1
|
Jeon J, Subramani SV, Lee KZ, Elizondo-Benedetto S, Zayed MA, Zhang F. Engineering Adhesive Hydrogels for Hemostasis and Vascular Repair. Polymers (Basel) 2025; 17:959. [PMID: 40219348 PMCID: PMC11991510 DOI: 10.3390/polym17070959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Adhesive hydrogels with tunable mechanical properties and strong adhesion to wet, dynamic tissues have emerged as promising materials for tissue repair, with potential applications in wound closure, hemorrhage control, and surgical adhesives. This review highlights the key design principles, material classifications, and recent advances in adhesive hydrogels designed for vascular repair. The limitations of existing adhesive hydrogels, including insufficient mechanical durability, suboptimal biocompatibility, and challenges in targeted delivery, are critically evaluated. Furthermore, innovative strategies-such as incorporating self-healing capabilities, developing stimuli-responsive systems, integrating functional nanocomposites, and employing advanced fabrication techniques like 3D bioprinting-are discussed to enhance adhesion, mechanical stability, and vascular tissue regeneration. While significant progress has been made, further research and optimization are necessary to advance these materials toward clinical translation, offering a versatile and minimally invasive alternative to traditional vascular repair techniques.
Collapse
Affiliation(s)
- Juya Jeon
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; (J.J.); (S.V.S.); (K.Z.L.)
| | - Shri Venkatesh Subramani
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; (J.J.); (S.V.S.); (K.Z.L.)
| | - Kok Zhi Lee
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; (J.J.); (S.V.S.); (K.Z.L.)
| | - Santiago Elizondo-Benedetto
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, Saint Louis, MO 63130, USA; (S.E.-B.); (M.A.Z.)
| | - Mohamed Adel Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, Saint Louis, MO 63130, USA; (S.E.-B.); (M.A.Z.)
- Division of Surgical Sciences, Department of Surgery, Washington University School of Medicine in St. Louis, Saint Louis, MO 63130, USA
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Cardiovascular Research Innovation in Surgery & Engineering Center, Department of Surgery, Washington University School of Medicine in St. Louis, Saint Louis, MO 63130, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; (J.J.); (S.V.S.); (K.Z.L.)
- Institute of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, Saint Louis, MO 63130, USA
| |
Collapse
|
2
|
Dembech E, Sotgiu G, Donnadio A, Buoso S, Dolci G, Nichilo MJFA, Sinisi V. Casein-based film enriched with lignin as a biodegradable substrate for enzyme immobilization. RSC Adv 2025; 15:5344-5355. [PMID: 39967896 PMCID: PMC11833289 DOI: 10.1039/d4ra08521c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
In the last decades, the negative impact of petroleum derived materials on the environment is more and more evident; beyond the unavoidable reduction in the use of classical plastic, another promising approach is the development of alternative materials prepared starting from natural, biodegradable, and more sustainable biomolecules, particularly undervalued or discarded ones. Caseins are the most abundant proteins in milk, with important nutritional value but also interesting film-forming properties. Lignin is a polyphenolic polymer found in wood and derived from a by-product of the cellulose extraction processes; it is well known for its antibacterial, antioxidant, and UV-protecting properties. In the present work, casein was isolated from UHT skimmed bovine milk through acidification and used alone or in combination with lignin to produce films that are biodegradable and environmentally friendly. Casein and casein-lignin films presented a thickness in the range of 180-260 μm and a compact, non-porous texture. The presence of lignin did not affect the morphology of the films but influenced their mechanical properties. For casein and casein-lignin films covalently crosslinked with transglutaminase (TGM), the solubility decreased to 40-50% and the samples retained their shape. The results show that TGM-containing films are suitable as substrates for the immobilization of enzymes; herein, the FAD-dependent glucose oxidase from Aspergillus niger was added to the film and the enzyme remained stable and active against glucose for weeks, as demonstrated by the colorimetric detection of the H2O2 produced in the catalysed reaction. This study opens up the possibility of combining two products of natural origin for the production of films through processes with low environmental impact, thus offering interesting scenarios in the immobilization of macromolecules for the detection of target molecules.
