1
|
Lv M, Wang Y, Yuan Z, Zhai L, Iqbal H, Ur-Rehman U, Ning X, Wei H, Xin J, Jin Z, Yi Z, Wang B, Chen W, Xiao R. Decitabine promotes the differentiation of poorly differentiated gastric cancer cells and enhances the sensitivity of NK cell cytotoxicity via TNF-α. Sci Rep 2025; 15:13119. [PMID: 40240368 PMCID: PMC12003911 DOI: 10.1038/s41598-025-95741-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Poorly differentiated gastric cancer (PDGC) is characterized by high invasiveness, rapid progression, and poor prognosis for patients. Differentiation therapy has long been a promising approach by manipulating the differentiation state of tumor cells to inhibit tumor growth, offering fewer side effects. Decitabine (DAC), is known as an inhibitor of DNA methylation, thus reactivating the transcription of previously methylated silenced genes associated with differentiation to induce a more differentiated state. This study used the differentiation-inducing agents DAC to treat two PDGC cell lines, MKN45 and NUGC4, and explored the impact of DAC on cell proliferation and influence of their sensitivity to Natural Killer cells (NK cells) mediated cytotoxicity. The results demonstrated a significant reduction in cell proliferation, migration, and invasion without affecting cell viability after DAC treatment. Additionally, transcriptomic analysis revealed that DAC-treated PDGC cells upregulated multiple immune-related genes, including the gene encoding for tumor necrosis factor alpha (TNF-α). Co-culture study of NK cells and PDGC cells showed that DAC treatment enhanced the sensitivity of these cancer cells to NK cell-mediated cytotoxicity, and TNF-α played a crucial role in promoting NK cell cytotoxicity. Following the subcutaneous implantation of tumors in nude mice, DAC administration significantly inhibited the growth of PDGC tumors and induced the upregulation of differentiation related genes. In summary, DAC effectively reduces the malignant characteristics of the PDGC cells by promoting their transition towards a higher state of differentiation and enhancing their sensitivity to NK cell-mediated killing, providing new insights for the mechanisms of the antitumor effects of DAC.
Collapse
Affiliation(s)
- Man Lv
- School of Life Science, Tianjin University, Tianjin, 300072, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Yue Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Medical College of Tianjin University, Tianjin University, Tianjin, 300072, China
| | - Ziyin Yuan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lina Zhai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Haroon Iqbal
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Uzair Ur-Rehman
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xin Ning
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Huiying Wei
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou, 310024, China
| | - Jun Xin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Medical College of Tianjin University, Tianjin University, Tianjin, 300072, China
| | - Zihui Jin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhou Yi
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Baichuan Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wangkai Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Run Xiao
- School of Life Science, Tianjin University, Tianjin, 300072, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
2
|
Lee JE, Jeon BE, Kwon CS, Kim HY, Kim TJ, Seo Y, Lee SH, Shin HJ, Kim SW. Norchelerythrine from Corydalis incisa (Thunb.) Pers. promotes differentiation and apoptosis by activating DNA damage response in acute myeloid leukemia. Int J Oncol 2025; 66:17. [PMID: 39918000 PMCID: PMC11837901 DOI: 10.3892/ijo.2025.5723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/07/2025] [Indexed: 02/21/2025] Open
Abstract
Acute myeloid leukemia (AML) is the most prevalent form of leukemia in adults. The cornerstone of first‑line chemotherapy for AML has poor survival rates, underscoring the urgent need for development of novel therapeutic agents. Differentiation therapy targets the blockade of differentiation in myeloid progenitor cells. The present study screened 100 plant extracts native to South Korea to search for those with differentiation‑inducing activity in AML. Differentiation‑inducing activity was assessed by measuring CD11b expression using fluorescence activated cell sorting. Of these, Corydalis incisa (Thunb.) Pers. (CIP) exhibited the highest efficacy. CIP induced myeloid differentiation, decreased viability and increased cell apoptosis and cell cycle arrest in HL‑60, U937 and THP‑1 cells. Furthermore, ultra‑performance liquid chromatography‑quadrupole time‑of‑flight mass spectrometry identified norchelerythrine as the primary anti‑leukemic compound in CIP. Norchelerythrine induced differentiation and promoted cell cycle arrest and apoptosis, mirroring the tumor‑suppressive effects of CIP, and notably decreased cell viability in patients with various genetic abnormalities. The present mechanistic study showed that norchelerythrine stimulated reactive oxygen species generation, leading to activation of DNA damage signaling and upregulation of p21cip1, a cyclin‑dependent kinase inhibitor. Overall, norchelerythrine isolated from CIP may be a novel therapeutic option in AML.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Byeol-Eun Jeon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Chan-Seong Kwon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeon-Young Kim
- Department of Molecular and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Youngseob Seo
- Korea Research Institute of Standard and Science, Daejeon 34113, Republic of Korea
| | - Sang Hun Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 46241, Republic of Korea
| | - Ho-Jin Shin
- Division of Hematology-Oncology, Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 46241, Republic of Korea
| | - Sang-Woo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Studenikina AA, Mangazeeva ED, Bogachuk AP, Lipkin VM, Autenshlyus AI. [The effect of acetylamide synthetic peptide HLDF-6 on cell differentiation in breast cancer]. Arkh Patol 2025; 87:5-10. [PMID: 40289426 DOI: 10.17116/patol2025870215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The development of drugs with the ability to increase differentiation and reduce tumor malignancy is one of the promising directions in the treatment of breast cancer (BC). As such, Human Leukemia Differentiation Factor (HLDF), a protein consisting of 54 amino acids and contributing to an increase in the degree of differentiation of invasive ductal breast carcinoma cells, can be used. The key disadvantage of the full-size HLDF is its rapid biodegradation. In this connection, the acetylamide form of the peptide (HLDF-6) was synthesized to protect against hydrolysis. OBJECTIVE To evaluate the effect of HLDF-6 on cell differentiation in various molecular biological subtypes of breast cancer. MATERIAL AND METHODS The relative content of tumor cells of various degrees of differentiation in biopsies of 33 women with breast cancer when exposed to HLDF-6 tumor was evaluated. RESULTS HLDF-6 significantly increases the relative content of differentiated cells in the luminal B HER2-negative subtype of breast cancer, without significantly affecting the cells of patients with luminal A and basal-like subtypes. CONCLUSION The study revealed the prospects of using HLDF-6 as part of differentiating therapy in patients with luminal B HER2-negative subtype of breast cancer.
Collapse
Affiliation(s)
- A A Studenikina
- Novosibirsk State Medical University, Novosibirsk, Russia
- Institute of Molecular Biology and Biophysics of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - E D Mangazeeva
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - A P Bogachuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - V M Lipkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - A I Autenshlyus
- Novosibirsk State Medical University, Novosibirsk, Russia
- Institute of Molecular Biology and Biophysics of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
4
|
Shams A. Impact of prolactin treatment on enhancing the cellular responses of MCF7 breast cancer cells to tamoxifen treatment. Discov Oncol 2024; 15:797. [PMID: 39692941 DOI: 10.1007/s12672-024-01701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Abstract
Breast cancer remains one of the most challenging diseases to treat due to its heterogeneity, propensity to recur, capacity to spread to distant vital organs, and, ultimately, patient death. Estrogen receptor-positive illness comprises the most common breast cancer subtype. Preclinical progress is hampered by the scarcity of medication-naïve estrogen receptor-positive tumour models that recapitulate metastatic development and treatment resistance. It is becoming increasingly clear that loss of differentiation and increased cellular stemness and plasticity are important causes of cancer evolution, heterogeneity, recurrence, metastasis, and treatment failure. Therefore, it has been suggested that reprogramming cancer cell differentiation could offer an effective method of reversing cancer through terminal differentiation and maturation. In this context, the hormone prolactin is well recognized for its pivotal involvement in the development of the mammary glands lobuloalveolar tissue and the terminal differentiation that drives the production of the milk protein gene and lactation. Additionally, numerous studies have examined the engagement of prolactin in breast cancer as a differentiation player that resulted in the ablation of tumour growth and progression. Here, we showed that a pre-treatment of the estrogen-positive breast cancer cell line with prolactin led to a considerable improvement in the sensitivity of this cancer cell to Tamoxifen endocrine therapy. We also showed a favourable prognostic value of prolactin receptors/estrogen receptors 1 (or alpha) co-expression on breast cancer patients outcomes, and this co-expression is highly correlated with the well-differentiated breast tumour type. Our results revealed a fruitful aspect of the effects of prolactin in improving the responses of breast cancer cells to conventional endocrine therapy. Moreover, these findings further validated the ability of prolactin as a persuader of a more differentiated and less aggressive breast cancer phenotype. Hence, it suggested a potential implication of prolactin as a therapeutic candidate.
Collapse
Affiliation(s)
- Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Taif, Saudi Arabia.
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research,, Taif University, Taif 26432, Taif, Saudi Arabia.
