1
|
Harumoto T, Moriyama M, Fukatsu T. Peculiar structural features of midgut symbiotic organ in the early development of the stinkbug Plautia stali Scott, 1874 (Hemiptera: Pentatomidae). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2025; 112:34. [PMID: 40299062 DOI: 10.1007/s00114-025-01986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/27/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
Many insects have symbiotic microorganisms within their body. Such microbial symbiosis underpins the survival and prosperity of insects through multiple means. The brown-winged green stinkbug Plautia stali, which is notorious as an agricultural pest and utilized as an experimental model insect, harbors a bacterial symbiont Pantoea in a posterior part of the midgut, which is essential for the host's development and reproduction. From both basic and applied research perspectives, it is important to investigate the mechanistic bases underpinning the insect-microbe symbiotic association. Here, we performed detailed electron and optical microscopic analyses of the early nymphal midguts to reveal the type of cellular structure and property that orchestrates the symbiont colonization in the restricted part of the midgut. We identified two peculiar structural features of the nymphal midgut that develop in a region-restricted manner: long and heterogenous cellular protrusions (microvilli) solely emerged in the midgut symbiotic region and highly developed circular muscle cell layers specifically observed in the junction of non-symbiotic and symbiotic regions of the midgut. We discuss the potential roles of these unique structures in the midgut bacterial symbiosis.
Collapse
Affiliation(s)
- Toshiyuki Harumoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| | - Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
2
|
Cheng H, Yan X, Lin C, Chen Y, Ma L, Fu L, Dong X, Liu C. Exploring Bacterial Communities and Functions in Phytophagous Halyomorpha halys and Predatory Arma chinensis. INSECTS 2025; 16:146. [PMID: 40003776 PMCID: PMC11855761 DOI: 10.3390/insects16020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
The phytophagous Halyomorpha halys (Hemiptera: Pentatomidae) is a global agricultural pest that damages many crops. Conversely, the predatory Arma chinensis (Hemiptera: Pentatomidae) shows promise as a biological control agent against lepidopteran and coleopteran pests. Halyomorpha halys and A. chinensis are closely related species with different feeding habits, as confirmed via genomic and morphological analyses. However, no study investigating the implications of these differences has been reported. Herein, 16S rRNA sequencing technology was employed to analyze the microbiota diversity and function in different tissues (salivary glands, gut, sperm, and ovaries) of H. halys and A. chinensis to elucidate these differences from a microbial perspective. Additionally, the adult male-to-female ratio in A. chinensis organs was statistically similar, while that in H. halys was not. Based on the dominance of the symbionts in the two bug species, we inferred that Sodalis is involved in reproduction and digestion in A. chinensis, while Spiroplasma and Pantoea play essential roles in H. halys reproduction and digestion. We analyzed the data on the microbial diversity of two bug species, laying a foundation for further understanding microbial symbiosis in A. chinensis and H. halys, which may inform the development of biological control strategies.
Collapse
Affiliation(s)
- Hongmei Cheng
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (C.L.); (L.F.)
| | - Xiaoyu Yan
- Department of Entomology, Yangtze University, Jingzhou 434023, China; (X.Y.); (Y.C.); (L.M.); (X.D.)
| | - Changjin Lin
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (C.L.); (L.F.)
| | - Yu Chen
- Department of Entomology, Yangtze University, Jingzhou 434023, China; (X.Y.); (Y.C.); (L.M.); (X.D.)
| | - Le Ma
- Department of Entomology, Yangtze University, Jingzhou 434023, China; (X.Y.); (Y.C.); (L.M.); (X.D.)
| | - Luyao Fu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (C.L.); (L.F.)
| | - Xiaolin Dong
- Department of Entomology, Yangtze University, Jingzhou 434023, China; (X.Y.); (Y.C.); (L.M.); (X.D.)
| | - Chenxi Liu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (C.L.); (L.F.)
| |
Collapse
|
3
|
Sugiyama R, Moriyama M, Koga R, Fukatsu T. Host range of naturally and artificially evolved symbiotic bacteria for a specific host insect. mBio 2024; 15:e0134224. [PMID: 39082826 PMCID: PMC11389372 DOI: 10.1128/mbio.01342-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/18/2024] [Indexed: 09/12/2024] Open
Abstract
Diverse insects are intimately associated with specific symbiotic bacteria, where host and symbiont are integrated into an almost inseparable biological entity. These symbiotic bacteria usually exhibit host specificity, uncultivability, reduced genome size, and other peculiar traits relevant to their symbiotic lifestyle. How host-symbiont specificity is established at the very beginning of symbiosis is of interest but poorly understood. To gain insight into the evolutionary issue, we adopted an experimental approach using the recently developed evolutionary model of symbiosis between the stinkbug Plautia stali and Escherichia coli. Based on the laboratory evolution of P. stali-E. coli mutualism, we selected ΔcyaA mutant of E. coli as an artificial symbiont of P. stali that has established mutualism by a single mutation. In addition, we selected a natural cultivable symbiont of P. stali of relatively recent evolutionary origin. These artificial and natural symbiotic bacteria of P. stali were experimentally inoculated to symbiont-deprived newborn nymphs of diverse stinkbug species. Strikingly, the mutualistic E. coli was unable to establish infection and support growth and survival of all the stinkbug species except for P. stali, uncovering that host specificity can be established at a very early stage of symbiotic evolution. Meanwhile, the natural symbiont was able to establish infection and support growth and survival of several stinkbug species in addition to P. stali, unveiling that a broader host range of the symbiont has evolved in nature. Based on these findings, we discuss what factors are relevant to the establishment of host specificity in the evolution of symbiosis.IMPORTANCEHow does host-symbiont specificity emerge at the very beginning of symbiosis? This question is difficult to address because it is generally difficult to directly observe the onset of symbiosis. However, recent development of experimental evolutionary approaches to symbiosis has brought about a breakthrough. Here we tackled this evolutionary issue using a symbiotic Escherichia coli created in laboratory and a natural Pantoea symbiont, which are both mutualistic to the stinkbug Plautia stali. We experimentally replaced essential symbiotic bacteria of diverse stinkbugs with the artificial and natural symbionts of P. stali and evaluated whether the symbiotic bacteria, which evolved for a specific host, can establish infection and support the growth and survival of heterospecific hosts. Strikingly, the artificial symbiont showed strict host specificity to P. stali, whereas the natural symbiont was capable of symbiosis with diverse stinkbugs, which provide insight into how host-symbiont specificity can be established at early evolutionary stages of symbiosis.
