1
|
Jaichand V, Lanrewaju AA, Baijnath H, Sabiu S, Mohanlall V. Profiling and cheminformatics bioprospection of curcurbitacin I and momordin Ic from Momordica balsamina on α-amylase and α-glucosidase. J Enzyme Inhib Med Chem 2025; 40:2492706. [PMID: 40302171 PMCID: PMC12044915 DOI: 10.1080/14756366.2025.2492706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/18/2025] [Accepted: 04/08/2025] [Indexed: 05/01/2025] Open
Abstract
Momordica spp. has been traditionally used to manage type 2 diabetes mellitus, but the mechanisms and metabolites remain unclear. This study evaluated the inhibitory potential of Momordica balsamina extracts on α-amylase and α-glucosidase in vitro, identifying cucurbitacin I and momordin Ic via high-performance liquid chromatography-photo diode array, and their inhibitory potential in silico. Ethyl acetate seed extract (14.46 µg/ml) and hexane fruit flesh extract (16.79 µg/ml) exhibited lower IC50 values against α-amylase and α-glucosidase, respectively, compared to acarbose (reference standard). Comparatively, momordin Ic concentrations (36.57-605.98 µg/ml) were higher than cucurbitacin I (17.08-44.34 µg/ml). A 140 ns simulation showed that cucurbitacin I (-63.06 kcal/mol) and momordin Ic (-66.53 kcal/mol) exhibited stronger binding to α-amylase than acarbose (-36.46 kcal/mol), whereas cucurbitacin I (-38.08 kcal/mol) and momordin Ic (-54.87 kcal/mol) displayed weaker binding to α-glucosidase, relative to acarbose (-63.73 kcal/mol). Generally, momordin Ic demonstrated better thermodynamic properties, hence further in vitro and in vivo studies are needed to validate their antidiabetic potential.
Collapse
Affiliation(s)
- Viruska Jaichand
- Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, Durban, South Africa
| | - Adedayo Ayodeji Lanrewaju
- Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, Durban, South Africa
| | - Himansu Baijnath
- Ward Herbarium, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, Durban, South Africa
| | - Viresh Mohanlall
- Department of Biotechnology and Food Science, Faculty of Applied Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
2
|
Onumah J, Afoakwah NA, Boamah PO, Osei ED, Amotoe-Bondzie A. Biological properties and application of chitosan and low molecular weight chitosan in food industry: A review. Carbohydr Res 2025; 552:109475. [PMID: 40168793 DOI: 10.1016/j.carres.2025.109475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Low molecular weight chitosan (LMWCHT) is a natural, non-toxic, biodegradable, and biocompatible polymer with a range of biological activities, including antioxidant, antibacterial, hypocholesterolemic, anti-obesity, cytotoxic, anti-cancer, anti-tumour, and anti-diabetic properties. This review paper focuses on the biological properties and the applications of LMWCHT in the food industry. The applications of LMWCHT as a food additive, food coating, food packaging material, and food biosensor are discussed in detail. Additionally, the importance of LMWCHT in the manufacture of nutraceuticals and functional foods, as well as its role in extending the shelf-life of agri-food products is explored.
Collapse
Affiliation(s)
- Jacqueline Onumah
- Department of Ecological Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana
| | - Newlove A Afoakwah
- Department of Food Science and Technology, Faculty of Agriculture, Food and Consumer Sciences, Nyankpala Campus, University for Development Studies, Tamale, Ghana
| | - Peter Osei Boamah
- Department of Ecological Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana.