- High Altitude Research Center, Taif University, P.O. Box 11099, Taif 21944, Taif, Saudi Arabia.
| |
Collapse
|
5
|
Yuan B, Gong H. General commentary: GQIcombi application to subdue glioma via differentiation therapy. Front Oncol 2024; 14:1466102. [PMID: 39726709 PMCID: PMC11669578 DOI: 10.3389/fonc.2024.1466102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- BinBin Yuan
- Department of Public Relations, Affiliated Haimen Hospital of Xinglin College, Nantong University, Nantong, Jiangsu, China
| | - Hui Gong
- Department of Neurosurgery, Affiliated Haimen Hospital of Xinglin College, Nantong
University, Nantong, Jiangsu, China
| |
Collapse
|
6
|
Stewart R, Sharma S, Wu T, Okuda S, Xie G, Zhou XZ, Shilton B, Lu KP. The role of the master cancer regulator Pin1 in the development and treatment of cancer. Front Cell Dev Biol 2024; 12:1343938. [PMID: 38745861 PMCID: PMC11091292 DOI: 10.3389/fcell.2024.1343938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024] Open
Abstract
This review examines the complex role of Pin1 in the development and treatment of cancer. Pin1 is the only peptidyl-prolyl isomerase (PPIase) that can recognize and isomerize phosphorylated Ser/Thr-Pro peptide bonds. Pin1 catalyzes a structural change in phosphorylated Ser/Thr-Pro motifs that can modulate protein function and thereby impact cell cycle regulation and tumorigenesis. The molecular mechanisms by which Pin1 contributes to oncogenesis are reviewed, including Pin1 overexpression and its correlation with poor cancer prognosis, and the contribution of Pin1 to aggressive tumor phenotypes involved in therapeutic resistance is discussed, with an emphasis on cancer stem cells, the epithelial-to-mesenchymal transition (EMT), and immunosuppression. The therapeutic potential of Pin1 inhibition in cancer is discussed, along with the promise and the difficulties in identifying potent, drug-like, small-molecule Pin1 inhibitors. The available evidence supports the efficacy of targeting Pin1 as a novel cancer therapeutic by analyzing the role of Pin1 in a complex network of cancer-driving pathways and illustrating the potential of synergistic drug combinations with Pin1 inhibitors for treating aggressive and drug-resistant tumors.
Collapse
Affiliation(s)
- Robert Stewart
- Department of Biochemistry, Western University, London, ON, Canada
| | - Shaunik Sharma
- Department of Biochemistry, Western University, London, ON, Canada
| | - Timothy Wu
- Department of Biochemistry, Western University, London, ON, Canada
| | - Sho Okuda
- Department of Biochemistry, Western University, London, ON, Canada
| | - George Xie
- Department of Biochemistry, Western University, London, ON, Canada
| | - Xiao Zhen Zhou
- Department of Biochemistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Brian Shilton
- Department of Biochemistry, Western University, London, ON, Canada
| | - Kun Ping Lu
- Department of Biochemistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
| |
Collapse
|
7
|
Hsiao YC, Dutta A. Nonlinear control designs and their application to cancer differentiation therapy. Math Biosci 2023; 366:109105. [PMID: 37944795 DOI: 10.1016/j.mbs.2023.109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
We designed three new controllers: a sigmoid-based controller, a polynomial dynamic inversion-based controller, and a proportional-integral-derivative (PID) impulsive controller for cancer differentiation therapy. We compared these three controllers to existing control strategies to show the improvement in performance and compare their robustness. The sigmoid-based controller adds a sigmoid term associated with the error of the controlled state and a selected observed state. The sigmoid term is multiplied by a control gain, thereby decreasing the control effort for state transition. The polynomial dynamic inversion-based controller adds a cubic error term in the error dynamic aiming to achieve a shorter convergence time to the desired value of the controlled state. The PID impulsive controller considers the accumulated controlled state error and the rate of change of the controlled state error, thereby forcing the controlled state to converge to the desired value and alleviating the damping effect in the steady state. For the considered cancer network, the 3 new cancer control strategies exhibit superior and robust performance. The PID impulsive controller has a significant improvement in robustness compared to the impulsive controller and has greater potential for cancer differentiation therapy.
Collapse
Affiliation(s)
- Yen-Che Hsiao
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, 06269, CT, USA.
| | - Abhishek Dutta
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, 06269, CT, USA
| |
Collapse
|
8
|
Lei J, Pan Y, Gao R, He B, Wang Z, Lei X, Zhang Z, Yang N, Yan M. Rutaecarpine induces the differentiation of triple-negative breast cancer cells through inhibiting fumarate hydratase. J Transl Med 2023; 21:553. [PMID: 37592347 PMCID: PMC10436383 DOI: 10.1186/s12967-023-04396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is one of the most aggressive human cancers and has poor prognosis. Approximately 80% of TNBC cases belong to the molecular basal-like subtype, which can be exploited therapeutically by inducing differentiation. However, the strategies for inducing the differentiation of TNBC remain underexplored. METHODS A three-dimensional (3D) morphological screening model based on a natural compound library was used to identify possible candidate compounds that can induce TNBC cell differentiation. The efficacy of rutaecarpine was verified using assays: RT-qPCR, RNA-seq, flow cytometry, immunofluorescence, SCENITH and label-free LC-MS/MS. The direct targets of rutaecarpine were identified through drug affinity responsive target stability (DARTS) assay. A xenograft mice model was also constructed to confirm the effect of rutaecarpine in vivo. RESULTS We identified that rutaecarpine, an indolopyridoquinazolinone, induces luminal differentiation of basal TNBC cells in both 3D spheroids and in vivo mice models. Mechanistically, rutaecarpine treatment leads to global metabolic stress and elevated ROS in 3D cultured TNBC cells. Moreover, NAC, a scavenger of ROS, impedes rutaecarpine-induced differentiation of TNBC cells in 3D culture. Finally, we identified fumarate hydratase (FH) as the direct interacting target of rutaecarpine. The inhibition of FH and the knockdown of FH consistently induced the differentiation of TNBC cells in 3D culture. CONCLUSIONS Our results provide a platform for differentiation therapy drug discovery using 3D culture models and identify rutaecarpine as a potential compound for TNBC treatment.
Collapse
Affiliation(s)
- Jie Lei
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yujia Pan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, China
| | - Rui Gao
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 510275, China
| | - Bin He
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zifeng Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xinxing Lei
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zijian Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Na Yang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China.
| | - Min Yan
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
9
|
Hu X, Xie J, Yang Y, Qiu Z, Lu W, Lin X, Xu B. Multi-Target Neural Differentiation (MTND) Therapeutic Cocktail to Suppress Brain Tumor. Int J Mol Sci 2023; 24:12329. [PMID: 37569705 PMCID: PMC10418641 DOI: 10.3390/ijms241512329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Brain tumors have been proved challenging to treat. Here we established a Multi-Target Neural Differentiation (MTND) therapeutic cocktail to achieve effective and safe treatment of brain malignancies by targeting the important hallmarks in brain cancers: poor cell differentiation and compromised cell cycle. In-vitro and in-vivo experiments confirmed the significant therapeutic effect of our MTND therapy. Significantly improved therapeutic effects over current first-line chemo-drugs have been identified in clinical cells, with great inhibition of the growth and migration of tumor cells. Further in-vivo experiments confirmed that sustained MTND treatment showed a 73% reduction of the tumor area. MTND also induced strong expression of phenotypes associated with cell cycle exit/arrest and rapid neural reprograming from clinical glioma cells to glutamatergic and GABAergic expressing cells, which are two key neuronal types involved in many human brain functions, including learning and memory. Collectively, MTND induced multi-targeted genotypic expression changes to achieve direct neural conversion of glioma cells and controlled the cell cycle/tumorigenesis development, helping control tumor cells' malignant proliferation and making it possible to treat brain malignant tumors effectively and safely. These encouraging results open avenues to developing new therapies for brain malignancies beyond cytotoxic agents, providing more effective medication recommendations with reduced toxicity.
Collapse
Affiliation(s)
- Xiaoping Hu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.H.); (Y.Y.)
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou 510060, China; (J.X.); (W.L.)
| | - Yilin Yang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.H.); (Y.Y.)
| | - Ziyi Qiu
- School of Biomedical Engineering (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Weicheng Lu
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou 510060, China; (J.X.); (W.L.)
| | - Xudong Lin
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.H.); (Y.Y.)
| | - Bingzhe Xu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.H.); (Y.Y.)
- School of Biomedical Engineering (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
10
|
Tatavosian R, Donovan MG, Galbraith MD, Duc HN, Szwarc MM, Joshi MU, Frieman A, Bilousova G, Cao Y, Smith KP, Song K, Rachubinski AL, Andrysik Z, Espinosa JM. Cell differentiation modifies the p53 transcriptional program through a combination of gene silencing and constitutive transactivation. Cell Death Differ 2023; 30:952-965. [PMID: 36681780 PMCID: PMC10070495 DOI: 10.1038/s41418-023-01113-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
The p53 transcription factor is a master regulator of cellular responses to stress that is commonly inactivated in diverse cancer types. Despite decades of research, the mechanisms by which p53 impedes tumorigenesis across vastly different cellular contexts requires further investigation. The bulk of research has been completed using in vitro studies of cancer cell lines or in vivo studies in mouse models, but much less is known about p53 action in diverse non-transformed human tissues. Here, we investigated how different cellular states modify the p53 transcriptional program in human cells through a combination of computational analyses of publicly available large-scale datasets and in vitro studies using an isogenic system consisting of induced pluripotent stem cells (iPSCs) and two derived lineages. Analysis of publicly available mRNA expression and genetic dependency data demonstrated wide variation in terms of expression and function of a core p53 transcriptional program across various tissues and lineages. To monitor the impact of cell differentiation on the p53 transcriptome within an isogenic cell culture system, we activated p53 by pharmacological inhibition of its negative regulator MDM2. Using cell phenotyping assays and genome wide transcriptome analyses, we demonstrated that cell differentiation confines and modifies the p53 transcriptional network in a lineage-specific fashion. Although hundreds of p53 target genes are transactivated in iPSCs, only a small fraction is transactivated in each of the differentiated lineages. Mechanistic studies using small molecule inhibitors and genetic knockdowns revealed the presence of two major regulatory mechanisms contributing to this massive heterogeneity across cellular states: gene silencing by epigenetic regulatory complexes and constitutive transactivation by lineage-specific transcription factors. Altogether, these results illuminate the impact of cell differentiation on the p53 program, thus advancing our understanding of how this tumor suppressor functions in different contexts.
