1
|
Lu W, Duan Y, Li K, Cheng Z, Qiu J. Metabolic interactions between organs in overweight and obesity using total-body positron emission tomography. Int J Obes (Lond) 2024; 48:94-102. [PMID: 37816863 DOI: 10.1038/s41366-023-01394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Overweight and obesity is a complex condition resulting from unbalanced energy homeostasis among various organs. However, systemic abnormalities in overweight and obese people are seldom explored in vivo by metabolic imaging techniques. The aim of this study was to determine metabolic abnormities throughout the body in overweight and obese adults using total-body positron emission tomography (PET) glucose uptake imaging. METHODS Thirty normal weight subjects [body mass index (BMI) < 25 kg/m2, 55.47 ± 13.94 years, 16 men and 14 women], and 26 overweight and obese subjects [BMI ≥ 25 kg/m2, 52.38 ± 9.52 years, 21 men and 5 women] received whole-body 18F-fluorodeoxyglucose PET imaging using the uEXPLORER. Whole-body standardized uptake value normalized by lean body mass (SUL) images were calculated. Metabolic networks were constructed based on the whole-body SUL images using covariance network approach. Both group-level and individual-level network differences between normal weight and overweight/obese subjects were evaluated. Correlation analysis was conducted between network properties and BMI for the overweight/obese subjects. RESULTS Compared with normal weight subjects, overweight/obese subjects exhibited altered network connectivity strength in four network nodes, namely the pancreas (p = 0.033), spleen (p = 0.021), visceral adipose tissue (VAT) (p = 1.12 × 10-5) and bone (p = 0.021). Network deviations of overweight/obese subjects from the normal weight were positively correlated with BMI (r = 0.718, p = 3.64 × 10-5). In addition, overweight/obese subjects experienced altered connections between organs, and some of the altered connections, including pancreas-right lung and VAT-bilateral lung connections were significantly correlated with BMI. CONCLUSION Overweight/obese individuals exhibit metabolic alterations in organ level, and altered metabolic interactions at the systemic level. The proposed approach using total-body PET imaging can reveal individual metabolic variability and metabolic deviations between organs, which would open up a new path for understanding metabolic alterations in overweight and obesity.
Collapse
Affiliation(s)
- Weizhao Lu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Yanhua Duan
- Department of PET-CT, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, 250014, China
| | - Kun Li
- Department of PET-CT, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, 250014, China
| | - Zhaoping Cheng
- Department of PET-CT, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, 250014, China.
| | - Jianfeng Qiu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
| |
Collapse
|
2
|
Luo W, Geng Y, Gao M, Cao M, Wang J, Yang J, Sun C, Yan X. Isolation and Identification of Bone Marrow Mesenchymal Stem Cells from Forest Musk Deer. Animals (Basel) 2022; 13:ani13010017. [PMID: 36611625 PMCID: PMC9817501 DOI: 10.3390/ani13010017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The forest musk deer (Moschus berezovskii) is an endangered animal that produces musk that is utilized for medical applications worldwide, and this species primarily lives in China. Animal-derived musk can be employed as an important ingredient in Chinese medicine. To investigate the properties of bone marrow mesenchymal stem cells (MSCs) obtained from the bone marrow of forest deer for future application, MSCs were isolated and cultivated in vitro. The properties and differentiation of these cells were assessed at the cellular and gene levels. The results show that 81,533 expressed genes were detected by RNA sequencing, and marker genes of MSCs were expressed in the cells. Karyotype analysis of the cells determined the karyotype to be normal, and marker proteins of MSCs were observed to be expressed in the cell membranes. Cells were differentiated into osteoblasts, adipocytes, and chondroblasts. The expression of genes related to osteoblasts, adipocytes, and chondroblasts was observed to be increased. The results of this study demonstrate that the properties of the cells isolated from bone marrow were in keeping with the characteristics of MSCs, providing a possible basis for future research.