Collapse
Affiliation(s)
- Elena Dembech
- Institute of Materials for Electronics and Magnetism, National Research Council (CNR-IMEM) Parco Area delle Scienze, 37/A 43124 Parma Italy
| | - Giovanna Sotgiu
- Institute for Organic Synthesis and Photoreactivity, National Research Council (CNR-ISOF) Via P. Gobetti, 101 40129 Bologna Italy
- Kerline Srl Via P. Gobetti, 101 40129 Bologna Italy
| | - Anna Donnadio
- Department of Pharmaceuticals Sciences, University of Perugia Via del Liceo 1 06123 Perugia Italy
| | - Sara Buoso
- Institute for Organic Synthesis and Photoreactivity, National Research Council (CNR-ISOF) Via P. Gobetti, 101 40129 Bologna Italy
- Kerline Srl Via P. Gobetti, 101 40129 Bologna Italy
| | - Giovanni Dolci
- Politecnico di Milano, Department of Civil and Environmental Engineering, Environmental Section Piazza Leonardo da Vinci 32 20133 Milano Italy
| | - Mary Jo F A Nichilo
- Politecnico di Milano, Department of Civil and Environmental Engineering, Environmental Section Piazza Leonardo da Vinci 32 20133 Milano Italy
| | - Valentina Sinisi
- Institute of Materials for Electronics and Magnetism, National Research Council (CNR-IMEM) Parco Area delle Scienze, 37/A 43124 Parma Italy
| |
Collapse
|
3
|
Kawee-Ai A. Advancing Gel Systems with Natural Extracts: Antioxidant, Antimicrobial Applications, and Sustainable Innovations. Gels 2025; 11:125. [PMID: 39996668 PMCID: PMC11855317 DOI: 10.3390/gels11020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
The integration of natural extracts into gel systems has emerged as a transformative approach to enhance functional properties, including antioxidant, antimicrobial, and therapeutic effects. This review underscores the remarkable potential of natural extract-enriched gels, which effectively combine sustainability with improved functionality. These bioactive compounds, sourced from plants and animals, encompass polyphenols, flavonoids, essential oils, chitosan, proteins, and polysaccharides. They provide an eco-friendly alternative to synthetic additives and find applications across various sectors, including pharmaceuticals, cosmetics, and food packaging. Despite their promise, challenges remain, such as the variability in natural extract composition, the stability of bioactive compounds, and scalability for industrial use. To address these issues, innovative strategies like nanoencapsulation, responsive hydrogels, and AI-driven optimization have demonstrated significant progress. Additionally, emerging technologies, such as 3D printing and adherence to circular economy principles, further enhance the versatility, efficiency, and sustainability of these systems. By integrating these advanced tools and methodologies, gel systems enriched with natural extracts are well-positioned to meet contemporary consumer and industrial demands for multifunctional and eco-friendly products. These innovations not only improve performance but also align with global sustainability goals, setting the stage for widespread adoption and continued development in various fields.
Collapse
Affiliation(s)
- Arthitaya Kawee-Ai
- Division of Cannabis and Medicinal Plants for Local Development, Graduate School, Payap University, Chiang Mai 50000, Thailand
| |
Collapse
|
4
|
Zhu Q, Fu J, Wang Z, Pei J, Yi W, Ren D. H 2O 2-generating casein hydrogels used in food packaging: Rapid photocrosslinking and antimicrobial activity. Food Res Int 2025; 202:115787. [PMID: 39967120 DOI: 10.1016/j.foodres.2025.115787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
Food safety caused by microbial contamination is an important problem that is difficult to solve for the food industry. In this study, a photocurable CFT hydrogel material is prepared by photocrossing casein with the flavin mononucleotide/sodium persulfate system, while flavin mononucleotide and tryptophan are used as photocatalysts to generate hydrogen peroxide (H2O2) for the inactivation of food pathogenic microorganisms. The CFT hydrogel demonstrated rapid gelation (<3 min), robust mechanical properties (1775 Pa), efficient H2O2 production (75 µM), and favorable biocompatibility. The CFT hydrogel could sterilize Gram-positive bacteria and Gram-negative bacteria after light irradiation, with sterilization rates exceeding 98 %. In addition, the CFT hydrogel showed great antibacterial activity to reduce E. coli on the surface of cherry tomatoes by 1.2 log. These unique properties make the CFT hydrogel a promising material for food preservation.