Collapse
Affiliation(s)
- Roubina Tatavosian
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Micah G Donovan
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Huy N Duc
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maria M Szwarc
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Molishree U Joshi
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Amy Frieman
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ganna Bilousova
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yingqiong Cao
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Section of Developmental Pediatrics, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Joaquin M Espinosa
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
HOANG BAX, HAN BO, FANG WILLIAMH, TRAN HAUD, HOANG CUONG, SHAW DAVIDG, NGUYEN THAIQ. The Rationality of Implementation of Dimethyl Sulfoxide as Differentiation-inducing Agent in Cancer Therapy. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:1-8. [PMID: 36632588 PMCID: PMC9801450 DOI: 10.21873/cdp.10172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/25/2022] [Indexed: 01/01/2023]
Abstract
One of the major hallmarks of many cancer cells is dedifferentiated cells (immature cells) with little or no resemblance to normal cells. Besides the poor differentiation, malignant cells also have important features such as aggressiveness and resistance to different therapeutics. Differentiation potentiators hold great promise for cancer treatment. Dimethyl sulfoxide (DMSO) is a well-characterized pharmaceutical solvent. It is used as a component of numerous cancer therapeutic approaches, including cancer treatment and several approved cancer immune therapeutics such as Car-T cell therapy and the FDA-approved drug Mekinist (trametinib DMSO) for melanoma treatment. It is also biologically recognized as a pharmaceutical solvent and cryoprotectant. In the current literature, there are no mentions of DMSO's possible ability to potentiate therapeutic activity as a component of these cancer treatments. This review aimed to summarize scientific evidence and substantiate the concept that DMSO can contribute positively to the overall efficacy of cancer treatment as an adjuvant that is safe, inexpensive, and an effective differentiation-inducing therapeutic agent.
Collapse
Affiliation(s)
- BA X. HOANG
- Nimni-Cordoba Tissue Engineering and Drug Discovery Lab, Department of Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, U.S.A
| | - BO HAN
- Nimni-Cordoba Tissue Engineering and Drug Discovery Lab, Department of Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, U.S.A
| | - WILLIAM H. FANG
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, U.S.A
| | - HAU D. TRAN
- Department of Oncology, National Children Hospital of Vietnam, Hanoi, Vietnam
| | - CUONG HOANG
- Department of Traumatology, National Institute of Ophthalmology of Vietnam, Hanoi, Vietnam
| | - DAVID G. SHAW
- Integrated Medical Associates, Foster City, CA, U.S.A
| | | |
Collapse
|
12
|
Hollar DW. The competition of ecological resonances in the quantum metabolic model of cancer: Potential energetic interventions. Biosystems 2022; 222:104798. [DOI: 10.1016/j.biosystems.2022.104798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/02/2022]
|
13
|
Irazoqui AP, Gonzalez A, Buitrago C. Effects of calcitriol on the cell cycle of rhabdomyosarcoma cells. J Steroid Biochem Mol Biol 2022; 222:106146. [PMID: 35710090 DOI: 10.1016/j.jsbmb.2022.106146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Rhabdomyosarcoma (RMS) is a type of cancer of skeletal muscle. Calcitriol is the active form of vitamin D3, also recognised as a steroid hormone called 1α, 25-dihydroxy vitamin D3 (1,25D). We previously reported that 1,25D promoted cell proliferation and differentiation in non-cancerous skeletal muscle cells C2C12. The aim of this work is to evaluate some of the events triggered by 1,25D in RD cells, a human RMS cell line. In this work we reported that RD cells expressed vitamin D receptor (VDR) and treatment with 1,25D reduced VDR expression at 72 h. At the same time an acute decrease in viable cells as well as in cells in S-phase of cell cycle was also observed. Furthermore, up-regulation of p15INK4b was accompanied in a timely manner by down-regulation of cyclin D3, p21Waf1/Cip1 and myogenin protein levels. Simultaneously, 1,25D induced early apoptosis markers such as cyclin D1 and CDK4, and the disruption of the mitochondrial network together with a redistribution of mitochondria around the nucleus. Finally, 1,25D induced changes in the plasma membrane of RD cells associated with early and late apoptosis at 72 h, as determined by flow cytometry. Taken together, these results determine that treatment with 1,25D for 72 h triggers apoptosis in RD cells.
Collapse
Affiliation(s)
- Ana P Irazoqui
- Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC PBA); Departamento de Biología, Bioquímica y Farmacia, UNS, (8000) Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina
| | - Agustina Gonzalez
- Departamento de Biología, Bioquímica y Farmacia, UNS, (8000) Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina
| | - Claudia Buitrago
- Departamento de Biología, Bioquímica y Farmacia, UNS, (8000) Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina.
| |
Collapse
|
14
|
Yan H, Zhai B, Yang F, Chen Z, Zhou Q, Paiva-Santos AC, Yuan Z, Zhou Y. Nanotechnology-Based Diagnostic and Therapeutic Strategies for Neuroblastoma. Front Pharmacol 2022; 13:908713. [PMID: 35721107 PMCID: PMC9201105 DOI: 10.3389/fphar.2022.908713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroblastoma (NB), as the most common extracranial solid tumor in childhood, is one of the critical culprits affecting children's health. Given the heterogeneity and invisibility of NB tumors, the existing diagnostic and therapeutic approaches are inadequate and ineffective in early screening and prognostic improvement. With the rapid innovation and development of nanotechnology, nanomedicines have attracted widespread attention in the field of oncology research for their excellent physiological and chemical properties. In this review, we first explored the current common obstacles in the diagnosis and treatment of NB. Then we comprehensively summarized the advancements in nanotechnology-based multimodal synergistic diagnosis and treatment of NB and elucidate the underlying mechanisms. In addition, a discussion of the pending challenges in biocompatibility and toxicity of nanomedicine was conducted. Finally, we described the development and application status of nanomaterials against some of the recognized targets in the field of NB research, and pointed out prospects for nanomedicine-based precision diagnosis and therapy of NB.
Collapse
Affiliation(s)
- Hui Yan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Bo Zhai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Fang Yang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhenliang Chen
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Qiang Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ana Cláudia Paiva-Santos
- Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yang Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| |
Collapse
|
15
|
Hui Q, Li X, Fan W, Gao C, Zhang L, Qin H, Wei L, Zhang L. Discovery of 2-(4-Acrylamidophenyl)-Quinoline-4-Carboxylic Acid Derivatives as Potent SIRT3 Inhibitors. Front Chem 2022; 10:880067. [PMID: 35433629 PMCID: PMC9005971 DOI: 10.3389/fchem.2022.880067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
In discovery of novel SIRT3 inhibitors for the treatment of cancer, a series of 2-(4-acrylamidophenyl)-quinoline-4-carboxylic acid derivatives were designed and synthesized. Among the derived compounds, molecule P6 exhibited SIRT3 inhibitory selectivity with IC50 value of 7.2 µM over SIRT1 (32.6 µM) and SIRT2 (33.5 µM). molecular docking analysis revealed a specific binding pattern of P6 in the active site of SIRT3 compared with the bindings in the active site of SIRT1 and SIRT2. In the antiproliferative and colony forming assay, molecule P6 showed potent inhibitory activity against a group of MLLr leukemic cell lines. Further analysis revealed that induction of G0/G1 phase cell cycle arrest and cell differentiation, but not apoptosis, makes contributions to the anticancer effects of P6. Collectively, a potent SIRT3 inhibitor (P6) was discovered as a lead compound for the leukemic differentiation therapy.
Collapse
Affiliation(s)
- Qian Hui
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xueming Li
- Department of Inorganic Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Wenli Fan
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Congying Gao
- Department of Inorganic Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lin Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hongyu Qin
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Liuya Wei
- Department of Inorganic Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
- *Correspondence: Liuya Wei, ; Lei Zhang,
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
- *Correspondence: Liuya Wei, ; Lei Zhang,
| |
Collapse
|
16
|
Dactylospongia elegans—A Promising Drug Source: Metabolites, Bioactivities, Biosynthesis, Synthesis, and Structural-Activity Relationship. Mar Drugs 2022; 20:md20040221. [PMID: 35447894 PMCID: PMC9033123 DOI: 10.3390/md20040221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Marine environment has been identified as a huge reservoir of novel biometabolites that are beneficial for medical treatments, as well as improving human health and well-being. Sponges have been highlighted as one of the most interesting phyla as new metabolites producers. Dactylospongia elegans Thiele (Thorectidae) is a wealth pool of various classes of sesquiterpenes, including hydroquinones, quinones, and tetronic acid derivatives. These metabolites possessed a wide array of potent bioactivities such as antitumor, cytotoxicity, antibacterial, and anti-inflammatory. In the current work, the reported metabolites from D. elegans have been reviewed, including their bioactivities, biosynthesis, and synthesis, as well as the structural-activity relationship studies. Reviewing the reported studies revealed that these metabolites could contribute to new drug discovery, however, further mechanistic and in vivo studies of these metabolites are needed.