Collapse
|
3
|
Jauregui-Lozano J, Bakhle K, Weake VM. In vivo tissue-specific chromatin profiling in Drosophila melanogaster using GFP-tagged nuclei. Genetics 2021; 218:6281219. [PMID: 34022041 DOI: 10.1093/genetics/iyab079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
The chromatin landscape defines cellular identity in multicellular organisms with unique patterns of DNA accessibility and histone marks decorating the genome of each cell type. Thus, profiling the chromatin state of different cell types in an intact organism under disease or physiological conditions can provide insight into how chromatin regulates cell homeostasis in vivo. To overcome the many challenges associated with characterizing chromatin state in specific cell types, we developed an improved approach to isolate Drosophila melanogaster nuclei tagged with a GFPKASH protein. The perinuclear space-localized KASH domain anchors GFP to the outer nuclear membrane, and expression of UAS-GFPKASH can be controlled by tissue-specific Gal4 drivers. Using this protocol, we profiled chromatin accessibility using an improved version of Assay for Transposable Accessible Chromatin followed by sequencing (ATAC-seq), called Omni-ATAC. In addition, we examined the distribution of histone marks using Chromatin immunoprecipitation followed by sequencing (ChIP-seq) and Cleavage Under Targets and Tagmentation (CUT&Tag) in adult photoreceptor neurons. We show that the chromatin landscape of photoreceptors reflects the transcriptional state of these cells, demonstrating the quality and reproducibility of our approach for profiling the transcriptome and epigenome of specific cell types in Drosophila.
Collapse
Affiliation(s)
| | - Kimaya Bakhle
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Höpfinger A, Berghoff M, Karrasch T, Schmid A, Schäffler A. Systematic Quantification of Neurotrophic Adipokines RBP4, PEDF, and Clusterin in Human Cerebrospinal Fluid and Serum. J Clin Endocrinol Metab 2021; 106:e2239-e2250. [PMID: 33484131 DOI: 10.1210/clinem/dgaa983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 02/08/2023]
Abstract
CONTEXT Data on the presence/quantification of the neurotrophic adipokines retinol-binding protein-4 (RBP4), clusterin, and pigment epithelium-derived factor (PEDF) in human cerebrospinal fluid (CSF) are scarce and migration of these adipokines across of the blood-brain barrier (BBB) is uncertain. OBJECTIVE This work aimed to quantify RBP4, PEDF, and clusterin in paired serum and CSF samples of patients undergoing neurological evaluation. METHODS A total of 268 patients (109 male, 159 female) were included. Adipokine serum and CSF concentrations were measured by enzyme-linked immunosorbent assay in duplicate. RESULTS RBP4 was abundant in serum (mean, 31.9 ± 24.2 μg/mL). The serum concentrations were approximately 145 times higher than in CSF (CSF to serum RBP4 ratio, 8.2 ± 4.3 × 10-3). PEDF was detectable in serum (mean, 30.2 ± 11.7 μg/mL) and concentrations were approximately 25 times higher than in CSF (CSF to serum PEDF ratio, 42.3 ± 15.6 × 10-3). Clusterin serum concentrations were abundant with mean levels of 346.0 ± 114.6 μg/mL, which were approximately 40 times higher than CSF levels (CSF to serum clusterin ratio, 29.6 ± 23.4 × 10-3). RBP4 and PEDF serum levels correlated positively with CSF levels, which were increased in overweight/obese patients and in type 2 diabetic patients. The CSF concentrations of all 3 adipokines increased with BBB dysfunction. RBP4 in CSF correlated positively with inflammatory parameters. In detail, only RBP4 showed the kinetics and associations that are mandatory for a putative mediator of the fat-brain axis. CONCLUSION RBP4, PEDF, and clusterin are permeable to the BBB and increase with the measure of BBB dysfunction. RBP4 represents an inflammatory neurotrophic adipokine and is a promising mediator of the fat-brain axis.
