1
|
Liu S, Chen L, Shang Y. CEACAM5 exacerbates asthma by inducing ferroptosis and autophagy in airway epithelial cells through the JAK/STAT6-dependent pathway. Redox Rep 2025; 30:2444755. [PMID: 39844719 PMCID: PMC11758806 DOI: 10.1080/13510002.2024.2444755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVES Asthma, a prevalent chronic disease, poses significant health threats and burdens healthcare systems. This study focused on the role of bronchial epithelial cells in asthma pathophysiology. METHODS Bioinformatics was used to identify key asthmarelated genes. An ovalbumin-sensitized mouse model and an IL-13-stimulated Beas-2B cell model were established for further investigation. RESULTS Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) was identified as a crucial gene in asthma. CEACAM5 expression was elevated in asthmatic mouse lung tissues and IL-13-stimulated Beas-2B cells, primarily in bronchial epithelial cells. CEACAM5 induced reactive oxygen species (ROS), lipid peroxidation, and ferroptosis. Interfering with CEACAM5 reduced ROS, malondialdehyde levels, and enhanced antioxidant capacity, while inhibiting iron accumulation and autophagy. Overexpression of CEACAM5 in IL-13-stimulated cells activated the JAK/STAT6 pathway, which was necessary for CEACAM5-induced autophagy, ROS accumulation, lipid peroxidation, and ferroptosis. CONCLUSION CEACAM5 promotes ferroptosis and autophagy in airway epithelial cells via the JAK/STAT6 pathway, exacerbating asthma symptoms. It represents a potential target for clinical treatment.
Collapse
Affiliation(s)
- Si Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Li Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
2
|
Li Y, Wang Z, Zhu H, Yang S, Cao G. Jian'er Qiangshen Ointment Treating Bronchial Asthma by Inhibiting Lung Inflammation and Regulating Intestinal Microbiota. J Asthma 2025:1-20. [PMID: 40367143 DOI: 10.1080/02770903.2025.2505462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/16/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
OBJECTIVE To investigate the ameliorative effects and mechanisms of Jian'er Qiangshen Ointment (JEQS) on asthma. METHODS Twenty-four BALB/c mice were randomly and equally divided into four groups: blank control, ovalbumin (OVA), OVA + dexamethasone (DXMS), and OVA + JEQS. Lung tissue sections were isolated for H&E and Masson staining, and inflammatory factor levels were measured. Ultra-high performance liquid chromatography-time-of-flight mass spectrometry (UHPLC-TOF-MS) was employed to analyze and identify blood components in mice following intragastric administration of JEQS extract. Network pharmacology analysis was subsequently utilized to predict the pharmacological targets and mechanisms of JEQS in asthma treatment. 16S rRNA sequencing was conducted to determine bacterial community composition and diversity. RESULT Animal experiments indicated that compared to the OVA group, the OVA + drug groups (DXMS and JEQS) exhibited milder asthma symptoms and significantly improved pathological changes. JEQS significantly reduced IFN-γ, IL-4, IL-5, and IL-13 levels in lung tissue. CONCLUSION Through network pharmacology and 16S rRNA sequencing, JEQS ointment was found to alleviate asthma-related inflammatory responses and improve asthma symptoms via multi-target mechanisms and modulation of intestinal microbiota. Network pharmacology revealed 28 effective components in JEQS for asthma treatment, with α-linolenic acid, 9-oxononanoic acid, inosine, linoleic acid, and amygdalin as primary active constituents. One hundred core targets were identified, including AKT1, IL-6, ALB, TNF, and MAPK3. 16S rRNA sequencing demonstrated increased proportions of Proteobacteria and Actinobacteria following JEQS treatment. Probiotics such as Clostridium, Escherichia, Bacteroides, and Candidatus Saccharimonas became dominant microbiota.
Collapse
Affiliation(s)
- Yanlin Li
- Department of Pediatrics,Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine
| | - Zhenghua Wang
- Department of Pediatrics,Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine
| | - Hui Zhu
- Department of Pediatrics,Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine
| | - Shanshan Yang
- Department of Cardiovascular Diseases, Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine
| | - Gang Cao
- Department of Pediatrics,Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine
| |
Collapse
|
3
|
Yang A, Gu C, Upchurch K, Caffiers A, Millard M, Baert L, Joo H, Oh S. Omalizumab is ineffective in regulating proasthmatic serum cytokine and chemokine levels in nonresponders with high BMI. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100462. [PMID: 40242148 PMCID: PMC12002203 DOI: 10.1016/j.jacig.2025.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/13/2025] [Accepted: 02/18/2025] [Indexed: 04/18/2025]
Abstract
Background Omalizumab provides clinical benefits to a fraction of patients with asthma. It remains unclear why some patients do not respond to omalizumab therapy. Objective We sought to investigate whether omalizumab could alter serum cytokine and chemokine levels that could be associated with asthma pathogenesis. We also investigated why omalizumab is ineffective in controlling proasthmatic serum cytokine and chemokine levels in nonresponders. Methods Serum cytokine and chemokine levels in patients with moderate to severe asthma (N = 45; 34 responders and 11 nonresponders) were assessed before and after 26 weeks of omalizumab therapy. Correlations between cytokine and chemokine levels and asthma symptoms as well as characteristics of responders and nonresponders were assessed. Nonasthmatic subjects (N = 22) served as controls for patients with asthma (N = 45). Results Omalizumab was more effective in patients with increased serum eotaxin-1 and IL-13 levels than in others at baseline. Omalizumab decreased eotaxin-1 and IL-13, along with levels of most of the cytokines and chemokines tested, including IL-7, CCL17, and CXCL10, in responders, except for CCL5 and CCL22, which can contribute to neutrophilic and type 2 airway inflammation, respectively. In contrast, omalizumab did not decrease such serum cytokine and chemokine levels in nonresponders. Of interest, serum CCL17, CCL22, CXCL10, and IL-7 levels in nonresponders were associated with their body mass index, which could explain why omalizumab was unable to reduce their concentrations in nonresponders. Conclusions Omalizumab can regulate most cytokine and chemokine levels in responders. However, in nonresponders, it is unable to modulate specific proasthmatic cytokines and chemokines due to their association with individual body mass index, which is not influenced by omalizumab.
Collapse
Affiliation(s)
- Agnes Yang
- Department of Immunology, Mayo Clinic, Scottsdale, Ariz
| | - Chao Gu
- Department of Immunology, Mayo Clinic, Scottsdale, Ariz
| | | | | | - Mark Millard
- Martha Foster Lung Care Center, Baylor University Medical Center, Dallas, Tex
| | - Laurie Baert
- Department of Immunology, Mayo Clinic, Scottsdale, Ariz
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, Ariz
- Institute for Biomedical Studies, Baylor University, Waco, Tex
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, Ariz
- Institute for Biomedical Studies, Baylor University, Waco, Tex
| |
Collapse
|
4
|
Luo L, Yang X, Zhao H, Wang L, Li W, Zhang Y. High expression of ITGB3 ameliorates asthma by inhibiting epithelial-mesenchymal transformation through suppressing the activation of NF-kB pathway. Sci Rep 2025; 15:13837. [PMID: 40263524 PMCID: PMC12015361 DOI: 10.1038/s41598-025-98842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/15/2025] [Indexed: 04/24/2025] Open
Abstract
Integrin β3 (ITGB3) has been identified as an asthma-associated gene; however, its molecular mechanisms remain poorly understood. Epithelial-mesenchymal transition (EMT) is a critical driver of airway remodeling in asthma, which underpins disease progression. This study aimed to elucidate the role of ITGB3 in asthma pathogenesis by investigating its regulation of EMT. Asthma models were established in vivo using C57BL/6 mice and in vitro with A549 cells, both exposed to house dust mite (HDM) extract. The effects of HDM and ITGB3 modulation on cellular viability, apoptosis, and inflammatory cytokines (IL-4, IL-5, IL-13) were assessed in cultured cells and murine lungs. EMT was evaluated via western blot analysis of E-cadherin, N-cadherin, and vimentin expression. The NF-κB pathway was examined by quantifying phosphorylated p65 and IkBa levels. Lung tissue pathology and ITGB3 expression were assessed using hematoxylin and eosin (H&E) staining and immunohistochemistry. Results demonstrated that HDM exposure reduced A549 cell viability, increased cytotoxicity, apoptosis, and pro-inflammatory cytokine production, while promoting EMT. ITGB3 knockdown exacerbated these effects, whereas ITGB3 overexpression mitigated them. Furthermore, HDM activated the NF-κB pathway, an effect reversed by ITGB3 overexpression. In HDM-challenged cells, NF-κB activation via an agonist counteracted the protective effects of ITGB3 overexpression on apoptosis, inflammation, and EMT. Notably, ITGB3 overexpression suppressed inflammation, EMT, and pathological remodeling in asthmatic mice. Collectively, our findings reveal that ITGB3 exerts protective effects in asthma by inhibiting EMT through suppression of the NF-κB signaling pathway, thereby identifying ITGB3 as a potential therapeutic target for asthma management.
