1
|
Sobti A, Skinner H, Wilke CT. Predictors of Radiation Resistance and Novel Radiation Sensitizers in Head and Neck Cancers: Advancing Radiotherapy Efficacy. Semin Radiat Oncol 2025; 35:224-242. [PMID: 40090749 DOI: 10.1016/j.semradonc.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/18/2025]
Abstract
Radiation resistance in head and neck squamous cell carcinoma (HNSCC), driven by intrinsic and extrinsic factors, poses a significant challenge in radiation oncology. The key contributors are tumor hypoxia, cancer stem cells, cell cycle checkpoint activation, and DNA repair processes (homologous recombination and non-homologous end-joining). Genetic modifications such as TP53 mutations, KRAS mutations, EGFR overexpression, and abnormalities in DNA repair proteins like BRCA1/2 additionally affect radiation sensitivity. Novel radiosensitizers targeting these pathways demonstrate the potential to overcome resistance. Hypoxia-activated drugs and gold nanoparticles enhance the efficacy of radiotherapy and facilitate targeted distribution. Integrating immunotherapy, especially immune checkpoint inhibitors, with radiation therapy, enhances anti-tumor responses and reduces resistance. Epigenetic alterations, such as DNA methylation and histone acetylation, significantly influence radiation response, with the potential for sensitization through histone deacetylase inhibitors and non-coding RNA regulators. Metabolic changes linked to glucose, lipid, and glutamine metabolism influence radiosensitivity, uncovering new targets for radiosensitization. Human papillomavirus (HPV)-associated malignancies exhibit increased radiosensitivity relative to other tumors due to impaired DNA repair mechanisms and heightened immunogenicity. Furthermore, understanding the interplay between HPV oncoproteins and p53 functionality can enhance treatment strategies for HPV-related cancers. Using DNA damage response inhibitors (PARP, ATM/ATR), cell cycle checkpoint inhibitors (WEE1, CHK1/2), and hypoxia-targeted agents as radiosensitizing strategies exhibit considerable promise. Immunomodulatory approaches, including PD-1 and CTLA-4 inhibitors in conjunction with radiation, enhance anti-tumor immunity. Future directions emphasize personalized radiation therapy using genetics, sophisticated medication delivery systems, adaptive radiotherapy, and real-time monitoring. These integrated strategies seek to diminish radiation resistance and improve therapeutic efficacy in HNSCC.
Collapse
Affiliation(s)
- Aastha Sobti
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Heath Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Christopher T Wilke
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA..
| |
Collapse
|
2
|
Rojas LXR, Vasquez-Forero D, Albán JJ, Doza L, Murillo S, Olave-Rodriguez JA, Nastasi J. Familiar cylindromatosis in a Colombian family caused by a mutation in CYLD. Ecancermedicalscience 2024; 18:1768. [PMID: 39430072 PMCID: PMC11489096 DOI: 10.3332/ecancer.2024.1768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction The CYLD cutaneous syndrome is characterised by the appearance of multiple skin tumours, including cylindromas, spiradenomas, trichoepitheliomas and basal cell adenomas of the salivary gland and less frequently pulmonary cylindromas. The lesions appear in the second decade of life, typically present as single lesions, located mainly on the face and head and progressively increase in number, potentially affecting the torso, groin and axillae. Although lesions can affect both men and women, a higher frequency of affected women has been described. Case presentation CYLD cutaneous syndrome is caused by pathogenic variants in the CYLD gene, following an autosomal dominant inheritance pattern. We present the first Colombian case of a family affected by CYLD cutaneous syndrome, spanning three generations and characterised by early onset of skin lesions. This syndrome was molecularly confirmed by next-generation sequencing (NGS), reveling a heterozygous frameshift variant in the CYLD gene, specifically the type NM_015247.2 c.2291_2295delAACTA p.Lys764Ilefs*2, which was subsequently confirmed by Sanger sequencing. Conclusion Understanding the complex interplay of genetic, epigenetic and environmental factors in the malignant transformation of cylindroma to squamous eccrine ductal carcinoma is crucial for developing targeted therapies and improving patient outcomes. Key messages The CYLD cutaneous syndrome in a Colombian family.