| | - Emmanuel Duah Osei
- Institute of Food Science, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Anthony Amotoe-Bondzie
- Institute of Food Science, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76, Nitra, Slovakia
| |
Collapse
|
3
|
Alharbi YM, Aljalis RA, Barakat H. Antidiabetic, hypolipidemic, and antioxidative properties of aqueous and ethanolic extracts of Sage ( Salvia officinalis L.) against streptozotocin-induced diabetes and oxidative stress in Wistar albino male rats. Vet World 2025; 18:461-474. [PMID: 40182830 PMCID: PMC11963588 DOI: 10.14202/vetworld.2025.461-474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/17/2025] [Indexed: 04/05/2025] Open
Abstract
Background and Aim Diabetes mellitus (DM) is a chronic disease characterized by insulin insufficiency and hyperglycemia, often leading to complications such as oxidative stress, dyslipidemia, and organs damage. Sage (Salvia officinalis L.), a medicinal plant with rich antioxidant and bioactive compounds, has shown promise in managing diabetes and related complications. This study investigates the antidiabetic, hypolipidemic, and antioxidative effects of aqueous (AE) and ethanolic (EE) extracts of S. officinalis leaves at doses of 400 and 800 mg/kg body weight in Wister albino male rats with streptozotocin (STZ)-induced type 2 diabetes and oxidative stress. Materials and Methods Wistar albino male rats (n = 49) were divided into seven groups: Normal control, diabetes-induced control (STZ), metformin-treated (50 mg/kg/day), and groups treated with AE (400 and 800 mg/kg/day) and EE (400 and 800 mg/kg/day). Parameters assessed included weight gain percentage, random blood glucose (RBG), fasting blood glucose (FBG), lipid profiles, liver and kidney function markers, oxidative stress biomarkers (glutathione [GSH], catalase [CAT], superoxide dismutase [SOD], malonaldehyde [MDA]), and histopathological examination of the pancreas. Results AE and EE significantly reduced RBG and FBG and improved weight gain recovery. At 800 mg/kg, AE and EE effectively reduced triglycerides, total cholesterol, low-density lipoproteins cholesterol (LDL-C), and very LDL-C (VLDL-C) while increasing high-density lipoproteins cholesterol more than 400 mg/kg doses or metformin. Liver and kidney functions were restored with high-dose AE and EE showing superior efficacy. Antioxidant biomarkers (GSH, CAT, and SOD) were significantly enhanced, while MDA levels were reduced. Histopathological analysis confirmed restoration of islets of Langerhans and acinar cells to near-normal conditions in treated groups. Conclusion The AE and EE of S. officinalis demonstrated potent antidiabetic, hypolipidemic, and antioxidative properties, offering significant potential as a natural therapeutic option for managing diabetes and oxidative stress-related complications.
Collapse
Affiliation(s)
- Yousef M. Alharbi
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Rashed A. Aljalis
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
- Military Industries Corporation, Ministry of Defense, King Khalid Rd, Al-Kharj, 16274, Saudi Arabia
| | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Food Technology, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| |
Collapse
|
4
|
Duong TKY, Nguyen VK, Dao NVT, Bui XH, Thao VTM, Nguyen MK, Dong PSN, Phan HVT, Tran TN, Ngo HNT, Mai DT, Hoang LTTT. Annoglabrin A-C, three new ent-kaurane diterpenoids from the Annona glabra fruit pulp. Nat Prod Res 2024:1-9. [PMID: 39397383 DOI: 10.1080/14786419.2024.2414397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
Three new ent-kaurane diterpenoids, namely annoglabrin A-C (1-3), were isolated from the Annona glabra fruit pulp. Their structures were clarified by widespread spectroscopic analyses (1D and 2D NMR, HRESIMS). The relative configuration of these new compounds was established through the NOESY spectrum. Compounds 1-3 were evaluated for their inhibitory activity against α-glucosidase and were found with weak (1 and 3) or no effects (2), compared to those of positive control (acarbose, IC50 82.0 µM).