Collapse
Affiliation(s)
- Lu Luo
- Department of Emergency, Jinan Children's Hospital, No.23976, Jingshi Road, Jinan, 250022, Shandong, China
| | - Xiaoshan Yang
- Department of Rheumatology And Immunology, Binzhou People's Hospital, Binzhou, China
| | - Haitao Zhao
- Department of Hematology, Binzhou People's Hospital, Binzhou, China
| | - Lingling Wang
- Department of Emergency, Jinan Children's Hospital, No.23976, Jingshi Road, Jinan, 250022, Shandong, China
| | - Wengang Li
- Department of Emergency, Jinan Children's Hospital, No.23976, Jingshi Road, Jinan, 250022, Shandong, China
| | - Yan Zhang
- Department of Emergency, Jinan Children's Hospital, No.23976, Jingshi Road, Jinan, 250022, Shandong, China.
| |
Collapse
|
5
|
Huang C, Qiu H, Xu C, Tan Z, Jin M, Hu J, Huang Z, Zhou Y, Ge S, Hu X. Downregulation of tropomyosin 2 promotes the progression of lung adenocarcinoma by regulating neutrophil infiltration through neutrophil elastase. Cell Death Dis 2025; 16:264. [PMID: 40199876 PMCID: PMC11978998 DOI: 10.1038/s41419-025-07531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/12/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
Lung adenocarcinoma (LUAD) is a common malignant tumor in the lung that seriously endangers the health of people worldwide. The neutrophil-associated inflammatory microenvironment contributes to the activation of tumor cells. In this study, we report a role of tumor-associated neutrophils (TANs) promote tumor progression of LUAD by crosstalk between neutrophils and tumor cells. Mechanistically, in co-culture with tumor cells, downregulation of TPM2 on tumor cells increases neutrophil elastase (ELANE) levels in neutrophils regulated by p38/ MAPK signaling activation, and ELANE promotes tumor cell progression through the Hippo pathway. Furthermore, downregulation of TPM2 activates ELANE of neutrophils to facilitate ERK1/2 activation, thus enhancing IL1β and IL8 secretion for chemoattraction of more neutrophils to tumor microenvironment. The new studies identify an accomplice role for the interaction between TPM2 and ELANE in promoting LUAD progression and provide potential strategies in the prevention and/or treatment of LUAD and other cancers.
Collapse
Affiliation(s)
- Caixiu Huang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Hao Qiu
- The First People's Hospital of Changde City, Changde, PR China
| | - Changting Xu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Zilong Tan
- Nanchang University Second Affiliated Hospital, Nanchang, PR China
| | - Mei Jin
- Pingxiang People's Hospital, Pingxiang, PR China
| | - Jing Hu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | | | - Yuwei Zhou
- Nanchang University Second Affiliated Hospital, Nanchang, PR China
| | - Shengyou Ge
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China.
| | - Xiaoyuan Hu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China.
| |
Collapse
|
6
|
McSwiggin H, Wang R, Magalhães RDM, Zhu F, Doherty TA, Yan W, Jendzjowsky N. Comprehensive sequencing of the lung neuroimmune landscape in response to asthmatic induction. Front Immunol 2025; 16:1518771. [PMID: 40181989 PMCID: PMC11965707 DOI: 10.3389/fimmu.2025.1518771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/13/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Evidence demonstrates that sensory neurons respond to pathogenic/allergic infiltration and mediate immune responses, forming an integral part of host defense that becomes hypersensitized during allergy. Our objective was to investigate how asthmatic induction alters the pulmonary neuroimmune transcriptome. We hypothesized that asthmatic induction would upregulate genes in the vagal ganglia (nodose/jugular ganglia), which would be associated with asthmatic immunity, and that these would be clustered, primarily in nodose neurons. Furthermore, lungs would increase transcripts associated with nerve activation, and these would be centered in neural and neuroendocrine-like cells. Methods Standard RNA sequencing, single nucleus-RNA sequencing, and spatial RNA sequencing of vagal ganglia. Standard RNA-sequencing and spatial RNA-sequencing of lungs in naïve and mice that have undergone asthmatic induction with Alternaria alternata. Results Bulk RNA-seq revealed that genes related to allergen sensing were increased in asthmatic ganglia nodose/jugular ganglia compared to control ganglia. These genes were associated with nodose clusters as shown by single-nucleus RNA sequencing, and a distinct caudal-to-rostral spatial arrangement was presented as delineated by spatial transcriptomics. The distinct clusters closely match previous identification of nodose neuron clusters. Correspondingly, the lung transcriptome was altered with asthmatic induction such that transcripts associated with neural excitation were upregulated. The spatial distribution of these transcripts was revealed by spatial transcriptomics to illustrate that these were expressed in neuroendocrine-like cells/club cells, and neurons. Conclusions These results show that the neuroimmune transcriptome is altered in response to asthmatic induction in a cell cluster and spatially distinct manner.
Collapse
Affiliation(s)
- Hayden McSwiggin
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
| | - Rui Wang
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
| | - Rubens Daniel Miserani Magalhães
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
| | - Fengli Zhu
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
| | - Taylor A. Doherty
- Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, Veterans Affairs San Diego Healthcare System, La Jolla, CA, United States
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
- Division of Endocrinology, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Nicholas Jendzjowsky
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
- Division of Respiratory and Critical Care Medicine and Physiology, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, United States
| |
Collapse
|
7
|
Guo Y, Zhou Y, Wang R, Lin Y, Lan H, Li Y, Wang DY, Dong J, Li K, Yan Y, Qiao Y. YAP as a potential therapeutic target for myofibroblast formation in asthma. Respir Res 2025; 26:51. [PMID: 39939959 PMCID: PMC11823061 DOI: 10.1186/s12931-025-03115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025] Open
Abstract
Myofibroblasts accumulation contributes to airway remodeling, with the mechanisms being poorly understood. It is steroid-insensitive and has not been therapeutically targeted in asthma. In this study, we explored the potential of yes-associated protein (YAP) as a therapeutic target for myofibroblasts formation in asthma, by revealing the novel role and mechanisms by which YAP activation in type II alveolar epithelial (ATII) cells promotes the fibroblast-to-myofibroblast transition in vitro and in vivo. By performing immunofluorescence staining, we showed that myofibroblasts were increased in the bronchial walls and alveolar parenchyma in clinical asthmatic and house dust mite (HDM)-induced mouse lung samples. This was accompanied by YAP overexpression and nuclear translocation in ATII cells, and connective tissue growth factor (CTGF) upregulation. In vitro, HDM or combination of rhIL-1β with rhTNF-α upregulated and activated YAP in human primary ATII cells and A549 cells, but not in the bronchial epithelial cells, BEAS-2B. This effect was mediated by F-actin polymerization and could be suppressed by pretreatment with latrunculin A but not budesonide. Inhibition of YAP/transcriptional coactivator with PDZ-binding motif (TAZ) in A549 cells by pretreatment with YAP/TAZ siRNA or verteporfin, but not budesonide, impaired the fibroblast-to-myofibroblast transition in vitro. In vivo, verteporfin partly or completely prevented HDM-induced bronchial or alveolar myofibroblast accumulation, and significantly suppressed CTGF expression and collagen deposition in mouse lungs, without profoundly affecting airway inflammation. Our results provide novel mechanistic insights into airway remodeling, and holds promise for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yanrong Guo
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Yuran Zhou
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Rui Wang
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Yujing Lin
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Huimin Lan
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Yang Li
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, 119228, Singapore
| | - Jinrui Dong
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Kefeng Li
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, 999078, SAR, China
| | - Yan Yan
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
| | - Yongkang Qiao
- Centre for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519000, China.
