus on Huntington's disease and Prion diseases. Acta Pharmacol Sin 2025; 46:1511-1538. [PMID: 39890942 PMCID: PMC12098710 DOI: 10.1038/s41401-024-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/09/2024] [Indexed: 02/03/2025]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for the treatment of neurodegenerative disorders, which are characterized by the progressive loss of neurons and impaired cognitive functions. In this review, active and passive immunotherapeutic strategies that help address the underlying pathophysiology of Huntington's disease (HD) and prion diseases by modulating the immune system are discussed. The current landscape of immunotherapeutic strategies, including monoclonal antibodies and vaccine-based approaches, to treat these diseases is highlighted, along with their potential benefits and mechanisms of action. Immunotherapy generally works by targeting disease-specific proteins, which serve as the pathological hallmarks of these diseases. Additionally, the review addresses the challenges and limitations associated with immunotherapy. For HD, immunotherapeutic approaches focus on neutralizing the toxic effects of mutant huntingtin and tau proteins, thereby reducing neurotoxicity. Immunotherapeutic approaches targeting flanking sequences, rather than the polyglutamine tract in the mutant huntingtin protein, have yielded promising outcomes for patients with HD. In prion diseases, therapies attempt to prevent or eliminate misfolded proteins that cause neurodegeneration. The major challenge in prion diseases is immune tolerance. Approaches to overcome the highly tolerogenic nature of the prion protein have been discussed. A common hurdle in delivering antibodies is the blood‒brain barrier, and strategies that can breach this barrier are being investigated. As protein aggregation and neurotoxicity are related, immunotherapeutic strategies being developed for other neurodegenerative diseases could be repurposed to target protein aggregation in HD and prion diseases. While significant advances in this field have been achieved, continued research and development are necessary to overcome the existing limitations, which will help in shaping the future of immunotherapy as a strategy for managing neurological disorders.
Collapse
Affiliation(s)
- Abhiyanta Mukherjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
2
|
Mast N, Butts M, Pikuleva IA. Unbiased insights into the multiplicity of the CYP46A1 brain effects in 5XFAD mice treated with low dose-efavirenz. J Lipid Res 2024; 65:100555. [PMID: 38719151 PMCID: PMC11176809 DOI: 10.1016/j.jlr.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/12/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Cytochrome P450 46A1 (CYP46A1) is the CNS-specific cholesterol 24-hydroxylase that controls cholesterol elimination and turnover in the brain. In mouse models, pharmacologic CYP46A1 activation with low-dose efavirenz or by gene therapy mitigates the manifestations of various brain disorders, neurologic, and nonneurologic, by affecting numerous, apparently unlinked biological processes. Accordingly, CYP46A1 is emerging as a promising therapeutic target; however, the mechanisms underlying the multiplicity of the brain CYP46A1 activity effects are currently not understood. We proposed the chain reaction hypothesis, according to which CYP46A1 is important for the three primary (unifying) processes in the brain (sterol flux through the plasma membranes, acetyl-CoA, and isoprenoid production), which in turn affect a variety of secondary processes. We already identified several processes secondary to changes in sterol flux and herein undertook a multiomics approach to compare the brain proteome, acetylproteome, and metabolome of 5XFAD mice (an Alzheimer's disease model), control and treated with low-dose efavirenz. We found that the latter had increased production of phospholipids from the corresponding lysophospholipids and a globally increased protein acetylation (including histone acetylation). Apparently, these effects were secondary to increased acetyl-CoA production. Signaling of small GTPases due to their altered abundance or abundance of their regulators could be affected as well, potentially via isoprenoid biosynthesis. In addition, the omics data related differentially abundant molecules to other biological processes either reported previously or new. Thus, we obtained unbiased mechanistic insights and identified potential players mediating the multiplicity of the CYP46A1 brain effects and further detailed our chain reaction hypothesis.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, USA
| | - Makaya Butts
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Kim JB, Kim SJ, So M, Kim DK, Noh HR, Kim BJ, Choi YR, Kim D, Koo H, Kim T, Woo HG, Park SM. Artificial intelligence-driven drug repositioning uncovers efavirenz as a modulator of α-synuclein propagation: Implications in Parkinson's disease. Biomed Pharmacother 2024; 174:116442. [PMID: 38513596 DOI: 10.1016/j.biopha.2024.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder with an unclear etiology. Despite significant research efforts, developing disease-modifying treatments for PD remains a major unmet medical need. Notably, drug repositioning is becoming an increasingly attractive direction in drug discovery, and computational approaches offer a relatively quick and resource-saving method for identifying testable hypotheses that promote drug repositioning. We used an artificial intelligence (AI)-based drug repositioning strategy to screen an extensive compound library and identify potential therapeutic agents for PD. Our AI-driven analysis revealed that efavirenz and nevirapine, approved for treating human immunodeficiency virus infection, had distinct profiles, suggesting their potential effects on PD pathophysiology. Among these, efavirenz attenuated α-synuclein (α-syn) propagation and associated neuroinflammation in the brain of preformed α-syn fibrils-injected A53T α-syn Tg mice and α-syn propagation and associated behavioral changes in the C. elegans BiFC model. Through in-depth molecular investigations, we found that efavirenz can modulate cholesterol metabolism and mitigate α-syn propagation, a key pathological feature implicated in PD progression by regulating CYP46A1. This study opens new avenues for further investigation into the mechanisms underlying PD pathology and the exploration of additional drug candidates using advanced computational methodologies.