Collapse
Affiliation(s)
- Thi-Kim-Yen Duong
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Department of Chemistry and Biochemistry, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Van-Kieu Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Ngoc-Van-Trang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Xuan-Hang Bui
- Department of Biotechnology, International University, Ho Chi Minh City, Vietnam
| | - Vo Thi Minh Thao
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Phan-Si-Nguyen Dong
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Hoang-Vinh-Truong Phan
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Thanh-Nha Tran
- Department of Environmental Engineering, Thu Dau Mot University, Binh Duong, Vietnam
| | - Hoang-Ngoc-Thanh Ngo
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Dinh-Tri Mai
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Le-Thuy-Thuy-Trang Hoang
- Laboratory of Advanced Materials Chemistry, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
P D DA, Plashintania DR, Putri RM, Wibowo I, Ramli Y, Herdianto S, Indarto A. Synthesis of zinc oxide nanoparticles using methanol propolis extract (Pro-ZnO NPs) as antidiabetic and antioxidant. PLoS One 2023; 18:e0289125. [PMID: 37490488 PMCID: PMC10368249 DOI: 10.1371/journal.pone.0289125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
In recent times, the overall health of individuals has been declining due to unhealthy lifestyles, leading to various diseases, including diabetes. To address this issue, antidiabetic and antioxidant agents are required to back-up human well-being. Zinc oxide (ZnO) is one such substance known for its antidiabetic and antioxidant effects. To enhance its capability and effectiveness, propolis was utilized to synthesize zinc oxide nanoparticles (Pro-ZnO NPs). The objective of this study was to synthesize Pro-ZnO NPs and assess their performance by conducting inhibition assays against α-amylase and α-glucosidase enzymes, as well as a 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. The results showed that Pro-ZnO NPs were formed in a hexagonal wurtzite structure, with particle sizes ranging from 30 to 50 nm and an absorption band observed at 341 nm. The stability, chemical properties, and crystallography of Pro-ZnO NPs were also thoroughly examined using appropriate methods. The Pro-ZnO NPs demonstrated significant inhibitory effects against α-amylase and α-glucosidase enzymes, with inhibition rates reaching 69.52% and 73.78%, respectively, whereas the antioxidant activity was as high as 70.76%. Consequently, with their high inhibition rates, the Pro-ZnO NPs demonstrate the potential to be employed as a natural agent for combating diabetes and promoting antioxidant effects.
Collapse
Affiliation(s)
- Dwi Ajeng P D
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Rindia M Putri
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
| | - Indra Wibowo
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Yusrin Ramli
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Japan
| | - Sabrina Herdianto
- Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, Indonesia
| | - Antonius Indarto
- Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, Indonesia
- Department of Bioenergy Engineering and Chemurgy, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
6
|
Saleem H, Yaqub A, Rafique R, Ali Chohan T, Malik DES, Tousif MI, Khurshid U, Ahemad N, Ramasubburayan R, Rengasamy KR. Nutritional and medicinal plants as potential sources of enzyme inhibitors toward the bioactive functional foods: an updated review. Crit Rev Food Sci Nutr 2023; 64:9805-9828. [PMID: 37255100 DOI: 10.1080/10408398.2023.2217264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Enzymes are biologically active complex protein molecules that catalyze most chemical reactions in living organisms, and their inhibitors accelerate biological processes. This review emphasizes medicinal food plants and their isolated chemicals inhibiting clinically important enzymes in common diseases. A mechanistic overview was investigated to explain the mechanism of these food bases enzyme inhibitors. The enzyme inhibition potential of medicinal food plants and their isolated substances was searched in Ovid, PubMed, Science Direct, Scopus, and Google Scholar. Cholinesterase, amylase, glucosidase, xanthine oxidase, tyrosinase, urease, lipoxygenase, and others were inhibited by crude extracts, solvent fractions, or isolated pure chemicals from medicinal food plants. Several natural compounds have shown tyrosinase inhibition potential, including quercetin, glabridin, phloretin-4-O-β-D-glucopyranoside, lupinalbin, and others. Some of these compounds' inhibitory kinetics and molecular mechanisms are also discussed. Phenolics and flavonoids inhibit enzyme activity best among the secondary metabolites investigated. Several studies showed flavonoids' significant antioxidant and anti-inflammatory activities, highlighting their medicinal potential. Overall, many medicinal food plants, their crude extracts/fractions, and isolated compounds have been studied, and some promising compounds depending on the enzyme have been found. Still, more studies are recommended to derive potential pharmacologically active functional foods.