Collapse
Affiliation(s)
- Ryuga Sugiyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Hung YT, Wong ACN, Tang CK, Wu MC, Tuan SJ. Impact of diet and bacterial supplementation regimes on Orius strigicollis microbiota and life history performance. Sci Rep 2024; 14:20727. [PMID: 39237643 PMCID: PMC11377537 DOI: 10.1038/s41598-024-70755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Given the growing interest in manipulating microbiota to enhance the fitness of mass-reared insects for biological control, this study investigated the impact of an artificial diet on the microbiota composition and performance of Orius strigicollis. We compared the microbiota of O. strigicollis fed on an artificial diet and moth eggs via culturing and 16S rRNA gene amplicon sequencing. Subsequently, we assessed life history traits and immune gene expression of O. strigicollis fed on the artificial diet supplemented with Pantoea dispersa OS1. Results showed that microbial diversity remained largely unaffected by the artificial diet, with similar microbiota compositions in both diet groups. OS1, a minor member of the microbiota but significantly enriched in bugs fed on the artificial diet, improved nymphal survival rates and shifted adult longevity-reproduction life history in females. Additionally, OS1 supplementation elevated the transcription of antimicrobial peptide diptericin. According to population parameters, the group receiving OS1 only during the nymphal stage showed higher population growth potential compared to the group supplemented across all life stages. These findings reveal the resilience of O. strigicollis microbiota under distinct dietary conditions and highlight the potential of using natural symbionts and specific supplementation regimes to improve Orius rearing for future biocontrol programs.
Collapse
Affiliation(s)
- Yi-Ting Hung
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Adam Chun-Nin Wong
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Cheng-Kang Tang
- Program in Plant Health Care, Academy of Circular Economy, National Chung Hsing University, Nantou, Taiwan, Republic of China
| | - Ming-Cheng Wu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, Republic of China.
| | - Shu-Jen Tuan
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, Republic of China.
| |
Collapse
|
5
|
Ludington WB. The importance of host physical niches for the stability of gut microbiome composition. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230066. [PMID: 38497267 PMCID: PMC10945397 DOI: 10.1098/rstb.2023.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/04/2023] [Indexed: 03/19/2024] Open
Abstract
Gut bacteria are prevalent throughout the Metazoa and form complex microbial communities associated with food breakdown, nutrient provision and disease prevention. How hosts acquire and maintain a consistent bacterial flora remains mysterious even in the best-studied animals, including humans, mice, fishes, squid, bugs, worms and flies. This essay visits the evidence that hosts have co-evolved relationships with specific bacteria and that some of these relationships are supported by specialized physical niches that select, sequester and maintain microbial symbionts. Genetics approaches could uncover the mechanisms for recruiting and maintaining the stable and consistent members of the microbiome. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- William B. Ludington
- Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Baltimore, MD 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
6
|
Fourie A, Venter SN, Slippers B, Fourie G. Pantoea bathycoeliae sp. nov and Sodalis sp. are core gut microbiome symbionts of the two-spotted stink bug. Front Microbiol 2023; 14:1284397. [PMID: 38098653 PMCID: PMC10720322 DOI: 10.3389/fmicb.2023.1284397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 12/17/2023] Open
Abstract
Stink bug species (Pentatomoidea superfamily) have developed an interdependence with obligate bacterial gut symbionts in specialized midgut crypts (M4 sub-region). Species of the Enterobacteriaceae family (predominantly Pantoea) are vertically transferred to their offspring and provide nutrients that cannot be obtained from plant sap food sources. However, the bacteria in the other gut compartments of stink bugs have rarely been investigated. The two-spotted stink bug, Bathycoelia distincta, is a serious pest of macadamias in South Africa. Nothing is currently known regarding its gut microbiome or how symbionts are transferred between insect generations. In this study, the consistency of B. distincta gut bacteria across geographic locations and life stages was determined with 16S rRNA metabarcoding, considering both the M4 and other gut compartments. A novel Pantoea species was found to be the primary M4 gut symbiont and is vertically transferred to the offspring. The other gut compartments had a low bacterial diversity and genera varied between stink bug populations but a Sodalis species was prominent in all populations. Sequence data of the M4 compartment were used to produce high-quality metagenome-assembled genomes (MAGs) for the Pantoea and Sodalis species. Functional analyses suggested a similar role in nutrient provision for the host, yet also unique metabolites produced by each species. The Sodalis sp. also had additional traits, such as secretion systems, that likely allowed it to establish itself in the host. The Pantoea species was described as Pantoea bathycoeliae sp. nov based on the rules of the SeqCode.
Collapse
Affiliation(s)
| | | | | | - Gerda Fourie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Kueneman JG, Gillung J, Van Dyke MT, Fordyce RF, Danforth BN. Solitary bee larvae modify bacterial diversity of pollen provisions in the stem-nesting bee, Osmia cornifrons (Megachilidae). Front Microbiol 2023; 13:1057626. [PMID: 36699601 PMCID: PMC9868615 DOI: 10.3389/fmicb.2022.1057626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Microbes, including diverse bacteria and fungi, play an important role in the health of both solitary and social bees. Among solitary bee species, in which larvae remain in a closed brood cell throughout development, experiments that modified or eliminated the brood cell microbiome through sterilization indicated that microbes contribute substantially to larval nutrition and are in some cases essential for larval development. To better understand how feeding larvae impact the microbial community of their pollen/nectar provisions, we examine the temporal shift in the bacterial community in the presence and absence of actively feeding larvae of the solitary, stem-nesting bee, Osmia cornifrons (Megachilidae). Our results indicate that the O. cornifrons brood cell bacterial community is initially diverse. However, larval solitary bees modify the microbial community of their pollen/nectar provisions over time by suppressing or eliminating rare taxa while favoring bacterial endosymbionts of insects and diverse plant pathogens, perhaps through improved conditions or competitive release. We suspect that the proliferation of opportunistic plant pathogens may improve nutrient availability of developing larvae through degradation of pollen. Thus, the health and development of solitary bees may be interconnected with pollen bacterial diversity and perhaps with the propagation of plant pathogens.
Collapse
Affiliation(s)
- Jordan G. Kueneman
- Danforth Lab, Department of Entomology, Cornell University, Ithaca, NY, United States,*Correspondence: Jordan G. Kueneman, ✉
| | - Jessica Gillung
- Danforth Lab, Department of Entomology, Cornell University, Ithaca, NY, United States,Lyman Entomological Museum, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Maria T. Van Dyke
- Danforth Lab, Department of Entomology, Cornell University, Ithaca, NY, United States
| | - Rachel F. Fordyce
- Danforth Lab, Department of Entomology, Cornell University, Ithaca, NY, United States
| | - Bryan N. Danforth
- Danforth Lab, Department of Entomology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
8
|
Kakizawa S, Hosokawa T, Oguchi K, Miyakoshi K, Fukatsu T. Spiroplasma as facultative bacterial symbionts of stinkbugs. Front Microbiol 2022; 13:1044771. [PMID: 36353457 PMCID: PMC9638005 DOI: 10.3389/fmicb.2022.1044771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022] Open
Abstract
Many insects are associated with facultative symbiotic bacteria, and their infection prevalence provides an important clue to understand the biological impact of such microbial associates. Here we surveyed diverse stinkbugs representing 13 families, 69 genera, 97 species and 468 individuals for Spiroplasma infection. Diagnostic PCR detection revealed that 4 families (30.8%), 7 genera (10.1%), 11 species (11.3%) and 21 individuals (4.5%) were Spiroplasma positive. All the 21 stinkbug samples with Spiroplasma infection were subjected to PCR amplification and sequencing of Spiroplasma’s 16S rRNA gene. Molecular phylogenetic analysis uncovered that the stinkbug-associated Spiroplasma symbionts were placed in three distinct clades in the Spiroplasmataceae, highlighting multiple evolutionary origins of the stinkbug-Spiroplasma associations. The Spiroplasma phylogeny did not reflect the host stinkbug phylogeny, indicating the absence of host-symbiont co-speciation. On the other hand, the Spiroplasma symbionts associated with the same stinkbug family tended to be related to each other, suggesting the possibility of certain levels of host-symbiont specificity and/or ecological symbiont sharing. Amplicon sequencing analysis targeting bacterial 16S rRNA gene, FISH visualization of the symbiotic bacteria, and rearing experiments of the host stinkbugs uncovered that the Spiroplasma symbionts are generally much less abundant in comparison with the primary gut symbiotic bacteria, localized to various tissues and organs at relatively low densities, and vertically transmitted to the offspring. On the basis of these results, we conclude that the Spiroplasma symbionts are, in general, facultative bacterial associates of low infection prevalence that are not essential but rather commensalistic for the host stinkbugs, like the Spiroplasma symbionts of fruit flies and aphids, although their impact on the host phenotypes should be evaluated in future studies.