Collapse
|
17
|
Ion Channel Drugs Suppress Cancer Phenotype in NG108-15 and U87 Cells: Toward Novel Electroceuticals for Glioblastoma. Cancers (Basel) 2022; 14:cancers14061499. [PMID: 35326650 PMCID: PMC8946312 DOI: 10.3390/cancers14061499] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma is a lethal brain cancer that commonly recurs after tumor resection and chemotherapy treatment. Depolarized resting membrane potentials and an acidic intertumoral extracellular pH have been associated with a proliferative state and drug resistance, suggesting that forced hyperpolarization and disruption of proton pumps in the plasma membrane could be a successful strategy for targeting glioblastoma overgrowth. We screened 47 compounds and compound combinations, most of which were ion-modulating, at different concentrations in the NG108-15 rodent neuroblastoma/glioma cell line. A subset of these were tested in the U87 human glioblastoma cell line. A FUCCI cell cycle reporter was stably integrated into both cell lines to monitor proliferation and cell cycle response. Immunocytochemistry, electrophysiology, and a panel of physiological dyes reporting voltage, calcium, and pH were used to characterize responses. The most effective treatments on proliferation in U87 cells were combinations of NS1643 and pantoprazole; retigabine and pantoprazole; and pantoprazole or NS1643 with temozolomide. Marker analysis and physiological dye signatures suggest that exposure to bioelectric drugs significantly reduces proliferation, makes the cells senescent, and promotes differentiation. These results, along with the observed low toxicity in human neurons, show the high efficacy of electroceuticals utilizing combinations of repurposed FDA approved drugs.
Collapse
|
18
|
Lee KE, Kwon M, Kim YS, Kim Y, Chung MG, Heo SC, Kim Y. β-carotene regulates cancer stemness in colon cancer in vivo and in vitro. Nutr Res Pract 2022; 16:161-172. [PMID: 35392530 PMCID: PMC8971823 DOI: 10.4162/nrp.2022.16.2.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/18/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Kyung Eun Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Minseo Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yoo Sun Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yerin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Min Gi Chung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Seung Chul Heo
- Department of Surgery, Seoul National University-Seoul Metropolitan Government (SNU-SMG) Boramae Medical Center, Seoul 07061, Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
19
|
Xie J, Wang Z, Fan W, Liu Y, Liu F, Wan X, Liu M, Wang X, Zeng D, Wang Y, He B, Yan M, Zhang Z, Zhang M, Hou Z, Wang C, Kang Z, Fang W, Zhang L, Lam EWF, Guo X, Yan J, Zeng Y, Chen M, Liu Q. Targeting cancer cell plasticity by HDAC inhibition to reverse EBV-induced dedifferentiation in nasopharyngeal carcinoma. Signal Transduct Target Ther 2021; 6:333. [PMID: 34482361 PMCID: PMC8418605 DOI: 10.1038/s41392-021-00702-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Application of differentiation therapy targeting cellular plasticity for the treatment of solid malignancies has been lagging. Nasopharyngeal carcinoma (NPC) is a distinctive cancer with poor differentiation and high prevalence of Epstein-Barr virus (EBV) infection. Here, we show that the expression of EBV latent protein LMP1 induces dedifferentiated and stem-like status with high plasticity through the transcriptional inhibition of CEBPA. Mechanistically, LMP1 upregulates STAT5A and recruits HDAC1/2 to the CEBPA locus to reduce its histone acetylation. HDAC inhibition restored CEBPA expression, reversing cellular dedifferentiation and stem-like status in mouse xenograft models. These findings provide a novel mechanistic epigenetic-based insight into virus-induced cellular plasticity and propose a promising concept of differentiation therapy in solid tumor by using HDAC inhibitors to target cellular plasticity.
Collapse
Affiliation(s)
- Jiajun Xie
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
- Department of Hematology; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine; Liaoning Medical Center for Hematopoietic Stem Cell Transplantation; Dalian Key Laboratory of Hematology; Diamond Bay Institute of Hematology, The Affiliated Second Hospital of Dalian Medical University, Dalian, China
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Wenjun Fan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Youping Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Fang Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiangbo Wan
- Department of Radiation Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Meiling Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xuan Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Deshun Zeng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yan Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Bin He
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Min Yan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zijian Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Mengjuan Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zhijie Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Chunli Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zhijie Kang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Wenfeng Fang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Li Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Eric W-F Lam
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiang Guo
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jinsong Yan
- Department of Hematology; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine; Liaoning Medical Center for Hematopoietic Stem Cell Transplantation; Dalian Key Laboratory of Hematology; Diamond Bay Institute of Hematology, The Affiliated Second Hospital of Dalian Medical University, Dalian, China.
| | - Yixin Zeng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| | - Mingyuan Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| | - Quentin Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
- Sun Yat-sen Institute of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
20
|
Santoni M, Iacovelli R, Colonna V, Klinz S, Mauri G, Nuti M. Antitumor effects of the multi-target tyrosine kinase inhibitor cabozantinib: a comprehensive review of the preclinical evidence. Expert Rev Anticancer Ther 2021; 21:1029-1054. [PMID: 34445927 DOI: 10.1080/14737140.2021.1919090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Altered receptor tyrosine kinase (RTK) signaling contributes to tumorigenesis and suppression of immune-mediated destruction of cancer cells. Cabozantinib is an oral tyrosine kinase inhibitor that inhibits several RTKs involved in tumorigenesis, and is approved for the treatment of patients with progressive metastatic medullary thyroid cancer, advanced renal cell carcinoma, and hepatocellular carcinoma that has been previously treated with sorafenib. AREAS COVERED We present an up-to-date evaluation of preclinical evidence for RTK inhibition with cabozantinib, specifically VEGFR, MET, KIT, RET, AXL, FLT3, and associated antitumor effects. Preclinical investigations of cabozantinib in combination with other anticancer drugs are also reviewed. EXPERT OPINION Preclinical evidence shows that cabozantinib has antitumor activity against various cancer cells and exhibits synergy with other anticancer agents, including immune checkpoint inhibitors and hormone receptor or metabolic pathway inhibitors. Further optimization of cabozantinib treatment requires the identification of biomarkers of response and resistance, and exploration of complementary drug targets. Investigation of mechanisms of adaptive resistance, such as epithelial to mesenchymal transition (cancer intrinsic) and immunomodulation by the tumor microenvironment (cancer extrinsic), as well as identification of novel drug targets based on characterization of cancer stem cell metabolomic phenotypes, appear to be promising approaches.
Collapse
Affiliation(s)
- Matteo Santoni
- MD, U.O.C. Medical Oncology, Macerata Hospital, Macerata, Italy
| | - Roberto Iacovelli
- Medical Oncologist, Medical Oncology Unit, Fondazione Policlinico Agostino Gemelli IRCCS, Roma, Italy
| | - Valentina Colonna
- Global Medical Development Director, Global Oncology R&D, Ipsen S.p.A., Milano, Italy
| | - Stephan Klinz
- Senior Director, Translational Medicine & Biomarkers, Ipsen, United States, MA, USA
| | - Giorgio Mauri
- Medical Advisor Oncology, Ipsen S.p.A., Milano, Italy
| | - Marianna Nuti
- Professor, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
A novel ligand of the translationally controlled tumor protein (TCTP) identified by virtual drug screening for cancer differentiation therapy. Invest New Drugs 2021; 39:914-927. [PMID: 33492639 PMCID: PMC8280061 DOI: 10.1007/s10637-020-01042-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/26/2020] [Indexed: 01/01/2023]
Abstract
Introduction Differentiation therapy is a promising strategy for cancer treatment. The translationally controlled tumor protein (TCTP) is an encouraging target in this context. By now, this field of research is still at its infancy, which motivated us to perform a large-scale screening for the identification of novel ligands of TCTP. We studied the binding mode and the effect of TCTP blockade on the cell cycle in different cancer cell lines. Methods Based on the ZINC-database, we performed virtual screening of 2,556,750 compounds to analyze the binding of small molecules to TCTP. The in silico results were confirmed by microscale thermophoresis. The effect of the new ligand molecules was investigated on cancer cell survival, flow cytometric cell cycle analysis and protein expression by Western blotting and co-immunoprecipitation in MOLT-4, MDA-MB-231, SK-OV-3 and MCF-7 cells. Results Large-scale virtual screening by PyRx combined with molecular docking by AutoDock4 revealed five candidate compounds. By microscale thermophoresis, ZINC10157406 (6-(4-fluorophenyl)-2-[(8-methoxy-4-methyl-2-quinazolinyl)amino]-4(3H)-pyrimidinone) was identified as TCTP ligand with a KD of 0.87 ± 0.38. ZINC10157406 revealed growth inhibitory effects and caused G0/G1 cell cycle arrest in MOLT-4, SK-OV-3 and MCF-7 cells. ZINC10157406 (2 × IC50) downregulated TCTP expression by 86.70 ± 0.44% and upregulated p53 expression by 177.60 ± 12.46%. We validated ZINC10157406 binding to the p53 interaction site of TCTP and replacing p53 by co-immunoprecipitation. Discussion ZINC10157406 was identified as potent ligand of TCTP by in silico and in vitro methods. The compound bound to TCTP with a considerably higher affinity compared to artesunate as known TCTP inhibitor. We were able to demonstrate the effect of TCTP blockade at the p53 binding site, i.e. expression of TCTP decreased, whereas p53 expression increased. This effect was accompanied by a dose-dependent decrease of CDK2, CDK4, CDK, cyclin D1 and cyclin D3 causing a G0/G1 cell cycle arrest in MOLT-4, SK-OV-3 and MCF-7 cells. Our findings are supposed to stimulate further research on TCTP-specific small molecules for differentiation therapy in oncology.