Collapse
Affiliation(s)
- Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan
| | - Anam Yaqub
- Fatima Memorial Medical and Dental College, Lahore, Pakistan
| | | | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan
| | - Durr-E-Shahwar Malik
- Institute of Pharmaceutical Sciences, Peoples University of Medical and Health Sciences, NawabShah, Pakistan
| | - Muhammad Imran Tousif
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Pakistan
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ramasamy Ramasubburayan
- Marine Biomedical Research Lab & Environmental Toxicology Unit, Department of Prosthodotics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kannan Rr Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| |
Collapse
|
7
|
Santos IL, Rodrigues AMDC, Amante ER, Silva LHMD. Soursop ( Annona muricata) Properties and Perspectives for Integral Valorization. Foods 2023; 12:foods12071448. [PMID: 37048268 PMCID: PMC10093693 DOI: 10.3390/foods12071448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 04/14/2023] Open
Abstract
The increased international interest in the properties of soursop (Annona muricata) alerts us to the sustainability of productive chain by-products, which are rich in phytochemicals and other properties justifying their industrial application in addition to reducing the environmental impact and generating income. Chemical characteristics of soursop by-products are widely known in the scientific community; this fruit has several therapeutic effects, especially its leaves, enabling it to be used by the pharmaceutical industry. Damaged and non-standard fruits (due to falling and crushing) (30-50%), seeds (3-8.5%), peels (7-20%), and leaves, although they constitute discarded waste, can be considered as by-products. There are other less cited parts of the plant that also have phytochemical components, such as the columella and the epidermis of the stem and root. Tropical countries are examples of producers where soursop is marketed as fresh fruit or frozen pulp, and the valorization of all parts of the fruit could represent important environmental and economic perspectives. Based on the chemical composition of the fruit as well as its by-products and leaves, this work discusses proposals for the valorization of these materials. Soursop powder, bioactive compounds, oil, biochar, biodiesel, bio-oil, and other products based on published studies are presented in this work, offering new ideas for opportunities for the regions and consumers that produce soursop.
Collapse
Affiliation(s)
- Ivone Lima Santos
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Universidade Federal do Pará (UFPA), Belém 66075-110, Pará, Brazil
| | - Antonio Manoel da Cruz Rodrigues
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Universidade Federal do Pará (UFPA), Belém 66075-110, Pará, Brazil
| | - Edna Regina Amante
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Universidade Federal do Pará (UFPA), Belém 66075-110, Pará, Brazil
| | - Luiza Helena Meller da Silva
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Universidade Federal do Pará (UFPA), Belém 66075-110, Pará, Brazil
| |
Collapse
|
8
|
Zubaidi SN, Mohd Nani H, Ahmad Kamal MS, Abdul Qayyum T, Maarof S, Afzan A, Mohmad Misnan N, Hamezah HS, Baharum SN, Mediani A. Annona muricata: Comprehensive Review on the Ethnomedicinal, Phytochemistry, and Pharmacological Aspects Focusing on Antidiabetic Properties. Life (Basel) 2023; 13:life13020353. [PMID: 36836708 PMCID: PMC9968120 DOI: 10.3390/life13020353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Plants have played an important role over the centuries in providing products that have been used to help combat ailments and diseases. Many products originating from fresh, dried-plant materials, or extracts are utilized as community remedies in traditional practices or even in modern medicine. The Annonaceae family contains different types of bioactive chemical properties, such as alkaloids, acetogenins, flavonoids, terpenes, and essential oil, meaning the plants in this family are potential therapeutic agents. Belonging to the Annonaceae family, Annona muricata Linn. has recently attracted the attention of scientists for its medicinal value. It has been utilized as a medicinal remedy since ancient times to treat and improve various diseases, for example, diabetes mellitus, hypertension, cancer, and bacterial infections. This review, therefore, highlights the important characteristic and therapeutic effect of A. muricata along with future perspectives on its hypoglycemic effect. The most-common name is soursop, referring to its sour and sweet flavors, while in Malaysia, this tree is commonly called 'durian belanda'. Furthermore, A. muricata contains a high content of phenolic compounds in the roots and leaves. In vitro and in vivo studies have shown that A. muricata has the pharmacological effects of anti-cancer, anti-microbial, antioxidant, anti-ulcer, anti-diabetic, anti-hypertensive, and wound healing. With regard to its anti-diabetic effect, mechanisms of inhibiting glucose absorption via α-glucosidase and α-amylase activity inhibition, increasing glucose tolerance and glucose uptake by peripheral tissues, and stimulating insulin release or acting like insulin were deeply discussed. There is still a significant research gap, and future studies are required to conduct detailed investigations and gain a better molecular understanding of A. muricata's anti-diabetic potential, especially by using the metabolomics approach.