Collapse
Affiliation(s)
- Qinchao Zhu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University 310058 Hangzhou, China
| | - Jinfeng Fu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University 310058 Hangzhou, China
| | - Zhidan Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University 310058 Hangzhou, China
| | - Juxin Pei
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University 310058 Hangzhou, China
| | - Wuzhou Yi
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University 310058 Hangzhou, China
| | - Daxi Ren
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University 310058 Hangzhou, China.
| |
Collapse
|
5
|
Hong MJ, Lee Y, Kyung SJ, Choi J, Lee HJ. Sustainable and durable color cosmetics: riboflavin phosphate-mediated photo-crosslinked casein films with tannic acid. Biomater Sci 2024; 12:6136-6147. [PMID: 39470018 DOI: 10.1039/d4bm01254b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The cosmetics industry is increasingly focusing on developing sustainable and environmentally friendly products while maintaining high performance. In color cosmetics, achieving long-lasting durability of water-soluble dyes remains a challenge. This study presents a sustainable approach to enhance the durability of water-soluble dyes in cosmetics using biopolymer-based films. The casein films were fabricated through riboflavin phosphate (RFP)-mediated photo-crosslinking, with tannic acid (TA) incorporated to improve mechanical properties. The fabrication process, characterization, and performance evaluation of the biopolymer-based films were investigated. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analyses confirmed the successful crosslinking and formation of a porous network structure. Rheological measurements revealed that the incorporation of TA significantly enhanced the mechanical strength of the films. Cytocompatibility assessment using NIH/3T3 fibroblasts demonstrated the films' excellent biocompatibility. The durability and color retention of a water-soluble red dye in the biopolymer-based films were evaluated on human skin. The films formed under blue light irradiation exhibited superior dye retention compared to non-irradiated films, with TA addition providing a minor improvement in durability. This study bridges the gap between cosmetic science and biomaterials research, providing a foundation for future investigations into bio-interactive materials for dermal applications. These findings highlight the potential of RFP-mediated photo-crosslinked casein films as a sustainable and effective solution for enhancing the durability of water-soluble dyes in color cosmetics.
Collapse
Affiliation(s)
- Min Ji Hong
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Yerin Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Su Jin Kyung
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Joonho Choi
- AMOREPACIFIC R&I Center, 1920 Yonggu-daero, Yongin-si, Gyeonggi-do 17074, Republic of Korea.
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
6
|
Hong X, Tian G, Dai B, Zhou X, Gao Y, Zhu L, Liu H, Zhu Q, Zhang L, Zhu Y, Ren D, Guo C, Nan J, Liu X, Wang J, Ren T. Copper-loaded Milk-Protein Derived Microgel Preserves Cardiac Metabolic Homeostasis After Myocardial Infarction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401527. [PMID: 39007192 PMCID: PMC11425262 DOI: 10.1002/advs.202401527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Myocardial Infarction (MI) is a leading cause of death worldwide. Metabolic modulation is a promising therapeutic approach to prevent adverse remodeling after MI. However, whether material-derived cues can treat MI through metabolic regulation is mainly unexplored. Herein, a Cu2+ loaded casein microgel (CuCMG) aiming to rescue the pathological intramyocardial metabolism for MI amelioration is developed. Cu2+ is an important ion factor involved in metabolic pathways, and intracardiac copper drain is observed after MI. It is thus speculated that intramyocardial supplementation of Cu2+ can rescue myocardial metabolism. Casein, a milk-derived protein, is screened out as Cu2+ carrier through molecular-docking based on Cu2+ loading capacity and accessibility. CuCMGs notably attenuate MI-induced cardiac dysfunction and maladaptive remodeling, accompanied by increased angiogenesis. The results from unbiased transcriptome profiling and oxidative phosphorylation analyses support the hypothesis that CuCMG prominently rescued the metabolic homeostasis of myocardium after MI. These findings enhance the understanding of the design and application of metabolic-modulating biomaterials for ischemic cardiomyopathy therapy.