| |
Collapse
|
8
|
Kim YH, Park CH, Kim JM, Yoon YC. Chitooligosaccharides suppress airway inflammation, fibrosis, and mucus hypersecretion in a house dust mite-induced allergy model. FRONTIERS IN ALLERGY 2025; 6:1533928. [PMID: 39927112 PMCID: PMC11799285 DOI: 10.3389/falgy.2025.1533928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Background Respiratory allergy is a serious respiratory disorder characterized by inflammation, mucus hypersecretion, and airway tissue sclerosis. Disruption of the T helper 1 (Th1) and T helper 2 (Th2) immune systems by stimuli induced by house dust mites (HDM) and fine particulate matter leads to the secretion of various inflammatory cytokines, resulting in immune respiratory diseases characterized by airway inflammation. Chitooligosaccharides (COS) are known for their antioxidant and anti-inflammatory properties. Methods Human airway epithelial cells (BEAS-2B) were cultured in DMEM/F12 medium containing COS at concentrations of 25-100 µg/ml for 24 h. No intracellular toxicity was observed up to 1,000 µg/ml. Cell experiments were conducted at COS concentrations below 100 µg/ml, while animal experiments were performed at concentrations below 100 mg/kg body weight for 4 weeks. Samples of right lung tissue obtained from the experimental animals were used for gene and protein expression analysis, whereas samples of contralateral lung tissue were used for immunohistochemical analysis. Results COS regulated Th1 immunity by inhibiting major cytokines, including inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), in BEAS-2B cells. In the HDM-induced allergic respiratory model, COS suppressed the infiltration of inflammatory cells around the airways and inhibited the mRNA expression of Th1 immune cytokines in lung tissues, while also reducing the expression of nuclear factor kappa B (NF-κB)-related proteins. Furthermore, the results confirmed the suppression of the levels of immunoglobulin E (IgE) in the blood secreted by mast cells activated by HDM, which led to a reduction in allergic mucus hypersecretion and airway sclerosis. Conclusion In summary, COS are thought to improve airway resistance by alleviating inflammatory allergic respiratory diseases caused by HDM and are regarded as substances that regulate the balance of the Th1 and Th2 immune systems in epithelial cells affected by mucus hypersecretion.
Collapse
Affiliation(s)
| | | | | | - Yeo Cho Yoon
- Healthcare & Nutrition Laboratory, Amicogen, Inc., Seongnam, Republic of Korea
| |
Collapse
|
9
|
Shou L, He H, Wei Y, Xu X, Wang W, Zheng J. Identification of TXN and F5 as novel diagnostic gene biomarkers of the severe asthma based on bioinformatics and machine learning analysis. Autoimmunity 2024; 57:2427085. [PMID: 39531229 DOI: 10.1080/08916934.2024.2427085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/22/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Asthma poses a major threat to human health. The aim of this study was to identify genetic markers of severe asthma and analyze the relationship between key genes and immune infiltration. Differentially expressed genes (DEGs) were first screened by downloading the training set GSE69683 and validation set GSE137268 from the GEO dataset. SVM-RFE analysis and the LASSO regression model were used to screen key genes, and CIBERSORT was used to assess immune infiltration in the samples. A total of 20 DEGs were identified in this study, mainly enriched for lymph node-like receptors, b-cell receptors, and neutrophil extracellular trap pathway. Comparative validation set GSE137268 identified thioredoxin (TXN) and coagulation factor V (F5) were identified as diagnostic markers of severe asthma. CIBERSORT analysis revealed that TXN and F5 are associated with multiple immune cell infiltrates. In addition, we identified miRNA and TF at the transcriptional level that may regulate F5 and TXN, and found that several commonly used drugs may exert therapeutic effects by targeting F5 and TXN. Taken together, TXN and F5 may be key genes in the development of severe asthma and are associated with immune infiltration. Our study can help to better understand the pathogenesis of asthma and provide new ideas for clinical treatment.
Collapse
Affiliation(s)
- Lu Shou
- Tongde Hospital of Zhejiang Province, Pulmonary and Critical Care Medicine, Hangzhou, Zhejiang, China
| | - Haidong He
- Tongde Hospital of Zhejiang Province, Pulmonary and Critical Care Medicine, Hangzhou, Zhejiang, China
| | - Yi Wei
- Tongde Hospital of Zhejiang Province, Pulmonary and Critical Care Medicine, Hangzhou, Zhejiang, China
| | - Xianrong Xu
- Tongde Hospital of Zhejiang Province, Pulmonary and Critical Care Medicine, Hangzhou, Zhejiang, China
| | - Wenmin Wang
- The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University, Hangzhou, Zhejiang, China
| | - Jisheng Zheng
- Tongde Hospital of Zhejiang Province, Pulmonary and Critical Care Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Kotrba J, Müller I, Pausder A, Hoffmann A, Camp B, Boehme JD, Müller AJ, Schreiber J, Bruder D, Kahlfuss S, Dudeck A, Stegemann-Koniszewski S. Innate players in Th2 and non-Th2 asthma: emerging roles for the epithelial cell, mast cell, and monocyte/macrophage network. Am J Physiol Cell Physiol 2024; 327:C1373-C1383. [PMID: 39401422 DOI: 10.1152/ajpcell.00488.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 11/12/2024]
Abstract
Asthma is one of the most common chronic respiratory diseases and is characterized by airway inflammation, increased mucus production, and structural changes in the airways. Recently, there is increasing evidence that the disease is much more heterogeneous than expected, with several distinct asthma endotypes. Based on the specificity of T cells as the best-known driving force in airway inflammation, bronchial asthma is categorized into T helper cell 2 (Th2) and non-Th2 asthma. The most studied effector cells in Th2 asthma include T cells and eosinophils. In contrast to Th2 asthma, much less is known about the pathophysiology of non-Th2 asthma, which is often associated with treatment resistance. Besides T cells, the interaction of myeloid cells such as monocytes/macrophages and mast cells with the airway epithelium significantly contributes to the pathogenesis of asthma. However, the underlying molecular regulation and particularly the specific relevance of this cellular network in certain asthma endotypes remain to be understood. In this review, we summarize recent findings on the regulation of and complex interplay between epithelial cells and the "nonclassical" innate effector cells mast cells and monocytes/macrophages in Th2 and non-Th2 asthma with the ultimate goal of providing the rationale for future research into targeted therapy regimens.
Collapse
Affiliation(s)
- Johanna Kotrba
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ilka Müller
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Pausder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Aaron Hoffmann
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Belinda Camp
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Julia D Boehme
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas J Müller
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens Schreiber
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sascha Kahlfuss
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Sabine Stegemann-Koniszewski
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
11
|
Jiang N, Hu Z, Wang Q, Hao J, Yang R, Jiang J, Wang H. Fibroblast growth factor 2 enhances BMSC stemness through ITGA2-dependent PI3K/AKT pathway activation. J Cell Physiol 2024; 239:e31423. [PMID: 39188080 DOI: 10.1002/jcp.31423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSC) are promising cellular reservoirs for treating degenerative diseases, tissue injuries, and immune system disorders. However, the stemness of BMSCs tends to decrease during in vitro cultivation, thereby restricting their efficacy in clinical applications. Consequently, investigating strategies that bolster the preservation of BMSC stemness and maximize therapeutic potential is necessary. Transcriptomic and single-cell sequencing methodologies were used to perform a comprehensive examination of BMSCs with the objective of substantiating the pivotal involvement of fibroblast growth factor 2 (FGF2) and integrin alpha 2 (ITGA2) in stemness regulation. To investigate the impact of these genes on the BMSC stemness in vitro, experimental approaches involving loss and gain of function were implemented. These approaches encompassed the modulation of FGF2 and ITGA2 expression levels via small interfering RNA and overexpression plasmids. Furthermore, we examined their influence on the proliferation and differentiation capacities of BMSCs, along with the expression of stemness markers, including octamer-binding transcription factor 4, Nanog homeobox, and sex determining region Y-box 2. Transcriptomic analyzes successfully identified FGF2 and ITGA2 as pivotal genes responsible for regulating the stemness of BMSCs. Subsequent single-cell sequencing revealed that elevated FGF2 and ITGA2 expression levels within specific stem cell subpopulations are closely associated with stemness maintenance. Moreover, additional in vitro experiments have convincingly demonstrated that FGF2 effectively enhances the BMSC stemness by upregulating ITGA2 expression, a process mediated by the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. This conclusion was supported by the observed upregulation of stemness markers following the induction of FGF2 and ITGA2. Moreover, administration of the BEZ235 pathway inhibitor resulted in the repression of stemness transcription factors, suggesting the substantial involvement of the PI3K/AKT pathway in stemness preservation facilitated by FGF2 and ITGA2. This study elucidates the involvement of FGF2 in augmenting BMSC stemness by modulating ITGA2 and activating the PI3K/AKT pathway. These findings offer valuable contributions to stem cell biology and emphasize the potential of manipulating FGF2 and ITGA2 to optimize BMSCs for therapeutic purposes.