Collapse
Affiliation(s)
- Shigeyuki Kakizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- *Correspondence: Shigeyuki Kakizawa, ; Takema Fukatsu,
| | - Takahiro Hosokawa
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Kohei Oguchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Misaki Marine Biological Station (MMBS), School of Science, The University of Tokyo, Miura, Japan
| | - Kaori Miyakoshi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Shigeyuki Kakizawa, ; Takema Fukatsu,
| |
Collapse
|
9
|
Nishide Y, Nagamine K, Kageyama D, Moriyama M, Futahashi R, Fukatsu T. A new antimicrobial peptide, Pentatomicin, from the stinkbug Plautia stali. Sci Rep 2022; 12:16503. [PMID: 36192417 PMCID: PMC9529961 DOI: 10.1038/s41598-022-20427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/13/2022] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) play crucial roles in the innate immunity of diverse organisms, which exhibit remarkable diversity in size, structural property and antimicrobial spectrum. Here, we describe a new AMP, named Pentatomicin, from the stinkbug Plautia stali (Hemiptera: Pentatomidae). Orthologous nucleotide sequences of Pentatomicin were present in stinkbugs and beetles but not in other insect groups. Notably, orthologous sequences were also detected from a horseshoe crab, cyanobacteria and proteobacteria, suggesting the possibility of inter-domain horizontal gene transfers of Pentatomicin and allied protein genes. The recombinant protein of Pentatomicin was effective against an array of Gram-positive bacteria but not against Gram-negative bacteria. Upon septic shock, the expression of Pentatomicin drastically increased in a manner similar to other AMPs. On the other hand, unlike other AMPs, mock and saline injections increased the expression of Pentatomicin. RNAi-mediated downregulation of Imd pathway genes (Imd and Relish) and Toll pathway genes (MyD88 and Dorsal) revealed that the expression of Pentatomicin is under the control of Toll pathway. Being consistent with in vitro effectiveness of the recombinant protein, adult insects injected with dsRNA of Pentatomicin exhibited higher vulnerability to Gram-positive Staphylococcus aureus than to Gram-negative Escherichia coli. We discovered high levels of Pentatomicin expression in eggs, which is atypical of other AMPs and suggestive of its biological functioning in eggs. Contrary to the expectation, however, RNAi-mediated downregulation of Pentatomicin did not affect normal embryonic development of P. stali. Moreover, the downregulation of Pentatomicin in eggs did not affect vertical symbiont transmission to the offspring even under heavily contaminated conditions, which refuted our expectation that the antimicrobial activity of Pentatomicin may contribute to egg surface-mediated symbiont transmission by suppressing microbial contaminants.
Collapse
Affiliation(s)
- Yudai Nishide
- Institute of Agrobiological Sciences Ohwashi, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634, Japan.
| | - Keisuke Nagamine
- Institute of Agrobiological Sciences Ohwashi, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634, Japan
- Japan Society for the Promotion of Science (JSPS), Tokyo, 102-0083, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences Ohwashi, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634, Japan
| | - Minoru Moriyama
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Ryo Futahashi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.
| | - Takema Fukatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.
| |
Collapse
|
10
|
Koga R, Moriyama M, Onodera-Tanifuji N, Ishii Y, Takai H, Mizutani M, Oguchi K, Okura R, Suzuki S, Gotoh Y, Hayashi T, Seki M, Suzuki Y, Nishide Y, Hosokawa T, Wakamoto Y, Furusawa C, Fukatsu T. Single mutation makes Escherichia coli an insect mutualist. Nat Microbiol 2022; 7:1141-1150. [PMID: 35927448 PMCID: PMC9352592 DOI: 10.1038/s41564-022-01179-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Abstract
Microorganisms often live in symbiosis with their hosts, and some are considered mutualists, where all species involved benefit from the interaction. How free-living microorganisms have evolved to become mutualists is unclear. Here we report an experimental system in which non-symbiotic Escherichia coli evolves into an insect mutualist. The stinkbug Plautia stali is typically associated with its essential gut symbiont, Pantoea sp., which colonizes a specialized symbiotic organ. When sterilized newborn nymphs were infected with E. coli rather than Pantoea sp., only a few insects survived, in which E. coli exhibited specific localization to the symbiotic organ and vertical transmission to the offspring. Through transgenerational maintenance with P. stali, several hypermutating E. coli lines independently evolved to support the host's high adult emergence and improved body colour; these were called 'mutualistic' E. coli. These mutants exhibited slower bacterial growth, smaller size, loss of flagellar motility and lack of an extracellular matrix. Transcriptomic and genomic analyses of 'mutualistic' E. coli lines revealed independent mutations that disrupted the carbon catabolite repression global transcriptional regulator system. Each mutation reproduced the mutualistic phenotypes when introduced into wild-type E. coli, confirming that single carbon catabolite repression mutations can make E. coli an insect mutualist. These findings provide an experimental system for future work on host-microbe symbioses and may explain why microbial mutualisms are omnipresent in nature.