Collapse
Affiliation(s)
- Jae-Bong Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Soo-Jeong Kim
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
| | | | - Dong-Kyu Kim
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
| | - Hye Rin Noh
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Beom Jin Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Yu Ree Choi
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
| | - Doyoon Kim
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Department of Physiology, Ajou University School of Medicine, Suwon, Korea
| | | | | | - Hyun Goo Woo
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Department of Physiology, Ajou University School of Medicine, Suwon, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
4
|
Mast N, Li Y, Pikuleva IA. 7,8-Dihydroxy Efavirenz Is Not as Effective in CYP46A1 Activation In Vivo as Efavirenz or Its 8,14-Dihydroxy Metabolite. Int J Mol Sci 2024; 25:2242. [PMID: 38396919 PMCID: PMC10889178 DOI: 10.3390/ijms25042242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
High dose (S)-efavirenz (EFV) inhibits the HIV reverse transcriptase enzyme and is used to lower HIV load. Low-dose EFV allosterically activates CYP46A1, the key enzyme for cholesterol elimination from the brain, and is investigated as a potential treatment for Alzheimer's disease. Simultaneously, we evaluate EFV dihydroxymetabolites for in vivo brain effects to compare with those of (S)-EFV. We have already tested (rac)-8,14dihydroxy EFV on 5XFAD mice, a model of Alzheimer's disease. Herein, we treated 5XFAD mice with (rac)-7,8dihydroxy EFV. In both sexes, the treatment modestly activated CYP46A1 in the brain and increased brain content of acetyl-CoA and acetylcholine. Male mice also showed a decrease in the brain levels of insoluble amyloid β40 peptides. However, the treatment had no effect on animal performance in different memory tasks. Thus, the overall brain effects of (rac)-7,8dihydroxy EFV were weaker than those of EFV and (rac)-8,14dihydroxy EFV and did not lead to cognitive improvements as were seen in treatments with EFV and (rac)-8,14dihydroxy EFV. An in vitro study assessing CYP46A1 activation in co-incubations with EFV and (rac)-7,8dihydroxy EFV or (rac)-8,14dihydroxy EFV was carried out and provided insight into the compound doses and ratios that could be used for in vivo co-treatments with EFV and its dihydroxymetabolite.
Collapse
Affiliation(s)
| | | | - Irina A. Pikuleva
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH 44106, USA; (N.M.); (Y.L.)
| |
Collapse
|
5
|
Petrov AM. Oxysterols in Central and Peripheral Synaptic Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:91-123. [PMID: 38036877 DOI: 10.1007/978-3-031-43883-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol is a key molecule for synaptic transmission, and both central and peripheral synapses are cholesterol rich. During intense neuronal activity, a substantial portion of synaptic cholesterol can be oxidized by either enzymatic or non-enzymatic pathways to form oxysterols, which in turn modulate the activities of neurotransmitter receptors (e.g., NMDA and adrenergic receptors), signaling molecules (nitric oxide synthases, protein kinase C, liver X receptors), and synaptic vesicle cycling involved in neurotransmitters release. 24-Hydroxycholesterol, produced by neurons in the brain, could directly affect neighboring synapses and change neurotransmission. 27-Hydroxycholesterol, which can cross the blood-brain barrier, can alter both synaptogenesis and synaptic plasticity. Increased generation of 25-hydroxycholesterol by activated microglia and macrophages could link inflammatory processes to learning and neuronal regulation. Amyloids and oxidative stress can lead to an increase in the levels of ring-oxidized sterols and some of these oxysterols (4-cholesten-3-one, 5α-cholestan-3-one, 7β-hydroxycholesterol, 7-ketocholesterol) have a high potency to disturb or modulate neurotransmission at both the presynaptic and postsynaptic levels. Overall, oxysterols could be used as "molecular prototypes" for therapeutic approaches. Analogs of 24-hydroxycholesterol (SGE-301, SGE-550, SAGE718) can be used for correction of NMDA receptor hypofunction-related states, whereas inhibitors of cholesterol 24-hydroxylase, cholestane-3β,5α,6β-triol, and cholest-4-en-3-one oxime (olesoxime) can be utilized as potential anti-epileptic drugs and (or) protectors from excitotoxicity.
Collapse
Affiliation(s)
- Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, RT, Russia.
- Kazan State Medial University, Kazan, RT, Russia.
- Kazan Federal University, Kazan, RT, Russia.
| |
Collapse
|
6
|
Tsitsou-Kampeli A, Suzzi S, Kenigsbuch M, Satomi A, Strobelt R, Singer O, Feldmesser E, Purnapatre M, Colaiuta SP, David E, Cahalon L, Hahn O, Wyss-Coray T, Shaul Y, Amit I, Schwartz M. Cholesterol 24-hydroxylase at the choroid plexus contributes to brain immune homeostasis. Cell Rep Med 2023; 4:101278. [PMID: 37944529 PMCID: PMC10694665 DOI: 10.1016/j.xcrm.2023.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/26/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
The choroid plexus (CP) plays a key role in remotely controlling brain function in health, aging, and disease. Here, we report that CP epithelial cells express the brain-specific cholesterol 24-hydroxylase (CYP46A1) and that its levels are decreased under different mouse and human brain conditions, including amyloidosis, aging, and SARS-CoV-2 infection. Using primary mouse CP cell cultures, we demonstrate that the enzymatic product of CYP46A1, 24(S)-hydroxycholesterol, downregulates inflammatory transcriptomic signatures within the CP, found here to be elevated across multiple neurological conditions. In vitro, the pro-inflammatory cytokine tumor necrosis factor α (TNF-α) downregulates CYP46A1 expression, while overexpression of CYP46A1 or its pharmacological activation in mouse CP organ cultures increases resilience to TNF-α. In vivo, overexpression of CYP46A1 in the CP in transgenic mice with amyloidosis is associated with better cognitive performance and decreased brain inflammation. Our findings suggest that CYP46A1 expression in the CP impacts the role of this niche as a guardian of brain immune homeostasis.