Collapse
Affiliation(s)
- Nizhou Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Spine Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Quanxiang Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Rui Yang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Jian Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Hong Wang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| |
Collapse
|
12
|
Peng B, Dai Q, Liu X, Jiang S. Fraxin alleviates oral lichen planus by suppressing OCT3-mediated activation of FGF2/NF-κB pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:10125-10141. [PMID: 38980409 DOI: 10.1007/s00210-024-03270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Oral lichen planus (OLP) is a carcinogenic chronic inflammatory oral disease, which lacks effective treatments. Fraxin is an active ingredient of the traditional Chinese medicine Qin Pi, which has an anti-inflammatory effect, but its effect on OLP is unclear. The aim of this study was to investigate the therapeutic effect of fraxin on OLP and the underlying mechanism. Human immortalized keratinocytes (HaCat) were incubated with fraxin (10, 20, or 40 µM) for 48 h and then treated with 10 µg/mL LPS for 24 h. Cell viability and apoptosis were detected. Next, the interaction between OCT3 and FGF2 was predicted by online database and verified by Co-IP analysis. Fraxin, Ad-OCT3, sh-OCT3, and sh-FGF2 were, respectively, applied to treat LPS-incubated HaCat cells, and cell viability, apoptosis, and secretion of inflammatory factors were detected with MTT, flow cytometry, and ELISA assays. Then, the involvement of OCT3 and FGF2 in the prevention of fraxin on HaCat cells from LPS-induced cell apoptosis and inflammation was investigated through multiple rescue experiments. In addition, OLP models were constructed in VDR-/- mice and NOD/SCID mice by injecting with human OLP pathological tissue homogenates to verify the therapeutic effect of fraxin on OLP. Fraxin treatment increased cell viability and reduced cell apoptosis and the secretion of IL-6 and TNF-α in a dose-dependent manner. OCT3 was significantly upregulated in oral mucosa tissues of OLP mice. OCT3 silencing inhibited LPS-induced cell apoptosis and secretion of inflammatory factors. Fraxin incubation reduced the expression of OCT3, and OCT3 interacted with FGF2 to upregulate FGF2 protein. FGF2 silencing reduced the expression of p-p65/NF-κB protein and improved LPS-induced cell apoptosis and secretion of inflammatory factors. OCT3 overexpression increased the expression of FGF2 and p-p65/NF-κB proteins, rh-FGF2 aggravated this effect, while FGF2-Neu-Ab reversed this effect. The results of in vivo experiments showed that fraxin alleviated cell apoptosis and inflammation in oral buccal mucosa tissues of OLP mice. Fraxin inhibited cell apoptosis and inflammation by suppressing OCT3-mediated activation of the FGF2/NF-κB pathway, alleviating the progression of OLP.
Collapse
Affiliation(s)
- Bo Peng
- Department of Stomatology, Zhumadian Central Hospital, 747 West Zhonghua Road, Zhumadian, 463000, Henan, China.
| | - Quanhong Dai
- Department of Stomatology, Zhumadian Central Hospital, 747 West Zhonghua Road, Zhumadian, 463000, Henan, China
| | - Xiaodong Liu
- Department of Stomatology, Zhumadian Central Hospital, 747 West Zhonghua Road, Zhumadian, 463000, Henan, China
| | - Songyang Jiang
- Department of Stomatology, Zhumadian Central Hospital, 747 West Zhonghua Road, Zhumadian, 463000, Henan, China
| |
Collapse
|
13
|
Li N, Qiu G, Xu X, Shen Y, Chen Y. TRIM11 Prevents Ferroptosis in model of asthma by UBE2N-TAX1BP1 signaling. BMC Pulm Med 2024; 24:542. [PMID: 39472837 PMCID: PMC11523820 DOI: 10.1186/s12890-024-03351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Asthma is a complex chronic respiratory inflammatory disease affected by both genetic and environmental factors. Therefore, our study explored the influence of TRIM11 on asthma and its underlying mechanisms. Our research involved patients diagnosed with asthma and healthy volunteers recruited from our hospital. We observed a reduction in serum TRIM11 expression in asthma patients, which positively correlated with the levels of anti-IgE or IgE. Additionally, both TRIM11 mRNA and protein expression in lung tissue were diminished. The introduction of the TRIM11 gene resulted in a reduction in inflammation in an in vitro asthma model and prevented the development of asthma in a mouse model. Moreover, the TRIM11 gene exhibited a suppressive effect on Ferroptosis and mitigated ROS-induced mitochondrial damage in the asthma model. TRIM11 was found to stimulate UBE2N-TAX1BP1 signaling in the asthma model, with UBE2N being identified as the specific target for TRIM11's effects on Ferroptosis. Furthermore, TRIM11 protein interacted with UBE2N protein and facilitated the dissociation of UBE2N-UBE2N in the asthma model. In conclusion, TRIM11 plays a vital role in preventing Ferroptosis in the asthma model through UBE2N-TAX1BP1 signaling. This indicates that targeting the TRIM11 mechanism could serve as a promising strategy for anti-Ferroptosis immunotherapy in asthma treatment.
Collapse
Affiliation(s)
- Na Li
- Department of Respiratory and Critical Care Medicine, Longgang Central Hospital, 6082 Longgang Avenue, Shenzhen, 518116, China.
| | - Guoqing Qiu
- Department of Respiratory and Critical Care Medicine, Longgang Central Hospital, 6082 Longgang Avenue, Shenzhen, 518116, China
| | - Xiangqin Xu
- Department of Respiratory and Critical Care Medicine, Longgang Central Hospital, 6082 Longgang Avenue, Shenzhen, 518116, China
| | - Yan Shen
- Department of Respiratory and Critical Care Medicine, Longgang Central Hospital, 6082 Longgang Avenue, Shenzhen, 518116, China
| | - Yuming Chen
- Department of Respiratory and Critical Care Medicine, Longgang Central Hospital, 6082 Longgang Avenue, Shenzhen, 518116, China
| |
Collapse
|
14
|
Li L, Zhu X, Zhao J, Yuan J, Ni H, Fan J, Zhang Y, Sun Y, Shang Y. FUNDC1 mediated mitochondria-dependent ferroptosis of epithelial cells in model of asthma by FBXL2/ar/GPX4 signaling pathway of SUMO1 at K136. Int Rev Immunol 2024; 44:45-57. [PMID: 39323222 DOI: 10.1080/08830185.2024.2406853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/31/2024] [Indexed: 09/27/2024]
Abstract
This study aimed to explore the critical role of FUNDC1 on epithelial cells in model of asthma. Patients with asthma and normal healthy volunteers were obtained from our hospital. The serum of FUNDC1 mRNA expression was down-regulated in patients with asthma. Meanwhile, the serum of FUNDC1 mRNA expression was positive correlation with IgE and anti-HDM IgE protein. FUNDC1 expression in lung tissue of mice model was decreased in mice model of asthma. Sh-FUNDC1 enhanced asthma in mice model of asthma. FUNDC1 up-regulation reduced IL-4, IL-5, IL-10 and IL-13 activity levels in vitro model of asthma.FUNDC1 down-regulation promoted IL-4, IL-5, IL-10 and IL-13 activity levels in vitro model of asthma. FUNDC1 reduced ferroptosis of epithelial cells in model of asthma through the inhibition of mitochondrial damage. FUNDC1 induced FBXL2 and AR protein expression in model of asthma. FUNDC1 interlinked with FBXL2 is modified by SUMO1 at K136. FBXL2, ASN-205, GLN-204, ARG-235, and GLN-237 form hydrogen bonds with FUNDC1's ASP-15, ASP-16, GLU-25, and ARG-29, with lengths of 2.3, 3.1, 2.9, 2.3, and 2.9 Å, respectively. The induction of FBXL2 reduced the effects of Sh-FUNDC1 on asthma in mice model of asthma. The inhibition of AR reduced the effects of Sh-FUNDC1 on asthma in mice model of asthma Overall, FUNDC1 prevents ferroptosis of airway epithelial cells of asthma through FBXL2/AR/GPX4 signaling pathway of SUMO1 at K136. FUNDC1 might benefit the treatment of asthma or other pulmonary disease.