Collapse
Affiliation(s)
- Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.
| | - Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Naoko Onodera-Tanifuji
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshiko Ishii
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Hiroki Takai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Masaki Mizutani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kohei Oguchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Reiko Okura
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo Suzuki
- Center for Biosystem Dynamics Research, RIKEN, Osaka, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahide Seki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yudai Nishide
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,National Agriculture and Food Research Organization, Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Takahiro Hosokawa
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Yuichi Wakamoto
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Chikara Furusawa
- Center for Biosystem Dynamics Research, RIKEN, Osaka, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan. .,Department of Biological Sciences, The University of Tokyo, Tokyo, Japan. .,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
11
|
Moriyama M, Hayashi T, Fukatsu T. A mucin protein predominantly expressed in the female-specific symbiotic organ of the stinkbug Plautia stali. Sci Rep 2022; 12:7782. [PMID: 35546182 PMCID: PMC9095716 DOI: 10.1038/s41598-022-11895-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Diverse insects are obligatorily associated with microbial symbionts, wherein the host often develops special symbiotic organs and vertically transmits the symbiont to the next generation. What molecular factors underpin the host-symbiont relationship is of great interest but poorly understood. Here we report a novel protein preferentially produced in a female-specific symbiotic organ of the stinkbug Plautia stali, whose posterior midgut develops numerous crypts to host a Pantoea-allied bacterial mutualist. In adult females, several posteriormost crypts are conspicuously enlarged, presumably specialized for vertical symbiont transmission. We detected conspicuous protein bands specific to the female’s swollen crypts by gel electrophoresis, and identified them as representing a novel mucin-like glycoprotein. Histological inspections confirmed that the mucin protein is localized to the female’s swollen crypts, coexisting with a substantial population of the symbiotic bacteria, and excreted from the swollen crypts to the midgut main tract together with the symbiotic bacteria. Using RNA interference, we successfully suppressed production of the mucin protein in adult females of P. stali. However, although the mucin protein was depleted, the symbiont population persisted in the swollen crypts, and vertical symbiont transmission to the next generation occurred. Possible biological roles and evolutionary trajectory of the symbiosis-related mucin protein are discussed.
Collapse
Affiliation(s)
- Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.
| | - Toshinari Hayashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan. .,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan. .,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.
| |
Collapse
|
12
|
Evolutionary Dynamics of Host Organs for Microbial Symbiosis in Tortoise Leaf Beetles (Coleoptera: Chrysomelidae: Cassidinae). mBio 2022; 13:e0369121. [PMID: 35073753 PMCID: PMC8787481 DOI: 10.1128/mbio.03691-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Diverse insects host specific microbial symbionts that play important roles for their growth, survival, and reproduction. They often develop specialized symbiotic organs for harboring the microbial partners. While such intimate associations tend to be stably maintained over evolutionary time, the microbial symbionts may have been lost or replaced occasionally. How symbiont acquisitions, replacements, and losses are linked to the development of the host's symbiotic organs is an important but poorly understood aspect of microbial symbioses. Cassidine leaf beetles are associated with a specific gammaproteobacterial lineage, Stammera, whose reduced genome is streamlined for producing pectin-degrading enzymes to assist the host's digestion of food plants. We investigated the symbiotic system of 24 Japanese cassidine species and found that (i) most species harbored Stammera within paired symbiotic organs located at the foregut-midgut junction, (ii) the host phylogeny was largely congruent with the symbiont phylogeny, indicating stable host-symbiont association over evolutionary time, (iii) meanwhile, the symbiont was not detected in three distinct host lineages, uncovering recurrent losses of the ancient microbial mutualist, (iv) the symbiotic organs were vestigial but present in the symbiont-free lineages, indicating evolutionary persistence of the symbiotic organs even in the absence of the symbiont, and (v) the number of the symbiotic organs was polymorphic among the cassidine species, either two or four, unveiling a dynamic evolution of the host organs for symbiosis. These findings are discussed as to what molecular mechanisms and evolutionary trajectories underpin the recurrent symbiont losses and the morphogenesis of the symbiotic organs in the herbivorous insect group. IMPORTANCE Insects represent the biodiversity of the terrestrial ecosystem, and their prosperity is attributable to their association with symbiotic microorganisms. By sequestering microbial functionality into their bodies, organs, tissues, or cells, diverse insects have successfully exploited otherwise inaccessible ecological niches and resources, including herbivory enabled by utilization of indigestible plant cell wall components. In leaf beetles of the subfamily Cassininae, an ancient symbiont lineage, Stammera, whose genome is extremely reduced and specialized for encoding pectin-degrading enzymes, is hosted in gut-associated symbiotic organs and contributes to the host's food plant digestion. Here, we demonstrate that multiple symbiont losses and recurrent structural switching of the symbiotic organs have occurred in the evolutionary course of cassidine leaf beetles, which sheds light on the evolutionary and developmental dynamics of the insect's symbiotic organs and provides a model system to investigate how microbial symbionts affect the host's development and morphogenesis and vice versa.
Collapse
|
13
|
Dally M, Izraeli Y, Belausov E, Mozes-Daube N, Coll M, Zchori-Fein E. Rickettsia association with two Macrolophus (Heteroptera: Miridae) species: A comparative study of phylogenies and within-host localization patterns. Front Microbiol 2022; 13:1107153. [PMID: 36909844 PMCID: PMC9998071 DOI: 10.3389/fmicb.2022.1107153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 02/25/2023] Open
Abstract
Many arthropods host bacterial symbionts, some of which are known to influence host nutrition and diet breadth. Omnivorous bugs of the genus Macrolophus (Heteroptera: Miridae) are mainly predatory, but may also feed on plants. The species M. pygmaeus and M. melanotoma (=M. caliginosus) are key natural enemies of various economically important agricultural pests, and are known to harbor two Rickettsia species, R. bellii and R. limoniae. To test for possible involvement of symbiotic bacteria in the nutritional ecology of these biocontrol agents, the abundance, phylogeny, and distribution patterns of the two Rickettsia species in M. pygmaeus and M. melanotoma were studied. Both of the Rickettsia species were found in 100 and 84% of all tested individuals of M. pygmaeus and M. melanotoma, respectively. Phylogenetic analysis showed that a co-evolutionary process between Macrolophus species and their Rickettsia is infrequent. Localization of R. bellii and R. limoniae has been detected in both female and male of M. pygmaeus and M. melanotoma. FISH analysis of female gonads revealed the presence of both Rickettsia species in the germarium of both bug species. Each of the two Rickettsia species displayed a unique distribution pattern along the digestive system of the bugs, mostly occupying separate epithelial cells, unknown caeca-like organs, the Malpighian tubules and the salivary glands. This pattern differed between the two Macrolophus species: in M. pygmaeus, R. limoniae was distributed more broadly along the host digestive system and R. bellii was located primarily in the foregut and midgut. In contrast, in M. melanotoma, R. bellii was more broadly distributed along the digestive system than the clustered R. limoniae. Taken together, these results suggest that Rickettsia may have a role in the nutritional ecology of their plant-and prey-consuming hosts.