Collapse
|
22
|
Li C, Zhou Y, Kim JT, Sengoku T, Alstott MC, Weiss HL, Wang Q, Evers BM. Regulation of SIRT2 by Wnt/β-catenin signaling pathway in colorectal cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118966. [PMID: 33450304 DOI: 10.1016/j.bbamcr.2021.118966] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/27/2023]
Abstract
Activation of the Wnt/β-catenin pathway is one of the hallmarks of colorectal cancer (CRC). Sirtuin 2 (SIRT2) protein has been shown to inhibit CRC proliferation. Previously, we reported that SIRT2 plays an important role in the maintenance of normal intestinal cell homeostasis. Here, we show that SIRT2 is a direct target gene of Wnt/β-catenin signaling in CRC cells. Inhibition or knockdown of Wnt/β-catenin increased SIRT2 promoter activity and mRNA and protein expression, whereas activation of Wnt/β-catenin decreased SIRT2 promoter activity and expression. β-Catenin was recruited to the promoter of SIRT2 and transcriptionally regulated SIRT2 expression. Wnt/β-catenin inhibition increased mitochondrial oxidative phosphorylation (OXPHOS) and CRC cell differentiation. Moreover, inhibition of OXPHOS attenuated the differentiation of CRC cells induced by Wnt/β-catenin inhibition. In contrast, inhibition or knockdown of SIRT2 decreased, while overexpression of SIRT2 increased, OXPHOS activity and differentiation in CRC cells. Consistently, inhibition or knockdown or SIRT2 attenuated the differentiation induced by Wnt/β-catenin inhibition. These results demonstrate that SIRT2 is a novel target gene of the Wnt/β-catenin signaling and contributes to the differentiation of CRC cells.
Collapse
Affiliation(s)
- Chang Li
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Yuning Zhou
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Ji Tae Kim
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Tomoko Sengoku
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | | | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Qingding Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA; Department of Surgery, University of Kentucky, Lexington, KY, USA.
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA; Department of Surgery, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
23
|
A novel role of tumor suppressor ZMYND8 in inducing differentiation of breast cancer cells through its dual-histone binding function. J Biosci 2020. [DOI: 10.1007/s12038-019-9980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Wang Z, Li Y, Lu X, Yuan J, Qiu Q, Pan C. Increased sensitivity of BCR-ABL-induced B-ALL to imatinib by releasing leukemia B cell differentiation blockage. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2738-2745. [PMID: 33284894 PMCID: PMC7716132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/18/2020] [Indexed: 06/12/2023]
Abstract
AIMS In B cell acute lymphocytic leukemia (B-ALL), B cells are blocked mainly at the pro/pre-B phase, making them poorly responsive to imatinib. We aimed to investigate whether it was possible to promote pro/pre-B cell maturation beyond this phase and make them sensitive to imatinib treatment by overexpressing immunoregulatory tyrosine activation motif (ITAM) with BCR-ABL in a Ph+ B-ALL mouse model. MATERIALS & METHODS Ph+ B-ALL mouse models were induced by BCR-ABL using retroviral transduction/transplantation. RESULTS Overexpression of ITAM promoted the differentiation of blocked pro/pre-B cells to B220+IgM+ and increased disease sensitivity to imatinib in mice. Btk deficiency accelerated the progression of BCR-ABL-induced B-ALL. CONCLUSION B-cell development blockage released by ITAM renders leukemia cells sensitive to imatinib treatment in BCR-ABL-induced B-ALL.
Collapse
Affiliation(s)
- Zi Wang
- Department of Oncology, Guizhou Provincial People’s HospitalGuiyang 550002, China
| | - Yong Li
- Department of Oncology, Guizhou Provincial People’s HospitalGuiyang 550002, China
| | - Xiaokai Lu
- Department of Oncology, Guizhou Provincial People’s HospitalGuiyang 550002, China
| | - Jia Yuan
- Department of Oncology, Guizhou Provincial People’s HospitalGuiyang 550002, China
| | - Qiang Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengdu 610041, China
| | - Cong Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengdu 610041, China
- Chengdu eBond Biomedical Research CenterChengdu 610041, China
| |
Collapse
|
25
|
Ullah M, Meziani S, Shah S, Kaci R, Pimpie C, Pocard M, Mirshahi M. Differentiation of cancer cells upregulates HLA‑G and PD‑L1. Oncol Rep 2020; 43:1797-1804. [PMID: 32236615 PMCID: PMC7160553 DOI: 10.3892/or.2020.7572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/19/2020] [Indexed: 12/28/2022] Open
Abstract
A tumor contains special types of cells that have characteristics similar to stem cells that aid in tumor initiation, evasion and proliferation and are often resistant to chemotherapy. These cancer stem cells can be differentiated to eradicate their stemness and proliferative capacity by differentiating agents. This study investigated the effect of differentiation on the expression of two immune checkpoint inhibitors, human leukocyte antigen‑G (HLA‑G) and programmed death ligand‑1 (PD‑L1). Two cancer cell lines (OVCAR‑3‑NIH and KATO‑III) were treated with adipocyte and neurocyte differentiation media for 14 days. Bone‑marrow derived mesenchymal stem cells (BM‑MSCs) were used as control healthy stem cells. We found that the cancer cell lines (OVCAR‑3‑NIH and KATO‑III) when subjected to differentiation lost their proliferation ability. BM‑MSC proliferation was not halted but was decreased in the adipocyte differentiation media. There was no decrease in the CD90 stem cell marker in the BM‑MSCs; however, both cancer cell lines showed decreased CD90 stem cell marker. A significant increase in HLA‑G was noted for both the cancer cell lines following adipocyte differentiation. No effect was found for BM‑MSCs. Moreover, an increase in PD‑L1 in cancer cell lines was found following neurocyte differentiation. Moreover, we found that differentiation resulted in decreased PD‑L1 expression in BM‑MSCs. Differentiation therapy of cancer stem cells may result in increased immunosuppression ability, hence causing hindrance in the removal of cancer cells. Moreover, the differentiation of healthy stem cells can result in increased immunogenic reactivity owing to a decrease in PD‑L1 expression.
Collapse
Affiliation(s)
- Matti Ullah
- CAP-Paris Tech., INSERM U1275, Lariboisière Hospital, 75010 Paris, France
| | - Sarah Meziani
- CAP-Paris Tech., INSERM U1275, Lariboisière Hospital, 75010 Paris, France
| | - Shahid Shah
- CAP-Paris Tech., INSERM U1275, Lariboisière Hospital, 75010 Paris, France
| | - Rachid Kaci
- CAP-Paris Tech., INSERM U1275, Lariboisière Hospital, 75010 Paris, France
| | - Cynthia Pimpie
- CAP-Paris Tech., INSERM U1275, Lariboisière Hospital, 75010 Paris, France
| | - Marc Pocard
- CAP-Paris Tech., INSERM U1275, Lariboisière Hospital, 75010 Paris, France
| | - Massoud Mirshahi
- CAP-Paris Tech., INSERM U1275, Lariboisière Hospital, 75010 Paris, France
| |
Collapse
|
26
|
Becskei A. Tuning up Transcription Factors for Therapy. Molecules 2020; 25:E1902. [PMID: 32326099 PMCID: PMC7221782 DOI: 10.3390/molecules25081902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
The recent developments in the delivery and design of transcription factors put their therapeutic applications within reach, exemplified by cell replacement, cancer differentiation and T-cell based cancer therapies. The success of such applications depends on the efficacy and precision in the action of transcription factors. The biophysical and genetic characterization of the paradigmatic prokaryotic repressors, LacI and TetR and the designer transcription factors, transcription activator-like effector (TALE) and CRISPR-dCas9 revealed common principles behind their efficacy, which can aid the optimization of transcriptional activators and repressors. Further studies will be required to analyze the linkage between dissociation constants and enzymatic activity, the role of phase separation and squelching in activation and repression and the long-range interaction of transcription factors with epigenetic regulators in the context of the chromosomes. Understanding these mechanisms will help to tailor natural and synthetic transcription factors to the needs of specific applications.
Collapse
Affiliation(s)
- Attila Becskei
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
27
|
Zare M, Norouzi Roshan Z, Assadpour E, Jafari SM. Improving the cancer prevention/treatment role of carotenoids through various nano-delivery systems. Crit Rev Food Sci Nutr 2020; 61:522-534. [PMID: 32180434 DOI: 10.1080/10408398.2020.1738999] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
One of the emerging and recent strategies to combat cancer is application of natural bioactive compounds and phytochemicals. Carotenoids including lycopene, β-carotene, astaxanthin, crocin, β-cryptoxanthin, and lutein, are the main group of plant pigments which play important roles in the prevention and healing process of different diseases including cancer. The pharmacological use of carotenoid compounds is frequently limited by their low bioavailability and solubility as they are mainly lipophilic compounds. The present study focuses on the current data on formulation of different carotenoid nanodelivery systems for cancer therapy and a brief overview of the obtained results. Encapsulation of carotenoids within different nanocarriers is a remarkable approach and innovative strategy for the improvement of health-promoting features and particularly, cancer prevention/treatment roles of these compounds through enhancing their solubility, cellular uptake, membrane permeation, bioaccessibility, and stability. There is various nanocarrier for loading carotenoids including polymeric/biopolymeric, lipid-based, inorganic, and hybrid nanocarriers. Almost in all relevant studies, these nano delivery systems have shown promising results in improving the efficiency of carotenoids in cancer therapy. [Formula: see text].