Collapse
Affiliation(s)
| | - Stefano Suzzi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Mor Kenigsbuch
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Akisawa Satomi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel; Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Romano Strobelt
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Oded Singer
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Liora Cahalon
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Choi YG, Jang B, Park JH, Choi MW, Lee GY, Cho DJ, Kim HY, Lim HK, Lee WJ, Choi EK, Kim YS. Radotinib Decreases Prion Propagation and Prolongs Survival Times in Models of Prion Disease. Int J Mol Sci 2023; 24:12241. [PMID: 37569615 PMCID: PMC10419185 DOI: 10.3390/ijms241512241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The conversion of cellular prion protein (PrPC) into pathogenic prion isoforms (PrPSc) and the mutation of PRNP are definite causes of prion diseases. Unfortunately, without exception, prion diseases are untreatable and fatal neurodegenerative disorders; therefore, one area of research focuses on identifying medicines that can delay the progression of these diseases. According to the concept of drug repositioning, we investigated the efficacy of the c-Abl tyrosine kinase inhibitor radotinib, which is a drug that is approved for the treatment of chronic myeloid leukemia, in the treatment of disease progression in prion models, including prion-infected cell models, Tga20 and hamster cerebellar slice culture models, and 263K scrapie-infected hamster models. Radotinib inhibited PrPSc deposition in neuronal ZW13-2 cells that were infected with the 22L or 139A scrapie strains and in cerebellar slice cultures that were infected with the 22L or 263K scrapie strains. Interestingly, hamsters that were intraperitoneally injected with the 263K scrapie strain and intragastrically treated with radotinib (100 mg/kg) exhibited prolonged survival times (159 ± 28.6 days) compared to nontreated hamsters (135 ± 9.9 days) as well as reduced PrPSc deposition and ameliorated pathology. However, intraperitoneal injection of radotinib exerted a smaller effect on the survival rate of the hamsters. Additionally, we found that different concentrations of radotinib (60, 100, and 200 mg/kg) had similar effects on survival time, but this effect was not observed after treatment with a low dose (30 mg/kg) of radotinib. Interestingly, when radotinib was administered 4 or 8 weeks after prion inoculation, the treated hamsters survived longer than the vehicle-treated hamsters. Additionally, a pharmacokinetic assay revealed that radotinib effectively crossed the blood-brain barrier. Based on our findings, we suggest that radotinib is a new candidate anti-prion drug that could possibly be used to treat prion diseases and promote the remission of symptoms.
Collapse
Affiliation(s)
- Yeong-Gon Choi
- Ilsong Institute of Life Science, Hallym University, Youngdeungpo-gu, Seoul 07247, Republic of Korea
| | - Byungki Jang
- Ilsong Institute of Life Science, Hallym University, Youngdeungpo-gu, Seoul 07247, Republic of Korea
| | - Jeong-Ho Park
- Ilsong Institute of Life Science, Hallym University, Youngdeungpo-gu, Seoul 07247, Republic of Korea
| | - Min-Woo Choi
- Ilsong Institute of Life Science, Hallym University, Youngdeungpo-gu, Seoul 07247, Republic of Korea
| | - Gong Yeal Lee
- Il Yang Pharm Co., Ltd., 37, Hagal-ro, 136beon-gil, Giheung-gu, Yongin-si 17096, Republic of Korea (H.Y.K.)
| | - Dae Jin Cho
- Il Yang Pharm Co., Ltd., 37, Hagal-ro, 136beon-gil, Giheung-gu, Yongin-si 17096, Republic of Korea (H.Y.K.)
| | - Hong Youp Kim
- Il Yang Pharm Co., Ltd., 37, Hagal-ro, 136beon-gil, Giheung-gu, Yongin-si 17096, Republic of Korea (H.Y.K.)
| | - Hae Kyoung Lim
- Il Yang Pharm Co., Ltd., 37, Hagal-ro, 136beon-gil, Giheung-gu, Yongin-si 17096, Republic of Korea (H.Y.K.)
| | - Won Jae Lee
- Il Yang Pharm Co., Ltd., 37, Hagal-ro, 136beon-gil, Giheung-gu, Yongin-si 17096, Republic of Korea (H.Y.K.)
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Youngdeungpo-gu, Seoul 07247, Republic of Korea
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon 24252, Republic of Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Youngdeungpo-gu, Seoul 07247, Republic of Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
8
|
Ali T, Klein AN, McDonald K, Johansson L, Mukherjee PG, Hallbeck M, Doh-Ura K, Schatzl HM, Gilch S. Cellulose ether treatment inhibits amyloid beta aggregation, neuroinflammation and cognitive deficits in transgenic mouse model of Alzheimer's disease. J Neuroinflammation 2023; 20:177. [PMID: 37507761 PMCID: PMC10375631 DOI: 10.1186/s12974-023-02858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable, progressive and devastating neurodegenerative disease. Pathogenesis of AD is associated with the aggregation and accumulation of amyloid beta (Aβ), a major neurotoxic mediator that triggers neuroinflammation and memory impairment. Recently, we found that cellulose ether compounds (CEs) have beneficial effects against prion diseases by inhibiting protein misfolding and replication of prions, which share their replication mechanism with Aβ. CEs are FDA-approved safe additives in foods and pharmaceuticals. Herein, for the first time we determined the therapeutic effects of the representative CE (TC-5RW) in AD using in vitro and in vivo models. Our in vitro studies showed that TC-5RW inhibits Aβ aggregation, as well as neurotoxicity and immunoreactivity in Aβ-exposed human and murine neuroblastoma cells. In in vivo studies, for the first time we observed that single and weekly TC-5RW administration, respectively, improved memory functions of transgenic 5XFAD mouse model of AD. We further demonstrate that TC-5RW treatment of 5XFAD mice significantly inhibited Aβ oligomer and plaque burden and its associated neuroinflammation via regulating astrogliosis, microgliosis and proinflammatory mediator glial maturation factor beta (GMFβ). Additionally, we determined that TC-5RW reduced lipopolysaccharide-induced activated gliosis and GMFβ in vitro. In conclusion, our results demonstrate that CEs have therapeutic effects against Aβ pathologies and cognitive impairments, and direct, potent anti-inflammatory activity to rescue neuroinflammation. Therefore, these FDA-approved compounds are effective candidates for developing therapeutics for AD and related neurodegenerative diseases associated with protein misfolding.