Collapse
Affiliation(s)
- Maria Dally
- Department of Entomology, RH Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel.,Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishay, Israel
| | - Yehuda Izraeli
- Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishay, Israel.,Department of Evolution and Environmental Biology, University of Haifa, Haifa, Israel
| | - Eduard Belausov
- The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Netta Mozes-Daube
- Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishay, Israel
| | - Moshe Coll
- Department of Entomology, RH Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Einat Zchori-Fein
- Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishay, Israel
| |
Collapse
|
14
|
Renoz F, Foray V, Ambroise J, Baa-Puyoulet P, Bearzatto B, Mendez GL, Grigorescu AS, Mahillon J, Mardulyn P, Gala JL, Calevro F, Hance T. At the Gate of Mutualism: Identification of Genomic Traits Predisposing to Insect-Bacterial Symbiosis in Pathogenic Strains of the Aphid Symbiont Serratia symbiotica. Front Cell Infect Microbiol 2021; 11:660007. [PMID: 34268133 PMCID: PMC8275996 DOI: 10.3389/fcimb.2021.660007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023] Open
Abstract
Mutualistic associations between insects and heritable bacterial symbionts are ubiquitous in nature. The aphid symbiont Serratia symbiotica is a valuable candidate for studying the evolution of bacterial symbiosis in insects because it includes a wide diversity of strains that reflect the diverse relationships in which bacteria can be engaged with insects, from pathogenic interactions to obligate intracellular mutualism. The recent discovery of culturable strains, which are hypothesized to resemble the ancestors of intracellular strains, provide an opportunity to study the mechanisms underlying bacterial symbiosis in its early stages. In this study, we analyzed the genomes of three of these culturable strains that are pathogenic to aphid hosts, and performed comparative genomic analyses including mutualistic host-dependent strains. All three genomes are larger than those of the host-restricted S. symbiotica strains described so far, and show significant enrichment in pseudogenes and mobile elements, suggesting that these three pathogenic strains are in the early stages of the adaptation to their host. Compared to their intracellular mutualistic relatives, the three strains harbor a greater diversity of genes coding for virulence factors and metabolic pathways, suggesting that they are likely adapted to infect new hosts and are a potential source of metabolic innovation for insects. The presence in their genomes of secondary metabolism gene clusters associated with the production of antimicrobial compounds and phytotoxins supports the hypothesis that S. symbiotia symbionts evolved from plant-associated strains and that plants may serve as intermediate hosts. Mutualistic associations between insects and bacteria are the result of independent transitions to endosymbiosis initiated by the acquisition of environmental progenitors. In this context, the genomes of free-living S. symbiotica strains provide a rare opportunity to study the inventory of genes held by bacterial associates of insects that are at the gateway to a host-dependent lifestyle.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Vincent Foray
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
- Institut de Recherche sur la Biologie de l’insecte, UMR 7261, CNRS, Université de Tours, Tours, France
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | | | - Bertrand Bearzatto
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | - Gipsi Lima Mendez
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | | | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | - Federica Calevro
- Univ Lyon, INSA-Lyon, INRAE, BF2i, UMR203, F-69621, Villeurbanne, France
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| |
Collapse
|
15
|
Nishino T, Hosokawa T, Meng XY, Koga R, Moriyama M, Fukatsu T. Environmental Acquisition of Gut Symbiotic Bacteria in the Saw-Toothed Stinkbug, Megymenum gracilicorne (Hemiptera: Pentatomoidea: Dinidoridae). Zoolog Sci 2021; 38:213-222. [PMID: 34057345 DOI: 10.2108/zs200163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022]
Abstract
Many plant-sucking stinkbugs possess a specialized symbiotic organ with numerous crypts in a posterior region of the midgut. In stinkbugs of the superfamily Pentatomoidea, specific γ-proteobacteria are hosted in the crypt cavities, which are vertically transmitted through host generations and essential for normal growth and survival of the host insects. Here we report the discovery of an exceptional gut symbiotic association in the saw-toothed stinkbug, Megymenum gracilicorne (Hemiptera: Pentatomoidea: Dinidoridae), in which specific γ-proteobacterial symbionts are not transmitted vertically but acquired environmentally. Histological inspection identified a very thin and long midgut symbiotic organ with two rows of tiny crypts whose cavities harbor rod-shaped bacterial cells. Molecular phylogenetic analyses of bacterial 16S rRNA gene sequences from the symbiotic organs of field-collected insects revealed that (i) M. gracilicorne is stably associated with Pantoea-allied γ-proteobacteria within the midgut crypts, (ii) the symbiotic bacteria exhibit a considerable level of diversity across host individuals and populations, (iii) the major symbiotic bacteria represent an environmental bacterial lineage that was reported to be capable of symbiosis with the stinkbug Plautia stali, and (iv) the minor symbiotic bacteria also represent several bacterial lineages that were reported as cultivable symbionts of P. stali and other stinkbugs. The symbiotic bacteria were shown to be generally cultivable. Microbial inspection of ovipositing adult females and their eggs and nymphs uncovered the absence of stable vertical transmission of the symbiotic bacteria. Rearing experiments showed that symbiont-supplemented newborn nymphs exhibit improved survival, suggesting the beneficial nature of the symbiotic association.
Collapse
Affiliation(s)
- Takanori Nishino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Takahiro Hosokawa
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Xian-Ying Meng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Takema Fukatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan, .,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan.,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Multiple concurrent and convergent stages of genome reduction in bacterial symbionts across a stink bug family. Sci Rep 2021; 11:7731. [PMID: 33833268 PMCID: PMC8032781 DOI: 10.1038/s41598-021-86574-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
Nutritional symbioses between bacteria and insects are prevalent and diverse, allowing insects to expand their feeding strategies and niches. A common consequence of long-term associations is a considerable reduction in symbiont genome size likely influenced by the radical shift in selective pressures as a result of the less variable environment within the host. While several of these cases can be found across distinct insect species, most examples provide a limited view of a single or few stages of the process of genome reduction. Stink bugs (Pentatomidae) contain inherited gamma-proteobacterial symbionts in a modified organ in their midgut and are an example of a long-term nutritional symbiosis, but multiple cases of new symbiont acquisition throughout the history of the family have been described. We sequenced the genomes of 11 symbionts of stink bugs with sizes that ranged from equal to those of their free-living relatives to less than 20%. Comparative genomics of these and previously sequenced symbionts revealed initial stages of genome reduction including an initial pseudogenization before genome reduction, followed by multiple stages of progressive degeneration of existing metabolic pathways likely to impact host interactions such as cell wall component biosynthesis. Amino acid biosynthesis pathways were retained in a similar manner as in other nutritional symbionts. Stink bug symbionts display convergent genome reduction events showing progressive changes from a free-living bacterium to a host-dependent symbiont. This system can therefore be used to study convergent genome evolution of symbiosis at a scale not previously available.
Collapse
|
17
|
Karamipour N, Fathipour Y, Mehrabadi M. Removal of gut symbiotic bacteria negatively affects life history traits of the shield bug, Graphosoma lineatum. Ecol Evol 2021; 11:2515-2523. [PMID: 33767818 PMCID: PMC7981211 DOI: 10.1002/ece3.7188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022] Open
Abstract
The shield bug, Graphosoma lineatum (Heteroptera, Pentatomidae), harbors extracellular Pantoea-like symbiont in the enclosed crypts of the midgut. The symbiotic bacteria are essential for normal longevity and fecundity of this insect. In this study, life table analysis was used to assess the biological importance of the gut symbiont in G. lineatum. Considering vertical transmission of the bacterial symbiont through the egg surface contamination, we used surface sterilization of the eggs to remove the symbiont. The symbiont population was decreased in the newborn nymphs hatched from the surface-sterilized eggs (the aposymbiotic insects), and this reduction imposed strongly negative effects on the insect host. We found significant differences in most life table parameters between the symbiotic insects and the aposymbiotics. The intrinsic rate of increase in the control insects (0.080 ± 0.003 day-1) was higher than the aposymbiotic insects (0.045 ± 0.007 day-1). Also, the net reproductive and gross reproductive rates were decreased in the aposymbiotic insects (i.e., 20.770 ± 8.992 and 65.649 ± 27.654 offspring/individual, respectively), compared with the symbiotic insects (i.e., 115.878 ± 21.624 and 165.692 ± 29.058 offspring/individual, respectively). These results clearly show biological importance of the symbiont in G. lineatum.
