1
|
van Midden VM, Pirtošek Z, Kojović M. The Effect of taVNS on the Cerebello-Thalamo-Cortical Pathway: a TMS Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1013-1019. [PMID: 37639175 PMCID: PMC11102382 DOI: 10.1007/s12311-023-01595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
fMRI studies show activation of cerebellum during transcutaneous auricular vagal nerve stimulation (taVNS); however, there is no evidence whether taVNS induced activation of the cerebellum translates to the cerebellar closed loops involved in motor functions. We assessed the propensity of taVNS at 25 Hz (taVNS25) and 100 Hz (taVNS100) to modulate cerebello-thalamo-cortical pathways using transcranial magnetic stimulation. In our double blind within-subjects study thirty-two participants completed one visit during which cerebellar brain inhibition (CBI) was assessed at baseline (no stimulation) and in a randomized order during taVNS100, taVNS25, and sham taVNS (xVNS). Generalized linear mixed models with gamma distribution were built to assess the effect of taVNS on CBI. The estimated marginal means of linear trends during each taVNS condition were computed and compared in a pairwise fashion with Benjamini-Hochberg correction for multiple comparisons. CBI significantly increased during taVNS100 compared to taVNS25 and xVNS (p = 0.0003 and p = 0.0465, respectively). The taVNS current intensity and CBI conditioning stimulus intensity had no significant effect on CBI. taVNS has a frequency dependent propensity to modulate the cerebello-thalamo-cortical pathway. The cerebellum participates in closed-loop circuits involved in motor, cognitive, and affective operations and may serve as an entry for modulating effects of taVNS.
Collapse
Affiliation(s)
- Vesna M van Midden
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Neo S, Magrinelli F, Cordivari C, Bhatia KP. Tongue Protrusion and Feeding Dystonia Can Develop in PPP2R2B-Related Spinocerebellar Ataxia. Mov Disord Clin Pract 2024; 11:578-579. [PMID: 38419473 PMCID: PMC11078479 DOI: 10.1002/mdc3.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Shermyn Neo
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- Department of NeurologyNational Neuroscience InstituteSingaporeSingapore
| | - Francesca Magrinelli
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Carla Cordivari
- Department of Clinical Neurophysiology, National Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Kailash P. Bhatia
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| |
Collapse
|
3
|
Rizzo G, Martino D, Avanzino L, Avenanti A, Vicario CM. Social cognition in hyperkinetic movement disorders: a systematic review. Soc Neurosci 2023; 18:331-354. [PMID: 37580305 DOI: 10.1080/17470919.2023.2248687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Numerous lines of research indicate that our social brain involves a network of cortical and subcortical brain regions that are responsible for sensing and controlling body movements. However, it remains unclear whether movement disorders have a systematic impact on social cognition. To address this question, we conducted a systematic review examining the influence of hyperkinetic movement disorders (including Huntington disease, Tourette syndrome, dystonia, and essential tremor) on social cognition. Following the PRISMA guidelines and registering the protocol in the PROSPERO database (CRD42022327459), we analyzed 50 published studies focusing on theory of mind (ToM), social perception, and empathy. The results from these studies provide evidence of impairments in ToM and social perception in all hyperkinetic movement disorders, particularly during the recognition of negative emotions. Additionally, individuals with Huntington's Disease and Tourette syndrome exhibit empathy disorders. These findings support the functional role of subcortical structures (such as the basal ganglia and cerebellum), which are primarily responsible for movement disorders, in deficits related to social cognition.
Collapse
Affiliation(s)
- Gaetano Rizzo
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| | - Davide Martino
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Carmelo Mario Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| |
Collapse
|
4
|
Tsagkaris S, Yau EKC, McClelland V, Papandreou A, Siddiqui A, Lumsden DE, Kaminska M, Guedj E, Hammers A, Lin JP. Metabolic patterns in brain 18F-fluorodeoxyglucose PET relate to aetiology in paediatric dystonia. Brain 2023; 146:2512-2523. [PMID: 36445406 PMCID: PMC10232264 DOI: 10.1093/brain/awac439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 12/09/2023] Open
Abstract
There is a lack of imaging markers revealing the functional characteristics of different brain regions in paediatric dystonia. In this observational study, we assessed the utility of [18F]2-fluoro-2-deoxy-D-glucose (FDG)-PET in understanding dystonia pathophysiology by revealing specific resting awake brain glucose metabolism patterns in different childhood dystonia subgroups. PET scans from 267 children with dystonia being evaluated for possible deep brain stimulation surgery between September 2007 and February 2018 at Evelina London Children's Hospital (ELCH), UK, were examined. Scans without gross anatomical abnormality (e.g. large cysts, significant ventriculomegaly; n = 240) were analysed with Statistical Parametric Mapping (SPM12). Glucose metabolism patterns were examined in the 144/240 (60%) cases with the 10 commonest childhood-onset dystonias, focusing on nine anatomical regions. A group of 39 adult controls was used for comparisons. The genetic dystonias were associated with the following genes: TOR1A, THAP1, SGCE, KMT2B, HPRT1 (Lesch Nyhan disease), PANK2 and GCDH (Glutaric Aciduria type 1). The acquired cerebral palsy (CP) cases were divided into those related to prematurity (CP-Preterm), neonatal jaundice/kernicterus (CP-Kernicterus) and hypoxic-ischaemic encephalopathy (CP-Term). Each dystonia subgroup had distinct patterns of altered FDG-PET uptake. Focal glucose hypometabolism of the pallidi, putamina or both, was the commonest finding, except in PANK2, where basal ganglia metabolism appeared normal. HPRT1 uniquely showed glucose hypometabolism across all nine cerebral regions. Temporal lobe glucose hypometabolism was found in KMT2B, HPRT1 and CP-Kernicterus. Frontal lobe hypometabolism was found in SGCE, HPRT1 and PANK2. Thalamic and brainstem hypometabolism were seen only in HPRT1, CP-Preterm and CP-term dystonia cases. The combination of frontal and parietal lobe hypermetabolism was uniquely found in CP-term cases. PANK2 cases showed a distinct combination of parietal hypermetabolism with cerebellar hypometabolism but intact putaminal-pallidal glucose metabolism. HPRT1, PANK2, CP-kernicterus and CP-preterm cases had cerebellar and insula glucose hypometabolism as well as parietal glucose hypermetabolism. The study findings offer insights into the pathophysiology of dystonia and support the network theory for dystonia pathogenesis. 'Signature' patterns for each dystonia subgroup could be a useful biomarker to guide differential diagnosis and inform personalized management strategies.
Collapse
Affiliation(s)
- Stavros Tsagkaris
- Children’s Neurosciences, Complex Motor Disorders Service (CMDS), Evelina London Children's Hospital, Guy's and St Thomas’ NHS Foundation Trust (GSTT), London SE1 7EH, UK
- King’s College London & Guy’s and St Thomas’ PET Centre, Division of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Eric K C Yau
- Department of Paediatrics & Adolescent Medicine, Princess Margaret Hospital, Kowloon, Hong Kong
| | - Verity McClelland
- Children’s Neurosciences, Complex Motor Disorders Service (CMDS), Evelina London Children's Hospital, Guy's and St Thomas’ NHS Foundation Trust (GSTT), London SE1 7EH, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Apostolos Papandreou
- Children’s Neurosciences, Complex Motor Disorders Service (CMDS), Evelina London Children's Hospital, Guy's and St Thomas’ NHS Foundation Trust (GSTT), London SE1 7EH, UK
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London WC1N 1DZ, UK
| | - Ata Siddiqui
- Neuroradiology Department, Evelina London Children's Hospital, Guy's and St Thomas’ NHS Foundation Trust (GSTT), London SE1 7EH, UK
| | - Daniel E Lumsden
- Children’s Neurosciences, Complex Motor Disorders Service (CMDS), Evelina London Children's Hospital, Guy's and St Thomas’ NHS Foundation Trust (GSTT), London SE1 7EH, UK
- Perinatal Imaging, Division of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Margaret Kaminska
- Children’s Neurosciences, Complex Motor Disorders Service (CMDS), Evelina London Children's Hospital, Guy's and St Thomas’ NHS Foundation Trust (GSTT), London SE1 7EH, UK
| | - Eric Guedj
- CERIMED, Nuclear Medicine Department, Aix Marseille Universite, APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, 13397 Marseille, France
| | - Alexander Hammers
- King’s College London & Guy’s and St Thomas’ PET Centre, Division of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Jean-Pierre Lin
- Children’s Neurosciences, Complex Motor Disorders Service (CMDS), Evelina London Children's Hospital, Guy's and St Thomas’ NHS Foundation Trust (GSTT), London SE1 7EH, UK
- Women and Children’s Health Institute Faculty of Life Sciences & Medicine, Kings Health Partners, King’s College London, London SE1 7EH, UK
| |
Collapse
|
5
|
Fischer P, Piña-Fuentes D, Kassavetis P, Sadnicka A. Physiology of dystonia: Human studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:137-162. [PMID: 37482391 DOI: 10.1016/bs.irn.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
In this chapter, we discuss neurophysiological techniques that have been used in the study of dystonia. We examine traditional disease models such as inhibition and excessive plasticity and review the evidence that these play a causal role in pathophysiology. We then review the evidence for sensory and peripheral influences within pathophysiology and look at an emergent literature that tries to probe how oscillatory brain activity may be linked to dystonia pathophysiology.