Collapse
Affiliation(s)
- Mahboobeh Zare
- Faculty of Medicinal Plants, Department of Basic and Science, Amol University of Special Modern Technologies, Amol, Iran
| | - Zahra Norouzi Roshan
- Department of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
28
|
Autenshlyus A, Arkhipov S, Mikhailova E, Marinkin I, Varaksin N, Vavilin V, Lyakhovich V. Effects of polyclonal activators on cell differentiation and cytokine production of cultured invasive breast carcinoma of no special type, their association with tumour histopathological parameters and lymph node metastasis. Int J Immunopathol Pharmacol 2020; 34:2058738420950580. [PMID: 33100082 PMCID: PMC7786416 DOI: 10.1177/2058738420950580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
Currently, a number of promising strategies and approaches to cancer treatment include differentiation therapy. However, theoretical and methodological foundations of this field are not yet well developed. The objective of this study was to determine the effects of a mixture of polyclonal activators (PAs; phytohaemagglutinin, concanavalin A and lipopolysaccharide) on cytokine production by biopsy samples of invasive breast carcinoma of no special type (IBC-NST) having various differentiation abilities and metastatic potentials as well as on differentiation status of the IBC-NST biopsy samples. We used ELISAs to investigate spontaneous and PA-stimulated cytokine production in the IBC-NST biopsy samples; from these data, we calculated a cytokine production stimulation index (SIPA). The effect of PAs on tumour cell differentiation was determined via a differentiation stimulation index (DSI). DSI was found to vary within the range 1.0-5.0. After treatment with PAs, in the IBC-NST biopsy samples of group I (DSI <1.25), the production of IL-2, IL-6, IL-8, IL-17, IL-18, IL-1β, IL-1Ra, TNF-α and GM-CSF increased; in the biopsy samples of group II (DSI >1.25), the production of IL-6, IL-1β, IL-1Ra, TNF-α, G-CSF and GM-CSF significantly increased, while the production of VEGF-A decreased. Receiver operating characteristic (ROC) analysis of SIPA revealed that increased production of IL-18 in the IBC-NST biopsy samples after exposure to PAs may block the PA-driven, cytokine-mediated differentiation of moderately differentiated into highly differentiated tumour cells. The ROC analysis also uncovered an association between the responses of tumour cells to PAs and lymph node metastasis observed in the patients. The findings suggest that there is a need for research aimed at finding new drugs for differentiating cancer therapy and at searching for targeted inducers of cytokine production or specific suppressors of their induction.
Collapse
Affiliation(s)
- Alexander Autenshlyus
- Novosibirsk State Medical University, Russia
- Institute of Molecular Biology and Biophysics, Subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Sergey Arkhipov
- Novosibirsk State Medical University, Russia
- Institute of Molecular Biology and Biophysics, Subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Elena Mikhailova
- Novosibirsk State Medical University, Russia
- Institute of Molecular Biology and Biophysics, Subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | | | | | - Valentin Vavilin
- Institute of Molecular Biology and Biophysics, Subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Vyacheslav Lyakhovich
- Institute of Molecular Biology and Biophysics, Subdivision of Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
29
|
Mukherjee S, Sen S, Adhikary S, Sengupta A, Mandal P, Dasgupta D, Chakrabarti P, Roy S, DAS C. A novel role of tumor suppressor ZMYND8 in inducing differentiation of breast cancer cells through its dual-histone binding function. J Biosci 2020; 45:2. [PMID: 31965980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Accumulating evidences indicate the involvement of epigenetic deregulations in cancer. While some epigenetic regulators with aberrant functions in cancer are targeted for improving therapeutic outcome in patients, reinstating the functions of tumor-suppressor-like epigenetic regulators might further potentiate anti-cancer therapies. Epigenetic reader zinc-finger MYND-type-containing 8 (ZMYND8) has been found to be endowed with multiple anti-cancer functions like inhibition of tumor cell migration and proliferation. Here, we report another novel tumor suppressor role of ZMYND8 as an inducer of differentiation in breast cancer cells, by upregulating differentiation genes. Interestingly, we also demonstrated that ZMYND8 mediates all its antitumor roles through a common dual-histone mark binding to H4K16Ac and H3K36Me2. We validated these findings by both biochemical and biophysical analyses. Furthermore, we also confirmed the differentiationinducing potential of ZMYND8 in vivo, using 4T1 murine breast cancer model in Balb/c mice. Differentiation therapy holds great promise in cancer therapy, since it is non-toxic and makes the cancer cells therapysensitive. In this scenario, we propose epigenetic reader ZMYND8 as a potential therapeutic candidate for differentiation therapy in breast cancer.
Collapse
Affiliation(s)
- Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata 700 064, India
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Miodragović Ð, Swindell EP, Waxali ZS, Bogachkov A, O'Halloran TV. Beyond Cisplatin: Combination Therapy with Arsenic Trioxide. Inorganica Chim Acta 2019; 496:119030. [PMID: 32863421 PMCID: PMC7453736 DOI: 10.1016/j.ica.2019.119030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Platinum drugs (cisplatin, oxaliplatin, and carboplatin) and arsenic trioxide are the only commercial inorganic non-radioactive anticancer drugs approved by the US Food and Drug Administration. Numerous efforts are underway to take advantage of the synergy between the anticancer activity of cisplatin and arsenic trioxide - two drugs with strikingly different mechanisms of action. These include co-encapsulation of the two drugs in novel nanoscale delivery systems as well as the development of small molecule agents that combine the activity of these two inorganic materials. Several of these new molecular entities containing Pt-As bonds have broad anticancer activity, are robust in physiological buffer solutions, and form stable complexes with biopolymers. This review summarizes results from a number of preclinical studies involving the combination of cisplatin and As2O3, co-encapsulation and nanoformulation efforts, and the chemistry and cytotoxicity of the first member of platinum anticancer agents with an arsenous acid moiety bound to the platinum(II) center: arsenoplatins.
Collapse
Affiliation(s)
- Ðenana Miodragović
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Northeastern Illinois University, 5500 North St Louis Avenue, Chicago, Illinois 60625, United States
| | - Elden P Swindell
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zohra Sattar Waxali
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Abraham Bogachkov
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas V O'Halloran
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Khemiri M, Doghri R, Mrad K, Friedrich K, Oueslati R. Mucin-1 expression and localization in epithelial cells shows characteristic and distinct patterns in inflammatory bowel diseases and colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1731-1737. [PMID: 31933991 PMCID: PMC6947141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/19/2018] [Indexed: 06/10/2023]
Abstract
Alterations in colonic mucus secretion are linked to the induction and maintenance of inflammation during inflammatory bowel disease (IBD) and its progression to colorectal cancer (CRC). MUC1, a multifunctional glycoprotein, is the best studied cell surface mucin in mouse models of IBD and CRC. However, little information on MUC1 expression and localization in different types of pathologic human colon mucosa is available. In this work, expression and subcellular localization of MUC1 in different types of diseased human colon mucosa from a cohort of Tunisian patients is analyzed and correlated with the type of disorder. Colon tissue samples were obtained from 39 cases of CRC and 18 cases of IBD. 13 cases of normal adjacent colon mucosa tissues served as controls. Biopsies were subjected to immunohistochemical analysis of MUC1 expression. Signals were quantified densitometrically and characterized with regard to tissue and intracellular distribution. Results were then correlated with the different types of colon disorder. Immunohistochemical investigation of MUC1 in a cohort of inflammatory bowel diseases and colorectal cancer showed a significant divergence in the expression of MUC1 in terms intensity (18.96% ± 0.55 vs 27.26% ± 1.24 respectively; P=0.005) and localization between the two types of lesions (30.76% vs 70.96% respectively; P=0.0199). Our findings show divergent characteristic patterns for MUC1 expression and localization in different types of pathologic alterations of the colon mucosa. These results are of potential diagnostic and predictive clinical value.
Collapse
Affiliation(s)
- Manel Khemiri
- Unit of Immunology and Microbiology Environmental and Carcinogenesis (IMEC), Faculty of Sciences of Bizerte, Carthage UniversityZarzouna 7021, Tunisia
| | - Raoudha Doghri
- Department of Pathology, Salah Azaeiz InstituteBab Saadoun 1006 Tunis, Tunisia
| | - Karima Mrad
- Department of Pathology, Salah Azaeiz InstituteBab Saadoun 1006 Tunis, Tunisia
| | | | - Ridha Oueslati
- Unit of Immunology and Microbiology Environmental and Carcinogenesis (IMEC), Faculty of Sciences of Bizerte, Carthage UniversityZarzouna 7021, Tunisia
| |
Collapse
|
32
|
White EA. Manipulation of Epithelial Differentiation by HPV Oncoproteins. Viruses 2019; 11:v11040369. [PMID: 31013597 PMCID: PMC6549445 DOI: 10.3390/v11040369] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 02/06/2023] Open
Abstract
Papillomaviruses replicate and cause disease in stratified squamous epithelia. Epithelial differentiation is essential for the progression of papillomavirus replication, but differentiation is also impaired by papillomavirus-encoded proteins. The papillomavirus E6 and E7 oncoproteins partially inhibit and/or delay epithelial differentiation and some of the mechanisms by which they do so are beginning to be defined. This review will outline the key features of the relationship between HPV infection and differentiation and will summarize the data indicating that papillomaviruses alter epithelial differentiation. It will describe what is known so far and will highlight open questions about the differentiation-inhibitory mechanisms employed by the papillomaviruses.