Collapse
Affiliation(s)
- Siti Norliyana Zubaidi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hidayah Mohd Nani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mohd Saleh Ahmad Kamal
- Faculty of Dentistry, Lincoln University College, Petaling Jaya 47301, Selangor, Malaysia
| | - Taha Abdul Qayyum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Syahida Maarof
- Science and Food Technology Research Centre, Malaysian Agricultural Research and Development Institute, MARDI, Serdang 43400, Selangor, Malaysia
| | - Adlin Afzan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia
| | - Norazlan Mohmad Misnan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia
| | - Hamizah Shahirah Hamezah
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence: ; Tel.: +603-8921-4546
| |
Collapse
|
9
|
Nutritional and Therapeutic Potential of Soursop. J FOOD QUALITY 2022. [DOI: 10.1155/2022/8828358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Soursop (Annona muricata) has been one of the most studied fruits in recent years, owing to its potential medicinal benefits, as evidenced by many studies. Soursop is a tropical and subtropical fruit having great versatility and is quite sensitive to drastic temperature fluctuations. Since soursop contains various phytochemicals, it can be used medicinally to treat a wide range of conditions, including diabetes (by inhibiting the enzymes α-glucosidase and α-amylase), tumor, cancer, oxidative stress, blood pressure, the induction of apoptosis in tumor cells as well as hemorrhagic disease and cholesterol lowering. Due to its significant nutritional profile and therapeutic potential, it can be utilized in the development of nutraceuticals and medicines. Its pulp, seed, and leaf extract are used as functional ingredients in different foods as value-added foods. This review article is intended to characterize fruit development patterns and examines potential maturity indicators in soursop. In addition, it also elaborates on the potential nutritional and active phytochemicals present in this magnificent gift of nature and their possible uses in the food and pharmaceutical industries.
Collapse
|
10
|
Chukwuma IF, Nworah FN, Apeh VO, Omeje KO, Nweze EJ, Asogwa CD, Ezeorba TPC. Phytochemical Characterization, Functional Nutrition, and Anti-Diabetic Potentials of Leptadenia hastata (pers) Decne Leaves: In Silico and In Vitro Studies. Bioinform Biol Insights 2022; 16:11779322221115436. [PMID: 35982736 PMCID: PMC9379957 DOI: 10.1177/11779322221115436] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
The geometrical increase in diabetes mellitus (DM) and the undesirable side effects of synthetic drugs have intensified efforts to search for an effective and safe anti-diabetic therapy. This study aimed to identify the antioxidant and anti-diabetic agents in the ethanol extract of Leptadenia hastata (EELH). The phytochemicals, antioxidant vitamins, and minerals present in EELH were determined using standard procedures to achieve this aim. Gas chromatography coupled with mass spectroscopy and flame ionization detector (GC-MS/GC-FID) was employed to identify bioactive compounds. An e-pharmacophore model was generated from the extra precision, and energy-minimized docked position of standard inhibitor, acarbose onto human pancreatic amylase (HPA, PDB-6OCN). It was used to screen the GC-MS/GC-FID library of compounds. The top-scoring compounds were subjected to glide XP-docking and prime MM-GBSA calculation with the Schrodinger suite-v12.4. The Adsorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) prediction of the best-fit compounds was made using SwissADME and PROTOX-II webservers. Further validation of the docking results was performed with the in vitro analysis of the α-amylase and α-glucosidase inhibitory activities. EELH contains appreciable amounts of antioxidant and anti-diabetic phytoconstituents. The top-4 scoring compounds (rutin, epicatechin, kaempferol, and naringenin) from the EELH phytochemical library interacted with amino acid residues within and around the HPA active site. The ADMET prediction shows that epicatechin, kaempferol, and naringenin had favorable drug-likeness, pharmacokinetic properties, and a good safety profile. EELH demonstrated good inhibitory actions against α-amylase and α-glucosidase with 1C50 values of 14.14 and 4.22 µg/mL, respectively. Thus, L hastata phytoconstituents are promising novel candidates for developing an anti-diabetic drug.