Collapse
Affiliation(s)
- Petra Fischer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Dan Piña-Fuentes
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands; Department of Neurology, OLVG, Amsterdam, The Netherlands
| | | | - Anna Sadnicka
- Motor Control and Movement Disorders Group, St George's University of London, London, United Kingdom; Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
6
|
Radhakrishnan V, Gallea C, Valabregue R, Krishnan S, Kesavadas C, Thomas B, James P, Menon R, Kishore A. Cerebellar and basal ganglia structural connections in humans: Effect of aging and relation with memory and learning. Front Aging Neurosci 2023; 15:1019239. [PMID: 36776439 PMCID: PMC9908607 DOI: 10.3389/fnagi.2023.1019239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The cerebellum and basal ganglia were initially considered anatomically distinct regions, each connected via thalamic relays which project to the same cerebral cortical targets, such as the motor cortex. In the last two decades, transneuronal viral transport studies in non-human primates showed bidirectional connections between the cerebellum and basal ganglia at the subcortical level, without involving the cerebral cortical motor areas. These findings have significant implications for our understanding of neurodevelopmental and neurodegenerative diseases. While these subcortical connections were established in smaller studies on humans, their evolution with natural aging is less understood. Methods In this study, we validated and expanded the previous findings of the structural connectivity within the cerebellum-basal ganglia subcortical network, in a larger dataset of 64 subjects, across different age ranges. Tractography and fixel-based analysis were performed on the 3 T diffusion-weighted dataset using Mrtrix3 software, considering fiber density and cross-section as indicators of axonal integrity. Tractography of the well-established cerebello-thalamo-cortical tract was conducted as a control. We tested the relationship between the structural white matter integrity of these connections with aging and with the performance in different domains of Addenbrooke's Cognitive Examination. Results Tractography analysis isolated connections from the dentate nucleus to the contralateral putamen via the thalamus, and reciprocal tracts from the subthalamic nucleus to the contralateral cerebellar cortex via the pontine nuclei. Control tracts of cerebello-thalamo-cortical tracts were also isolated, including associative cerebello-prefrontal tracts. A negative linear relationship was found between the fiber density of both the ascending and descending cerebellum-basal ganglia tracts and age. Considering the cognitive assessments, the fiber density values of cerebello-thalamo-putaminal tracts correlated with the registration/learning domain scores. In addition, the fiber density values of cerebello-frontal and subthalamo-cerebellar (Crus II) tracts correlated with the cognitive assessment scores from the memory domain. Conclusion We validated the structural connectivity within the cerebellum-basal ganglia reciprocal network, in a larger dataset of human subjects, across wider age range. The structural features of the subcortical cerebello-basal ganglia tracts in human subjects display age-related neurodegeneration. Individual morphological variability of cerebellar tracts to the striatum and prefrontal cortex was associated with different cognitive functions, suggesting a functional contribution of cerebellar tracts to cognitive decline with aging. This study offers new perspectives to consider the functional role of these pathways in motor learning and the pathophysiology of movement disorders involving the cerebellum and striatum.
Collapse
Affiliation(s)
- Vineeth Radhakrishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | - Cecile Gallea
- INSERM, CNRS, Paris Brain Institute, Sorbonne Université, Paris, France
| | - Romain Valabregue
- INSERM, CNRS, Paris Brain Institute, Sorbonne Université, Paris, France
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | - Chandrasekharan Kesavadas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | - Praveen James
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | - Ramshekhar Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Asha Kishore
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India,Parkinson and Movement Disorder Centre, Department of Neurology, Aster Medcity, Kochi, India,*Correspondence: Asha Kishore, ✉
| |
Collapse
|
7
|
Williams D. Basal ganglia functional connectivity network analysis does not support the 'noisy signal' hypothesis of Parkinson's disease. Brain Commun 2023; 5:fcad123. [PMID: 37124947 PMCID: PMC10139445 DOI: 10.1093/braincomms/fcad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
The 'noisy signal' hypothesis of basal ganglia dysfunction in Parkinson's disease (PD) suggests that major motor symptoms of the disorder are caused by the development of abnormal basal ganglia activity patterns resulting in the propagation of 'noisy' signals to target systems. While such abnormal activity patterns might be useful biomarkers for the development of therapeutic interventions, correlation between specific changes in activity and PD symptoms has been inconsistently demonstrated, and raises questions concerning the accuracy of the hypothesis. Here, we tested this hypothesis by considering three nodes of the basal ganglia network, the subthalamus, globus pallidus interna, and cortex during self-paced and cued movements in patients with PD. Interactions between these regions were analyzed using measures that assess both linear and non-linear relationships. Marked changes in the network are observed with dopamine state. Specifically, we detected functional disconnection of the basal ganglia from the cortex and higher network variability in untreated PD, but various patterns of directed functional connectivity with lower network variability in treated PD. When we examine the system output, significant correlation is observed between variability in the cortico-basal ganglia network and muscle activity variability but only in the treated state. Rather than supporting a role of the basal ganglia in the transmission of noisy signals in patients with PD, these findings suggest that cortico-basal ganglia network interactions by fault or design, in the treated Parkinsonian state, are actually associated with improved cortical network output variability.
Collapse
Affiliation(s)
- David Williams
- Correspondence to: Dr David Williams. Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Khalifa Bin Zayed Street, Tawam, Next to Tawam Hospital, Al Ain, PO Box 15551, United Arab Emirates. E-mail:
| |
Collapse
|
8
|
Ricciardi L, Bologna M, Marsili L, Espay AJ. Dysfunctional Networks in Functional Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:157-176. [PMID: 37338701 DOI: 10.1007/978-3-031-26220-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Functional dystonia, the second most common functional movement disorder, is characterized by acute or subacute onset of fixed limb, truncal, or facial posturing, incongruent with the action-induced, position-sensitive, and task-specific manifestations of dystonia. We review neurophysiological and neuroimaging data as the basis for a dysfunctional networks in functional dystonia. Reduced intracortical and spinal inhibition contributes to abnormal muscle activation, which may be perpetuated by abnormal sensorimotor processing, impaired selection of movements, and hypoactive sense of agency in the setting of normal movement preparation but abnormal connectivity between the limbic and motor networks. Phenotypic variability may be related to as-yet undefined interactions between abnormal top-down motor regulation and overactivation of areas implicated in self-awareness, self-monitoring, and active motor inhibition such as the cingulate and insular cortices. While there remain many gaps in knowledge, further combined neurophysiological and neuroimaging assessments stand to inform the neurobiological subtypes of functional dystonia and the potential therapeutic applications.
Collapse
Affiliation(s)
- Lucia Ricciardi
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, UK
- Nuffield Department of Clinical Neurosciences, Medical Research Council Brain Network Dynamics Unit, Oxford, UK
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Alberto J Espay
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
9
|
Geminiani A, Mockevicius A, D'Angelo E, Casellato C. Cerebellum involvement in dystonia: insights from a spiking neural network model during associative learning. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:5132-5135. [PMID: 36086302 DOI: 10.1109/embc48229.2022.9871205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dystonia is a neurological movement disorder characterized by twisting and repetitive movements or abnormal fixed postures. This complex brain disease has usually been associated with damages to the Basal Ganglia. However, recent studies point out the potential role of the cerebellum. Indeed, motor learning is impaired in dystonic patients, e.g. during eyeblink classical conditioning, a typical cerebellum-driven associative learning protocol, and rodents with local cerebellar damages exhibit dystonic movements. Alterations in the olivocerebellar circuit connectivity have been identified as a potential neural substrate of dystonia. Here, we investigated this hypothesis through simulations of eyeblink conditioning driven by a realistic spiking model of the cerebellum. The pathological model was generated by decreasing the signal transmission from the Inferior Olive to cerebellar cortex, as observed in animal experiments. The model was able to reproduce a reduced acquisition of eyeblink motor responses, with also an unproper timing. Indeed, this pathway is fundamental to drive cerebellar cortical plasticity, which is the basis of cerebellum-driven motor learning. Exploring different levels of damage, the model predicted the possible amount of underlying impairment associated with the misbehavior observed in patients. Simulations of other debated lesions reported in mouse models of dystonia will be run to investigate the cerebellar involvement in different types of dystonia. Indeed, the eyeblink conditioning phenotype could be used to discriminate between them, identifying specific deficits in the generation of motor responses. Future studies will also include simulations of pharmacological or deep brain stimulation treatments targeting the cerebellum, to predict their impact in improving symptoms.
Collapse
|
10
|
Geminiani A, Mockevičius A, D’Angelo E, Casellato C. Cerebellum Involvement in Dystonia During Associative Motor Learning: Insights From a Data-Driven Spiking Network Model. Front Syst Neurosci 2022; 16:919761. [PMID: 35782305 PMCID: PMC9243665 DOI: 10.3389/fnsys.2022.919761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive movements, postures, or both. Although dystonia is traditionally associated with basal ganglia dysfunction, recent evidence has been pointing to a role of the cerebellum, a brain area involved in motor control and learning. Cerebellar abnormalities have been correlated with dystonia but their potential causative role remains elusive. Here, we simulated the cerebellar input-output relationship with high-resolution computational modeling. We used a data-driven cerebellar Spiking Neural Network and simulated a cerebellum-driven associative learning task, Eye-Blink Classical Conditioning (EBCC), which is characteristically altered in relation to cerebellar lesions in several pathologies. In control simulations, input stimuli entrained characteristic network dynamics and induced synaptic plasticity along task repetitions, causing a progressive spike suppression in Purkinje cells with consequent facilitation of deep cerebellar nuclei cells. These neuronal processes caused a progressive acquisition of eyelid Conditioned Responses (CRs). Then, we modified structural or functional local neural features in the network reproducing alterations reported in dystonic mice. Either reduced olivocerebellar input or aberrant Purkinje cell burst-firing resulted in abnormal learning curves imitating the dysfunctional EBCC motor responses (in terms of CR amount and timing) of dystonic mice. These behavioral deficits might be due to altered temporal processing of sensorimotor information and uncoordinated control of muscle contractions. Conversely, an imbalance of excitatory and inhibitory synaptic densities on Purkinje cells did not reflect into significant EBCC deficit. The present work suggests that only certain types of alterations, including reduced olivocerebellar input and aberrant PC burst-firing, are compatible with the EBCC changes observed in dystonia, indicating that some cerebellar lesions can have a causative role in the pathogenesis of symptoms.