Collapse
Affiliation(s)
- Li Li
- Department of General Practice, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xingxing Zhu
- Department of Respiratory and Critical Care Medicine, Haining People's Hospital, Haining, China
| | - Jiayi Zhao
- Department of General Practice, Shanghai 411 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Shanghai, China
| | - Jiaying Yuan
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Haoran Ni
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jian Fan
- Department of General Practice, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yi Zhang
- Department of General Practice, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yahong Sun
- Department of Respiratory and Critical Care Medicine, Haining People's Hospital, Haining, China
| | - Yan Shang
- Department of General Practice, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
15
|
Easter M, Hirsch MJ, Harris E, Howze PH, Matthews EL, Jones LI, Bollenbecker S, Vang S, Tyrrell DJ, Sanders YY, Birket SE, Barnes JW, Krick S. FGF receptors mediate cellular senescence in the cystic fibrosis airway epithelium. JCI Insight 2024; 9:e174888. [PMID: 38916962 PMCID: PMC11383597 DOI: 10.1172/jci.insight.174888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
The number of adults living with cystic fibrosis (CF) has already increased significantly because of drastic improvements in life expectancy attributable to advances in treatment, including the development of highly effective modulator therapy. Chronic airway inflammation in CF contributes to morbidity and mortality, and aging processes like inflammaging and cell senescence influence CF pathology. Our results show that single-cell RNA sequencing data, human primary bronchial epithelial cells from non-CF and CF donors, a CF bronchial epithelial cell line, and Cftr-knockout (Cftr-/-) rats all demonstrated increased cell senescence markers in the CF bronchial epithelium. This was associated with upregulation of fibroblast growth factor receptors (FGFRs) and mitogen-activated protein kinase (MAPK) p38. Inhibition of FGFRs, specifically FGFR4 and to some extent FGFR1, attenuated cell senescence and improved mucociliary clearance, which was associated with MAPK p38 signaling. Mucociliary dysfunction could also be improved using a combination of senolytics in a CF ex vivo model. In summary, FGFR/MAPK p38 signaling contributes to cell senescence in CF airways, which is associated with impaired mucociliary clearance. Therefore, attenuation of cell senescence in the CF airways might be a future therapeutic strategy improving mucociliary dysfunction and lung disease in an aging population with CF.
Collapse
Affiliation(s)
- Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Meghan June Hirsch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Elex Harris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| | - Patrick Henry Howze
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Emma Lea Matthews
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Luke I. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Shia Vang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Daniel J. Tyrrell
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | | | - Susan E. Birket
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, and
| |
Collapse
|
16
|
Tu J, Chen X, Li C, Liu C, Huang Y, Wang X, Liang H, Yuan X. Nintedanib Mitigates Radiation-Induced Pulmonary Fibrosis by Suppressing Epithelial Cell Inflammatory Response and Inhibiting Fibroblast-to-Myofibroblast Transition. Int J Biol Sci 2024; 20:3353-3371. [PMID: 38993568 PMCID: PMC11234214 DOI: 10.7150/ijbs.92620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Radiation-induced pulmonary fibrosis (RIPF) represents a serious complication observed in individuals undergoing thoracic radiation therapy. Currently, effective interventions for RIPF are unavailable. Prior research has demonstrated that nintedanib, a Food and Drug Administration (FDA)-approved anti-fibrotic agent for idiopathic pulmonary fibrosis, exerts therapeutic effects on chronic fibrosing interstitial lung disease. This research aimed to investigate the anti-fibrotic influences of nintedanib on RIPF and reveal the fundamental mechanisms. To assess its therapeutic impact, a mouse model of RIPF was established. The process involved nintedanib administration at various time points, both prior to and following thoracic radiation. In the RIPF mouse model, an assessment was conducted on survival rates, body weight, computed tomography features, histological parameters, and changes in gene expression. In vitro experiments were performed to discover the mechanism underlying the therapeutic impact of nintedanib on RIPF. Treatment with nintedanib, administered either two days prior or four weeks after thoracic radiation, significantly alleviated lung pathological changes, suppressed collagen deposition, and improved the overall health status of the mice. Additionally, nintedanib demonstrated significant mitigation of radiation-induced inflammatory responses in epithelial cells by inhibiting the PI3K/AKT and MAPK signaling pathways. Furthermore, nintedanib substantially inhibited fibroblast-to-myofibroblast transition by suppressing the TGF-β/Smad and PI3K/AKT/mTOR signaling pathways. These findings suggest that nintedanib exerts preventive and therapeutic effects on RIPF by modulating multiple targets instead of a single anti-fibrotic pathway and encourage the further clinical trials to determine the efficacy of nintedanib in patients with RIPF.
Collapse
Affiliation(s)
- Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunya Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaofan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Liang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Li L, Krafft PR, Zeng N, Duan R, Qi X, Shao A, Xue F, Zhang JH. Microglia Autophagy Mediated by TMEM166 Promotes Ischemic Stroke Secondary to Carotid Artery Stenosis. Aging Dis 2024; 15:1416-1431. [PMID: 37611898 PMCID: PMC11081158 DOI: 10.14336/ad.2023.0803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
Ischemic stroke can be a serious complication of selective carotid endarterectomy (CEA) in patients with carotid artery stenosis (CAS). The underlying risk factors and mechanisms of these postoperative strokes are not completely understood. Our previous study showed that TMEM166-induced neuronal autophagy is involved in the development of secondary brain injury following cerebral ischemia-reperfusion injury in rats. This current study aimed to investigate the role of TMEM166 in ischemic stroke following CEA. In the clinical part of this study, the quantitative analysis demonstrated circulating TMEM166, interleukin 6 (IL-6), and C-reactive protein (CRP) levels were significantly elevated in patients who suffered an ischemic stroke after CEA compared to those who did not. Furthermore, non-survivors exhibited higher levels of these proteins than survivors. In the preclinical part of this study, a middle cerebral artery occlusion (MCAO) model was implemented following CAS simulation in TMEM166-/- mice. We found TMEM166 expression was positively correlated with the degree of ischemic brain injury. Ad5-TMEM166 transfection aggravated ischemic brain injury by inducing microglial autophagy activation and release of inflammatory cytokines. Accordingly, TMEM166 deficiency reduced brain inflammation and inhibited excessive microglial autophagy through the mammalian target of rapamycin (mTOR) pathway. These findings suggest that TMEM166 may play a key role in the development of ischemic injury after CEA and may serve as a biomarker for risk assessment of postoperative ischemic stroke.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Paul R. Krafft
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA.
| | - Na Zeng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China.