Collapse
Affiliation(s)
- Tahir Ali
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Antonia N Klein
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Keegan McDonald
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Lovisa Johansson
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58185, Linköping, Sweden
| | | | - Martin Hallbeck
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58185, Linköping, Sweden
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hermann M Schatzl
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
El-Darzi N, Mast N, Li Y, Dailey B, Kang M, Rhee DJ, Pikuleva IA. The normalizing effects of the CYP46A1 activator efavirenz on retinal sterol levels and risk factors for glaucoma in Apoj -/- mice. Cell Mol Life Sci 2023; 80:194. [PMID: 37392222 PMCID: PMC10314885 DOI: 10.1007/s00018-023-04848-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Apolipoprotein J (APOJ) is a multifunctional protein with genetic evidence suggesting an association between APOJ polymorphisms and Alzheimer's disease as well as exfoliation glaucoma. Herein we conducted ocular characterizations of Apoj-/- mice and found that their retinal cholesterol levels were decreased and that this genotype had several risk factors for glaucoma: increased intraocular pressure and cup-to-disk ratio and impaired retinal ganglion cell (RGC) function. The latter was not due to RGC degeneration or activation of retinal Muller cells and microglia/macrophages. There was also a decrease in retinal levels of 24-hydroxycholesterol, a suggested neuroprotectant under glaucomatous conditions and a positive allosteric modulator of N-methyl-D-aspartate receptors mediating the light-evoked response of the RGC. Therefore, Apoj-/- mice were treated with low-dose efavirenz, an allosteric activator of CYP46A1 which converts cholesterol into 24-hydroxycholesterol. Efavirenz treatment increased retinal cholesterol and 24-hydroxycholesterol levels, normalized intraocular pressure and cup-to-disk ratio, and rescued in part RGC function. Retinal expression of Abcg1 (a cholesterol efflux transporter), Apoa1 (a constituent of lipoprotein particles), and Scarb1 (a lipoprotein particle receptor) was increased in EVF-treated Apoj-/- mice, indicating increased retinal cholesterol transport on lipoprotein particles. Ocular characterizations of Cyp46a1-/- mice supported the beneficial efavirenz treatment effects via CYP46A1 activation. The data obtained demonstrate an important APOJ role in retinal cholesterol homeostasis and link this apolipoprotein to the glaucoma risk factors and retinal 24-hydroxycholesterol production by CYP46A1. As the CYP46A1 activator efavirenz is an FDA-approved anti-HIV drug, our studies suggest a new therapeutic approach for treatment of glaucomatous conditions.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yong Li
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Brian Dailey
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Min Kang
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Douglas J Rhee
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Ali T, Klein AN, Vu A, Arifin MI, Hannaoui S, Gilch S. Peptide aptamer targeting Aβ-PrP-Fyn axis reduces Alzheimer's disease pathologies in 5XFAD transgenic mouse model. Cell Mol Life Sci 2023; 80:139. [PMID: 37149826 PMCID: PMC10164677 DOI: 10.1007/s00018-023-04785-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Currently, no effective therapeutics exist for the treatment of incurable neurodegenerative diseases such as Alzheimer's disease (AD). The cellular prion protein (PrPC) acts as a high-affinity receptor for amyloid beta oligomers (AβO), a main neurotoxic species mediating AD pathology. The interaction of AβO with PrPC subsequently activates Fyn tyrosine kinase and neuroinflammation. Herein, we used our previously developed peptide aptamer 8 (PA8) binding to PrPC as a therapeutic to target the AβO-PrP-Fyn axis and prevent its associated pathologies. Our in vitro results indicated that PA8 prevents the binding of AβO with PrPC and reduces AβO-induced neurotoxicity in mouse neuroblastoma N2a cells and primary hippocampal neurons. Next, we performed in vivo experiments using the transgenic 5XFAD mouse model of AD. The 5XFAD mice were treated with PA8 and its scaffold protein thioredoxin A (Trx) at a 14.4 µg/day dosage for 12 weeks by intraventricular infusion through Alzet® osmotic pumps. We observed that treatment with PA8 improves learning and memory functions of 5XFAD mice as compared to Trx-treated 5XFAD mice. We found that PA8 treatment significantly reduces AβO levels and Aβ plaques in the brain tissue of 5XFAD mice. Interestingly, PA8 significantly reduces AβO-PrP interaction and its downstream signaling such as phosphorylation of Fyn kinase, reactive gliosis as well as apoptotic neurodegeneration in the 5XFAD mice compared to Trx-treated 5XFAD mice. Collectively, our results demonstrate that treatment with PA8 targeting the AβO-PrP-Fyn axis is a promising and novel approach to prevent and treat AD.