Collapse
Affiliation(s)
- Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Aurimas Mockevičius
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Guerra A, Bologna M. Low-Intensity Transcranial Ultrasound Stimulation: Mechanisms of Action and Rationale for Future Applications in Movement Disorders. Brain Sci 2022; 12:brainsci12050611. [PMID: 35624998 PMCID: PMC9139935 DOI: 10.3390/brainsci12050611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) is a novel non-invasive brain stimulation technique that uses acoustic energy to induce changes in neuronal activity. However, although low-intensity TUS is a promising neuromodulation tool, it has been poorly studied as compared to other methods, i.e., transcranial magnetic and electrical stimulation. In this article, we first focus on experimental studies in animals and humans aimed at explaining its mechanisms of action. We then highlight possible applications of TUS in movement disorders, particularly in patients with parkinsonism, dystonia, and tremor. Finally, we highlight the knowledge gaps and possible limitations that currently limit potential TUS applications in movement disorders. Clarifying the potential role of TUS in movement disorders may further promote studies with therapeutic perspectives in this field.
Collapse
Affiliation(s)
| | - Matteo Bologna
- IRCCS Neuromed, 86077 Pozzilli, Italy;
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
12
|
Mo J, Dong W, Cui T, Chen C, Shi W, Hu W, Zhang C, Wang X, Zhang K, Shao X. Whole-brain metabolic pattern analysis in patients with anti-LGI1 encephalitis. Eur J Neurol 2022; 29:2376-2385. [PMID: 35514068 DOI: 10.1111/ene.15384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Faciobrachial dystonic seizures (FBDS) and hyponatraemia are the distinct clinical features of autoimmune encephalitis (AE) caused by antibodies against leucine-rich glioma-inactivated 1 (LGI1). The pathophysiological pattern and neural mechanisms underlying these symptoms remain largely unexplored. METHODS We included 30 patients with anti-LGI1 AE and 30 controls from a retrospective observational cohort. Whole-brain metabolic pattern analysis was performed to assess the pathological network of anti-LGI1 AE, as well as the symptomatic networks of FBDS. Logistic regression was applied to explore independent predictors of FBDS. Finally, we applied multiple regression model to investigate the hyponatraemia-associated brain network and its effect on serum sodium levels. RESULTS The pathological network of anti-LGI1 AE involved a hypermetabolism in cerebellum, subcortical structures, and Rolandic area, as well as a hypometabolism in the medial prefrontal cortex. The symptomatic network of FBDS shown a hypometabolism in cerebellum and Rolandic area (PFDR < 0.05). Hypometabolism in the cerebellum was an independent predictor of FBDS (P < 0.001). Hyponatraemia-associated network highlighted a negative effect on caudate nucleus, frontal and temporal white matter. Serum sodium level had the negative trend with metabolism of hypothalamus (Pearson's R = -0.180, P = 0.342) but the mediation was not detected (path c' = -7.238, 95% CI = -30.947 to 16.472). CONCLUSIONS Our results provide insights into the whole-brain metabolic patterns of patients with anti-LGI1 AE, including the symptomatic network FBDS and the hyponatraemia-associated brain network, which is conducive to understanding the neural mechanisms and evaluating disease progress of anti-LGI1 AE.
Collapse
Affiliation(s)
- Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wenyu Dong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Disease, NCRC-, ND, Beijing, China
| | - Tao Cui
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Disease, NCRC-, ND, Beijing, China
| | - Chao Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Disease, NCRC-, ND, Beijing, China
| | - Weixiong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Disease, NCRC-, ND, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Disease, NCRC-, ND, Beijing, China
| |
Collapse
|
13
|
Alpheis S, Altenmüller E, Scholz DS. Influence of Adverse Childhood Experiences and Perfectionism on Musician's Dystonia: a Case Control Study. Tremor Other Hyperkinet Mov (N Y) 2022; 12:8. [PMID: 35415008 PMCID: PMC8932351 DOI: 10.5334/tohm.687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background Musician's dystonia (MD) is a task-specific movement disorder characterized by muscle cramps and impaired voluntary motor-control whilst playing a musical instrument. Recent studies suggest an involvement of adverse childhood experiences (ACEs) in the development of MD. Objectives By investigating the prevalence of ACEs in MD patients with perfectionism as possible mediating factor this study aims to gain further insights into the etiology of MD. Methods The Adverse Childhood Experiences Scale (ACE-S), the Childhood Trauma Questionnaire (CTQ) and Frost's Multidimensional Perfectionism Scale (FMPS) were answered by 128 MD patients and 136 healthy musicians. Regression and mediator analyses were conducted to identify relevant predictors of MD and to investigate the role of perfectionism. Results The CTQ total score (OR: 1.04; 95% CI [1.01, 1.08]) and the sub-score "emotional neglect" (OR: 1.13; 95% CI [1.02, 1.25]) were identified as two predictors of MD. Patients scored significantly higher on the sub-score emotional neglect, but no significant differences were observed for other forms of ACEs. Perfectionism had no mediating function on the association between ACEs and MD. Discussion Though only slight differences between both groups were found, there is a trend towards higher rates of emotional neglect among dystonic musicians. A possible explanation for the association between musician's dystonia and emotional neglect could be a lower stress resilience in musicians with a history of ACEs, which increases vulnerability to acquire dysfunctional movement patterns.These tendencies should be further investigated in future studies in which the MD and HM groups are more evenly matched in sex and age. Highlights We investigated the role of Adverse Childhood Experiences in the development of musician's dystonia, comparing a large sample of healthy musicians and dystonia patients. Our findings suggest that experiencing emotional neglect might increase the probability to acquire musician's dystonia. The findings offer new implications for etiology and treatment of dystonia.
Collapse
Affiliation(s)
- Stine Alpheis
- Institute of Music Physiology and Musician’s Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
- Department of Education and Psychology, Freie Universität Berlin, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musician’s Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
| | - Daniel S. Scholz
- Institute of Music Physiology and Musician’s Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
| |
Collapse
|
14
|
Sival DA, Noort SAMV, Tijssen MAJ, de Koning TJ, Verbeek DS. Developmental neurobiology of cerebellar and Basal Ganglia connections. Eur J Paediatr Neurol 2022; 36:123-129. [PMID: 34954622 DOI: 10.1016/j.ejpn.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/03/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND The high prevalence of mixed phenotypes of Early Onset Ataxia (EOA) with comorbid dystonia has shifted the pathogenetic concept from the cerebellum towards the interconnected cerebellar motor network. This paper on EOA with comorbid dystonia (EOA-dystonia) explores the conceptual relationship between the motor phenotype and the cortico-basal-ganglia-ponto-cerebellar network. METHODS In EOA-dystonia, we reviewed anatomic-, genetic- and biochemical-studies on the comorbidity between ataxia and dystonia. RESULTS In a clinical EOA cohort, the prevalence of dystonia was over 60%. Both human and animal studies converge on the underlying role for the cortico-basal-ganglia-ponto-cerebellar network. Genetic -clinical and -in silico network studies reveal underlying biological pathways for energy production and neural signal transduction. CONCLUSIONS EOA-dystonia phenotypes are attributable to the cortico-basal-ganglia-ponto-cerebellar network, instead of to the cerebellum, alone. The underlying anatomic and pathogenetic pathways have clinical implications for our understanding of the heterogeneous phenotype, neuro-metabolic and genetic testing and potentially also for new treatment strategies, including neuro-modulation.
Collapse
Affiliation(s)
- Deborah A Sival
- Department of Pediatrics, University of Groningen, Groningen, the Netherlands.
| | - Suus A M van Noort
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Tom J de Koning
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Dineke S Verbeek
- Genetics University Medical Center, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Campins-Romeu M, Baviera-Muñoz R, Sastre-Bataller I, Bataller L, Jaijo T, Martínez-Torres I. Hereditary Spastic Paraplegia 7 Presenting as Multifocal Dystonia with Prominent Cranio-Cervical Involvement. Mov Disord Clin Pract 2021; 8:966-968. [PMID: 34405107 DOI: 10.1002/mdc3.13257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022] Open
Affiliation(s)
- Marina Campins-Romeu
- Movement Disorders Unit, Department of Neurology Hospital Universitari i Politècnic La Fe Valencia Spain
| | - Raquel Baviera-Muñoz
- Movement Disorders Unit, Department of Neurology Hospital Universitari i Politècnic La Fe Valencia Spain
| | - Isabel Sastre-Bataller
- Movement Disorders Unit, Department of Neurology Hospital Universitari i Politècnic La Fe Valencia Spain
| | - Luis Bataller
- Movement Disorders Unit, Department of Neurology Hospital Universitari i Politècnic La Fe Valencia Spain
| | - Teresa Jaijo
- Department of Genetics Hospital Universitari i Politècnic La Fe Valencia Spain
| | - Irene Martínez-Torres
- Movement Disorders Unit, Department of Neurology Hospital Universitari i Politècnic La Fe Valencia Spain
| |
Collapse
|
16
|
Alata M, González-Vega A, Piazza V, Kleinert-Altamirano A, Cortes C, Ahumada-Juárez JC, Eguibar JR, López-Juárez A, Hernandez VH. Longitudinal Evaluation of Cerebellar Signs of H-ABC Tubulinopathy in a Patient and in the taiep Model. Front Neurol 2021; 12:702039. [PMID: 34335454 PMCID: PMC8317997 DOI: 10.3389/fneur.2021.702039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/08/2021] [Indexed: 01/20/2023] Open
Abstract
Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a central neurodegenerative disease due to mutations in the tubulin beta-4A (TUBB4A) gene, characterized by motor development delay, abnormal movements, ataxia, spasticity, dysarthria, and cognitive deficits. Diagnosis is made by integrating clinical data and radiological signs. Differences in MRIs have been reported in patients that carry the same mutation; however, a quantitative study has not been performed so far. Our study aimed to provide a longitudinal analysis of the changes in the cerebellum (Cb), corpus callosum (CC), ventricular system, and striatum in a patient suffering from H-ABC and in the taiep rat. We correlated the MRI signs of the patient with the results of immunofluorescence, gait analysis, segmentation of cerebellum, CC, and ventricular system, performed in the taiep rat. We found that cerebellar and callosal changes, suggesting a potential hypomyelination, worsened with age, in concomitance with the emergence of ataxic gait. We also observed a progressive lateral ventriculomegaly in both patient and taiep, possibly secondary to the atrophy of the white matter. These white matter changes are progressive and can be involved in the clinical deterioration. Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) gives rise to a spectrum of clinical signs whose pathophysiology still needs to be understood.