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Xiang Qi
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Fushan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - John H. Zhang
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
18
|
Li D, Wang J, Tuo Z, Yoo KH, Yu Q, Miyamoto A, Zhang C, Ye X, Wei W, Wu R, Feng D. Natural products and derivatives in renal, urothelial and testicular cancers: Targeting signaling pathways and therapeutic potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155503. [PMID: 38490077 DOI: 10.1016/j.phymed.2024.155503] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Natural products have demonstrated significant potential in cancer drug discovery, particularly in renal cancer (RCa), urothelial carcinoma (UC), and testicular cancer (TC). PURPOSE This review aims to examine the effects of natural products on RCa, UC and TC. STUDY DESIGN systematic review METHODS: PubMed and Web of Science databases were retrieved to search studies about the effects of natural products and derivatives on these cancers. Relevant publications in the reference list of enrolled studies were also checked. RESULTS This review highlighted their diverse impacts on key aspects such as cell growth, apoptosis, metastasis, therapy response, and the immune microenvironment. Natural products not only hold promise for novel drug development but also enhance the efficacy of existing chemotherapy and immunotherapy. Importantly, we exert their effects through modulation of critical pathways and target genes, including the PI3K/AKT pathway, NF-κB pathway, STAT pathway and MAPK pathway, among others in RCa, UC, and TC. CONCLUSION These mechanistic insights provide valuable guidance for researchers, facilitating the selection of promising natural products for cancer management and offering potential avenues for further gene regulation studies in the context of cancer treatment.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - Qingxin Yu
- Department of pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Akira Miyamoto
- Department of Rehabilitation, West Kyushu University, Japan
| | - Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Xing Ye
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| |
Collapse
|
19
|
Lee S, Sbihi H, MacIsaac JL, Balshaw R, Ambalavanan A, Subbarao P, Mandhane PJ, Moraes TJ, Turvey SE, Duan Q, Brauer M, Brook JR, Kobor MS, Jones MJ. Persistent DNA Methylation Changes across the First Year of Life and Prenatal NO2 Exposure in a Canadian Prospective Birth Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47004. [PMID: 38573328 DOI: 10.1289/ehp13034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
BACKGROUND Evidence suggests that prenatal air pollution exposure alters DNA methylation (DNAm), which could go on to affect long-term health. It remains unclear whether DNAm alterations present at birth persist through early life. Identifying persistent DNAm changes would provide greater insight into the molecular mechanisms contributing to the association of prenatal air pollution exposure with atopic diseases. OBJECTIVES This study investigated DNAm differences associated with prenatal nitrogen dioxide (NO 2 ) exposure (a surrogate measure of traffic-related air pollution) at birth and 1 y of age and examined their role in atopic disease. We focused on regions showing persistent DNAm differences from birth to 1 y of age and regions uniquely associated with postnatal NO 2 exposure. METHODS Microarrays measured DNAm at birth and at 1 y of age for an atopy-enriched subset of Canadian Health Infant Longitudinal Development (CHILD) study participants. Individual and regional DNAm differences associated with prenatal NO 2 (n = 128 ) were identified, and their persistence at age 1 y were investigated using linear mixed effects models (n = 124 ). Postnatal-specific DNAm differences (n = 125 ) were isolated, and their association with NO 2 in the first year of life was examined. Causal mediation investigated whether DNAm differences mediated associations between NO 2 and age 1 y atopy or wheeze. Analyses were repeated using biological sex-stratified data. RESULTS At birth (n = 128 ), 18 regions of DNAm were associated with NO 2 , with several annotated to HOX genes. Some of these regions were specifically identified in males (n = 73 ), but not females (n = 55 ). The effect of prenatal NO 2 across CpGs within altered regions persisted at 1 y of age. No significant mediation effects were identified. Sex-stratified analyses identified postnatal-specific DNAm alterations. DISCUSSION Regional cord blood DNAm differences associated with prenatal NO 2 persisted through at least the first year of life in CHILD participants. Some differences may represent sex-specific alterations, but replication in larger cohorts is needed. The early postnatal period remained a sensitive window to DNAm perturbations. https://doi.org/10.1289/EHP13034.
Collapse
Affiliation(s)
- Samantha Lee
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Hind Sbihi
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Robert Balshaw
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Padmaja Subbarao
- Department of Pediatrics & Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Piushkumar J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Medicine, USCI University, Kuala Lumpur, Malaysia
| | - Theo J Moraes
- Department of Pediatrics & Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Stuart E Turvey
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qingling Duan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- School of Computing, Queen's University, Kingston, Ontario, Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
20
|
Cai R, Gong X, Li X, Jiang Y, Deng S, Tang J, Ge H, Wu C, Tang H, Wang G, Xie L, Chen X, Hu X, Feng J. Dectin-1 aggravates neutrophil inflammation through caspase-11/4-mediated macrophage pyroptosis in asthma. Respir Res 2024; 25:119. [PMID: 38459541 PMCID: PMC10921740 DOI: 10.1186/s12931-024-02743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND The pattern recognition receptor Dectin-1 was initially discovered to play a pivotal role in mediating pulmonary antifungal immunity and promoting neutrophil-driven inflammation. Recent studies have revealed that Dectin-1 is overexpressed in asthma, but the specific mechanism remains elusive. Additionally, Dectin-1 has been implicated in promoting pyroptosis, a hallmark of severe asthma airway inflammation. Nevertheless, the involvement of the non-classical pyroptosis signal caspase-11/4 and its upstream regulatory mechanisms in asthma has not been completely explored. METHODS House dust mite (HDM)-induced mice was treated with Dectin-1 agonist Curdlan, Dectin-1 inhibitor Laminarin, and caspase-11 inhibitor wedelolactone separately. Subsequently, inflammatory cells in bronchoalveolar lavage fluid (BALF) were analyzed. Western blotting was performed to measure the protein expression of caspase-11 and gasdermin D (GSDMD). Cell pyroptosis and the expression of chemokine were detected in vitro. The correlation between Dectin-1 expression, pyroptosis factors and neutrophils in the induced sputum of asthma patients was analyzed. RESULTS Curdlan appeared to exacerbate neutrophil airway inflammation in asthmatic mice, whereas wedelolactone effectively alleviated airway inflammation aggravated by Curdlan. Moreover, Curdlan enhanced the release of caspase-11 activation fragments and N-terminal fragments of gasdermin D (GSDMD-N) stimulated by HDM both in vivo or in vitro. In mouse alveolar macrophages (MH-S cells), Curdlan/HDM stimulation resulted in vacuolar degeneration and elevated lactate dehydrogenase (LDH) release. In addition, there was an upregulation of neutrophil chemokines CXCL1, CXCL3, CXCL5 and their receptor CXCR2, which was suppressed by wedelolactone. In asthma patients, a positive correlation was observed between the expression of Dectin-1 on macrophages and caspase-4 (the human homology of caspase-11), and the proportion of neutrophils in induced sputum. CONCLUSION Dectin-1 activation in asthma induced caspase-11/4 mediated macrophage pyroptosis, which subsequently stimulated the secretion of chemokines, leading to the exacerbation of airway neutrophil inflammation.