Collapse
Affiliation(s)
- Ifeoma Felicia Chukwuma
- Department of Biochemistry, Faculty of
Biological Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Genetics and
Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka,
Nigeria
| | - Florence Nkechi Nworah
- Department of Biochemistry, Faculty of
Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Victor Onukwube Apeh
- Department of Applied Sciences, Federal
College of Dental Technology and Therapy, Enugu, Nigeria
| | - Kingsley Ozioma Omeje
- Department of Biochemistry, Faculty of
Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Ekene John Nweze
- Department of Biochemistry, Faculty of
Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Chukwudi Daniel Asogwa
- Department of Biochemistry, Faculty of
Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of
Biological Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Genetics and
Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka,
Nigeria
- Department of Molecular Biotechnology,
School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Ruth OO, Bamikole AO, Oluwatumise OV, Benjamin AA, Olusola OB. GC-MS analysis of phytochemical constituents of methanolic fraction of Annona muricata leaf and its inhibition against two key enzymes linked to type II diabetes. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
12
|
Alam S, Sarker MMR, Sultana TN, Chowdhury MNR, Rashid MA, Chaity NI, Zhao C, Xiao J, Hafez EE, Khan SA, Mohamed IN. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front Endocrinol (Lausanne) 2022; 13:800714. [PMID: 35282429 PMCID: PMC8907382 DOI: 10.3389/fendo.2022.800714] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Diabetes, a chronic physiological dysfunction affecting people of different age groups and severely impairs the harmony of peoples' normal life worldwide. Despite the availability of insulin preparations and several synthetic oral antidiabetic drugs, there is a crucial need for the discovery and development of novel antidiabetic drugs because of the development of resistance and side effects of those drugs in long-term use. On the contrary, plants or herbal sources are getting popular day by day to the scientists, researchers, and pharmaceutical companies all over the world to search for potential bioactive compound(s) for the discovery and development of targeted novel antidiabetic drugs that may control diabetes with the least unwanted effects of conventional antidiabetic drugs. In this review, we have presented the prospective candidates comprised of either isolated phytochemical(s) and/or extract(s) containing bioactive phytoconstituents which have been reported in several in vitro, in vivo, and clinical studies possessing noteworthy antidiabetic potential. The mode of actions, attributed to antidiabetic activities of the reported phytochemicals and/or plant extracts have also been described to focus on the prospective phytochemicals and phytosources for further studies in the discovery and development of novel antidiabetic therapeutics.
Collapse
Affiliation(s)
- Safaet Alam
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
- Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
| | | | | | - Mohammad A. Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Elsayed E. Hafez
- Plant Protection and Biomolecular Diagnosis Department, ALCRI (Arid Lands Cultivation Research Institute), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Shah Alam Khan
- College of Pharmacy, National University of Science & Technology, Muscat, Oman
| | - Isa Naina Mohamed
- Pharmacology Department, Medicine Faculty, Universiti Kebangsaan Malaysia (The National University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Mutakin M, Fauziati R, Fadhilah FN, Zuhrotun A, Amalia R, Hadisaputri YE. Pharmacological Activities of Soursop ( Annona muricata Lin.). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041201. [PMID: 35208993 PMCID: PMC8878098 DOI: 10.3390/molecules27041201] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022]
Abstract
Soursop (Annona muricata Lin.) is a plant belonging to the Annonaceae family that has been widely used globally as a traditional medicine for many diseases. In this review, we discuss the traditional use, chemical content, and pharmacological activities of A.muricata. From 49 research articles that were obtained from 1981 to 2021, A.muricata’s activities were shown to include anticancer (25%), antiulcer (17%), antidiabetic (14%), antiprotozoal (10%), antidiarrhea (8%), antibacterial (8%), antiviral (8%), antihypertensive (6%), and wound healing (4%). Several biological activities and the general mechanisms underlying the effects of A.muricata have been tested both in vitro and in vivo. A.muricata contains chemicals such as acetogenins (annomuricins and annonacin), alkaloids (coreximine and reticuline), flavonoids (quercetin), and vitamins, which are predicted to be responsible for the biological activity of A.muricata.
Collapse
Affiliation(s)
- Mutakin Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence: (M.M.); (Y.E.H.); Tel.: +62-22-84288888 (M.M. & Y.E.H.)
| | - Rizky Fauziati
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.N.F.); (A.Z.)
| | - Fahrina Nur Fadhilah
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.N.F.); (A.Z.)
| | - Ade Zuhrotun
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.N.F.); (A.Z.)
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia;
| | - Yuni Elsa Hadisaputri
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.N.F.); (A.Z.)