Collapse
Affiliation(s)
- Naeime Karamipour
- Department of EntomologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Yaghoub Fathipour
- Department of EntomologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohammad Mehrabadi
- Department of EntomologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
18
|
Nishide Y, Kageyama D, Tanaka Y, Yokoi K, Jouraku A, Futahashi R, Fukatsu T. Effectiveness of orally-delivered double-stranded RNA on gene silencing in the stinkbug Plautia stali. PLoS One 2021; 16:e0245081. [PMID: 33444324 PMCID: PMC7808618 DOI: 10.1371/journal.pone.0245081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022] Open
Abstract
Development of a reliable method for RNA interference (RNAi) by orally-delivered double-stranded RNA (dsRNA) is potentially promising for crop protection. Considering that RNAi efficiency considerably varies among different insect species, it is important to seek for the practical conditions under which dsRNA-mediated RNAi effectively works against each pest insect. Here we investigated RNAi efficiency in the brown-winged green stinkbug Plautia stali, which is notorious for infesting various fruits and crop plants. Microinjection of dsRNA into P. stali revealed high RNAi efficiency-injection of only 30 ng dsRNA into last-instar nymphs was sufficient to knockdown target genes as manifested by their phenotypes, and injection of 300 ng dsRNA suppressed the gene expression levels by 80% to 99.9%. Knockdown experiments by dsRNA injection showed that multicopper oxidase 2 (MCO2), vacuolar ATPase (vATPase), inhibitor of apoptosis (IAP), and vacuolar-sorting protein Snf7 are essential for survival of P. stali, as has been demonstrated in other insects. By contrast, P. stali exhibited very low RNAi efficiency when dsRNA was orally administered. When 1000 ng/μL of dsRNA solution was orally provided to first-instar nymphs, no obvious phenotypes were observed. Consistent with this, RT-qPCR showed that the gene expression levels were not affected. A higher concentration of dsRNA (5000 ng/μL) induced mortality in some cohorts, and the gene expression levels were reduced to nearly 50%. Simultaneous oral administration of dsRNA against potential RNAi blocker genes did not improve the RNAi efficiency of the target genes. In conclusion, P. stali shows high sensitivity to RNAi with injected dsRNA but, unlike the allied pest stinkbugs Halyomorpha halys and Nezara viridula, very low sensitivity to RNAi with orally-delivered dsRNA, which highlights the varied sensitivity to RNAi across different species and limits the applicability of the molecular tool for controlling this specific insect pest.
Collapse
Affiliation(s)
- Yudai Nishide
- National Agriculture and Food Research Organization (NARO), Institute of Agrobiological Sciences Ohwashi, Tsukuba, Japan
- * E-mail: (YN); (TF)
| | - Daisuke Kageyama
- National Agriculture and Food Research Organization (NARO), Institute of Agrobiological Sciences Ohwashi, Tsukuba, Japan
| | - Yoshiaki Tanaka
- National Agriculture and Food Research Organization (NARO), Institute of Agrobiological Sciences Ohwashi, Tsukuba, Japan
| | - Kakeru Yokoi
- National Agriculture and Food Research Organization (NARO), Institute of Agrobiological Sciences Ohwashi, Tsukuba, Japan
| | - Akiya Jouraku
- National Agriculture and Food Research Organization (NARO), Institute of Agrobiological Sciences Ohwashi, Tsukuba, Japan
| | - Ryo Futahashi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takema Fukatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- * E-mail: (YN); (TF)
| |
Collapse
|
19
|
Co-haplotyping symbiont and host to unravel invasion pathways of the exotic pest Halyomorpha halys in Italy. Sci Rep 2020; 10:18441. [PMID: 33116256 PMCID: PMC7595193 DOI: 10.1038/s41598-020-75519-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/06/2020] [Indexed: 01/28/2023] Open
Abstract
The brown marmorated stink bug Halyomorpha halys (Stål) is a globally invasive species that harbours the primary bacterial symbiont ‘Candidatus Pantoea carbekii’. In this work, P. carbekii was used as another genetic marker to investigate the biodiversity and biogeographical patterns of this important pest, in native and newly invaded areas, especially in Italy. The correlation between the genetic structure of the symbiont and that of its host was studied through the analyses of one bacterial and one host marker, the putative pseudogene ΔybgF and the mitochondrial gene COI, respectively. As a result, five new P. carbekii haplotypes were identified, and an association pattern between host-symbiont haplotypes was observed. Host species showed higher haplotype diversity than symbiont, which can be expected in a long term host-symbiont association. Populations from the north-eastern Italy showed the highest values of genetic diversity for both markers, highlighting that this particular Italian area could be the result of multiple ongoing introductions. Moreover, some of the symbiont-host haplotypes observed were shared only by populations from north-eastern Italy and native areas, especially Japan, suggesting further introductions from this native country to Italy. Overall, our findings improve the understanding of the potential origin of multiple accidental introductions of H. halys in Italy.
Collapse
|
20
|
Kashkouli M, Castelli M, Floriano AM, Bandi C, Epis S, Fathipour Y, Mehrabadi M, Sassera D. Characterization of a novel Pantoea symbiont allows inference of a pattern of convergent genome reduction in bacteria associated with Pentatomidae. Environ Microbiol 2020; 23:36-50. [PMID: 32686279 DOI: 10.1111/1462-2920.15169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/15/2020] [Indexed: 11/29/2022]
Abstract
Phytophagous stink bugs typically harbor nutritional symbiotic bacteria in their midgut, to integrate their unbalanced diet. In the Pentatomidae, most symbionts are affiliated to the genus Pantoea, and are polyphyletic. This suggests a scenario of an ancestral establishment of symbiosis, followed by multiple symbiont replacement events by akin environmental bacteria in different host lineages. In this study, a novel Pantoeaspecies ('CandidatusPantoea persica') was characterized from the gut of the pentatomid Acrosternum arabicum, and shown to be highly abundant in a specific portion of the gut and necessary for the host development. The genome of the symbiont (2.9 Mb), while presenting putative host-supportive metabolic pathways, including those for amino acids and vitamin synthesis, showed a high level of pseudogenization, indicating ongoing genome reduction. Comparative analyses with other free-living and symbiotic Pantoea highlighted a convergent pattern of genome reduction in symbionts of pentatomids, putatively following the typical phases modelized in obligate nutritional symbionts of insects. Additionally, this system has distinctive traits, as hosts are closely related, and symbionts originated multiple independent times from closely related free-living bacteria, displaying convergent and independent conspicuous genome reduction. Due to such peculiarities, this may become an ideal model to study genome evolutionary processes in insect symbionts.