Collapse
Affiliation(s)
- Tahir Ali
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Antonia N Klein
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alex Vu
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Maria I Arifin
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Samia Hannaoui
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
11
|
Alves Conceição C, Assis de Lemos G, Barros CA, Vieira TCRG. What is the role of lipids in prion conversion and disease? Front Mol Neurosci 2023; 15:1032541. [PMID: 36704327 PMCID: PMC9871914 DOI: 10.3389/fnmol.2022.1032541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The molecular cause of transmissible spongiform encephalopathies (TSEs) involves the conversion of the cellular prion protein (PrPC) into its pathogenic form, called prion scrapie (PrPSc), which is prone to the formation of amorphous and amyloid aggregates found in TSE patients. Although the mechanisms of conversion of PrPC into PrPSc are not entirely understood, two key points are currently accepted: (i) PrPSc acts as a seed for the recruitment of native PrPC, inducing the latter's conversion to PrPSc; and (ii) other biomolecules, such as DNA, RNA, or lipids, can act as cofactors, mediating the conversion from PrPC to PrPSc. Interestingly, PrPC is anchored by a glycosylphosphatidylinositol molecule in the outer cell membrane. Therefore, interactions with lipid membranes or alterations in the membranes themselves have been widely investigated as possible factors for conversion. Alone or in combination with RNA molecules, lipids can induce the formation of PrP in vitro-produced aggregates capable of infecting animal models. Here, we discuss the role of lipids in prion conversion and infectivity, highlighting the structural and cytotoxic aspects of lipid-prion interactions. Strikingly, disorders like Alzheimer's and Parkinson's disease also seem to be caused by changes in protein structure and share pathogenic mechanisms with TSEs. Thus, we posit that comprehending the process of PrP conversion is relevant to understanding critical events involved in a variety of neurodegenerative disorders and will contribute to developing future therapeutic strategies for these devastating conditions.
Collapse
Affiliation(s)
- Cyntia Alves Conceição
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Assis de Lemos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Augusto Barros
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,*Correspondence: Tuane C. R. G. Vieira, ✉
| |
Collapse
|
12
|
Loss of small GTPase Rab7 activation in prion infection negatively affects a feedback loop regulating neuronal cholesterol metabolism. J Biol Chem 2023; 299:102883. [PMID: 36623732 PMCID: PMC9926124 DOI: 10.1016/j.jbc.2023.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Prion diseases are fatal and infectious neurodegenerative diseases that occur in humans and animals. They are caused by the misfolding of the cellular prion protein PrPc into the infectious isoform PrPSc. PrPSc accumulates mostly in endolysosomal vesicles of prion-infected cells, eventually causing neurodegeneration. In response to prion infection, elevated cholesterol levels and a reduction in membrane-attached small GTPase Rab7 have been observed in neuronal cells. Here, we investigated the molecular events causing an impaired Rab7 membrane attachment and the potential mechanistic link with elevated cholesterol levels in prion infection. We demonstrate that prion infection is associated with reduced levels of active Rab7 (Rab7.GTP) in persistently prion-infected neuronal cell lines, primary cerebellar granular neurons, and neurons in the brain of mice with terminal prion disease. In primary cerebellar granular neurons, levels of active Rab7 were increased during the very early stages of the prion infection prior to a significant decrease concomitant with PrPSc accumulation. The reduced activation of Rab7 in prion-infected neuronal cell lines is also associated with its reduced ubiquitination status, decreased interaction with its effector RILP, and altered lysosomal positioning. Consequently, the Rab7-mediated trafficking of low-density lipoprotein to lysosomes is delayed. This results in an impaired feedback regulation of cholesterol synthesis leading to an increase in cholesterol levels. Notably, transient overexpression of the constitutively active mutant of Rab7 rescues the delay in the low-density lipoprotein trafficking, hence reducing cholesterol levels and attenuating PrPSc propagation, demonstrating a mechanistic link between the loss of Rab7.GTP and elevated cholesterol levels.
Collapse
|
13
|
Costa B, Vale N. Efavirenz: History, Development and Future. Biomolecules 2022; 13:biom13010088. [PMID: 36671473 PMCID: PMC9855767 DOI: 10.3390/biom13010088] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Efavirenz (Sustiva®) is a first-generation non-nucleoside reverse transcriptase inhibitor (NNRTI) used to treat human immunodeficiency virus (HIV) type 1 infection or to prevent the spread of HIV. In 1998, the FDA authorized efavirenz for the treatment of HIV-1 infection. Patients formerly required three 200 mg efavirenz capsules daily, which was rapidly updated to a 600 mg tablet that only required one tablet per day. However, when given 600 mg once daily, plasma efavirenz concentrations were linked not only to poor HIV suppression but also to toxicity. Clinical data suggested that the standard dose of efavirenz could be reduced without compromising its effectiveness, resulting in a reduction in side effects and making the drug more affordable. Therefore, ENCORE1 was performed to compare the efficiency and safeness of a reduced dose of efavirenz (400 mg) with the standard dose (600 mg) plus two NRTI in antiretroviral-naïve HIV-infected individuals. Nowadays, due to the emergence of integrase strand transfer inhibitors (INSTIs), some consider that it is time to stop using efavirenz as a first-line treatment on a global scale, in the parts of the world where that is possible. Efavirenz has been a primary first-line antiviral drug for more than 15 years. However, at this moment, the best use for efavirenz could be for pre-exposure prophylaxis (PrEP) and repurposing in medicine.