Collapse
Affiliation(s)
- Xiaoqian Hong
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Geer Tian
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Binyao Dai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuhao Zhou
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Ying Gao
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Lianlian Zhu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Haoran Liu
- School of Engineering, Westlake University, Hangzhou, 310023, China
| | - Qinchao Zhu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Liwen Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Zhu
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Daxi Ren
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, 310023, China
| | - Jinliang Nan
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Xianbao Liu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Tanchen Ren
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| |
Collapse
|
7
|
Yang Y, Xu Q, Wang X, Bai Z, Xu X, Ma J. Casein-based hydrogels: Advances and prospects. Food Chem 2024; 447:138956. [PMID: 38503069 DOI: 10.1016/j.foodchem.2024.138956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Casein-based hydrogels (Casein Gels) possess advantageous properties, including mechanical strength, stability, biocompatibility, and even adhesion, conductivity, sensing capabilities, as well as controlled-releasing behavior of drugs. These features are attributed to their gelation methods and functionalization with various polymers. Casein Gels is an important protein-based material in the food industry, in terms of dairy and functional foods, biological and medicine, in terms of carrier for bioactive and sensitive drugs, wound healing, and flexible sensors and wearable devices. Herein, this review aims to highlight the importance of the features mentioned above via a comprehensive investigation of Casein Gels through multiple directions and dimensional applications. Firstly, the composition, structure, and properties of casein, along with the gelation methods employed to create Casein Gels are elaborated, which serves as a foundation for further exploration. Then, the application progresses of Casein Gels in dairy products, functional foods, medicine, flexible sensors and wearable devices, are thoroughly discussed to provide insights into the diverse fields where Casein Gels have shown promise and utility. Lastly, the existing challenges and future research trends are highlighted from an interdisciplinary perspective. We present the latest research advances of Casein Gels and provide references for the development of multifunctional biomass-based hydrogels.
Collapse
Affiliation(s)
- Yuxi Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qunna Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| | - Xinyi Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Zhongxue Bai
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Xiaoyu Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| |
Collapse
|
8
|
Li X, Lin H, Yu Y, Lu Y, He B, Liu M, Zhuang L, Xu Y, Li W. In Situ Rapid-Formation Sprayable Hydrogels for Challenging Tissue Injury Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400310. [PMID: 38298099 DOI: 10.1002/adma.202400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/20/2024] [Indexed: 02/02/2024]
Abstract
Rapid-acting, convenient, and broadly applicable medical materials are in high demand for the treatment of extensive and intricate tissue injuries in extremely medical scarcity environment, such as battlefields, wilderness, and traffic accidents. Conventional biomaterials fail to meet all the high criteria simultaneously for emergency management. Here, a multifunctional hydrogel system capable of rapid gelation and in situ spraying, addressing clinical challenges related to hemostasis, barrier establishment, support, and subsequent therapeutic treatment of irregular, complex, and urgent injured tissues, is designed. This hydrogel can be fast formed in less than 0.5 s under ultraviolet initiation. The precursor maintains an impressively low viscosity of 0.018 Pa s, while the hydrogel demonstrates a storage modulus of 0.65 MPa, achieving the delicate balance between sprayable fluidity and the mechanical strength requirements in practice, allowing flexible customization of the hydrogel system for differentiated handling and treatment of various tissues. Notably, the interactions between the component of this hydrogel and the cell surface protein confer upon its inherently bioactive functionalities such as osteogenesis, anti-inflammation, and angiogenesis. This research endeavors to provide new insights and designs into emergency management and complex tissue injuries treatment.