Collapse
Affiliation(s)
| | - Arturo González-Vega
- Department of Chemical, Electronic and Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Carmen Cortes
- Behavioral Neurophysiology Lab, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Juan C Ahumada-Juárez
- Behavioral Neurophysiology Lab, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jose R Eguibar
- Behavioral Neurophysiology Lab, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Research Office, Vicerrectory of Research and Postgraduate Studies, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alejandra López-Juárez
- Department of Chemical, Electronic and Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| | - Victor H Hernandez
- Department of Chemical, Electronic and Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
17
|
Smit M, Albanese A, Benson M, Edwards MJ, Graessner H, Hutchinson M, Jech R, Krauss JK, Morgante F, Pérez Dueñas B, Reilly RB, Tinazzi M, Contarino MF, Tijssen MAJ, The Collaborative Working Group. Dystonia Management: What to Expect From the Future? The Perspectives of Patients and Clinicians Within DystoniaNet Europe. Front Neurol 2021; 12:646841. [PMID: 34149592 PMCID: PMC8211212 DOI: 10.3389/fneur.2021.646841] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/19/2021] [Indexed: 01/02/2023] Open
Abstract
Improved care for people with dystonia presents a number of challenges. Major gaps in knowledge exist with regard to how to optimize the diagnostic process, how to leverage discoveries in pathophysiology into biomarkers, and how to develop an evidence base for current and novel treatments. These challenges are made greater by the realization of the wide spectrum of symptoms and difficulties faced by people with dystonia, which go well-beyond motor symptoms. A network of clinicians, scientists, and patients could provide resources to facilitate information exchange at different levels, share mutual experiences, and support each other's innovative projects. In the past, collaborative initiatives have been launched, including the American Dystonia Coalition, the European Cooperation in Science and Technology (COST-which however only existed for a limited time), and the Dutch DystonieNet project. The European Reference Network on Rare Neurological Diseases includes dystonia among other rare conditions affecting the central nervous system in a dedicated stream. Currently, we aim to broaden the scope of these initiatives to a comprehensive European level by further expanding the DystoniaNet network, in close collaboration with the ERN-RND. In line with the ERN-RND, the mission of DystoniaNet Europe is to improve care and quality of life for people with dystonia by, among other endeavors, facilitating access to specialized care, overcoming the disparity in education of medical professionals, and serving as a solid platform to foster international clinical and research collaborations. In this review, both professionals within the dystonia field and patients and caregivers representing Dystonia Europe highlight important unsolved issues and promising new strategies and the role that a European network can play in activating them.
Collapse
Affiliation(s)
- Marenka Smit
- Expertise Centre Movement Disorders Groningen, Department of Neurology, University Medical Centre Groningen, Groningen, Netherlands
| | - Alberto Albanese
- Department of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| | | | - Mark J. Edwards
- Neuroscience Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Holm Graessner
- Institute of Medical Genetics and Applied Genomics and Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Michael Hutchinson
- Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland
| | - Robert Jech
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Joachim K. Krauss
- Department of Neurosurgery, Medizinische Hochschule Hannover, Hanover, Germany
| | - Francesca Morgante
- Neuroscience Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Belen Pérez Dueñas
- Pediatric Neurology Research Group, Hospital Vall d'Hebron–Institut de Recerca (VHIR), Barcelona, Spain
| | - Richard B. Reilly
- School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
- Department of Neurology, Haga Teaching Hospital, The Hague, Netherlands
| | - Marina A. J. Tijssen
- Expertise Centre Movement Disorders Groningen, Department of Neurology, University Medical Centre Groningen, Groningen, Netherlands
| | | |
Collapse
|
18
|
Sedov A, Usova S, Semenova U, Gamaleya A, Tomskiy A, Beylergil SB, Jinnah HA, Shaikh AG. Pallidal Activity in Cervical Dystonia with and Without Head Tremor. THE CEREBELLUM 2021; 19:409-418. [PMID: 32095996 DOI: 10.1007/s12311-020-01119-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The relationship between two common movement disorders, dystonia and tremor, is controversial. Both deficits have correlates in the network that includes connections between the cerebellum and the basal ganglia. In order to assess the physiological relationship between tremor and dystonia, we measured the activity of 727 pallidal single-neurons during deep brain stimulation surgery in patients with cervical dystonia without head oscillations, cervical dystonia plus jerky oscillations, and cervical dystonia with sinusoidal oscillations. Cluster analyses of spike-train recordings allowed classification of the pallidal activity into burst, pause, and tonic. Burst neurons were more common, and number of spikes within spike and inter-burst intervals was shorter in pure dystonia and jerky oscillation groups compared to the sinusoidal oscillation group. Pause neurons were more common and irregular in pure tremor group compared to pure dystonia and jerky oscillation groups. There was bihemispheric asymmetry in spontaneous firing discharge in pure dystonia and jerky oscillation groups, but not in sinusoidal oscillation group. These results demonstrate that the physiology of pallidal neurons in patients with pure cervical dystonia is similar to those who have cervical dystonia combined with jerky oscillations, but different from those who have cervical dystonia combined with sinusoidal oscillations. These results imply distinct mechanistic underpinnings for different types of head oscillations in cervical dystonia.
Collapse
Affiliation(s)
- Alexey Sedov
- Semenov Institute of chemical physics, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of physics and technology, Moscow, Dolgoprudny, Russia
| | - Svetlana Usova
- Semenov Institute of chemical physics, Russian Academy of Sciences, Moscow, Russia
| | - Ulia Semenova
- Semenov Institute of chemical physics, Russian Academy of Sciences, Moscow, Russia
| | - Anna Gamaleya
- N .N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia
| | - Alexey Tomskiy
- N .N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia
| | - Sinem B Beylergil
- Departments of Neurology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - H A Jinnah
- Department of Neurology, Pediatrics, and Genetics, Emory University, Atlanta, GA, USA
| | - Aasef G Shaikh
- Departments of Neurology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA. .,Neurological Institute, University Hospitals, Cleveland, OH, USA. .,Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Department of Neurology, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
19
|
Pal P, Holla V, Chaithra S, Prasad S. Delayed cervicobrachial segmental dystonia secondary to ipsilateral cerebellar infarction. ANNALS OF MOVEMENT DISORDERS 2021. [DOI: 10.4103/aomd.aomd_32_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Lefaucheur JP, Damier P, Nizard J, Nguyen JP. The value of non-invasive brain stimulation techniques in treating focal dystonia. Neurophysiol Clin 2020; 50:309-313. [PMID: 33172759 DOI: 10.1016/j.neucli.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- Jean-Pascal Lefaucheur
- EA4391, Faculté de Santé, UPEC, Créteil, France; Unité de Neurophysiologie Clinique, Hôpital Henri Mondor, APHP, Créteil, France
| | | | - Julien Nizard
- EA4391, Faculté de Santé, UPEC, Créteil, France; Service Douleur, Soins Palliatifs et Support, Ethique Clinique et Laboratoire de Thérapeutique, CHU Nantes, Nantes, France
| | - Jean-Paul Nguyen
- Service Douleur, Soins Palliatifs et Support, Ethique Clinique et Laboratoire de Thérapeutique, CHU Nantes, Nantes, France; Unité de Stimulation Magnétique, Centre d'évaluation et de Traitement de la Douleur, Clinique Bretéché, Groupe Elsan, Nantes, France
| |
Collapse
|
21
|
Neurodegeneration and Sensorimotor Function. Brain Sci 2020; 10:brainsci10110808. [PMID: 33139600 PMCID: PMC7693124 DOI: 10.3390/brainsci10110808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 11/17/2022] Open
Abstract
Sensorimotor integration is an essential function for both motor control and learning. Over recent decades, a growing body of evidence has emerged in support of the role of altered sensorimotor integration in the pathophysiology of various neurological conditions and movement disorders, particularly bradykinesia, tremor, and dystonia. However, the various causes and mechanisms underlying altered sensorimotor integration in movement disorders are still not entirely understood. The lack of complete insight into the pathophysiological role of altered sensorimotor integration in movement disorders is certainly due to the heterogeneity of movement disorders as well as to the variable occurrence of neurodegenerative phenomena, even in idiopathic movement disorders, which contribute to pathophysiology in a complex and often not easily interpretable way. Clarifying the possible relationship between neurodegenerative phenomena and sensorimotor deficits in movement disorders and other neurological conditions may guide the development of a more detailed disease prognosis and lead, perhaps, to the implementation of novel and individualized therapeutic interventions.