Collapse
Affiliation(s)
- Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
14
|
Ikeda S, Kajita Y, Miyamoto M, Matsumiya K, Ishii T, Nishi T, Gay SC, Lane W, Constantinescu CC, Alagille D, Papin C, Tamagnan G, Kuroita T, Koike T. Design and synthesis of aryl-piperidine derivatives as potent and selective PET tracers for cholesterol 24-hydroxylase (CH24H). Eur J Med Chem 2022; 240:114612. [PMID: 35863274 DOI: 10.1016/j.ejmech.2022.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/03/2022]
Abstract
Cholesterol 24-hydroxylase (CH24H, CYP46A1) is a cytochrome P450 family enzyme that maintains the homeostasis of brain cholesterol. Soticlestat, a potent and selective CH24H inhibitor, is in development as a therapeutic agent for Dravet syndrome and Lennox-Gastaut syndrome. Herein, we report the discovery of aryl-piperidine derivatives as potent and selective CH24H positron emission tomography (PET) tracers which can be used for dose guidance of a clinical CH24H inhibitor and as a diagnostic tool for CH24H-related pathology. Starting from compound 1 (IC50 = 16 nM, logD = 1.7), which was reported as a CH24H inhibitor with lower lipophilicity, a18F-labeling site (3-fluoroazetidine) was incorporated by structure-based drug design (SBDD) utilizing the co-crystal structure of a compound 1 analog. Subsequent optimization to adjust key parameters for PET tracers, such as potency, lipophilicity, brain penetration, and unbound plasma protein binding, enabled compounds 3f (IC50 = 8.8 nM) and 3g (IC50 = 8.7 nM) as PET imaging candidates. Selectivity of these compounds for CH24H was validated by a brain distribution study using CH24H-WT and KO mice. In non-human primate PET imaging, [18F]3f and [18F]3g showed similar regional uptake in the brain, indicating that these tracers were specific to the CH24H-expressed regions and validated the expression of CH24H in the living brain by different tracers.
Collapse
Affiliation(s)
- Shuhei Ikeda
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yuichi Kajita
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Maki Miyamoto
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kouta Matsumiya
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tsuyoshi Ishii
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Toshiya Nishi
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Sean C Gay
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, CA, 92121, United States
| | - Weston Lane
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, CA, 92121, United States
| | | | - David Alagille
- Invicro, LLC, 60 Temple Street, New Haven, CT, 06510, United States
| | - Caroline Papin
- Invicro, LLC, 60 Temple Street, New Haven, CT, 06510, United States
| | - Gilles Tamagnan
- Invicro, LLC, 60 Temple Street, New Haven, CT, 06510, United States
| | - Takanobu Kuroita
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tatsuki Koike
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
15
|
Cholesterol and its reciprocal association with prion infection. Cell Tissue Res 2022; 392:235-246. [PMID: 35821439 DOI: 10.1007/s00441-022-03669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
Abstract
Prion diseases are incurable, infectious and fatal neurodegenerative diseases that affect both humans and animals. The pathogenesis of prion disease involves the misfolding of the cellular prion protein, PrPC, to a disease-causing conformation, PrPSc, in the brain. The exact mechanism of conversion of PrPC to PrPSc is not clear; however, there are numerous studies supporting that this process of misfolding requires the association of PrPC with lipid raft domains of the plasma membrane. An increase in the cellular cholesterol content with prion infection has been observed in both in vivo and in vitro studies. As cholesterol is critical for the formation of lipid rafts, on the one hand, this increase may be related to, or aiding in, the process of prion conversion. On the other hand, increased cholesterol levels may affect neuronal viability. Here, we discuss current literature on the underlying mechanisms and potential consequences of elevated neuronal cholesterol in prion infection and advancements in prion disease therapeutics targeting brain cholesterol homeostasis.
Collapse
|
16
|
Mast N, Li Y, Pikuleva IA. Increased Acetylcholine Levels and Other Brain Effects in 5XFAD Mice after Treatment with 8,14-Dihydroxy Metabolite of Efavirenz. Int J Mol Sci 2022; 23:ijms23147669. [PMID: 35887013 PMCID: PMC9317559 DOI: 10.3390/ijms23147669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 02/08/2023] Open
Abstract
Efavirenz (EFV), an FDA-approved anti-HIV drug, has off-target binding to CYP46A1, the CNS enzyme which converts cholesterol to 24-hydroxycholesterol. At small doses, EFV allosterically activates CYP46A1 in mice and humans and mitigates some of the Alzheimer's disease manifestations in 5XFAD mice, an animal model. Notably, in vitro, all phase 1 EFV hydroxymetabolites activate CYP46A1 as well and bind either to the allosteric site for EFV, neurotransmitters or both. Herein, we treated 5XFAD mice with 8,14-dihydroxyEFV, the binder to the neurotransmitter allosteric site, which elicits the highest CYP46A1 activation in vitro. We found that treated animals of both sexes had activation of CYP46A1 and cholesterol turnover in the brain, decreased content of the amyloid beta 42 peptide, increased levels of acetyl-CoA and acetylcholine, and altered expression of the brain marker proteins. In addition, male mice had improved performance in the Barnes Maze test and increased expression of the acetylcholine-related genes. This work expands our knowledge of the beneficial CYP46A1 activation effects and demonstrates that 8,14-dihydroxyEFV crosses the blood-brain barrier and has therapeutic potential as a CYP46A1 activator.