- Correspondence: (M.M.); (Y.E.H.); Tel.: +62-22-84288888 (M.M. & Y.E.H.)
| |
Collapse
|
14
|
Martín del Campo-Rayas P, Valdez Miramontes EH, Reyes Castillo Z. Annona muricata as Possible Alternative in the Treatment of Hyperglycemia: A Systematic Review. J Med Food 2022; 25:219-229. [DOI: 10.1089/jmf.2021.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Patricia Martín del Campo-Rayas
- Behavioral Feeding and Nutrition Research Institute, University Center of the South, University of Guadalajara, Jalisco, Mexico
| | - Elia Herminia Valdez Miramontes
- Behavioral Feeding and Nutrition Research Institute, University Center of the South, University of Guadalajara, Jalisco, Mexico
| | - Zyanya Reyes Castillo
- Behavioral Feeding and Nutrition Research Institute, University Center of the South, University of Guadalajara, Jalisco, Mexico
| |
Collapse
|
15
|
Optimization of spray drying parameters for custard apple (Annona squamosa L.) pulp powder development using response surface methodology (RSM) with improved physicochemical attributes and phytonutrients. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Lee CH, Lee TH, Ong PY, Wong SL, Hamdan N, Elgharbawy AA, Azmi NA. Integrated ultrasound-mechanical stirrer technique for extraction of total alkaloid content from Annona muricata. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Guevara-Vásquez AM, Campos-Florián JV, Dávila-Castillo JH. Annona muricata L. extract decreases intestinal glucose absorption and improves glucose tolerance in normal and diabetic rats. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2021.42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Poorly controlled hyperglycemia causes numerous health complications. Postprandial hyperglycemia is an important indicator of diabetic status. The aim of this research was to evaluate the effect of Annona muricata L. extract on the in vitro intestinal glucose absorption in diabetic rats and in vivo antihyperglycemic activity in both normal and diabetic rats. Methods: Phytochemical screening of the aqueous extract from the leaves of A. muricata was carried out. Albino rats were randomly assigned into normal and diabetic groups. Each group was divided into three subgroups: control (vehicle), experimental (A. muricata), and standard (Metformin) groups, to determine antihyperglycemic activity at different times after glucose overload. The everted intestinal sac technique was used to study intestinal glucose absorption in diabetic rats. Results: Aqueous leaf extract of Peruvian A. muricata exhibited statistically significant (P < 0.05) in vivo antihyperglycemic activity in both normal and diabetic rats when compared to the control group. The magnitude of the effect was similar to metformin treatment. Moreover, the aqueous leaf extract of A. muricata significantly diminished in vitro intestinal glucose absorption, with a magnitude similar to metformin treatment. Phytochemical analysis of the aqueous extract revealed the presence of tannins, flavonoids, alkaloids, and leucoanthocyanidins, among others. Conclusion: This study reveals that A. muricata aqueous extract is able to reduce in vitro intestinal glucose absorption and improve oral glucose tolerance in rats.
Collapse
Affiliation(s)
- Ana María Guevara-Vásquez
- Department of Pharmacology, School of Pharmacy and Biochemistry, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Trujillo, Peru
| | - Julio Víctor Campos-Florián
- Department of Pharmacology, School of Pharmacy and Biochemistry, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Trujillo, Peru
| | | |
Collapse
|
18
|
Law CSW, Yeong KY. Benzimidazoles in Drug Discovery: A Patent Review. ChemMedChem 2021; 16:1861-1877. [PMID: 33646618 DOI: 10.1002/cmdc.202100004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 01/10/2023]
Abstract
Benzimidazole is a heterocyclic ring system that has been widely studied in the pharmaceutical field. For the past decade, numerous benzimidazole derivatives have been synthesized and evaluated for their wide range of pharmacological activities, which are beneficial for drug development. This article presents the biological effects of benzimidazole derivatives in each invention from 2015 to 2020. Two patent databases, Google Patents and Lens, were used to locate relevant granted patent applications. Specifically, this review delineates the role of patented benzimidazoles from a disease-centric perspective and examines the mechanisms of action of these compounds in related diseases. Most of the benzimidazoles have shown good activities against various target proteins. Whilst several of them have progressed into clinical trials, most patents presented novel therapeutic approaches for respective target diseases. Hence, their potential in being developed into clinical drugs are also discussed.