Collapse
|
22
|
Pontillo G, Castagna A, Vola EA, Macerollo A, Peluso S, Russo C, Baglio F, Manganelli F, Brunetti A, Cocozza S, Esposito M. The cerebellum in idiopathic cervical dystonia: A specific pattern of structural abnormalities? Parkinsonism Relat Disord 2020; 80:152-157. [DOI: 10.1016/j.parkreldis.2020.09.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/17/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022]
|
23
|
Clinical characteristics of ataxia-telangiectasia presenting dystonia as a main manifestation. Clin Neurol Neurosurg 2020; 199:106267. [PMID: 33080427 DOI: 10.1016/j.clineuro.2020.106267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/21/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Besides cerebellar ataxia, various other movement disorders, including dystonia, could manifest as main clinical symptoms in ataxia-telangiectasia (A-T). However, the clinical characteristics of dystonic A-T patients are not clearly elucidated. METHODS To investigate the characteristics of dystonic A-T, we screened previous reports with A-T patients presenting dystonia as a main manifestation, and included 38 dystonic A-T patients from 16 previous studies and our 2 cases. We reviewed clinical and demographic data of dystonic A-T patients. Additionally, to figure out clinical meaning of cerebellar involvement in dystonic A-T, we divided them into two groups based on the presence of cerebellar involvement, and compared clinical features between two groups. RESULTS In the patients with dystonic A-T, dystonia tended to appear during childhood or adolescence and became generalized over time. Choreoathetosis and myoclonus accompanied more frequently than the typical clinical features, including cerebellar ataxia or atrophy, telangiectasia, or oculomotor apraxia. Additionally, alpha-fetoprotein level was also elevated in the patients with dystonic A-T. When we compared dystonic A-T with and without cerebellar involvement, the former was related with more chance for telangiectasia and oculomotor apraxia, while the latter with that for choreoathetosis and malignancy. CONCLUSION Even without ataxia, telangiectasia, or oculomotor apraxia, A-T should be considered in undiagnosed dystonia, especially generalized dystonia which started from childhood or adolescence period, and alpha-fetoprotein level can be a useful screening tool. In addition, cerebellar involvement is important considering different phenotype in dystonic A-T patients with and without cerebellar sign.
Collapse
|
24
|
Di Biasio F, Marchese R, Abbruzzese G, Baldi O, Esposito M, Silvestre F, Tescione G, Berardelli A, Fabbrini G, Ferrazzano G, Pellicciari R, Eleopra R, Devigili G, Bono F, Santangelo D, Bertolasi L, Altavista MC, Moschella V, Barone P, Erro R, Albanese A, Scaglione C, Liguori R, Cotelli MS, Cossu G, Ceravolo R, Coletti Moja M, Zibetti M, Pisani A, Petracca M, Tinazzi M, Maderna L, Girlanda P, Magistrelli L, Misceo S, Romano M, Minafra B, Modugno N, Aguggia M, Cassano D, Defazio G, Avanzino L. Motor and Sensory Features of Cervical Dystonia Subtypes: Data From the Italian Dystonia Registry. Front Neurol 2020; 11:906. [PMID: 33013628 PMCID: PMC7493687 DOI: 10.3389/fneur.2020.00906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction: Cervical dystonia (CD) is one of the most common forms of adult-onset isolated dystonia. Recently, CD has been classified according to the site of onset and spread, in different clinical subgroups, that may represent different clinical entities or pathophysiologic subtypes. In order to support this hypothesis, in this study we have evaluated whether different subgroups of CD, that clinically differ for site of onset and spread, also imply different sensorimotor features. Methods: Clinical and demographic data from 842 patients with CD from the Italian Dystonia Registry were examined. Motor features (head tremor and tremor elsewhere) and sensory features (sensory trick and neck pain) were investigated. We analyzed possible associations between motor and sensory features in CD subgroups [focal neck onset, no spread (FNO-NS); focal neck onset, segmental spread (FNO-SS); focal onset elsewhere with segmental spread to neck (FOE-SS); segmental neck involvement without spread (SNI)]. Results: In FNO-NS, FOE-SS, and SNI subgroups, head tremor was associated with the presence of tremor elsewhere. Sensory trick was associated with pain in patients with FNO-NS and with head tremor in patients with FNO-SS. Conclusion: The frequent association between head tremor and tremor elsewhere may suggest a common pathophysiological mechanism. Two mechanisms may be hypothesized for sensory trick: a gating mechanism attempting to reduce pain and a sensorimotor mechanism attempting to control tremor.
Collapse
Affiliation(s)
| | | | - Giovanni Abbruzzese
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Ottavia Baldi
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Marcello Esposito
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Francesco Silvestre
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Girolamo Tescione
- "Salvatore Maugeri" Foundation, Institute of Telese Terme (BN), Benevento, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,IRCSS Neuromed, Pozzilli, Italy
| | - Giovanni Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,IRCSS Neuromed, Pozzilli, Italy
| | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Roberta Pellicciari
- Department of Basic Science, Neuroscience and Sense Organs, Aldo Moro University of Bari, Bari, Italy
| | - Roberto Eleopra
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, UOC Neurologia 1, Milan, Italy
| | - Grazia Devigili
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, UOC Neurologia 1, Milan, Italy
| | - Francesco Bono
- Neurology Unit, Center for Botulinum Toxin Therapy, A.O.U. Mater Domini, Catanzaro, Italy
| | - Domenico Santangelo
- Neurology Unit, Center for Botulinum Toxin Therapy, A.O.U. Mater Domini, Catanzaro, Italy
| | | | | | | | - Paolo Barone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, Universitá di Salerno, Baronissi, Italy
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, Universitá di Salerno, Baronissi, Italy
| | | | - Cesa Scaglione
- IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Rocco Liguori
- IRCCS Institute of Neurological Sciences, Bologna, Italy
| | | | - Giovanni Cossu
- Neurology Service and Stroke Unit, Department of Neuroscience, AO Brotzu, Cagliari, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Maurizio Zibetti
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy
| | - Antonio Pisani
- Neurology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Martina Petracca
- Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy.,Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Luca Maderna
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paolo Girlanda
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, Varese, Italy
| | | | | | - Brigida Minafra
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | | | | | - Giovanni Defazio
- Neurology Unit, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Laura Avanzino
- IRCCS Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| |
Collapse
|
25
|
KCND3-Related Neurological Disorders: From Old to Emerging Clinical Phenotypes. Int J Mol Sci 2020; 21:ijms21165802. [PMID: 32823520 PMCID: PMC7461103 DOI: 10.3390/ijms21165802] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
KCND3 encodes the voltage-gated potassium ion channel subfamily D member 3, a six trans-membrane protein (Kv4.3), involved in the transient outward K+ current. KCND3 defect causes both cardiological and neurological syndromes. From a neurological perspective, Kv4.3 defect has been associated to SCA type 19/22, a complex neurological disorder encompassing a wide spectrum of clinical features beside ataxia. To better define the phenotypic spectrum and course of KCND3-related neurological disorder, we review the clinical presentation and evolution in 68 reported cases. We delineated two main clinical phenotypes according to the age of onset. Neurodevelopmental disorder with epilepsy and/or movement disorders with ataxia later in the disease course characterized the early onset forms, while a prominent ataxic syndrome with possible cognitive decline, movement disorders, and peripheral neuropathy were observed in the late onset forms. Furthermore, we described a 37-year-old patient with a de novo KCND3 variant [c.901T>C (p.Ser301Pro)], previously reported in dbSNP as rs79821338, and a clinical phenotype paradigmatic of the early onset forms with neurodevelopmental disorder, epilepsy, parkinsonism-dystonia, and ataxia in adulthood, further expanding the clinical spectrum of this condition.
Collapse
|
26
|
Summa S, Schirinzi T, Favetta M, Romano A, Minosse S, Diodato D, Olivieri G, Martinelli D, Sancesario A, Zanni G, Castelli E, Bertini E, Petrarca M, Vasco G. A wearable video-oculography based evaluation of saccades and respective clinical correlates in patients with early onset ataxia. J Neurosci Methods 2020; 338:108697. [PMID: 32205159 DOI: 10.1016/j.jneumeth.2020.108697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Friedreich Ataxia (FRDA) and other inherited chronic ataxias (CAs) are common causes of early onset ataxias (EOA), a group of conditions still lacking effective therapies and biomarkers. Ocular saccades are considered a reliable paradigm of motor control, useful to track the functioning of underlying neural networks and serving as potential markers for neurological diseases. NEW METHOD A non-invasive video-oculography device (EyeSeeCam) was used to test saccadic parameters (latency, amplitude, duration, velocity) and peak velocity/amplitude ratio ("main sequence") in pediatric patients with FRDA, CAs and healthy controls, providing correlations with standard clinical scores. RESULTS Pattern of saccadic features differed between CA and FRDA. The main sequence analysis was impaired respectively in vertical saccades in CA, and in horizontal saccades in FRDA. In CA, the amplitude of vertical saccades was reduced, and the size inversely correlated with the Scale for the assessment and rating of ataxia (SARA) score. In FRDA the amplitude of horizontal saccades directly correlated with SARA score. COMPARISON WITH EXISTING METHOD EyeSeeCam allowed testing saccades easily and quickly even in pediatric patients with EOA. CONCLUSIONS The pattern of saccadic impairment differed between FRDA and CAs, resulting a prominent involvement of vertical saccades in CA and of horizontal ones in FRDA, which respectively correlated with SARA score. Since such differences may reflect distinct pathophysiological substrates, saccades emerged as a potential source of biomarkers in EOAs. Availability of handy tools, such as EyeSeeCam, may facilitate future research in this field.