Collapse
Affiliation(s)
- Xiaolei Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Fels Cancer Institute for Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Han Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Yilin Yu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Yukun Lu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Bin He
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Meng Liu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Lin Zhuang
- School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yue Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Weichang Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| |
Collapse
|
9
|
Yaron JR, Gosangi M, Pallod S, Rege K. In situ light-activated materials for skin wound healing and repair: A narrative review. Bioeng Transl Med 2024; 9:e10637. [PMID: 38818119 PMCID: PMC11135152 DOI: 10.1002/btm2.10637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 06/01/2024] Open
Abstract
Dermal wounds are a major global health burden made worse by common comorbidities such as diabetes and infection. Appropriate wound closure relies on a highly coordinated series of cellular events, ultimately bridging tissue gaps and regenerating normal physiological structures. Wound dressings are an important component of wound care management, providing a barrier against external insults while preserving the active reparative processes underway within the wound bed. The development of wound dressings with biomaterial constituents has become an attractive design strategy due to the varied functions intrinsic in biological polymers, such as cell instructiveness, growth factor binding, antimicrobial properties, and tissue integration. Using photosensitive agents to generate crosslinked or photopolymerized dressings in situ provides an opportunity to develop dressings rapidly within the wound bed, facilitating robust adhesion to the wound bed for greater barrier protection and adaptation to irregular wound shapes. Despite the popularity of this fabrication approach, relatively few experimental wound dressings have undergone preclinical translation into animal models, limiting the overall integrity of assessing their potential as effective wound dressings. Here, we provide an up-to-date narrative review of reported photoinitiator- and wavelength-guided design strategies for in situ light activation of biomaterial dressings that have been evaluated in preclinical wound healing models.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
- School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State UniversityTempeArizonaUSA
| | - Mallikarjun Gosangi
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
| | - Shubham Pallod
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
| | - Kaushal Rege
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State UniversityTempeArizonaUSA
- School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State UniversityTempeArizonaUSA
- Chemical Engineering, Arizona State UniversityTempeArizonaUSA
| |
Collapse
|
10
|
Samadi A, Moammeri A, Azimi S, Bustillo-Perez BM, Mohammadi MR. Biomaterial engineering for cell transplantation. BIOMATERIALS ADVANCES 2024; 158:213775. [PMID: 38252986 DOI: 10.1016/j.bioadv.2024.213775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
The current paradigm of medicine is mostly designed to block or prevent pathological events. Once the disease-led tissue damage occurs, the limited endogenous regeneration may lead to depletion or loss of function for cells in the tissues. Cell therapy is rapidly evolving and influencing the field of medicine, where in some instances attempts to address cell loss in the body. Due to their biological function, engineerability, and their responsiveness to stimuli, cells are ideal candidates for therapeutic applications in many cases. Such promise is yet to be fully obtained as delivery of cells that functionally integrate with the desired tissues upon transplantation is still a topic of scientific research and development. Main known impediments for cell therapy include mechanical insults, cell viability, host's immune response, and lack of required nutrients for the transplanted cells. These challenges could be divided into three different steps: 1) Prior to, 2) during the and 3) after the transplantation procedure. In this review, we attempt to briefly summarize published approaches employing biomaterials to mitigate the above technical challenges. Biomaterials are offering an engineerable platform that could be tuned for different classes of cell transplantation to potentially enhance and lengthen the pharmacodynamics of cell therapies.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, CA 92617, USA
| | - Ali Moammeri
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Shamim Azimi
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Bexi M Bustillo-Perez
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, CA 92866, USA.
| |
Collapse
|
11
|
Kammona O, Tsanaktsidou E, Kiparissides C. Recent Developments in 3D-(Bio)printed Hydrogels as Wound Dressings. Gels 2024; 10:147. [PMID: 38391477 PMCID: PMC10887944 DOI: 10.3390/gels10020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
Wound healing is a physiological process occurring after the onset of a skin lesion aiming to reconstruct the dermal barrier between the external environment and the body. Depending on the nature and duration of the healing process, wounds are classified as acute (e.g., trauma, surgical wounds) and chronic (e.g., diabetic ulcers) wounds. The latter take several months to heal or do not heal (non-healing chronic wounds), are usually prone to microbial infection and represent an important source of morbidity since they affect millions of people worldwide. Typical wound treatments comprise surgical (e.g., debridement, skin grafts/flaps) and non-surgical (e.g., topical formulations, wound dressings) methods. Modern experimental approaches include among others three dimensional (3D)-(bio)printed wound dressings. The present paper reviews recently developed 3D (bio)printed hydrogels for wound healing applications, especially focusing on the results of their in vitro and in vivo assessment. The advanced hydrogel constructs were printed using different types of bioinks (e.g., natural and/or synthetic polymers and their mixtures with biological materials) and printing methods (e.g., extrusion, digital light processing, coaxial microfluidic bioprinting, etc.) and incorporated various bioactive agents (e.g., growth factors, antibiotics, antibacterial agents, nanoparticles, etc.) and/or cells (e.g., dermal fibroblasts, keratinocytes, mesenchymal stem cells, endothelial cells, etc.).