Collapse
Grants
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
Collapse
Affiliation(s)
- Runjin Cai
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoxiao Gong
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanyuan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiale Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huan Ge
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chendong Wu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huan Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guo Wang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lei Xie
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xuemei Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Juntao Feng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
21
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 427] [Impact Index Per Article: 427.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Liu J, Su B, Tao P, Yang X, Zheng L, Lin Y, Zou X, Yang H, Wu W, Zhang T, Li H. Interplay of IL-33 and IL-35 Modulates Th2/Th17 Responses in Cigarette Smoke Exposure HDM-Induced Asthma. Inflammation 2024; 47:173-190. [PMID: 37737467 DOI: 10.1007/s10753-023-01902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/19/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Cigarette smoke (CS) facilitates adverse effects on the airway inflammation and treatment of asthma. Here, we investigated the mechanisms by which CS exacerbates asthma. The roles of IL-33 and IL-35 in asthma development were examined by treatment with IL-33 knockout (IL-33 KO) or transfection of adenovirus encoding IL-35 (Ad-IL-35) in a murine model of cigarette smoke-exposure asthma. Furthermore, the involvement of IL-33 and IL-35 in regulating DCs and Th2/Th17 cells was examined in a coculture system of DCs with CD4+ T cells. Additionally, we observed the effect of CpG-ODNs on the balance of IL-33 and IL-35. We show that CS and house dust mite (HDM) exposure induced IL-33 and suppressed IL-35 levels in cigarette smoke-exposure asthma in vivo and in vitro. Treatment with IL-33 KO or Ad-IL-35 significantly attenuated airway hyperreactivity, goblet hyperplasia, airway remodelling, and eosinophil and neutrophil infiltration in the lung tissues from asthmatic mice. Furthermore, we demonstrated reciprocal regulation between CS and HDM-modulated IL-33 and IL-35. Mechanistically, IL-33 KO (or anti-ST2) and Ad-IL-35 attenuated Th2- and Th17-associated inflammation by downregulating TSLP-DC signalling. Finally, administration of CpG-ODNs suppressed the expression of IL-33/ST2 and elevated the levels of IL-35, which is mainly derived from CD4+Foxp+ Tregs, to alleviate Th2- and Th17-associated inflammation by inhibiting the activation of BMDCs. Taken together, the IL-33/ST2 pathway drives the DC-Th2 and Th17 responses of cigarette smoke-exposure asthma, while IL-35 has the opposite effect. CpG-ODNs represent a potential therapeutic strategy for modulating the balance of IL-33 and IL-35 to suppress allergic airway inflammation.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Beiting Su
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Peizhi Tao
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xuena Yang
- Department of Pulmonary and Critical Care Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Li Zheng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yusen Lin
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaoling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hailing Yang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenbin Wu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Hongtao Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
23
|
Guo J, Liang J, Guo Z, Bai X, Zhang H, Zhang N, Wang H, Chen Q, Li W, Dong R, Ge D, Yu X, Cui X. Network pharmacology and transcriptomics to determine Danggui Yifei Decoction mechanism of action for the treatment of chronic lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116873. [PMID: 37419225 DOI: 10.1016/j.jep.2023.116873] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Several children with pneumonia (especially severe cases) have symptoms of cough and expectoration during the recovery stage after standard symptomatic treatment, which eventually results in chronic lung injury. Danggui yifei Decoction (DGYFD), a traditional Chinese formula, has shown clinical promise for the treatment of chronic lung injury during the recovery stage of pneumonia, however, its mechanism of action is yet to be deciphered. AIM OF THIS STUDY To investigate the therapeutic mechanism of DGYFD for the treatment of chronic lung injury by integrating network pharmacology and transcriptomics. MATERIALS AND METHODS BALB/c mice were used to establish the chronic lung injury mouse model by intratracheal instillation of lipopolysaccharide (LPS). Pathological analysis of lung tissue, lung injury histological score, lung index, protein levels in bronchoalveolar lavage fluid (BALF), immunohistochemical staining, blood rheology, inflammatory cytokines, and oxidative stress levels were used to evaluate the pharmacological effects of DGYFD. Chemical components of DGYFD were identified using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Integrated network pharmacology together with transcriptomics was used to predict potential biological targets. Western blot analysis was used to verify the results. RESULTS In this study, we demonstrated that DGYFD could improve lung injury pathological changes, decreases lung index, down-regulate NO and IL-6 levels, and regulate blood rheology. In addition, DGYFD was able to reduce the protein levels in BALF, up-regulate the expression levels of occludin and ZO-1, improve the ultrastructure of lung tissues, and reverse the imbalance of AT I and AT II cells to repair the alveolar-capillary permeability barrier. Twenty-nine active ingredients of DGYFD and 389 potential targets were identified by UPLC-MS/MS and network pharmacology, and 64 differentially expressed genes (DEGs) were identified using transcriptomics. GO and KEGG analysis revealed that the MAPK pathway may be the molecular target. Further, we found that DGYFD inhibits phosphorylation levels of p38 MAPK and JNK in chronic lung injury mouse models. CONCLUSIONS DGYFD could regulate the imbalance between the excessive release of inflammatory cytokines and oxidative stress, repair the alveolar-capillary permeability barrier and improve the pathological changes during chronic lung injury by regulating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jianning Guo
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China; School of Graduates, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Junming Liang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China; School of Graduates, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ziyi Guo
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China; School of Graduates, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Bai
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Hongxian Zhang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China; School of Graduates, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ning Zhang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China; School of Graduates, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Handong Wang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China; School of Graduates, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Chen
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China; School of Graduates, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Li
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China; School of Graduates, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruijuan Dong
- Scientific Research and Experiment Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongyu Ge
- Scientific Research and Experiment Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Yu
- Scientific Research and Experiment Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xia Cui
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China.
| |
Collapse
|
24
|
Tang R, Lyu X, Sun J, Li H. Genetic Polymorphisms of GP1BA, PEAR1, and PAI-1 may be Associated with Serum sIgE and Blood Eosinophil Levels in Chinese Patients with Allergic Diseases. Endocr Metab Immune Disord Drug Targets 2024; 24:1215-1223. [PMID: 38299390 PMCID: PMC11348459 DOI: 10.2174/0118715303285101240118062549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND It has been suggested that genetic factors may be substantially linked to allergy disorders. OBJECTIVE This study aims to investigate the relationship between the serum specific Immunoglobulin E (sIgE), blood eosinophil, and the polymorphisms of glycoprotein Ib alpha gene (GP1BA) rs6065, platelet endothelial aggregation receptor 1 gene (PEAR1) rs12041331, and plasminogen activator inhibitor 1 gene (PAI-1) rs1799762. METHODS From the Peking Union Medical College Hospital, this study enrolled 60 healthy participants and 283 participants with allergic diseases. TaqMan-minor groove binder (MGB) quantitative polymerase chain reaction (qPCR) was used to examine the gene polymorphisms in each group. RESULTS The TaqMan-MGB qPCR results were completely consistent with the DNA sequencing results, according to other studies in this medical center (Kappa =1, p <0.001). The GP1BA rs6065, PEAR1 rs12041331, and PAI-1 rs1799762 polymorphisms did not show different distribution between allergy patients and healthy individuals. Concerning allergy patients, the CT (n=33) genotype of GP1BA rs6065 had higher blood eosinophil level than the CC (n=250) genotype (0.59, IQR 0.32-0.72 vs 0.31, IQR 0.15-0.61, *109/L, p =0.005). The serum sIgE of AA (n=46) genotype of PEAR1 rs12041331 was lower (median 3.7, interquartile quartiles (IQR) 0.2-16.8, kU/L) than the GA (n=136) and GG (n=101) genotypes (GA median 16.3, IQR 3.1-46.3, kU/L, p = 0.002; GG median 12.9, IQR 3.0-46.9, kU/L, p =0.003). The GA genotypes of PEAR1 rs12041331were with higher blood eosinophil levels (median 0.42, IQR 0.17-0.74 *109/L) than the AA genotype (median 0.25, IQR 0.15-0.41*109/L, p =0.012). The sIgE of the 5G5G (n=44) genotype of PAI-1 rs1799762 was lower (median 5.0, IQR 0.1-22.8, kU/L) than the 4G5G (n=144) (median 17.3, IQR 3.7-46.0, kU/L, p = 0.012). CONCLUSION The GP1BA rs6065, PEAR1 rs12041331, and PAI-1 rs1799762 polymorphisms may be associated with the genetic susceptibility of serum sIgE or blood eosinophil in Chinese allergic disease patients.
Collapse
Affiliation(s)
- Rui Tang
- State Key Laboratory of Complex Severe and Rare Diseases, Allergy Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, Allergy Department, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohong Lyu
- State Key Laboratory of Complex Severe and Rare Diseases, Allergy Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, Allergy Department, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Program of Clinical Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jinlyu Sun
- State Key Laboratory of Complex Severe and Rare Diseases, Allergy Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, Allergy Department, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Li
- State Key Laboratory of Complex Severe and Rare Diseases, Allergy Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, Allergy Department, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Dian D, Zhang W, Lu M, Zhong Y, Huang Y, Chen G, Chen Z, Yu L, Sun J. Clinical Efficacy of Ulinastatin Combined with Azithromycin in the Treatment of Severe Pneumonia in Children and the Effects on Inflammatory Cytokines and Oxidative Stress: A Retrospective Cohort Study. Infect Drug Resist 2023; 16:7165-7174. [PMID: 38023407 PMCID: PMC10640813 DOI: 10.2147/idr.s428900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This retrospective cohort study aimed to evaluate the clinical efficacy of ulinastatin (UTI) and azithromycin (AZM) combination therapy in treating severe pneumonia in children and its impact on inflammatory cytokines and oxidative stress. Patients and Methods This retrospective cohort study was conducted from January 1, 2019, to January 1, 2021, involving pediatric patients diagnosed with severe mycoplasma pneumonia (SMPP). The pediatric patients were divided into two groups: those receiving UTI and AZM combination therapy (treatment group) and those receiving azithromycin alone (control group). We compared the two groups regarding clinical data, disease outcomes, inflammatory cytokines, and oxidative stress levels. Results Baseline characteristics did not significantly differ between the two groups. UTI, in combination with AZM, significantly improved blood oxygen levels, inflammatory infection markers, and relevant clinical symptoms in patients with SMPP on the 3rd day of treatment. Additionally, it significantly reduced the levels of inflammatory cytokines TNF-a, IL-6, IL-1β, and IL-10, as well as oxidative stress markers GSH and SOD. Conclusion Combining UTI and AZM can rapidly alleviate clinical symptoms and effectively control the progression of patients with SMPP. Therefore, this treatment approach deserves consideration for clinical promotion and utilization.