Collapse
Affiliation(s)
- Susanna Summa
- Department of Neuroscience - Unit of Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome - Via Torre Di Palidoro s.n.c. 00050, Palidoro, Rome, Italy
| | - Tommaso Schirinzi
- Department of Neuroscience - Unit of Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome - Via Torre Di Palidoro s.n.c. 00050, Palidoro, Rome, Italy; Department of Neuroscience - Unit of Neuromuscolar and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Rome - Piazza Di Sant'Onofrio 4, 00165, Rome, Italy; Department Systems Medicine, University of Roma Tor Vergata, Rome - Via Montpellier 1, 00133, Rome, Italy.
| | - Martina Favetta
- Department of Neuroscience - Unit of Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome - Via Torre Di Palidoro s.n.c. 00050, Palidoro, Rome, Italy
| | - Alberto Romano
- Department of Neuroscience - Unit of Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome - Via Torre Di Palidoro s.n.c. 00050, Palidoro, Rome, Italy
| | - Silvia Minosse
- Department of Neuroscience - Unit of Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome - Via Torre Di Palidoro s.n.c. 00050, Palidoro, Rome, Italy
| | - Daria Diodato
- Department of Neuroscience - Unit of Neuromuscolar and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Rome - Piazza Di Sant'Onofrio 4, 00165, Rome, Italy; Department of Pediatric Specialties - Unit of Metabolic Diseases, IRCCS Bambino Gesù Children's Hospital, Rome - Piazza Di Sant'Onofrio 4, 00165, Rome, Italy
| | - Giorgia Olivieri
- Department of Pediatric Specialties - Unit of Metabolic Diseases, IRCCS Bambino Gesù Children's Hospital, Rome - Piazza Di Sant'Onofrio 4, 00165, Rome, Italy
| | - Diego Martinelli
- Department of Pediatric Specialties - Unit of Metabolic Diseases, IRCCS Bambino Gesù Children's Hospital, Rome - Piazza Di Sant'Onofrio 4, 00165, Rome, Italy
| | - Andrea Sancesario
- Department of Neuroscience - Unit of Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome - Via Torre Di Palidoro s.n.c. 00050, Palidoro, Rome, Italy; Department Systems Medicine, University of Roma Tor Vergata, Rome - Via Montpellier 1, 00133, Rome, Italy
| | - Ginevra Zanni
- Department of Neuroscience - Unit of Neuromuscolar and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Rome - Piazza Di Sant'Onofrio 4, 00165, Rome, Italy
| | - Enrico Castelli
- Department of Neuroscience - Unit of Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome - Via Torre Di Palidoro s.n.c. 00050, Palidoro, Rome, Italy
| | - Enrico Bertini
- Department of Neuroscience - Unit of Neuromuscolar and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Rome - Piazza Di Sant'Onofrio 4, 00165, Rome, Italy
| | - Maurizio Petrarca
- Department of Neuroscience - Unit of Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome - Via Torre Di Palidoro s.n.c. 00050, Palidoro, Rome, Italy
| | - Gessica Vasco
- Department of Neuroscience - Unit of Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome - Via Torre Di Palidoro s.n.c. 00050, Palidoro, Rome, Italy
| |
Collapse
|
27
|
Nguyen P, Kelly D, Glickman A, Argaw S, Shelton E, Peterson DA, Berman BD. Abnormal Neural Responses During Reflexive Blinking in Blepharospasm: An Event-Related Functional MRI Study. Mov Disord 2020; 35:1173-1180. [PMID: 32250472 DOI: 10.1002/mds.28042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The neurophysiological disruptions underlying blepharospasm, a disabling movement disorder characterized by increased blinking and involuntary muscle spasms of the eyelid, remain poorly understood. OBJECTIVE To investigate the neural substrates underlying reflexive blinking in blepharospasm patients compared to healthy controls using simultaneous functional MRI and surface electromyography. METHODS Fifteen blepharospasm patients and 15 healthy controls were recruited. Randomly timed air puffs to the left eye were used to induce reflexive eye blinks during two 8-minute functional MRI scans. Continuous surface electromyography and video recordings were used to monitor blink responses. Imaging data were analyzed using an event-related design. RESULTS Fourteen blepharospasm patients (10 female; 61.6 ± 8.0 years) and 15 controls (11 female; 60.9 ± 5.5 years) were included in the final analysis. Reflexive eye blinks in controls were associated with activation of the right hippocampus and in patients with activation of the left caudate nucleus. Reflexive blinks in blepharospasm patients showed increased activation in the right postcentral gyrus and precuneus, left precentral gyrus, and left occipital cortex compared to controls. Dystonia severity negatively correlated with activity in the left occipital cortex, and disease duration negatively correlated with reflexive-blink activity in the cerebellum. CONCLUSIONS Reflexive blinking in blepharospasm is associated with increased activation in the caudate nucleus and sensorimotor cortices, suggesting a loss of inhibition within the sensorimotor corticobasal ganglia network. The association between decreasing neural response during reflexive blinking in the cerebellum with disease duration suggests an adaptive role. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Phuong Nguyen
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diane Kelly
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amanda Glickman
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Salem Argaw
- School of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Erika Shelton
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A Peterson
- Institute of Neural Computation, University of California San Diego, San Diego, California, USA.,Computational Neurobiology Laboratory, Salk Institute of Biological Studies, La Jolla, California, USA
| | - Brian D Berman
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
28
|
Olszewska DA, Kinsella JA. Extending the Phenotypic Spectrum Associated with STUB1 Mutations: A Case of Dystonia. Mov Disord Clin Pract 2020; 7:318-324. [PMID: 32258232 PMCID: PMC7111583 DOI: 10.1002/mdc3.12914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mutations in the STIP1 homology and U-box containing protein 1 gene were first described in 2013 and lead to disorders with symptoms including ataxia and dysarthria, such as spinocerebellar autosomal-recessive ataxia type 16 (SCAR16), Gordon-Holmes syndrome, and spinocerebellar ataxia type 48. There have been 15 families described to date with SCAR16. CASES We describe a 45-year-old right-handed woman with dysarthria, ataxia, and cervical dystonia with SCAR16 with 2 compound heterozygous variants in the STIP1 homology and U-box containing protein 1 gene, and a family history significant for her 47-year-old sister with dysarthria and cognitive problems. CONCLUSION We present a comprehensive overview of the phenotypic data of all 15 families with SCAR16 and expand the phenotype by describing a third patient with SCAR16 and dystonia reported to date in the literature.
Collapse
Affiliation(s)
- Diana A. Olszewska
- Department of NeurologyDublin Neurological Institute at the Mater Misericordiae University HospitalDublinIreland
- Department of NeurologySt. Vincent's University HospitalDublinIreland
| | | |
Collapse
|
29
|
Wojtasiewicz T, Butala A, Anderson WS. Dystonia. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Miterko LN, Baker KB, Beckinghausen J, Bradnam LV, Cheng MY, Cooperrider J, DeLong MR, Gornati SV, Hallett M, Heck DH, Hoebeek FE, Kouzani AZ, Kuo SH, Louis ED, Machado A, Manto M, McCambridge AB, Nitsche MA, Taib NOB, Popa T, Tanaka M, Timmann D, Steinberg GK, Wang EH, Wichmann T, Xie T, Sillitoe RV. Consensus Paper: Experimental Neurostimulation of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1064-1097. [PMID: 31165428 PMCID: PMC6867990 DOI: 10.1007/s12311-019-01041-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is best known for its role in controlling motor behaviors. However, recent work supports the view that it also influences non-motor behaviors. The contribution of the cerebellum towards different brain functions is underscored by its involvement in a diverse and increasing number of neurological and neuropsychiatric conditions including ataxia, dystonia, essential tremor, Parkinson's disease (PD), epilepsy, stroke, multiple sclerosis, autism spectrum disorders, dyslexia, attention deficit hyperactivity disorder (ADHD), and schizophrenia. Although there are no cures for these conditions, cerebellar stimulation is quickly gaining attention for symptomatic alleviation, as cerebellar circuitry has arisen as a promising target for invasive and non-invasive neuromodulation. This consensus paper brings together experts from the fields of neurophysiology, neurology, and neurosurgery to discuss recent efforts in using the cerebellum as a therapeutic intervention. We report on the most advanced techniques for manipulating cerebellar circuits in humans and animal models and define key hurdles and questions for moving forward.
Collapse
Affiliation(s)
- Lauren N Miterko
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Kenneth B Baker
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jaclyn Beckinghausen
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Lynley V Bradnam
- Department of Exercise Science, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Jessica Cooperrider
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mahlon R DeLong
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Simona V Gornati
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave, Memphis, TN, 38163, USA
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
- NIDOD Department, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, Utrecht, Netherlands
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Department of Chronic Disease Epidemiology, Yale School of Public Health, Center for Neuroepidemiology and Clinical Research, Yale School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Andre Machado
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mario Manto
- Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, 7000, Mons, Belgium
| | - Alana B McCambridge
- Graduate School of Health, Physiotherapy, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Michael A Nitsche
- Department of Psychology and Neurosiences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | | | - Traian Popa
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Ecole Polytechnique Federale de Lausanne (EPFL), Sion, Switzerland
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Dagmar Timmann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
- R281 Department of Neurosurgery, Stanfod University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Eric H Wang
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Thomas Wichmann
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Tao Xie
- Department of Neurology, University of Chicago, 5841 S. Maryland Avenue, MC 2030, Chicago, IL, 60637-1470, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Galosi S, Barca E, Carrozzo R, Schirinzi T, Quinzii CM, Lieto M, Vasco G, Zanni G, Di Nottia M, Galatolo D, Filla A, Bertini E, Santorelli FM, Leuzzi V, Haas R, Hirano M, Friedman J. Dystonia-Ataxia with early handwriting deterioration in COQ8A mutation carriers: A case series and literature review. Parkinsonism Relat Disord 2019; 68:8-16. [DOI: 10.1016/j.parkreldis.2019.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/27/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023]
|
32
|
Bulica B, Sidiropoulos C, Mahajan A, Zillgitt A, Kaminski P, Bowyer SM. Sensorimotor Integration and GABA-ergic Activity in Embouchure Dystonia: An Assessment with Magnetoencephalography. Tremor Other Hyperkinet Mov (N Y) 2019; 9:tre-09-709. [PMID: 31632836 PMCID: PMC6765227 DOI: 10.7916/tohm.v0.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 12/01/2022] Open
Abstract
Background Embouchure dystonia (ED) is a task-specific dystonia affecting musicians thought to be related to alteration in sensorimotor processing and loss of cortical inhibition. Case Report Magnetoencephalography-coherence source imaging (MEG-CSI) was used to map connectivity between brain regions by imaging neuronal oscillations that are coherent across the brain in patient with ED at rest and while using the index finger to evoke dystonia normally triggered by playing the flute. Discussion During rest, there was increased coherence in the bilateral frontal and parietal regions that became more focal during dystonia. Diffuse hyperexcitability and increased coherence persisted in bilateral parietal regions as well as the bilateral frontal regions.