Collapse
Affiliation(s)
- Marzieh Kashkouli
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | - Michele Castelli
- Department of Biosciences and Pediatric Clinical Research Center, University of Milan, Milan, 20133, Italy.,Department of Biology and Biotechnology, University of Pavia, 27100, Italy
| | - Anna M Floriano
- Department of Biology and Biotechnology, University of Pavia, 27100, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center, University of Milan, Milan, 20133, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center, University of Milan, Milan, 20133, Italy
| | - Yaghoub Fathipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, 27100, Italy
| |
Collapse
|
21
|
Hosokawa T, Fukatsu T. Relevance of microbial symbiosis to insect behavior. CURRENT OPINION IN INSECT SCIENCE 2020; 39:91-100. [PMID: 32371358 DOI: 10.1016/j.cois.2020.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/07/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Microbial symbiosis is widespread among insects. This article reviews our understanding of insect behaviors relevant to commensalistic and mutualistic microbial symbiosis, which has received relatively less attention compared to insect behaviors in parasitic symbiosis. First, we review our knowledge of symbiont transmission behaviors by which the host insects maintain associations with beneficial microorganisms over generations. Some insects that extracellularly harbor mutualistic symbionts exhibit particularly sophisticated behaviors for vertical symbiont transmission. Next, we highlight notable studies on behavioral changes induced by symbiont infection. In the last decade, a number of studies have demonstrated or suggested that mutualistic or commensalistic symbiont infections affect their host behaviors. Finally, future directions regarding these research topics are discussed.
Collapse
Affiliation(s)
- Takahiro Hosokawa
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan.
| | - Takema Fukatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan; Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
22
|
Mondal SI, Akter A, Koga R, Hosokawa T, Dayi M, Murase K, Tanaka R, Shigenobu S, Fukatsu T, Kikuchi T. Reduced Genome of the Gut Symbiotic Bacterium " Candidatus Benitsuchiphilus tojoi" Provides Insight Into Its Possible Roles in Ecology and Adaptation of the Host Insect. Front Microbiol 2020; 11:840. [PMID: 32435239 PMCID: PMC7218078 DOI: 10.3389/fmicb.2020.00840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/07/2020] [Indexed: 12/27/2022] Open
Abstract
Diverse animals, including insects, harbor microbial symbionts within their gut, body cavity, or cells. The subsocial parastrachiid stinkbug Parastrachia japonensis is well-known for its peculiar ecological and behavioral traits, including its prolonged non-feeding diapause period and maternal care of eggs/nymphs in an underground nest. P. japonensis harbors a specific bacterial symbiont within the gut cavity extracellularly, which is vertically inherited through maternal excretion of symbiont-containing white mucus. Thus far, biological roles of the symbiont in the host lifecycle has been little understood. Here we sequenced the genome of the uncultivable gut symbiont “Candidatus Benitsuchiphilus tojoi.” The symbiont has an 804 kb circular chromosome encoding 606 proteins and a 14.5 kb plasmid encoding 13 proteins. Phylogenetic analysis indicated that the bacterium is closely related to other obligate insect symbionts belonging to the Gammaproteobacteria, including Buchnera of aphids and Blochmannia of ants, and the most closely related to Ishikawaella, an extracellular gut symbiont of plataspid stinkbugs. These data suggested that the symbiont genome has evolved like highly reduced gamma-proteobacterial symbiont genomes reported from a variety of insects. The presence of genes involved in biosynthesis pathways for amino acids, vitamins, and cofactors in the genome implicated the symbiont as a nutritional mutualist, supplementing essential nutrients to the host. Interestingly, the symbiont’s plasmid encoded genes for thiamine and carotenoid synthesis pathways, suggesting the possibility of additional functions of the symbiont for protecting the host against oxidative stress and DNA damage. Finally, possible involvement of the symbiont in uric acid metabolism during diapause is discussed.
Collapse
Affiliation(s)
- Shakhinur Islam Mondal
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Genetic Engineering and Biotechnology Department, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Arzuba Akter
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Biochemistry and Molecular Biology Department, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takahiro Hosokawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Mehmet Dayi
- Forestry Vocational School, Düzce University, Düzce, Turkey
| | - Kazunori Murase
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ryusei Tanaka
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
23
|
Cantón PE, Bonning BC. Transcription and Activity of Digestive Enzymes of Nezara viridula Maintained on Different Plant Diets. Front Physiol 2020; 10:1553. [PMID: 31969835 PMCID: PMC6960134 DOI: 10.3389/fphys.2019.01553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
Nezara viridula is a polyphagous stink bug that feeds on crops of economic importance such as corn, soybean and cotton. To increase understanding of the ability of this pest insect to feed on such diverse cropping systems, we analyzed the impact of an exclusive diet of corn or green bean on the enzymatic activity and transcriptomic profile of digestive enzymes. Growth rate and survival were reduced when insects were reared exclusively on green bean compared to corn. However, the overall protease and nuclease activity profiles were comparable between the two treatments. Distinct differences in inhibitor sensitivity and activity were seen in some cases, particularly for serine proteases in some regions of the midgut. The transcription profiles from N. viridula fed on corn versus green bean were distinct on principal component analysis of RNA-seq data. While specific transcripts differentially transcribed according to diet and across several tissues were identified, a large number of these transcripts remain unannotated. Further annotation for identification of these genes will be important for improved understanding of the remarkable polyphagy of N. viridula.
Collapse
Affiliation(s)
- Pablo Emiliano Cantón
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
24
|
Otero-Bravo A, Goffredi S, Sabree ZL. Cladogenesis and Genomic Streamlining in Extracellular Endosymbionts of Tropical Stink Bugs. Genome Biol Evol 2019; 10:680-693. [PMID: 29420776 PMCID: PMC5822708 DOI: 10.1093/gbe/evy033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 01/21/2023] Open
Abstract
Phytophagous stink bugs are globally distributed and many harbor vertically inherited bacterial symbionts that are extracellular, yet little is known about how the symbiont’s genomes have evolved under this transmission strategy. Genome reduction is common in insect intracellular symbionts but limited genome sampling of the extracellular symbionts of distantly related stink bugs has precluded inferring patterns of extracellular symbiont genome evolution. To address this knowledge gap, we completely sequenced the genomes of the uncultivable bacterial symbionts of four neotropical stink bugs of the Edessa genus. Phylogenetic and comparative analyses indicated that the symbionts form a clade within the Pantoea genus and their genomes are highly reduced (∼0.8 Mb). Furthermore, genome synteny analysis and a jackknife approach for phylogenetic reconstruction, which corrected for long branch attraction artifacts, indicated that the Edessa symbionts were the result of a single symbiotic event that was distinct from the symbiosis event giving rise to Candidatus “Pantoea carbekii,” the extracellular symbiont of the invasive pentatomid stink bug, Halyomorpha halys. Metabolic functions inferred from the Edessa symbiont genomes suggests a shift in genomic composition characteristic of its lifestyle in that they retained many host-supportive functions while undergoing dramatic gene loss and establishing a stable relationship with their host insects. Given the undersampled nature of extracellular insect symbionts, this study is the first comparative analysis of these symbiont genomes from four distinct Edessa stink bug species. Finally, we propose the candidate name “Candidatus Pantoea edessiphila” for the species of these symbionts with strain designations according to their host species.