Collapse
Affiliation(s)
- Alexandra Höpfinger
- Department of Internal Medicine III, Giessen University Hospital, Gießen, Germany
| | - Martin Berghoff
- Department of Neurology, Giessen University Hospital, Gießen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine III, Giessen University Hospital, Gießen, Germany
| | - Andreas Schmid
- Department of Internal Medicine III, Giessen University Hospital, Gießen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine III, Giessen University Hospital, Gießen, Germany
| |
Collapse
|
5
|
Multi-Omics Analysis of Key microRNA-mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits. Int J Mol Sci 2021; 22:ijms22084204. [PMID: 33921578 PMCID: PMC8072691 DOI: 10.3390/ijms22084204] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
microRNAs (miRNAs), small non-coding RNA with a length of about 22 nucleotides, are involved in the energy metabolism of skeletal muscle cells. However, their molecular mechanism of metabolism in rabbit skeletal muscle is still unclear. In this study, 16 rabbits, 8 in the control group (CON-G) and 8 in the experimental group (HFD-G), were chosen to construct an obese model induced by a high-fat diet fed from 35 to 70 days of age. Subsequently, 54 differentially expressed miRNAs, 248 differentially expressed mRNAs, and 108 differentially expressed proteins related to the metabolism of skeletal muscle were detected and analyzed with three sequencing techniques (small RNA sequencing, transcriptome sequencing, and tandem mass tab (TMT) protein technology). It was found that 12 miRNAs and 12 core genes (e.g., CRYL1, VDAC3 and APIP) were significantly different in skeletal muscle from rabbits in the two groups. The network analysis showed that seven miRNA-mRNA pairs were involved in metabolism. Importantly, two miRNAs (miR-92a-3p and miR-30a/c/d-5p) regulated three transcription factors (MYBL2, STAT1 and IKZF1) that may be essential for lipid metabolism. These results enhance our understanding of molecular mechanisms associated with rabbit skeletal muscle metabolism and provide a basis for future studies in the metabolic diseases of human obesity.
Collapse
|
6
|
Poursharifi P, Attané C, Mugabo Y, Al-Mass A, Ghosh A, Schmitt C, Zhao S, Guida J, Lussier R, Erb H, Chenier I, Peyot ML, Joly E, Noll C, Carpentier AC, Madiraju SRM, Prentki M. Adipose ABHD6 regulates tolerance to cold and thermogenic programs. JCI Insight 2020; 5:140294. [PMID: 33201859 PMCID: PMC7819748 DOI: 10.1172/jci.insight.140294] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022] Open
Abstract
Enhanced energy expenditure in brown (BAT) and white adipose tissues (WAT) can be therapeutic against metabolic diseases. We examined the thermogenic role of adipose α/β-hydrolase domain 6 (ABHD6), which hydrolyzes monoacylglycerol (MAG), by employing adipose-specific ABHD6-KO mice. Control and KO mice showed similar phenotypes at room temperature and thermoneutral conditions. However, KO mice were resistant to hypothermia, which can be accounted for by the simultaneously increased lipolysis and lipogenesis of the thermogenic glycerolipid/free fatty acid (GL/FFA) cycle in visceral fat, despite unaltered uncoupling protein 1 expression. Upon cold stress, nuclear 2-MAG levels increased in visceral WAT of the KO mice. Evidence is provided that 2-MAG causes activation of PPARα in white adipocytes, leading to elevated expression and activity of GL/FFA cycle enzymes. In the ABHD6-ablated BAT, glucose and oxidative metabolism were elevated upon cold induction, without changes in GL/FFA cycle and lipid turnover. Moreover, response to in vivo β3-adrenergic stimulation was comparable between KO and control mice. Our data reveal a MAG/PPARα/GL/FFA cycling metabolic signaling network in visceral adipose tissue, which contributes to cold tolerance, and that adipose ABHD6 is a negative modulator of adaptive thermogenesis. Visceral adipose adipose α/β-hydrolase domain 6 regulates cold adaptation and acts as a brake for heat production via the regulation of thermogenic glycerolipid/free fatty acid cycling.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Camille Attané
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Mugabo
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Anfal Al-Mass
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Anindya Ghosh
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Clémence Schmitt
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Shangang Zhao
- Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Julian Guida
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Roxane Lussier
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Heidi Erb
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Isabelle Chenier
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Marie-Line Peyot
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Erik Joly