Collapse
Affiliation(s)
- Christine S W Law
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Y Yeong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia.,Tropical Medicine and Biology (TMB) multidisciplinary platform, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia
| |
Collapse
|
19
|
Synthesis, antidiabetic, antioxidant and anti-inflammatory activities of novel hydroxytriazenes based on sulpha drugs. Heliyon 2020; 6:e04787. [PMID: 32913908 PMCID: PMC7472862 DOI: 10.1016/j.heliyon.2020.e04787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/03/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
The present study is aimed to investigate the anti-inflammatory, antioxidant and antidiabetic activities of three series of hydroxytriazenes based on sulfa drugs viz; Sulphathiazole (ST), Sulfisoxazole (SF) and Sulphamethoxazole (SM). Antidiabetic activities of the synthesized hydroxytriazenes were investigated by α-glucosidase and α-amylase inhibition method and IC50 values were recorded. The compounds presented significant α-glucosidase and α-amylase inhibition effect with IC50 values ranging from 122 to 341 μg/mL. Anti-inflammatory activity was also investigated by carrageenan-induced paw edema (CPE) method, where % inhibition was up to 89% after 4 h of treatment and antioxidant properties of the similar compounds were assessed by DPPH and ABTS radical scavenging assays. Antioxidant capacity of all the hydroxytriazenes detected by ABTS assay, was significantly higher as compared to DPPH assay. The hydroxytriazenes having highest antioxidant capacity presented IC50 values for compound ST-1 and ST-6 are 488 μg/mL for DPPH, 54.12 μg/mL for ABTS and 858.5 μg/mL for DPPH, 48.0 μg/mL for ABTS, respectively. These results suggested that ABTS assay may be more useful than DPPH assay for synthetic antioxidants. The findings from the molecular docking experiments may also expand the formation of new potent sulpha drugs based hydroxytriazenes targeting towards the subunit of C-terminal of human maltase-glucoamylase for the treatment of diabetes metabolic disorder. Overall, highlight the multifunctional role of hydroxytriazenes as antidiabetic, antioxidant and anti-inflammatory agents.
Collapse
|
20
|
AbuBakr N, Haggag T, Sabry D, Salem ZA. Functional and histological evaluation of bone marrow stem cell-derived exosomes therapy on the submandibular salivary gland of diabetic Albino rats through TGFβ/ Smad3 signaling pathway. Heliyon 2020; 6:e03789. [PMID: 32382678 PMCID: PMC7203080 DOI: 10.1016/j.heliyon.2020.e03789] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/11/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To prevail over diabetes mellitus and its numerous complications, researchers are seeking new therapies. Exosomes are natural cargo of functional proteins and can be used as a therapeutic delivery of these molecules. OBJECTIVE The aim of this study was to evaluate the effect of exosomes derived from bone marrow mesenchymal stem cells (BM-MSCs) as a therapeutic intervention in salivary gland diabetic complications. METHODS Ten adult healthy male Albino rats, weighing about 150-200 g were grouped into 2 groups. Diabetic group I: consisted of 5 streptozotocin (STZ)-induced diabetic rats. Exosomes treated group II: consisted of 5 STZ-induced diabetic rats, each animal received a single injection of exosomes (100 μg/kg/dose suspended in 0.2 ml PBS) through the tail vein. All animals were sacrificed after 5 weeks from the beginning of the experiment. Submandibular salivary gland samples were excised and processed for histological, ultrastructural examination and PCR for TGFβ, Smad2 and Smad3. Blood glucose level was monitored weekly, salivary IgA and serum amylase were evaluated before and after diabetes induction and at the end of the experiment. RESULTS Histological and ultrastructural results of the exosomes treated group were promising regarding the glandular and ductal elements with less fibrosis observed. Results of PCR supported the role of exosomes to inhibit the diabetic sequalae in salivary gland and its complications through inhibiting TGFβ and its related pathway via Smad2 and Smad3. Blood glucose levels were reduced. In addition, salivary glands' function was improved as evidenced by reduction in serum amylase and salivary IgA. CONCLUSION BM-MSC-derived exosomes could be a novel therapeutic strategy for diabetic complications involving salivary glands.
Collapse
Affiliation(s)
- Nermeen AbuBakr
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Tahany Haggag
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Zeinab A. Salem
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|