Collapse
Affiliation(s)
- Elizabeth A White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Mohammadniaei M, Yoon J, Choi HK, Placide V, Bharate BG, Lee T, Choi JW. Multifunctional Nanobiohybrid Material Composed of Ag@Bi 2Se 3/RNA Three-Way Junction/miRNA/Retinoic Acid for Neuroblastoma Differentiation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8779-8788. [PMID: 30714374 DOI: 10.1021/acsami.8b16925] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoparticle-based cell differentiation therapy has attracted increasing research interest as it is a promising substitute for conventional cancer treatment methods. Here, the topological insulator bismuth selenide nanoparticle (Bi2Se3 NP) was core-shelled with silver (Ag@Bi2Se3) to represent remarkable biocompatibility and plasmonic features (ca. 2.3 times higher than those of Ag nanoparticle). Moreover, a newly developed RNA three-way junction (3WJ) structure was designed for the quad-functionalization of any type of nanoparticle and surface. One leg of the 3WJ was attached to the Ag@Bi2Se3, and the other leg harbored a cell-penetrating RNA and a florescence tag. The third leg was designed to inhibit micro-RNA-17 (miR-17) and to further release retinoic acid (RA). A new drug delivery mechanism was developed for the slow release of RA inside the cytosol based on the prerequisite inhibition of miR-17 using a strand displacement strategy. In this paper, we report a simple methodology for resolving the hydrophobicity challenges of RA by its conjugation with a RNA strand (RA/R) through a stimulus-responsive cross-linker. The developed nanobiohybrid material could fully differentiate SH-SY5Y cancer cells into neurons and stop their growth in 6 days without requiring sequential treatments which has not been reported yet. Using a surface-enhanced Raman spectroscopy technique, the RA delivery and the cell differentiation process were monitored nondestructively in real time. The fabricated nanobiohybrid material could open the new horizons in the fabrication of different diagnostic/therapeutic agents.
Collapse
Affiliation(s)
- Mohsen Mohammadniaei
- Department of Chemical and Biomolecular Engineering , Sogang University , 35 Baekbeom-ro (Sinsu-dong) , Mapo-gu, Seoul 121-742 , Republic of Korea
| | - Jinho Yoon
- Department of Chemical and Biomolecular Engineering , Sogang University , 35 Baekbeom-ro (Sinsu-dong) , Mapo-gu, Seoul 121-742 , Republic of Korea
| | - Hye Kyu Choi
- Department of Chemical and Biomolecular Engineering , Sogang University , 35 Baekbeom-ro (Sinsu-dong) , Mapo-gu, Seoul 121-742 , Republic of Korea
| | - Virginie Placide
- Department of Chemical and Biomolecular Engineering , Sogang University , 35 Baekbeom-ro (Sinsu-dong) , Mapo-gu, Seoul 121-742 , Republic of Korea
| | - Bapurao Gangaram Bharate
- Department of Chemical and Biomolecular Engineering , Sogang University , 35 Baekbeom-ro (Sinsu-dong) , Mapo-gu, Seoul 121-742 , Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering , Kwangwoon University , 20 Kwangwoon-ro , Nowon-gu, Seoul 01897 , Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering , Sogang University , 35 Baekbeom-ro (Sinsu-dong) , Mapo-gu, Seoul 121-742 , Republic of Korea
| |
Collapse
|
34
|
Xiong Q, Wang X, Wang L, Huang Y, Tian X, Fan Y, Lin CY. BMP-2 inhibits lung metastasis of osteosarcoma: an early investigation using an orthotopic model. Onco Targets Ther 2018; 11:7543-7553. [PMID: 30464502 PMCID: PMC6214601 DOI: 10.2147/ott.s176724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, are known to regulate cell proliferation, differentiation, apoptosis, chemotaxis, and angiogenesis. BMPs also participate in the development of most tissues and organs in vertebrates. Recombinant human (rh) BMPs, such as rhBMP-2, rhBMP-4, and rhBMP-7, have been recently approved to augment spinal fusion and recalcitrant long-bone non-unions because of their equivalent or superior efficacy to autogenous bone graft in enhancing bony fusion. Nonetheless, the use of BMPs is contraindicated in surgery for bone tumors because of concerns that this anabolic growth factor may cause tumor proliferation. However, we have repeatedly reported that BMP-2 is effective in inducing osteogenic differentiation of a subpopulation of osteosarcoma (OSA) cells that acquire stem cell attributes and are capable of reconstituting tumor masses, which in turn suppress the malignancy of the bone tumor. Methods 3×105/20 µL human OSA 143B cells were inoculated into 5–6 weeks old BABL/c nude mice to establish orthotopic OSA. X-ray device was used to monitor the developed tumors in animals. Necropsy was performed and the pathology of lung metastasis were tested by Haemotoxylin and Eosin. Moreover, bone formation induced by rhBMP-2 was investigated through micro-computed tomography. In addition, immunohistochemistry staining was used to evaluate the tumorigenicity and growth of OSA cells after rhBMP-2 treatment. Results In the present study, we established an orthotopic model of OSA by inoculating 143B cells into BABL/c mice, which resulted in a tumor occurrence rate of 100%. Following the treatment with rhBMP-2, lung metastasis, which contributes to poor prognosis, was significantly restricted, indicating an additional aspect of rhBMP-2 to suppress expansion of OSA. Concurrently, our micro-computed tomography and radiographic analyses showed that rhBMP-2 reduced the invasion of tumor cells into adjacent bone tissue, which in turn helped to preserve the integrity of the affected bone tissue. Finally, the growth of Ki-67-positive cells and those cells that express high levels of aldehyde dehydrogenase (ALDHbr) was found to be inhibited in the developed tumors. Conclusion On the basis of these results, we conclude that rhBMP-2 can impede the malignancy of OSA by reducing lung metastasis of the tumor. Induction of the tumor cells by rhBMP-2 also helps to preserve the impaired skeleton. These results imply that BMP-2 or BMP-2-mimetic drugs, if properly combined with traditional therapies, may provide a new therapeutic option for the treatment of OSA.
Collapse
Affiliation(s)
- Qisheng Xiong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China, .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China,
| | - Xuesong Wang
- Spine Department, The No 2 Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lizhen Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China, .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China,
| | - Yan Huang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China, .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China,
| | - Xiaodong Tian
- Spine Department, The No 2 Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China, .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China,
| | - Chia-Ying Lin
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China, .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China, .,Department of Orthopaedic Surgery, University of Cincinnati Academic Health Center, Cincinnati, OH, USA, .,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA,
| |
Collapse
|
35
|
Wang G, Gu Y, Lu W, Liu X, Fu H. Fascin1 promotes gastric cancer progression by facilitatingcell migrationand epithelial-mesenchymal transition. Pathol Res Pract 2018; 214:1362-1369. [DOI: 10.1016/j.prp.2018.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/07/2018] [Accepted: 06/25/2018] [Indexed: 01/07/2023]
|
36
|
Gurunathan S, Kim JH. Graphene Oxide-Silver Nanoparticles Nanocomposite Stimulates Differentiation in Human Neuroblastoma Cancer Cells (SH-SY5Y). Int J Mol Sci 2017; 18:E2549. [PMID: 29182571 PMCID: PMC5751152 DOI: 10.3390/ijms18122549] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 12/16/2022] Open
Abstract
Recently, graphene and graphene related nanocomposite receive much attention due to high surface-to-volume ratio, and unique physiochemical and biological properties. The combination of metallic nanoparticles with graphene-based materials offers a promising method to fabricate novel graphene-silver hybrid nanomaterials with unique functions in biomedical nanotechnology, and nanomedicine. Therefore, this study was designed to prepare graphene oxide (GO) silver nanoparticles (AgNPs) nanocomposite (GO-AgNPs) containing two different nanomaterials in single platform with distinctive properties using luciferin as reducing agents. In addition, we investigated the effect of GO-AgNPs on differentiation in SH-SY5Y cells. The synthesized GO-AgNPs were characterized by ultraviolet-visible absorption spectroscopy (UV-vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The differentiation was confirmed by series of cellular and biochemical assays. The AgNPs were distributed uniformly on the surface of graphene oxide with an average size of 25 nm. As prepared GO-AgNPOs induces differentiation by increasing the expression of neuronal differentiation markers and decreasing the expression of stem cell markers. The results indicated that the redox biology involved the expression of various signaling molecules, which play an important role in differentiation. This study suggests that GO-AgNP nanocomposite could stimulate differentiation of SH-SY5Y cells. Furthermore, understanding the mechanisms of differentiation of neuroblastoma cells could provide new strategies for cancer and stem cell therapies. Therefore, these studies suggest that GO-AgNPs could target specific chemotherapy-resistant cells within a tumor.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
37
|
Han JW, Gurunathan S, Choi YJ, Kim JH. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy. Int J Nanomedicine 2017; 12:7529-7549. [PMID: 29066898 PMCID: PMC5644540 DOI: 10.2147/ijn.s145147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Silver nanoparticles (AgNPs) exhibit strong antibacterial and anticancer activity owing to their large surface-to-volume ratios and crystallographic surface structure. Owing to their various applications, understanding the mechanisms of action, biological interactions, potential toxicity, and beneficial effects of AgNPs is important. Here, we investigated the toxicity and differentiation-inducing effects of AgNPs in teratocarcinoma stem cells. Materials and methods AgNPs were synthesized and characterized using various analytical techniques such as UV–visible spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The cellular responses of AgNPs were analyzed by a series of cellular and biochemical assays. Gene and protein expressions were analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Results The AgNPs showed typical crystalline structures and spherical shapes (average size =20 nm). High concentration of AgNPs induced cytotoxicity in a dose-dependent manner by increasing lactate dehydrogenase leakage and reactive oxygen species. Furthermore, AgNPs caused mitochondrial dysfunction, DNA fragmentation, increased expression of apoptotic genes, and decreased expression of antiapoptotic genes. Lower concentrations of AgNPs induced neuronal differentiation by increasing the expression of differentiation markers and decreasing the expression of stem cell markers. Cisplatin reduced the viability of F9 cells that underwent AgNPs-induced differentiation. Conclusion The results showed that AgNPs caused differentially regulated cytotoxicity and induced neuronal differentiation of F9 cells in a concentration-dependent manner. Therefore, AgNPs can be used for differentiation therapy, along with chemotherapeutic agents, for improving cancer treatment by targeting specific chemotherapy-resistant cells within a tumor. Furthermore, understanding the molecular mechanisms of apoptosis and differentiation in stem cells could also help in developing new strategies for cancer stem cell (CSC) therapies. The findings of this study could significantly contribute to the nanomedicine because this study is the first of its kind, and our results will lead to new strategies for cancer and CSC therapies.