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Marc Prentki
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| |
Collapse
|
7
|
King SE, Nilsson E, Beck D, Skinner MK. Adipocyte epigenetic alterations and potential therapeutic targets in transgenerationally inherited lean and obese phenotypes following ancestral exposures. Adipocyte 2019; 8:362-378. [PMID: 31755359 PMCID: PMC6948971 DOI: 10.1080/21623945.2019.1693747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023] Open
Abstract
The incidence of obesity has increased dramatically over the past two decades with a prevalence of approximately 40% of the adult population within the United States. The current study examines the potential for transgenerational adipocyte (fat cell) epigenetic alterations. Adipocytes were isolated from the gonadal fat pad of the great-grand offspring F3 generation 1-year old rats ancestrally exposed to DDT (dichlorodiphenyltrichloroethane), atrazine, or vehicle control in order to obtain adipocytes for DNA methylation analysis. Observations indicate that there were differential DNA methylated regions (DMRs) in the adipocytes with the lean or obese phenotypes compared to control normal (non-obese or lean) populations. The comparison of epigenetic alterations indicated that there were substantial overlaps between the different treatment lineage groups for both the lean and obese phenotypes. Novel correlated genes and gene pathways associated with DNA methylation were identified, and may aid in the discovery of potential therapeutic targets for metabolic diseases such as obesity. Observations indicate that ancestral exposures during critical windows of development can induce the epigenetic transgenerational inheritance of DNA methylation changes in adipocytes that ultimately may contribute to an altered metabolic phenotype.
Collapse
Affiliation(s)
- Stephanie E. King
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
8
|
González-Granillo M, Savva C, Li X, Fitch M, Pedrelli M, Hellerstein M, Parini P, Korach-André M, Gustafsson JÅ. ERβ activation in obesity improves whole body metabolism via adipose tissue function and enhanced mitochondria biogenesis. Mol Cell Endocrinol 2019; 479:147-158. [PMID: 30342056 DOI: 10.1016/j.mce.2018.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/13/2018] [Accepted: 10/07/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Estrogens play a key role in the distribution of adipose tissue and have their action by binding to both estrogen receptors (ER), α and β. Although ERβ has a role in the energy metabolism, limited data of the physiological mechanism and metabolic response involved in the pharmacological activation of ERβ is available. METHODS For clinical relevance, non-ovariectomized female mice were subjected to high fat diet together with pharmacological (DIP - 4-(2-(3,5-dimethylisoxazol-4-yl)-1H-indol-3-yl)phenol) interventions to ERβ selective activation. The physiological mechanism was assessed in vivo by magnetic resonance imaging and spectroscopy, and oral glucose and intraperitoneal insulin tolerance test before and after DIP treatment. Liver and adipose tissue metabolic response was measured in HFD + vehicle and HFD + DIP by stable isotope, RNA sequencing and protein content. RESULTS HFD-fed females treated with DIP had a tissue-specific response towards ERβ selective activation. The metabolic profile showed an improved fasting glucose level, insulin sensitivity and reduced liver steatosis. CONCLUSIONS Our data demonstrate that selective activation of ERβ exerts a tissue-specific activity which promotes a beneficial effect on whole body metabolic response to obesity.
Collapse
Affiliation(s)
- Marcela González-Granillo
- Department of Medicine, Metabolism Unit and KI/AZ Integrated CardioMetabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Department of Biosciences and Nutrition Huddinge, Karolinska Institutet, Sweden.
| | - Christina Savva
- Department of Medicine, Metabolism Unit and KI/AZ Integrated CardioMetabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Department of Biosciences and Nutrition Huddinge, Karolinska Institutet, Sweden
| | - Xidan Li
- Department of Medicine, Metabolism Unit and KI/AZ Integrated CardioMetabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mark Fitch
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, USA
| | - Matteo Pedrelli
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Sweden
| | - Marc Hellerstein
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, USA
| | - Paolo Parini
- Department of Medicine and Department of Laboratory Medicine, Karolinska Institutet, Sweden
| | - Marion Korach-André
- Department of Medicine, Metabolism Unit and KI/AZ Integrated CardioMetabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Department of Biosciences and Nutrition Huddinge, Karolinska Institutet, Sweden.