Collapse
|
17
|
Mast N, Fotinich A, Pikuleva IA. The Hydroxylation Position Rather than Chirality Determines How Efavirenz Metabolites Activate Cytochrome P450 46A1 In Vitro. Drug Metab Dispos 2022; 50:923-930. [PMID: 35489779 PMCID: PMC11022896 DOI: 10.1124/dmd.122.000874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022] Open
Abstract
(S)-Efavirenz (EFV) is a reverse transcriptase inhibitor and an antiviral drug. In addition, (S)-EFV can interact off target with CYP46A1, the major cholesterol hydroxylating enzyme in the mammalian brain, and allosterically activate CYP46A1 at a small dose in mice and humans. Studies with purified CYP46A1 identified two allosteric sites on the enzyme surface, one for (S)-EFV and the second site for L-glutamate (Glu), a neurotransmitter that also activates CYP46A1 either alone or in the presence of (S)-EFV. Previously, we found that racemic (rac)-7-hydroxyefavirenz, (rac)-8-hydroxyefavirenz, (S)-8-hydroxyefavirenz, and (rac)-8,14-dihydroxyefavirenz, compounds with the hydroxylation positions corresponding to the metabolism of (S)-EFV in the liver, activated CYP46A1 in vitro. Yet, these compounds differed from (S)-EFV in how they allosterically interacted with CYP46A1. Herein, we further characterized (rac)-7-hydroxyefavirenz, (rac)-8-hydroxyefavirenz, (S)-8-hydroxyefavirenz, and (rac)-8,14-dihydroxyefavirenz, and, in addition, (R)-EFV, (S)-7-hydroxyefavirenz, (rac)-7,8-dihydroxyefavirenz, (S)-7,8-dihydroxyefavirenz, and (S)-8,14-dihydroxyefavirenz for activation and binding to CYP46A1 in vitro. We found that the spatial configuration of all tested compounds neither affected the CYP46A1 activation nor the sites of binding to CYP46A1. Yet, the hydroxylation position determined whether the hydroxylated metabolite interacted with the allosteric site for (S)-EFV [(R)-EFV, (rac)-7,8-dihydroxyefavirenz, and (S)-7,8-dihydroxyefavirenz], L-Glu [(rac)- and (S)-8,14-dihydroxyefavirenz], or both [(rac)-7-hydroxyefavirenz, (S)-7-hydroxyefavirenz, (rac)-8-hydroxyefavirenz, and (S)-8-hydroxyefavirenz]. This difference in binding to the allosteric sites determined, in turn, how CYP46A1 activity was changed in the coincubations with (S)-EFV and either its metabolite or L-Glu. The results suggest EFV metabolites that could be more potent for CYP46A1 activation in vivo than (S)-EFV. SIGNIFICANCE STATEMENT: This study found that not only efavirenz but also all its hydroxylated metabolites allosterically activate CYP46A1 in vitro. The enzyme activation depended on the hydroxylation position but not the metabolite spatial configuration and involved either one or two allosteric sites-for efavirenz, L-glutamate, or both. The results suggest that the hydroxylated efavirenz metabolites may differ from efavirenz in how they interact with the CYP46A1 allosteric and active sites.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Anna Fotinich
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
18
|
El-Darzi N, Mast N, Buchner DA, Saadane A, Dailey B, Trichonas G, Pikuleva IA. Low-Dose Anti-HIV Drug Efavirenz Mitigates Retinal Vascular Lesions in a Mouse Model of Alzheimer's Disease. Front Pharmacol 2022; 13:902254. [PMID: 35721135 PMCID: PMC9198296 DOI: 10.3389/fphar.2022.902254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
A small dose of the anti-HIV drug efavirenz (EFV) was previously discovered to activate CYP46A1, a cholesterol-eliminating enzyme in the brain, and mitigate some of the manifestation of Alzheimer's disease in 5XFAD mice. Herein, we investigated the retina of these animals, which were found to have genetically determined retinal vascular lesions associated with deposits within the retinal pigment epithelium and subretinal space. We established that EFV treatment activated CYP46A1 in the retina, enhanced retinal cholesterol turnover, and diminished the lesion frequency >5-fold. In addition, the treatment mitigated fluorescein leakage from the aberrant blood vessels, deposit size, activation of retinal macrophages/microglia, and focal accumulations of amyloid β plaques, unesterified cholesterol, and Oil Red O-positive lipids. Studies of retinal transcriptomics and proteomics identified biological processes enriched with differentially expressed genes and proteins. We discuss the mechanisms of the beneficial EFV effects on the retinal phenotype of 5XFAD mice. As EFV is an FDA-approved drug, and we already tested the safety of small-dose EFV in patients with Alzheimer's disease, our data support further clinical investigation of this drug in subjects with retinal vascular lesions or neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Natalia Mast
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - David A. Buchner
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Aicha Saadane
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Brian Dailey
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Georgios Trichonas
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Irina A. Pikuleva
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States,*Correspondence: Irina A. Pikuleva,
| |
Collapse
|
19
|
Uliassi E, Nikolic L, Bolognesi ML, Legname G. Therapeutic strategies for identifying small molecules against prion diseases. Cell Tissue Res 2022; 392:337-347. [PMID: 34989851 DOI: 10.1007/s00441-021-03573-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023]
Abstract
Prion diseases are fatal neurodegenerative disorders, for which there are no effective therapeutic and diagnostic agents. The main pathological hallmark has been identified as conformational changes of the cellular isoform prion protein (PrPC) to a misfolded isoform of the prion protein (PrPSc). Targeting PrPC and its conversion to PrPSc is still the central dogma in prion drug discovery, particularly in in silico and in vitro screening endeavors, leading to the identification of many small molecules with therapeutic potential. Nonetheless, multiple pathological targets are critically involved in the intricate pathogenesis of prion diseases. In this context, multi-target-directed ligands (MTDLs) emerge as valuable therapeutic approach for their potential to effectively counteract the complex etiopathogenesis by simultaneously modulating multiple targets. In addition, diagnosis occurs late in the disease process, and consequently a successful therapeutic intervention cannot be provided. In this respect, small molecule theranostics, which combine imaging and therapeutic properties, showed tremendous potential to cure and diagnose in vivo prion diseases. Herein, we review the major advances in prion drug discovery, from anti-prion small molecules identified by means of in silico and in vitro screening approaches to two rational strategies, namely MTDLs and theranostics, that have led to the identification of novel compounds with an expanded anti-prion profile.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, Italy
| | - Lea Nikolic
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, Italy.