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process & Energy Resources Research Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| | - Evgenia Tsanaktsidou
- Chemical Process & Energy Resources Research Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| | - Costas Kiparissides
- Chemical Process & Energy Resources Research Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, P.O. Box 472, 54124 Thessaloniki, Greece
| |
Collapse
|
12
|
Kolahreez D, Ghasemi-Mobarakeh L, Quartinello F, Liebner FW, Guebitz GM, Ribitsch D. Multifunctional Casein-Based Wound Dressing Capable of Monitoring and Moderating the Proteolytic Activity of Chronic Wounds. Biomacromolecules 2024; 25:700-714. [PMID: 38295273 PMCID: PMC10865360 DOI: 10.1021/acs.biomac.3c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Every 1.2 s, a diabetic foot ulcer is developed, and every 20 s, one amputation is carried out in diabetic patients. Monitoring and controlling protease activity have been considered as a strategy for more efficient management of diabetic and other chronic wounds. This study aimed to develop a casein-based dressing that, by its disappearance, provides information about the activity of proteases and simultaneously harnesses proteolytic activity. Casein films were fabricated by using an aqueous solution, and heat treatment was successfully deployed as a green and clean approach to confer hydrolytic stability. Our results showed that casein-based films' mechanical characteristics, water absorption, and proteolytic stability could be controlled by the length of the heat treatment, which proved to be a useful tool. An increase in the treatment duration from 30 min to 3 h led to toleration of 2.4 times higher stress, 2 times lower water uptake, and 3.4 times higher proteolytic stability at examined conditions. Selected casein-based structures responded to Bacillus sp. bacteria's protease (BSP) and human neutrophil elastase (HNE) as representatives of bacterial and nonbacterial proteases found in the wounds at 10 and 200 ng mL-1 levels, respectively. The hydrolysis was accompanied by a 36% reduction in proteolytic activity measured by using a casein-based universal protease activity assay. The released casein fragments could scavenge 90% of the examined radicals. In-vitro cell culture studies showed that the hydrolysates were not cytotoxic, and the casein-based film had a favorable interaction with fibroblast cells, indicating its potential as a scaffold in the case that proteolytic activity would not be to the extent that causes its rapid disintegration. In general, these findings hold promise for applying the developed casein-based structure for detecting proteolytic activity without the need for any equipment, kits, or expertise and, more importantly, in a highly economical manner. In the case that the proteolytic activity would not be severe, it could also serve as a substrate for cell adhesion and growth; this would aid in the healing process.
Collapse
Affiliation(s)
- Davood Kolahreez
- Department
of Textile Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
- Institute
of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
| | - Laleh Ghasemi-Mobarakeh
- Department
of Textile Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Felice Quartinello
- Institute
of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Falk W. Liebner
- Institute
of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
| | - Georg M. Guebitz
- Institute
of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
- Austrian
Centre of Industrial Biotechnology (ACIB), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Doris Ribitsch
- Institute
of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
- Austrian
Centre of Industrial Biotechnology (ACIB), Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| |
Collapse
|
13
|
Monteiro LPG, Rodrigues JMM, Mano JF. In situ generated hemostatic adhesives: From mechanisms of action to recent advances and applications. BIOMATERIALS ADVANCES 2023; 155:213670. [PMID: 37952461 DOI: 10.1016/j.bioadv.2023.213670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023]
Abstract
Conventional surgical closure techniques, such as sutures, clips, or skin closure strips, may not always provide optimal wound closure and may require invasive procedures, which can result in potential post-surgical complications. As result, there is a growing demand for innovative solutions to achieve superior wound closure and improve patient outcomes. To overcome the abovementioned issues, in situ generated hemostatic adhesives/sealants have emerged as a promising alternative, offering a targeted, controllable, and minimally invasive procedure for a wide variety of medical applications. The aim of this review is to provide a comprehensive overview of the mechanisms of action and recent advances of in situ generated hemostatic adhesives, particularly protein-based, thermoresponsive, bioinspired, and photocrosslinkable formulations, as well as the design challenges that must be addressed. Overall, this review aims to enhance a comprehensive understanding of the latest advancements of in situ generated hemostatic adhesives and their mechanisms of action, with the objective of promoting further research in this field.