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition Huddinge, Karolinska Institutet, Sweden; Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signalling, University of Houston, Houston, TX, USA
| |
Collapse
|
9
|
Nguyen QH, Pervolarakis N, Nee K, Kessenbrock K. Experimental Considerations for Single-Cell RNA Sequencing Approaches. Front Cell Dev Biol 2018; 6:108. [PMID: 30234113 PMCID: PMC6131190 DOI: 10.3389/fcell.2018.00108] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023] Open
Abstract
Single-cell transcriptomic technologies have emerged as powerful tools to explore cellular heterogeneity at the resolution of individual cells. Previous scientific knowledge in cell biology is largely limited to data generated by bulk profiling methods, which only provide averaged read-outs that generally mask cellular heterogeneity. This averaged approach is particularly problematic when the biological effect of interest is limited to only a subpopulation of cells such as stem/progenitor cells within a given tissue, or immune cell subsets infiltrating a tumor. Great advances in single-cell RNA sequencing (scRNAseq) enabled scientists to overcome this limitation and allow for in depth interrogation of previously unexplored rare cell types. Due to the high sensitivity of scRNAseq, adequate attention must be put into experimental setup and execution. Careful handling and processing of cells for scRNAseq is critical to preserve the native expression profile that will ensure meaningful analysis and conclusions. Here, we delineate the individual steps of a typical single-cell analysis workflow from tissue procurement, cell preparation, to platform selection and data analysis, and we discuss critical challenges in each of these steps, which will serve as a helpful guide to navigate the complex field of single-cell sequencing.
Collapse
Affiliation(s)
- Quy H. Nguyen
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Nicholas Pervolarakis
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Kevin Nee
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
10
|
Deng J, Kong W, Mou X, Wang S, Zeng W. Identifying novel candidate biomarkers of RCC based on WGCNA analysis. Per Med 2018; 15:381-394. [PMID: 30259787 DOI: 10.2217/pme-2017-0091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/05/2018] [Indexed: 01/06/2023]
Abstract
AIM Extracting differential expression genes (DEGs) is an effective approach to improve the accuracy of determining the candidate biomarker genes. However, the previous DEGs analysis methods ignore that the expression levels of genes in different pathology stages of cancers are complex and various. METHODS In our study, staging DEGs analysis and weighted gene co-expression network analysis were applied to gene expression data of renal cell carcinoma (RCC). RESULTS According to construct gene topology network for exploring hub genes, 12 genes were identified as hub genes. CONCLUSION Combining with the effect of hub gene expression level on RCC patient survival and different biological data analysis, three hub genes were found that they might be three novel candidate biomarkers of RCC.