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
20
|
Pikuleva IA. Targeting cytochrome P450 46A1 and brain cholesterol 24-hydroxylation to treat neurodegenerative diseases. EXPLORATION OF NEUROPROTECTIVE THERAPY 2021; 1:159-172. [PMID: 35156102 DOI: 10.37349/ent.2021.00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The brain cholesterol content is determined by the balance between the pathways of in situ biosynthesis and cholesterol elimination via 24-hydroxylation catalyzed by CYP46A1 (cytochrome P450 46A1). Both pathways are tightly coupled and determine the rate of brain cholesterol turnover. Evidence is accumulating that modulation of CYP46A1 activity by gene therapy or pharmacologic means could be beneficial in case neurodegenerative and other brain diseases and affect brain processes other than cholesterol biosynthesis and elimination. This minireview summarizes these other processes, most common of which include abnormal protein accumulation, memory and cognition, motor behavior, gene transcription, protein phosphorylation as well as autophagy and lysosomal processing. The unifying mechanisms, by which these processes could be affected by CYP46A targeting are also discussed.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
21
|
Pikuleva IA, Cartier N. Cholesterol Hydroxylating Cytochrome P450 46A1: From Mechanisms of Action to Clinical Applications. Front Aging Neurosci 2021; 13:696778. [PMID: 34305573 PMCID: PMC8297829 DOI: 10.3389/fnagi.2021.696778] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Cholesterol, an essential component of the brain, and its local metabolism are involved in many neurodegenerative diseases. The blood-brain barrier is impermeable to cholesterol; hence, cholesterol homeostasis in the central nervous system represents a balance between in situ biosynthesis and elimination. Cytochrome P450 46A1 (CYP46A1), a central nervous system-specific enzyme, converts cholesterol to 24-hydroxycholesterol, which can freely cross the blood-brain barrier and be degraded in the liver. By the dual action of initiating cholesterol efflux and activating the cholesterol synthesis pathway, CYP46A1 is the key enzyme that ensures brain cholesterol turnover. In humans and mouse models, CYP46A1 activity is altered in Alzheimer’s and Huntington’s diseases, spinocerebellar ataxias, glioblastoma, and autism spectrum disorders. In mouse models, modulations of CYP46A1 activity mitigate the manifestations of Alzheimer’s, Huntington’s, Nieman-Pick type C, and Machao-Joseph (spinocerebellar ataxia type 3) diseases as well as amyotrophic lateral sclerosis, epilepsy, glioblastoma, and prion infection. Animal studies revealed that the CYP46A1 activity effects are not limited to cholesterol maintenance but also involve critical cellular pathways, like gene transcription, endocytosis, misfolded protein clearance, vesicular transport, and synaptic transmission. How CYP46A1 can exert central control of such essential brain functions is a pressing question under investigation. The potential therapeutic role of CYP46A1, demonstrated in numerous models of brain disorders, is currently being evaluated in early clinical trials. This review summarizes the past 70 years of research that has led to the identification of CYP46A1 and brain cholesterol homeostasis as powerful therapeutic targets for severe pathologies of the CNS.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Nathalie Cartier
- NeuroGenCell, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| |
Collapse
|
22
|
Mast N, Petrov AM, Prendergast E, Bederman I, Pikuleva IA. Brain Acetyl-CoA Production and Phosphorylation of Cytoskeletal Proteins Are Targets of CYP46A1 Activity Modulation and Altered Sterol Flux. Neurotherapeutics 2021; 18:2040-2060. [PMID: 34235635 PMCID: PMC8609074 DOI: 10.1007/s13311-021-01079-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/04/2023] Open
Abstract
Cholesterol and 24-hydroxycholesterol are the most abundant brain sterols and represent the substrate and product, respectively, of cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme. CYP46A1 controls cholesterol elimination and turnover in the brain, the two processes that determine the rate of brain sterol flux through the plasma membranes and thereby the properties of these membranes. Brain sterol flux is decreased in Cyp46a1-/- mice compared to wild-type mice and increased in 5XFAD mice (a model of Alzheimer's disease) when they are treated with a small dose of efavirenz, a CYP46A1 activator. Herein, we first assessed the brain proteome (synaptosomal fractions) and phospho-proteome (synaptosomal fractions and brain homogenates) of efavirenz-treated and control 5XFAD mice. Then, based on the pattern of protein abundance change, we conducted acetyl-CoA measurements (brain homogenates and mitochondria) and metabolic profiling (brain homogenates). The phospho-proteomics datasets were used for comparative analyses with the datasets obtained by us previously on mice with the same changes (efavirenz-treated and control 5XFAD mice from a different treatment paradigm) or with changes in the opposite direction (Cyp46a1-/- vs wild-type mice) in brain sterol flux. We found that CYP46A1 activity or the rate of brain sterol flux affects acetyl-CoA-related metabolic pathways as well as phosphorylation of cytoskeletal and other proteins. Knowledge of the key roles of acetyl-CoA and cytoskeletal phosphorylation in cell biology expands our understanding of the significance of CYP46A1-mediated cholesterol 24-hydroxylation in the brain and provides an additional explanation for why CYP46A1 activity modulations are beneficial in mouse models of different brain diseases.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, 420111, Kazan, Russia
- Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, 420012, Kazan, Russia
| | - Erin Prendergast
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|