Collapse
Affiliation(s)
- Jae Woong Han
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Manavalan B, Basith S, Shin TH, Choi S, Kim MO, Lee G. MLACP: machine-learning-based prediction of anticancer peptides. Oncotarget 2017; 8:77121-77136. [PMID: 29100375 PMCID: PMC5652333 DOI: 10.18632/oncotarget.20365] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/13/2017] [Indexed: 01/25/2023] Open
Abstract
Cancer is the second leading cause of death globally, and use of therapeutic peptides to target and kill cancer cells has received considerable attention in recent years. Identification of anticancer peptides (ACPs) through wet-lab experimentation is expensive and often time consuming; therefore, development of an efficient computational method is essential to identify potential ACP candidates prior to in vitro experimentation. In this study, we developed support vector machine- and random forest-based machine-learning methods for the prediction of ACPs using the features calculated from the amino acid sequence, including amino acid composition, dipeptide composition, atomic composition, and physicochemical properties. We trained our methods using the Tyagi-B dataset and determined the machine parameters by 10-fold cross-validation. Furthermore, we evaluated the performance of our methods on two benchmarking datasets, with our results showing that the random forest-based method outperformed the existing methods with an average accuracy and Matthews correlation coefficient value of 88.7% and 0.78, respectively. To assist the scientific community, we also developed a publicly accessible web server at www.thegleelab.org/MLACP.html.
Collapse
Affiliation(s)
| | - Shaherin Basith
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Institute of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sun Choi
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 Plus), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Institute of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
39
|
Ovalle-Magallanes B, Eugenio-Pérez D, Pedraza-Chaverri J. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food Chem Toxicol 2017; 109:102-122. [PMID: 28842267 DOI: 10.1016/j.fct.2017.08.021] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022]
Abstract
Garcinia mangostana L. (Clusiaceae) is a tropical tree native to Southeast Asia known as mangosteen which fruits possess a distinctive and pleasant taste that has granted them the epithet of "queen of the fruits". The seeds and pericarps of the fruit have a long history of use in the traditional medicinal practices of the region, and beverages containing mangosteen pulp and pericarps are sold worldwide as nutritional supplements. The main phytochemicals present in the species are isoprenylated xanthones, a class of secondary metabolites with multiple reports of biological effects, such as antioxidant, pro-apoptotic, anti-proliferative, antinociceptive, anti-inflammatory, neuroprotective, hypoglycemic and anti-obesity. The diversity of actions displayed by mangosteen xanthones shows that these compounds target multiple signaling pathways involved in different pathologies, and place them as valuable sources for developing new drugs to treat chronic and degenerative diseases. This review article presents a comprehensive update of the toxicological findings on animal models, and the preclinical anticancer, analgesic, neuroprotective, antidiabetic and hypolipidemic effects of G. mangostana L. extracts and its main isolates. Pharmacokinetics, drug delivery systems and reports on dose-finding human trials are also examined.
Collapse
Affiliation(s)
- Berenice Ovalle-Magallanes
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Dianelena Eugenio-Pérez
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico.
| |
Collapse
|
40
|
De Nicola M, Bruni E, Traversa E, Ghibelli L. Slow release of etoposide from dextran conjugation shifts etoposide activity from cytotoxicity to differentiation: A promising tool for dosage control in anticancer metronomic therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2005-2014. [PMID: 28535989 DOI: 10.1016/j.nano.2017.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/30/2017] [Accepted: 05/08/2017] [Indexed: 11/27/2022]
Abstract
Drug conjugation, improving drug stability, solubility and body permanence, allows achieving impressive results in tumor control. Here, we show that conjugation may provide a straightforward method to administer drugs by the emerging anticancer metronomic approach, presently consisting of low, repeated doses of cytotoxic drugs used in traditional chemotherapy, thus reducing toxicity without reducing efficiency; however, low dose maintenance in tumor sites is difficult. We show that conjugating the antitumor drug etoposide to dextran via pH-sensitive bond produces slow releasing, apoptosis-proficient conjugates rapidly internalized into acidic lysosomes; importantly, release of active etoposide requires cell internalization and acidic pH. Conjugation, without impairing etoposide-induced complete elimination of tumor cells, shifted the mode of apoptosis from cytotoxicity- to differentiation-related; interestingly, high conjugate doses acted as low doses of free etoposide, thus mimicking the effect of metronomic therapy. This indicates slow release as a promising novel strategy for stabilizing low drug levels in metronomic regimens.
Collapse
Affiliation(s)
- Milena De Nicola
- Dipartimento di Biologia, Università di Roma Tor Vergata, Roma, Italy; Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Roma, Italy.
| | - Emanuele Bruni
- Dipartimento di Biologia, Università di Roma Tor Vergata, Roma, Italy.
| | - Enrico Traversa
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Roma, Italy; International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Lina Ghibelli
- Dipartimento di Biologia, Università di Roma Tor Vergata, Roma, Italy.
| |
Collapse
|
41
|
Li JZH, Gao W, Ho WK, Lei WB, Wei WI, Chan JYW, Wong TS. The clinical association of programmed cell death protein 4 (PDCD4) with solid tumors and its prognostic significance: a meta-analysis. CHINESE JOURNAL OF CANCER 2016; 35:95. [PMID: 27852288 PMCID: PMC5112731 DOI: 10.1186/s40880-016-0158-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/15/2016] [Indexed: 12/26/2022]
Abstract
Background Programmed cell death protein 4 (PDCD4) is a novel tumor suppressor protein involved in programmed cell death. Its association with cancer progression has been observed in multiple tumor models, but evidence supporting its association with solid tumors in humans remains controversial. This study aimed to determine the clinical significance and prognostic value of PDCD4 in solid tumors. Methods A systematic literature review was performed to retrieve publications with available clinical information and survival data. The eligibility of the selected articles was based on the criteria of the Dutch Cochrane Centre proposed by the Meta-analysis Of Observational Studies in Epidemiology group. Pooled odds ratios (ORs), hazard ratios (HRs), and 95% confidence intervals (CIs) for survival analysis were calculated. Publication bias was examined by Begg’s and Egger’s tests. Results Clinical data of 2227 cancer patients with solid tumors from 23 studies were evaluated. PDCD4 expression was significantly associated with the differentiation status of head and neck cancer (OR 4.25, 95% CI 1.87–9.66) and digestive system cancer (OR 2.87, 95% CI 1.84–4.48). Down-regulation of PDCD4 was significantly associated with short overall survival of patients with head and neck (HR: 3.44, 95% CI 2.38–4.98), breast (HR: 1.86, 95% CI 1.36–2.54), digestive system (HR: 2.12, 95% CI 1.75–2.56), and urinary system cancers (HR: 3.16, 95% CI 1.06–9.41). Conclusions The current evidence suggests that PDCD4 down-regulation is involved in the progression of several types of solid tumor and is a potential marker for solid tumor prognoses. Its clinical usefulness should be confirmed by large-scale prospective studies.
Collapse
Affiliation(s)
- John Zeng Hong Li
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong, SAR, P. R. China
| | - Wei Gao
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong, SAR, P. R. China
| | - Wai-Kuen Ho
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong, SAR, P. R. China
| | - Wen Bin Lei
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - William Ignace Wei
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong, SAR, P. R. China
| | - Jimmy Yu-Wai Chan
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong, SAR, P. R. China
| | - Thian-Sze Wong
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong, SAR, P. R. China.
| |
Collapse
|
42
|
Liao CH, Lai IC, Kuo HC, Chuang SE, Lee HL, Whang-Peng J, Yao CJ, Lai GM. [Breath test using C-13-trioleate in the evaluation of the rate of fatty acid metabolism after parenteral feeding of premature and newborn infants]. Mar Drugs 1989; 17:md17090525. [PMID: 31500384 PMCID: PMC6780514 DOI: 10.3390/md17090525] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Malignant glioma (MG) is a poor prognostic brain tumor with inevitable recurrence after multimodality treatment. Searching for more effective treatment is urgently needed. Differentiation induction via epigenetic modification has been proposed as a potential anticancer strategy. Natural products are known as fruitful sources of epigenetic modifiers with wide safety margins. We thus explored the effects of oligo-fucoidan (OF) from brown seaweed on this notion in MG cells including Grade III U87MG cells and Grade IV glioblastoma multiforme (GBM)8401 cells and compared to the immortalized astrocyte SVGp12 cells. The results showed that OF markedly suppress the proliferation of MG cells and only slightly affected that of SVGp12 cells. OF inhibited the protein expressions of DNA methyltransferases 1, 3A and 3B (DNMT1, 3A and 3B) accompanied with obvious mRNA induction of differentiation markers (MBP, OLIG2, S100β, GFAP, NeuN and MAP2) both in U87MG and GBM8401 cells. Accordingly, the methylation of p21, a DNMT3B target gene, was decreased by OF. In combination with the clinical DNMT inhibitor decitabine, OF could synergize the growth inhibition and MBP induction in U87MG cells. Appropriated clinical trials are warranted to evaluate this potential complementary approach for MG therapy after confirmation of the effects in vivo.
Collapse
Affiliation(s)
- Chien-Huang Liao
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - I-Chun Lai
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hui-Ching Kuo
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jacqueline Whang-Peng
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Chih-Jung Yao
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Gi-Ming Lai
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|