Collapse
Affiliation(s)
- Bisena Bulica
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA,To whom correspondence should be addressed. E-mail:
| | - Christos Sidiropoulos
- Department of Neurology and Ophthalmology, Michigan State University, East Lansing, MI, USA
| | - Abhimanyu Mahajan
- Division of Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew Zillgitt
- Department of Neurology, Beaumont Neuroscience Center, Royal Oak, MI, USA
| | | | - Susan M. Bowyer
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
33
|
Shin HW, Youn YC, Hallett M. Focal Leg Dystonia Associated with Cerebellar Infarction and Application of Low-Frequency Cerebellar Transcranial Magnetic Stimulation: Evidence of Topographically Specific Cerebellar Contribution to Dystonia Development. THE CEREBELLUM 2019; 18:1147-1150. [DOI: 10.1007/s12311-019-01054-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Shetty AS, Bhatia KP, Lang AE. Dystonia and Parkinson's disease: What is the relationship? Neurobiol Dis 2019; 132:104462. [PMID: 31078682 DOI: 10.1016/j.nbd.2019.05.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 01/30/2023] Open
Abstract
Dystonia and Parkinson's disease are closely linked disorders sharing many pathophysiological overlaps. Dystonia can be seen in 30% or more of the patients suffering with PD and sometimes can precede the overt parkinsonism. The response of early dystonia to the introduction of dopamine replacement therapy (levodopa, dopamine agonists) is variable; dystonia commonly occurs in PD patients following levodopa initiation. Similarly, parkinsonism is commonly seen in patients with mutations in various DYT genes including those involved in the dopamine synthesis pathway. Pharmacological blockade of dopamine receptors can cause both tardive dystonia and parkinsonism and these movement disorders syndromes can occur in many other neurodegenerative, genetic, toxic and metabolic diseases. Pallidotomy in the past and currently deep brain stimulation largely involving the GPi are effective treatment options for both dystonia and parkinsonism. However, the physiological mechanisms underlying the response of these two different movement disorder syndromes are poorly understood. Interestingly, DBS for PD can cause dystonia such as blepharospasm and bilateral pallidal DBS for dystonia can result in features of parkinsonism. Advances in our understanding of these responses may provide better explanations for the relationship between dystonia and Parkinson's disease.
Collapse
Affiliation(s)
- Aakash S Shetty
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Kailash P Bhatia
- Department of Clinical Movement Disorders and Motor Neuroscience, University College London (UCL), Institute of Neurology, Queen Square, London, United Kingdom
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.
| |
Collapse
|
35
|
Batsikadze G, Rezaee Z, Chang DI, Gerwig M, Herlitze S, Dutta A, Nitsche MA, Timmann D. Effects of cerebellar transcranial direct current stimulation on cerebellar-brain inhibition in humans: A systematic evaluation. Brain Stimul 2019; 12:1177-1186. [PMID: 31040077 DOI: 10.1016/j.brs.2019.04.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cerebellar transcranial direct current stimulation (ctDCS) is increasingly used to modulate cerebellar excitability and plasticity in healthy subjects and various patient populations. ctDCS parameters are poorly standardized, and its physiology remains little understood. Our aim was to compare the physiological effects of three different non-target electrode positions (buccinator muscle, supraorbital region, deltoid muscle). METHODS In the first experiment, physiological after-effects of ctDCS were compared based on cerebellar-brain inhibition (CBI) in a group of 15 healthy right-handed participants. In the second experiment, CBI after-effects of ctDCS were assessed using different transcranial magnetic stimulation (TMS) intensities in 14 participants (CBI recruitment curve). The electric field distribution was calculated for each of the electrode montages based on a single anatomically accurate head model. RESULTS Anodal and cathodal ctDCS polarities significantly decreased cerebellar-brain inhibition (CBI) with no substantial differences between the montages. Lower cerebellar TMS intensities resulted in decreased CBI following cathodal and increased CBI after anodal ctDCS. Computational modeling revealed minor differences in the electric field distribution between non-target electrode positions based on the effect size. CONCLUSION Our results show that the non-target electrode position has no significant impact on modeling results and physiological ctDCS after-effects. The recruitment of the cerebellar-M1 connection, however, varied depending on ctDCS polarity and cerebellar transcranial magnetic stimulation intensity, possibly due to diverse effects on different cell populations in the cerebellar cortex. This may be one of the reasons why ctDCS effects on functional measures are difficult to predict.
Collapse
Affiliation(s)
- Giorgi Batsikadze
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany.
| | - Zeynab Rezaee
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Dae-In Chang
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany; Department of Psychiatry and Psychotherapy, LVR-Hospital Essen, Faculty of Medicine, University of Duisburg-Essen, Virchowstrasse 174, 45147, Essen, Germany
| | - Marcus Gerwig
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Anirban Dutta
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| |
Collapse
|
36
|
Bareš M, Apps R, Avanzino L, Breska A, D'Angelo E, Filip P, Gerwig M, Ivry RB, Lawrenson CL, Louis ED, Lusk NA, Manto M, Meck WH, Mitoma H, Petter EA. Consensus paper: Decoding the Contributions of the Cerebellum as a Time Machine. From Neurons to Clinical Applications. CEREBELLUM (LONDON, ENGLAND) 2019; 18:266-286. [PMID: 30259343 DOI: 10.1007/s12311-018-0979-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Time perception is an essential element of conscious and subconscious experience, coordinating our perception and interaction with the surrounding environment. In recent years, major technological advances in the field of neuroscience have helped foster new insights into the processing of temporal information, including extending our knowledge of the role of the cerebellum as one of the key nodes in the brain for this function. This consensus paper provides a state-of-the-art picture from the experts in the field of the cerebellar research on a variety of crucial issues related to temporal processing, drawing on recent anatomical, neurophysiological, behavioral, and clinical research.The cerebellar granular layer appears especially well-suited for timing operations required to confer millisecond precision for cerebellar computations. This may be most evident in the manner the cerebellum controls the duration of the timing of agonist-antagonist EMG bursts associated with fast goal-directed voluntary movements. In concert with adaptive processes, interactions within the cerebellar cortex are sufficient to support sub-second timing. However, supra-second timing seems to require cortical and basal ganglia networks, perhaps operating in concert with cerebellum. Additionally, sensory information such as an unexpected stimulus can be forwarded to the cerebellum via the climbing fiber system, providing a temporally constrained mechanism to adjust ongoing behavior and modify future processing. Patients with cerebellar disorders exhibit impairments on a range of tasks that require precise timing, and recent evidence suggest that timing problems observed in other neurological conditions such as Parkinson's disease, essential tremor, and dystonia may reflect disrupted interactions between the basal ganglia and cerebellum.The complex concepts emerging from this consensus paper should provide a foundation for further discussion, helping identify basic research questions required to understand how the brain represents and utilizes time, as well as delineating ways in which this knowledge can help improve the lives of those with neurological conditions that disrupt this most elemental sense. The panel of experts agrees that timing control in the brain is a complex concept in whom cerebellar circuitry is deeply involved. The concept of a timing machine has now expanded to clinical disorders.
Collapse
Affiliation(s)
- Martin Bareš
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA.
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
- Centre for Parkinson's Disease and Movement Disorders, Ospedale Policlinico San Martino, Genoa, Italy
| | - Assaf Breska
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Egidio D'Angelo
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS), Pavia, Italy
| | - Pavel Filip
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-Essen, Duisburg, Germany
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Charlotte L Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Nicholas A Lusk
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium -Service des Neurosciences, UMons, Mons, Belgium
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Elijah A Petter
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW This survey takes into consideration the most recent advances in both human degenerative ataxias, disorders with a well established cerebellar origin, and discoveries from dystonia rodent models aimed at discussing the pathogenesis of dystonia. RECENT FINDINGS One common recurrent term that emerges when describing dystonia is heterogeneity. Indeed, dystonia encompasses a wide group of 'hyperkinetic' movement disorders, with heterogeneous causes, classification, anatomical and physiological substrates. In addition, the clinical heterogeneity of age at onset, symptom distribution and appearance of non-motor symptoms has supported the concept of dystonia as 'network' disorder. Pathophysiological alterations are thought to arise from dysfunction at cortico-thalamic-basal ganglia level, whereas, more recently, a role for cerebellar pathways emerged. Results from human and animal studies thus fuel the evolving concept of the network disorder. SUMMARY Current evidence suggests the involvement of multiple brain regions and cellular mechanisms, as part of the neural dysfunction observed at system level in dystonia.