Collapse
Affiliation(s)
- Jin Deng
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai 201306, PR China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai 201306, PR China
| | - Xiaoyang Mou
- Department of Biochemistry, Rowan University & Guava Medicine, Glassboro, NJ 08028, USA
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai 201306, PR China
| | - Weiming Zeng
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai 201306, PR China
| |
Collapse
|
11
|
Hohos NM, Smith AK, Kilaru V, Park HJ, Hausman DB, Bailey LB, Lewis RD, Phillips BG, Meagher RB. CD4 + and CD8 + T-Cell-Specific DNA Cytosine Methylation Differences Associated With Obesity. Obesity (Silver Spring) 2018; 26:1312-1321. [PMID: 29956501 PMCID: PMC6107382 DOI: 10.1002/oby.22225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/13/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Lifestyle factors associated with obesity may alter epigenome-regulated gene expression. Most studies examining epigenetic changes in obesity have analyzed DNA 5´-methylcytosine (5mC) in whole blood, representing a weighted average of several distantly related and regulated leukocyte classes. To examine leukocyte-specific differences associated with obesity, a pilot study examining 5mC in three distinct leukocyte types isolated from peripheral blood of women with normal weight and obesity was conducted. METHODS CD4+ T cells, CD8+ T cells, and CD16+ neutrophils were reiteratively isolated from blood, and 5mC levels were measured across >450,000 CG sites. RESULTS Nineteen CG sites were differentially methylated between women with obesity and with normal weight in CD4+ cells, 16 CG sites in CD8+ cells, and 0 CG sites in CD16+ neutrophils (q < 0.05). There were no common differentially methylated sites between the T-cell types. The amount of visceral adipose tissue was strongly associated with the methylation level of 79 CG sites in CD4+ cells, including 4 CG sites in CLSTN1's promoter, which, this study shows, may regulate its expression. CONCLUSIONS The methylomes of various leukocytes respond differently to obesity and levels of visceral adipose tissue. Highly significant differentially methylated sites in CD4+ and CD8+ cells in women with obesity that have apparent biological relevance to obesity were identified.
Collapse
Affiliation(s)
- Natalie M Hohos
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
- Corresponding Author: 120 Green Street, University of Georgia, Athens, GA 30602-7223
| | - Alicia K Smith
- Physciatry and Behavioral Sciences, University of Emory School of Medicine, Atlanta, GA, USA
| | - Varun Kilaru
- Physciatry and Behavioral Sciences, University of Emory School of Medicine, Atlanta, GA, USA
| | - Hea Jin Park
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Dorothy B Hausman
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Lynn B Bailey
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Richard D Lewis
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Bradley G Phillips
- Clinical and Administrative Pharmacy, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
12
|
Miller CN, Dye JA, Schladweiler MC, Richards JH, Ledbetter AD, Stewart E, Kodavanti UP. Acute inhalation of ozone induces DNA methylation of apelin in lungs of Long-Evans rats. Inhal Toxicol 2018; 30:178-186. [PMID: 29947284 PMCID: PMC6681647 DOI: 10.1080/08958378.2018.1483984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/01/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023]
Abstract
Apelin has cardiopulmonary protective properties that promote vasodilation and maintenance of the endothelial barrier. While reductions in apelin have been identified as a contributor to various lung diseases, including pulmonary edema, its role in the effect of air pollutants has not been examined. Thus, in the current study, we sought to investigate if apelin is a downstream target of inhaled ozone and if such change in expression is related to altered DNA methylation in the lung. Male, Long-Evans rats were exposed to filtered air or 1.0 ppm ozone for 4 h. Ventilation changes were assessed using whole-body plethysmography immediately following exposure, and markers of pulmonary edema and inflammation were assessed in the bronchoaveolar lavage (BAL) fluid. The enzymatic regulators of DNA methylation were measured in the lung, along with methylation and hydroxymethylation of the apelin promoter. Data showed that ozone exposure was associated with increased enhanced pause and protein leakage in the BAL fluid. Ozone exposure reduced DNA cytosine-5-methyltransferase (DNMT) activity and Dnmt3a/b gene expression. Exposure-induced upregulation of proliferating cell nuclear antigen, indicative of DNA damage, repair, and maintenance methylation. Increased methylation and reduced hydroxymethylation were measured on the apelin promoter. These epigenetic modifications accompanied ozone-induced reduction of apelin expression and development of pulmonary edema. In conclusion, epigenetic regulation, specifically increased methylation of the apelin promoter downstream of DNA damage, may lead to reductions in protective signaling of the apelinergic system, contributing to the pulmonary edema observed following the exposure to oxidant air pollution.