Collapse
Affiliation(s)
- Luís P G Monteiro
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João M M Rodrigues
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
14
|
Genç H, Friedrich B, Alexiou C, Pietryga K, Cicha I, Douglas TEL. Endothelialization of Whey Protein Isolate-Based Scaffolds for Tissue Regeneration. Molecules 2023; 28:7052. [PMID: 37894531 PMCID: PMC10609092 DOI: 10.3390/molecules28207052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Whey protein isolate (WPI) is a by-product from the dairy industry, whose main component is β-lactoglobulin. Upon heating, WPI forms a hydrogel which can both support controlled drug delivery and enhance the proliferation and osteogenic differentiation of bone-forming cells. This study makes a novel contribution by evaluating the ability of WPI hydrogels to support the growth of endothelial cells, which are essential for vascularization, which in turn is a pre-requisite for bone regeneration. METHODS In this study, the proliferation and antioxidant levels in human umbilical vascular endothelial cells (HUVECs) cultured with WPI supplementation were evaluated using real-time cell analysis and flow cytometry. Further, the attachment and growth of HUVECs seeded on WPI-based hydrogels with different concentrations of WPI (15%, 20%, 30%, 40%) were investigated. RESULTS Supplementation with WPI did not affect the viability or proliferation of HUVECs monitored with real-time cell analysis. At the highest used concentration of WPI (500 µg/mL), a slight induction of ROS production in HUVECs was detected as compared with control samples, but it was not accompanied by alterations in cellular thiol levels. Regarding WPI-based hydrogels, HUVEC adhered and spread on all samples, showing good metabolic activity. Notably, cell number was highest on samples containing 20% and 30% WPI. CONCLUSIONS The demonstration of the good compatibility of WPI hydrogels with endothelial cells in these experiments is an important step towards promoting the vascularization of hydrogels upon implantation in vivo, which is expected to improve implant outcomes in the future.
Collapse
Affiliation(s)
- Hatice Genç
- Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Erlangen, University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (H.G.)
| | - Bernhard Friedrich
- Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Erlangen, University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (H.G.)
| | - Christoph Alexiou
- Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Erlangen, University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (H.G.)
| | - Krzysztof Pietryga
- Silesian Park of Medical Technology Kardio-Med Silesia, 41-800 Zabrze, Poland;
| | - Iwona Cicha
- Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Erlangen, University of Erlangen-Nürnberg, 91054 Erlangen, Germany; (H.G.)