Collapse
Affiliation(s)
| | - Shana Goffredi
- Department of Biology, Occidental College, Los Angeles, California
| | - Zakee L Sabree
- Department of Evolution, Ecology and Organismal Biology, Ohio State University
| |
Collapse
|
25
|
Oishi S, Moriyama M, Koga R, Fukatsu T. Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera: Pentatomidae). ZOOLOGICAL LETTERS 2019; 5:16. [PMID: 31164991 PMCID: PMC6544922 DOI: 10.1186/s40851-019-0134-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
Diverse insects are intimately associated with microbial symbionts, which play a variety of biological roles in their adaptation to and survival in the natural environment. Such insects often possess specialized organs for hosting the microbial symbionts. What developmental processes and mechanisms underlie the formation of the host organs for microbial symbiosis is of fundamental biological interest but poorly understood. Here we investigate the morphogenesis of the midgut symbiotic organ and the process of symbiont colonization therein during the developmental course of the stinkbug Plautia stali. Upon hatching, the midgut is a simple and smooth tube. Subsequently, symbiont colonization to the posterior midgut occurs, and thickening and folding of the midgut epithelium proceed during the first instar period. By the second instar, rudimentary crypts have formed, and their inner cavities are colonized by the symbiotic bacteria. From the second instar to the fourth instar, while the alimentary tract grows and the posterior midgut is established as the symbiotic organ with numerous crypts, the anterior midgut and the posterior midgut are structurally and functionally isolated by a strong constriction in the middle. By the early fifth instar, the midgut symbiotic organ attains the maximal length, but toward the mid fifth instar, the basal region of each crypt starts to constrict and narrow, which deforms the midgut symbiotic organ as a whole into a shorter, thicker and twisted shape. By the late fifth instar to adulthood, the crypts are constricted off, by which the symbiotic bacteria are confined in the crypt cavities and isolated from the midgut main tract, and concurrently, the strong midgut constriction in the middle becomes loose and open, by which the food flow from the anterior midgut to the posterior midgut recovers. This study provides the most detailed and comprehensive descriptions ever reported on the morphogenesis of the symbiotic organ and the process of symbiont colonization in an obligatory insect-bacterium gut symbiotic system. Considering that P. stali is recently emerging as a useful model system for experimentally studying the intimate insect-microbe gut symbiosis, the knowledge obtained in this study establishes the foundation for the further development of this research field.
Collapse
Affiliation(s)
- Sayumi Oishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
| | - Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
| | - Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
| | - Takema Fukatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566 Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| |
Collapse
|
26
|
Nardi JB, Miller LA, Bee CM. Interfaces between microbes and membranes of host epithelial cells in hemipteran midguts. J Morphol 2019; 280:1046-1060. [PMID: 31087679 DOI: 10.1002/jmor.21000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 01/06/2023]
Abstract
Certain families of plant-feeding insects in the order Hemiptera (infraorder Pentatomomorpha) have established symbiotic relationships with microbes that inhabit specific pouches (caeca) of their midgut epithelium. The placement of these caeca in a well-delineated region at the most posterior end of the midgut bordering the hindgut is conserved in these families; in situ the convoluted midgut is predictably folded so that this caecal region lies adjacent to the anterior-most region of the midgut. Depending on the hemipteran family, caeca vary in their number and configuration at a given anterior-posterior location. At the host-microbe interface, epithelial plasma membranes of midgut epithelial cells interact with nonself antigens of microbial surfaces. In the different hemipteran species examined, a continuum of interactions is observed between microbes and host membranes. Bacteria can exist as free living cells within the midgut lumen without contacting host membranes while other host cells physically interact extensively with microbial surfaces by extending numerous processes that interdigitate with microbes; and, in many instances, processes completely envelope the microbes. The host cells can embrace the foreign microbes, completely enveloping each with a single host membrane or sometimes enveloping each with the two additional host membranes of a phagosome.
Collapse
Affiliation(s)
- James B Nardi
- Department of Entomology, University of Illinois, Urbana, Illinois
| | - Lou Ann Miller
- Biological Electron Microscopy, Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois
| | - Charles Mark Bee
- Imaging Technology Group, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois
| |
Collapse
|
27
|
Russell SL. Transmission mode is associated with environment type and taxa across bacteria-eukaryote symbioses: a systematic review and meta-analysis. FEMS Microbiol Lett 2019; 366:5289862. [DOI: 10.1093/femsle/fnz013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Shelbi L Russell
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95060; USA
| |
Collapse
|
28
|
Abstract
Cicadas are dependent on the essential bacterial symbionts Sulcia and Hodgkinia. The symbiont genomes are extremely streamlined for provisioning of essential amino acids and other nutrients. In some cicada lineages, Hodgkinia genomes are fragmented into numerous minicircles, which may represent a critical stage of genomic erosion close to collapse. What would happen subsequently? Our survey of the Japanese cicada diversity revealed that while Sulcia is conserved among all species, the majority of them have lost Hodgkinia and instead harbor yeast-like fungal associates. The fungal symbionts are phylogenetically intermingled with cicada-parasitizing Ophiocordyceps fungi, indicating recurrent symbiont replacements by entomopathogens in cicadas and providing insights into the mechanisms underlying the parasitism-symbiosis evolutionary continuum, compensation of symbiont genome erosion, and diversification of host-symbiont associations. Diverse insects are associated with ancient bacterial symbionts, whose genomes have often suffered drastic reduction and degeneration. In extreme cases, such symbiont genomes seem almost unable to sustain the basic cellular functioning, which comprises an open question in the evolution of symbiosis. Here, we report an insect group wherein an ancient symbiont lineage suffering massive genome erosion has experienced recurrent extinction and replacement by host-associated pathogenic microbes. Cicadas are associated with the ancient bacterial co-obligate symbionts Sulcia and Hodgkinia, whose streamlined genomes are specialized for synthesizing essential amino acids, thereby enabling the host to live on plant sap. However, our inspection of 24 Japanese cicada species revealed that while all species possessed Sulcia, only nine species retained Hodgkinia, and their genomes exhibited substantial structural instability. The remaining 15 species lacked Hodgkinia and instead harbored yeast-like fungal symbionts. Detailed phylogenetic analyses uncovered repeated Hodgkinia-fungus and fungus-fungus replacements in cicadas. The fungal symbionts were phylogenetically intermingled with cicada-parasitizing Ophiocordyceps fungi, identifying entomopathogenic origins of the fungal symbionts. Most fungal symbionts of cicadas were uncultivable, but the fungal symbiont of Meimuna opalifera was cultivable, possibly because it is at an early stage of fungal symbiont replacement. Genome sequencing of the fungal symbiont revealed its metabolic versatility, presumably capable of synthesizing almost all amino acids, vitamins, and other metabolites, which is more than sufficient to compensate for the Hodgkinia loss. These findings highlight a straightforward ecological and evolutionary connection between parasitism and symbiosis, which may provide an evolutionary trajectory to renovate deteriorated ancient symbiosis via pathogen domestication.
Collapse
|