Collapse
Affiliation(s)
- Colette N. Miller
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Janice A. Dye
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mette C. Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Judy H. Richards
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Allen D. Ledbetter
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Erica Stewart
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Urmila P. Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
13
|
Cha EDK, Veturi Y, Agarwal C, Patel A, Arbabshirani MR, Pendergrass SA. Using Adipose Measures from Health Care Provider-Based Imaging Data for Discovery. J Obes 2018; 2018:3253096. [PMID: 30363675 PMCID: PMC6180992 DOI: 10.1155/2018/3253096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022] Open
Abstract
The location and type of adipose tissue is an important factor in metabolic syndrome. A database of picture archiving and communication system (PACS) derived abdominal computerized tomography (CT) images from a large health care provider, Geisinger, was used for large-scale research of the relationship of volume of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) with obesity-related diseases and clinical laboratory measures. Using a "greedy snake" algorithm and 2,545 CT images from the Geisinger PACS, we measured levels of VAT, SAT, total adipose tissue (TAT), and adipose ratio volumes. Sex-combined and sex-stratified association testing was done between adipose measures and 1,233 disease diagnoses and 37 clinical laboratory measures. A genome-wide association study (GWAS) for adipose measures was also performed. SAT was strongly associated with obesity and morbid obesity. VAT levels were strongly associated with type 2 diabetes-related diagnoses (p = 1.5 × 10-58), obstructive sleep apnea (p = 7.7 × 10-37), high-density lipoprotein (HDL) levels (p = 1.42 × 10-36), triglyceride levels (p = 1.44 × 10-43), and white blood cell (WBC) counts (p = 7.37 × 10-9). Sex-stratified tests revealed stronger associations among women, indicating the increased influence of VAT on obesity-related disease outcomes particularly among women. The GWAS identified some suggestive associations. This study supports the utility of pursuing future clinical and genetic discoveries with existing imaging data-derived adipose tissue measures deployed at a larger scale.
Collapse
Affiliation(s)
- Elliot D. K. Cha
- Biomedical and Translational Informatics Institute, Geisinger Research, Danville, PA, USA
| | - Yogasudha Veturi
- Biomedical and Translational Informatics Institute, Geisinger Research, Danville, PA, USA
| | - Chirag Agarwal
- Department of Imaging Science and Innovation, Geisinger Research, Danville, PA, USA
- Department of Electrical & Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Radiology, Geisinger, Danville, PA, USA
| | - Aalpen Patel
- Department of Imaging Science and Innovation, Geisinger Research, Danville, PA, USA
- Department of Radiology, Geisinger, Danville, PA, USA
| | - Mohammad R. Arbabshirani
- Biomedical and Translational Informatics Institute, Geisinger Research, Danville, PA, USA
- Department of Imaging Science and Innovation, Geisinger Research, Danville, PA, USA
| | - Sarah A. Pendergrass
- Biomedical and Translational Informatics Institute, Geisinger Research, Danville, PA, USA
| |
Collapse
|
14
|
Cheung OKW, Cheng ASL. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression. Front Genet 2016; 7:168. [PMID: 27703473 PMCID: PMC5029146 DOI: 10.3389/fgene.2016.00168] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is the third most common cancer type and the second leading cause of deaths in men. Large population studies have demonstrated remarkable gender disparities in the incidence and the cumulative risk of liver cancer. A number of emerging risk factors regarding metabolic alterations associated with obesity, diabetes and dyslipidemia have been ascribed to the progression of non-alcoholic fatty liver diseases (NAFLD) and ultimately liver cancer. The deregulation of fat metabolism derived from excessive insulin, glucose, and lipid promotes cancer-causing inflammatory signaling and oxidative stress, which eventually triggers the uncontrolled hepatocellular proliferation. This review presents the current standing on the gender differences in body fat compositions and their mechanistic linkage with the development of NAFLD-related liver cancer, with an emphasis on genetic, epigenetic and microRNA control. The potential roles of sex hormones in instructing adipocyte metabolic programs may help unravel the mechanisms underlying gender dimorphism in liver cancer and identify the metabolic targets for disease management.
Collapse
Affiliation(s)
- Otto K-W Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong, China
| | - Alfred S-L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong, China; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|