| | | |
Collapse
|
15
|
Ren T, Maitusong M, Zhou X, Hong X, Cheng S, Lin Y, Xue J, Xu D, Chen J, Qian Y, Lu Y, Liu X, Zhu Y, Wang J. Programing Cell Assembly via Ink-Free, Label-Free Magneto-Archimedes Based Strategy. ACS NANO 2023; 17:12072-12086. [PMID: 37363813 DOI: 10.1021/acsnano.2c10704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Tissue engineering raised a high requirement to control cell distribution in defined materials and structures. In "ink"-based bioprintings, such as 3D printing and photolithography, cells were associated with inks for spatial orientation; the conditions suitable for one ink are hard to apply on other inks, which increases the obstacle in their universalization. The Magneto-Archimedes effect based (Mag-Arch) strategy can modulate cell locomotion directly without impelling inks. In a paramagnetic medium, cells were repelled from high magnetic strength zones due to their innate diamagnetism, which is independent of substrate properties. However, Mag-Arch has not been developed into a powerful bioprinting strategy as its precision, complexity, and throughput are limited by magnetic field distribution. By controlling the paramagnetic reagent concentration in the medium and the gaps between magnets, which decide the cell repelling scope of magnets, we created simultaneously more than a hundred micrometer scale identical assemblies into designed patterns (such as alphabets) with single/multiple cell types. Cell patterning models for cell migration and immune cell adhesion studies were conveniently created by Mag-Arch. As a proof of concept, we patterned a tumor/endothelial coculture model within a covered microfluidic channel to mimic epithelial-mesenchymal transition (EMT) under shear stress in a cancer pathological environment, which gave a potential solution to pattern multiple cell types in a confined space without any premodification. Overall, our Mag-Arch patterning presents an alternative strategy for the biofabrication and biohybrid assembly of cells with biomaterials featured in controlled distribution and organization, which can be broadly employed in tissue engineering, regenerative medicine, and cell biology research.
Collapse
Affiliation(s)
- Tanchen Ren
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Miribani Maitusong
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Xuhao Zhou
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Xiaoqian Hong
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Si Cheng
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yin Lin
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Junhui Xue
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Dilin Xu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Jinyong Chen
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yi Qian
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yuwen Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Xianbao Liu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Jian'an Wang
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| |
Collapse
|
16
|
Li T, Sun Y, Wang J, Zhang C, Sun Y. Promoted Skin Wound Healing by Tail-Amputated Eisenia foetida Proteins via the Ras/Raf/MEK/ERK Signaling Pathway. ACS OMEGA 2023; 8:13935-13943. [PMID: 37091432 PMCID: PMC10116500 DOI: 10.1021/acsomega.3c00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Skin wound healing is an important fundamental problem in biological and medical fields. This study aimed to investigate wound healing promotion of protein extract from tail-amputated Eisenia foetida (E. foetida) and reveal the mechanism correlated with the Ras/Raf/MEK/ERK signaling pathway. Proteins extracted from tail-amputated E. foetida were applied on rats' full-thickness excisional wounds to evaluate their regenerative efficacy. Rat skin tissues around surgical defects were analyzed by immunofluorescence staining and Western blot methods. The Ras/Raf/MEK/ERK signaling pathway was further investigated in vitro using the NIH3T3 cell line. A tail-amputated protein extract (ES2) from E. foetida significantly accelerated rat wound healing ability via higher re-epithelialization and ECM deposition in the tissue section compared to the blank control and un-amputated earthworm extract groups. Furthermore, ES2 treatment dramatically accumulated the expressions of platelet-derived growth factor (PDGF), transforming growth factor-β (TGF-β), and hydroxyproline (HYP) in wound areas on day 7 without their accumulation on day 21 post-wounding, diminishing excessive scar formation. Accelerated wound healing ability with the ES2 was proved to correlate with the up-regulation of the Ras/Raf/MEK/ERK signaling pathway. The mRNA expression of this pathway increased significantly in NIH3T3 cells after being treated with the ES2 at an appropriate concentration. The tail-amputated E. foetida proteins (ES2) can significantly promote skin wound healing better than the un-amputated earthworm tissue extract without excessive scar tissue formation. This effect was related to the up-regulation of the Ras/Raf/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Tianyi Li
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Yangguang South Road, Fangshan District, Beijing 100029, China
| | - Yujie Sun
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Yangguang South Road, Fangshan District, Beijing 100029, China
| | - Jiaqi Wang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Yangguang South Road, Fangshan District, Beijing 100029, China
| | - Chenning Zhang
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Yangguang South Road, Fangshan District, Beijing 100029, China
- Department
of Pharmacy, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
- . Phone: +07103420011
| | - Yikun Sun
- School
of Chinese Materia Medica, Beijing University
of Chinese Medicine, Yangguang South Road, Fangshan District, Beijing 100029, China
- . Phone: +01084738619
| |
Collapse
|