Collapse
Affiliation(s)
- Dongchun Dian
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Guangdong, 523000, People’s Republic of China
| | - Weilong Zhang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Guangdong, 523000, People’s Republic of China
| | - Minjun Lu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Guangdong, 523000, People’s Republic of China
| | - Yong Zhong
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Guangdong, 523000, People’s Republic of China
| | - Yurong Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Guangdong, 523000, People’s Republic of China
| | - Guiling Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Guangdong, 523000, People’s Republic of China
| | - Zhangquan Chen
- Guangdong Medical University, Guangdong, 510000, People’s Republic of China
| | - Luxin Yu
- Guangdong Medical University, Guangdong, 510000, People’s Republic of China
| | - Jianbo Sun
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Guangdong, 523000, People’s Republic of China
| |
Collapse
|
26
|
Tan S, Li M, Song X. MG53 alleviates airway inflammatory responses by regulating nuclear factor-κB pathway in asthmatic mice. Allergol Immunopathol (Madr) 2023; 51:175-181. [PMID: 37422795 DOI: 10.15586/aei.v51i4.880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/13/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Asthma is a common lung disease with increasing incidence and prevalence globally, thereby imposing a substantial global health and economic burden. Recently, studies have shown that Mitsugumin 53 (MG53) exhibits multiple biological functions and plays a protective role in a variety of diseases. However, the role of MG53 in asthma remained unknown; hence, in the present study we aimed to explore the functioning of MG53 in asthma. METHODS Using ovalbumin and aluminum hydroxide adjuvant, an OVA-induced asthmatic animal model was constructed and administered with MG53. After establishing mice model, inflammatory cell counts and the levels of type 2 inflammatory cytokines were examined and histological staining of lung tissues were performed. The levels of key factors associated with the nuclear factor-κB (NF-κB) pathway were detected. RESULTS Asthmatic mice displayed a remarkable accumulation of white blood cells, neutrophils, macrophages, lymphocytes, and eosinophils in bronchoalveolar lavage fluid, compared to control mice. MG53 treatment lowered the number of these inflammatory cells in asthmatic mice. The level of type 2 cytokines in asthmatic mice was higher than that in control mice, and was lessened by MG53 intervention. In asthmatic mice, airway resistance was elevated, which was reduced by MG53 treatment. In addition, inflammatory cell infiltration and mucus secretion were aggravated in the lung tissues of asthmatic mice, and both were attenuated by MG53 intervention. The levels of phosphorylated p65 and phosphorylated inhibitor of nuclear factor kappa-B kinase were elevated in asthmatic mice, but were downregulated by MG53 supplement. CONCLUSION The aggravated airway inflammation was observed in asthmatic mice; however, MG53 treatment suppressed airway inflammation by targeting the NF-κB pathway.
Collapse
Affiliation(s)
- Sijia Tan
- Department of Emergency, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Mengtian Li
- Department of Emergency, Xuzhou Central Hospital, Xuzhou, Jiangsu, China;
| | - Xiaoxi Song
- Department of Ultrasound, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
27
|
Protective Effects of Platycodin D3 on Airway Remodeling and Inflammation via Modulating MAPK/NF-κB Signaling Pathway in Asthma Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1612829. [PMID: 35990822 PMCID: PMC9385299 DOI: 10.1155/2022/1612829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Background Asthma is a disease with airway hyperresponsive and airway inflammation. Platycodin D is a triterpenoid saponin extracted from Platycodon grandiflorus root, which has various pharmacological activities. The study mainly explored the effects of platycodin D3 (PD3) in airway remodeling and inflammation of asthma. Methods The ovalbumin (OVA)-induced asthma mice were given PD3 (20 mg/kg, 40 mg/kg, and 80 mg/kg) in different groups. The asthma mice administrated with dexamethasone (DXM) were enrolled as the positive control group, and the normal control mice and asthma model mice separately received the same volume of saline. Mouse airway lung dynamic compliance (Cdyn) and total airway resistance (RL) were measured by the EMKA animal lung function analysis system. The inflammation factor levels were estimated by ELISA. Histopathological changes were tested by HE and PAS staining. The protein and phosphorylation levels of NF-κBp65, p38, ERK1/2, and JNK1/2 were detected by Western blot. Results In asthmatic mice, PD3 enhanced the airway Cdyn and decreased RL to improve the airway hyperreactivity and alleviated the pathological injury of lung tissues. In addition, PD3 could reduce the infiltration of inflammatory cells in BALF and suppress the levels of eotaxin, IL-4, IL-5, IL-13, IFN-γ, and IgE. Furthermore, PD3 treatment inhibited the phosphorylation of NF-κBp65, p38, ERK1/2, and JNK1/2 proteins in asthma mice. Conclusion PD3 treatment alleviated the airway remodeling and inflammation in asthmatic mice, which might be related to downregulating the phosphorylated proteins in the MAPK/NF-κB signaling pathway.
Collapse
|
28
|
Liu W, Lin H, Nie W, Wan J, Jiang Q, Zhang A. Exosomal miR-221-3p Derived from Bone Marrow Mesenchymal Stem Cells Alleviates Asthma Progression by Targeting FGF2 and Inhibiting the ERK1/2 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5910874. [PMID: 35990834 PMCID: PMC9385294 DOI: 10.1155/2022/5910874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 12/02/2022]
Abstract
Exosomes derived from human bone marrow mesenchymal stem cells (BMSCs) play potential protective roles in asthma. However, the underlying mechanisms remain not fully elucidated. Herein, exosomes were isolated from BMSCs, and the morphology, particle size, and exosome marker proteins were identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot, respectively. Then airway smooth muscle cells (ASMCs) were treated with transforming growth factor-β1 (TGF-β1) to construct a proliferation model and then incubated with BMSCs-derived exosomes. We found that exosome incubation increased miR-221-3p expression and inhibited proliferation, migration, and the levels of extracellular matrix (ECM) proteins including fibronectin and collagen III. Moreover, FGF2 was identified as a target gene of miR-221-3p. FGF2 overexpression reversed the inhibitory effects of exosomal miR-221-3p on ASMC progression. Besides, the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) is inhibited by exosomal miR-221-3p, which was reversed by FGF2 overexpression. And ERK1/2 signaling activator reversed the effects of exosomal miR-221-3p on ASMC progression. Additionally, an ovalbumin (OVA)-induced asthmatic mice model was established, and exosome treatment alleviated airway hyper-responsiveness (AHR), histopathological damage, and ECM deposition in asthmatic mice. Taken together, our findings indicated that exosomal miR-221-3p derived from BMSCs inhibited FGF2 expression and the ERK1/2 signaling, thus attenuating proliferation, migration, and ECM deposition in ASMCs and alleviating asthma progression in OVA-induced asthmatic mice. Our findings may provide a novel therapeutic strategy for asthma.
Collapse
Affiliation(s)
- Weike Liu
- Department of Pediatrics, Chengyang District People's Hospital of Qingdao, Qingdao 266000, Shandong, China
| | - Hui Lin
- Department of Pediatrics, Chengyang District People's Hospital of Qingdao, Qingdao 266000, Shandong, China
| | - Wuhui Nie
- Department of Pediatrics, Chengyang District People's Hospital of Qingdao, Qingdao 266000, Shandong, China
| | - Jieting Wan
- Department of Haemodialysis, Jimo District People's Hospital of Qingdao, Qingdao 266000, Shandong, China
| | - Qian Jiang
- Department of Pediatrics, Chengyang District People's Hospital of Qingdao, Qingdao 266000, Shandong, China
| | - Aimei Zhang
- Department of Pediatrics, Chengyang District People's Hospital of Qingdao, Qingdao 266000, Shandong, China
| |
Collapse
|