Collapse
|
38
|
Bang MH, Kim HS. Improvement of Lingual Dystonia Following Cerebellar Infarction through Botulinum Toxin Injection: a Case Report. BRAIN & NEUROREHABILITATION 2019. [DOI: 10.12786/bn.2019.12.e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Myeong Hwan Bang
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Hyoung Seop Kim
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| |
Collapse
|
39
|
Conte A, Belvisi D, De Bartolo MI, Manzo N, Cortese FN, Tartaglia M, Ferrazzano G, Fabbrini G, Berardelli A. Abnormal sensory gating in patients with different types of focal dystonias. Mov Disord 2018; 33:1910-1917. [DOI: 10.1002/mds.27530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/08/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Antonella Conte
- Department of Human Neurosciences; Sapienza, University of Rome; Rome Italy
- IRCCS NEUROMED; Pozzilli IS Italy
| | | | | | - Nicoletta Manzo
- Department of Human Neurosciences; Sapienza, University of Rome; Rome Italy
| | | | - Matteo Tartaglia
- Department of Human Neurosciences; Sapienza, University of Rome; Rome Italy
| | | | - Giovanni Fabbrini
- Department of Human Neurosciences; Sapienza, University of Rome; Rome Italy
- IRCCS NEUROMED; Pozzilli IS Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences; Sapienza, University of Rome; Rome Italy
- IRCCS NEUROMED; Pozzilli IS Italy
| |
Collapse
|
40
|
Isolated focal dystonia phenotypes are associated with distinct patterns of altered microstructure. NEUROIMAGE-CLINICAL 2018; 19:805-812. [PMID: 30013924 PMCID: PMC6024227 DOI: 10.1016/j.nicl.2018.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/17/2018] [Accepted: 06/03/2018] [Indexed: 01/21/2023]
Abstract
Objective Isolated adult-onset focal dystonia is considered a network disorder with disturbances to the motor basal ganglia and cerebellar circuits playing a pathophysiological role, but why specific body regions become affected remains unknown. We aimed to use diffusion tensor imaging to determine if the two most common phenotypes of focal dystonia are associated with distinguishing microstructural changes affecting the motor network. Methods Fifteen blepharospasm patients, 20 cervical dystonia patients, and 30 age- and sex-matched healthy controls were recruited. Maps of fractional anisotropy and mean diffusivity were analyzed using a voxel-based approach and an automated region-of-interest technique to evaluate deep gray matter nuclei. Correlations between diffusion measures and dystonia severity were tested, and post hoc discriminant analyses were conducted. Results Voxel-based analyses revealed significantly reduced fractional anisotropy in the right cerebellum and increased mean diffusivity in the left caudate of cervical dystonia patients compared to controls, as well as lower fractional anisotropy in the right cerebellum in cervical dystonia patients relative to blepharospasm patients. In addition to reduced fractional anisotropy in the bilateral caudate nucleus of cervical dystonia patients relative to controls and blepharospasm patients, region-of-interest analyses revealed significantly reduced fractional anisotropy in the right globus pallidus internus and left red nucleus of blepharospasm patients compared to both controls and cervical dystonia patients. Diffusivity measures in the red nucleus of blepharospasm patients correlated with disease severity. In a three-group discriminant analysis, participants were correctly classified with only modest reliability (67-75%), but in a two-group discriminant analysis, patients could be distinguished from each other with high reliability (83-100%). Conclusions Different focal dystonia phenotypes are associated with distinct patterns of altered microstructure within constituent regions of basal ganglia and cerebellar circuits.
Collapse
Key Words
- BSP, blepharospasm
- Basal ganglia
- Blepharospasm
- CD, cervical dystonia
- Cerebellum
- Cervical dystonia
- DTI, diffusion tensor imaging
- Diffusion tensor imaging
- FA, fractional anisotropy
- HC, healthy control
- JRS, Jankovic Rating Scale
- MD, mean diffusivity
- MNI, Montreal Neurological Institute
- ROI, region of interest
- TWSTRS, Toronto Western Spasmodic Torticollis Rating Scale
Collapse
|
41
|
Berman BD, Pollard RT, Shelton E, Karki R, Smith-Jones PM, Miao Y. GABA A Receptor Availability Changes Underlie Symptoms in Isolated Cervical Dystonia. Front Neurol 2018; 9:188. [PMID: 29670567 PMCID: PMC5893646 DOI: 10.3389/fneur.2018.00188] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/12/2018] [Indexed: 11/28/2022] Open
Abstract
GABAA receptor availability changes within sensorimotor regions have been reported in some isolated forms of dystonia. Whether similar abnormalities underlie symptoms in cervical dystonia is not known. In the present study, a total of 15 cervical dystonia patients and 15 age- and sex-matched controls underwent 11C-flumazenil PET/CT scanning. The density of available GABAA receptors was estimated using a Simplified Reference Tissue Model 2. Group differences were evaluated using a two-sample T-test, and correlations with dystonia severity, as measured by the Toronto Western Spasmodic Torticollis Rating Scale, and disease duration were evaluated using a regression analysis. Voxel-based analyses revealed increased GABAA availability within the right precentral gyrus in brain motor regions previously associated with head turning and the left parahippocampal gyrus. GABAA availability within the bilateral cerebellum was negatively correlated with dystonia severity, and GABAA availability within the right thalamus and a variety of cerebellar and cortical regions were negatively correlated with disease duration. While GABAA availability changes within primary motor areas could represent a partial compensatory response to loss of inhibition within sensorimotor network, GABAergic signaling impairment within the cerebellum may be a key contributor to dystonia severity.
Collapse
Affiliation(s)
- Brian D Berman
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Neurology Section, Denver VA Medical Center, Denver, CO, United States
| | - Rebecca Tran Pollard
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Erika Shelton
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ramesh Karki
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Peter M Smith-Jones
- Department of Psychiatry, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Yubin Miao
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
42
|
Sensory Trick in a Patient with Cervical Dystonia: Insights from Magnetoencephalography. Brain Sci 2018; 8:brainsci8040051. [PMID: 29565281 PMCID: PMC5924387 DOI: 10.3390/brainsci8040051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/08/2018] [Accepted: 03/16/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The proposed mechanisms for the sensory trick include peripheral sensory feedback to aid in correcting abnormal posture or movement. CASE REPORT A 53-year-old woman with cervical dystonia underwent magnetoencephalography pre- and post-botulinum toxin injection and sensory trick, which was described as yawning. Study revealed connectivity between the left frontal and inferior frontal gyrus before yawning, which changed to the visual cortex and right middle frontal gyrus with yawning. Beta frequencies reduced and gamma frequencies increased after yawning. DISCUSSION The increase in gamma frequency bands may indicate increased GABAergic activity. Increase in connectivity in the right cerebellar region underscores the importance of cerebellum in pathogenesis of dystonia.
Collapse
|
43
|
Abstract
Dystonia is a heterogeneous disorder characterized by involuntary muscle contractions, twisting movements, and abnormal postures in various body regions. It is widely accepted that the basal ganglia are involved in the pathogenesis of dystonia. A growing body of evidence, however, is challenging the traditional view and suggest that the cerebellum may also play a role in dystonia. Studies on animals indicate that experimental manipulations of the cerebellum lead to dystonic-like movements. Several clinical observations, including those from secondary dystonia cases as well as neurophysiologic and neuroimaging studies in human patients, provide further evidence in humans of a possible relationship between cerebellar abnormalities and dystonia. Claryfing the role of the cerebellum in dystonia is an important step towards providing alternative treatments based on noninvasive brain stimulation techniques.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; Neuromed Institute IRCCS, Pozzilli, Italy
| | - Alfredo Berardelli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; Neuromed Institute IRCCS, Pozzilli, Italy.
| |
Collapse
|
44
|
Jinnah HA, Neychev V, Hess EJ. The Anatomical Basis for Dystonia: The Motor Network Model. Tremor Other Hyperkinet Mov (N Y) 2017; 7:506. [PMID: 29123945 PMCID: PMC5673689 DOI: 10.7916/d8v69x3s] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/25/2017] [Indexed: 01/27/2023] Open
Abstract
Background The dystonias include a clinically and etiologically very diverse group of disorders. There are both degenerative and non-degenerative subtypes resulting from genetic or acquired causes. Traditionally, all dystonias have been viewed as disorders of the basal ganglia. However, there has been increasing appreciation for involvement of other brain regions including the cerebellum, thalamus, midbrain, and cortex. Much of the early evidence for these other brain regions has come from studies of animals, but multiple recent studies have been done with humans, in an effort to confirm or refute involvement of these other regions. The purpose of this article is to review the new evidence from animals and humans regarding the motor network model, and to address the issues important to translational neuroscience. Methods The English literature was reviewed for articles relating to the neuroanatomical basis for various types of dystonia in both animals and humans. Results There is evidence from both animals and humans that multiple brain regions play an important role in various types of dystonia. The most direct evidence for specific brain regions comes from animal studies using pharmacological, lesion, or genetic methods. In these studies, experimental manipulations of specific brain regions provide direct evidence for involvement of the basal ganglia, cerebellum, thalamus and other regions. Additional evidence also comes from human studies using neuropathological, neuroimaging, non-invasive brain stimulation, and surgical interventions. In these studies, the evidence is less conclusive, because discriminating the regions that cause dystonia from those that reflect secondary responses to abnormal movements is more challenging. Discussion Overall, the evidence from both animals and humans suggests that different regions may play important roles in different subtypes of dystonia. The evidence so far provides strong support for the motor network model. There are obvious challenges, but also advantages, of attempting to translate knowledge gained from animals into a more complete understanding of human dystonia and novel therapeutic strategies.
Collapse
Affiliation(s)
- H. A. Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory University, Atlanta, GA, USA
| | - Vladimir Neychev
- Department of Surgery, University Multiprofile Hospital for Active Treatment “Alexandrovska”, Medical University of Sofia, Sofia, Bulgaria
| | - Ellen J. Hess
- Departments of Pharmacology and Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
45
|
Bareš M, Filip P. Cerebellum and dystonia: The story continues. Will the patients benefit from new discoveries? Clin Neurophysiol 2017; 129:282-283. [PMID: 29122444 DOI: 10.1016/j.clinph.2017.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Martin Bareš
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital, Brno, Czech Republic; Department of Neurology, Medical School, University of Minnesota, Minneapolis, MN, USA.
| | - Pavel Filip
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital, Brno, Czech Republic
| |
Collapse
|