Collapse
Affiliation(s)
- Lisa Ximena Rodríguez Rojas
- Department of Human Genetics, Fundación Valle del Lili, Cali 760026, Colombia
- Faculty of Health Sciences, ICESI University, Cali 760031, Colombia
| | | | - Juan José Albán
- Center of Clinical Research, Fundación Valle del Lili, Cali 760026, Colombia
| | - Liliana Doza
- Department of Human Genetics, Fundación Valle del Lili, Cali 760026, Colombia
| | - Sandra Murillo
- Department of Human Genetics, Fundación Valle del Lili, Cali 760026, Colombia
| | | | - José Nastasi
- Department of Human Genetics, Fundación Valle del Lili, Cali 760026, Colombia
- Faculty of Health Sciences, ICESI University, Cali 760031, Colombia
| |
Collapse
|
3
|
Muthuramalingam P, Jeyasri R, Varadharajan V, Priya A, Dhanapal AR, Shin H, Thiruvengadam M, Ramesh M, Krishnan M, Omosimua RO, Sathyaseelan DD, Venkidasamy B. Network pharmacology: an efficient but underutilized approach in oral, head and neck cancer therapy-a review. Front Pharmacol 2024; 15:1410942. [PMID: 39035991 PMCID: PMC11257993 DOI: 10.3389/fphar.2024.1410942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/05/2024] [Indexed: 07/23/2024] Open
Abstract
The application of network pharmacology (NP) has advanced our understanding of the complex molecular mechanisms underlying diseases, including neck, head, and oral cancers, as well as thyroid carcinoma. This review aimed to explore the therapeutic potential of natural network pharmacology using compounds and traditional Chinese medicines for combating these malignancies. NP serves as a pivotal tool that provides a comprehensive view of the interactions among compounds, genes, and diseases, thereby contributing to the advancement of disease treatment and management. In parallel, this review discusses the significance of publicly accessible databases in the identification of oral, head, and neck cancer-specific genes. These databases, including those for head and neck oral cancer, head and neck cancer, oral cancer, and genomic variants of oral cancer, offer valuable insights into the genes, miRNAs, drugs, and genetic variations associated with these cancers. They serve as indispensable resources for researchers, clinicians, and drug developers, contributing to the pursuit of precision medicine and improved treatment of these challenging malignancies. In summary, advancements in NP could improve the globalization and modernization of traditional medicines and prognostic targets as well as aid in the development of innovative drugs. Furthermore, this review will be an eye-opener for researchers working on drug development from traditional medicines by applying NP approaches.
Collapse
Affiliation(s)
- Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
| | | | - Arumugam Priya
- Department of Medicine, Division of Gastroenterology and Hepatology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Anand Raj Dhanapal
- Chemistry and Bioprospecting Division, Institute of Forest Genetics and Tree Breeding (IFGTB), Coimbatore, India
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
| | - Murugesan Krishnan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | | | - Divyan Devasir Sathyaseelan
- Department of General Surgery, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
4
|
Tan QX, Shannon NB, Lim WK, Teo JX, Yap DRY, Lek SM, Tan JWS, Tan SJJ, Hendrikson J, Liu Y, Ng G, Chong CYL, Guo W, Koh KKN, Ng CCY, Rajasegaran V, Wong JS, Seo CJ, Ong CK, Lim TKH, Teh BT, Kon OL, Chia CS, Soo KC, Iyer NG, Ong CAJ. Transcriptomic convergence despite genomic divergence drive field cancerization in synchronous squamous tumors. Front Oncol 2024; 14:1272432. [PMID: 38939336 PMCID: PMC11208456 DOI: 10.3389/fonc.2024.1272432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Field cancerization is suggested to arise from imbalanced differentiation in individual basal progenitor cells leading to clonal expansion of mutant cells that eventually replace the epithelium, although without evidence. Methods We performed deep sequencing analyses to characterize the genomic and transcriptomic landscapes of field change in two patients with synchronous aerodigestive tract tumors. Results Our data support the emergence of numerous genetic alterations in cancer-associated genes but refutes the hypothesis that founder mutation(s) underpin this phenomenon. Mutational signature analysis identified defective homologous recombination as a common underlying mutational process unique to synchronous tumors. Discussion Our analyses suggest a common etiologic factor defined by mutational signatures and/or transcriptomic convergence, which could provide a therapeutic opportunity.
Collapse
Affiliation(s)
- Qiu Xuan Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Nicholas B. Shannon
- Department of Head and Neck Surgery, Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore
- Cancer and Stem Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Jing Xian Teo
- SingHealth Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore
| | - Daniel R. Y. Yap
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Sze Min Lek
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Joey W. S. Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Shih Jia J. Tan
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Josephine Hendrikson
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Ying Liu
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Gillian Ng
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Clara Y. L. Chong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Wanyu Guo
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Kelvin K. N. Koh
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Cedric C. Y. Ng
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Vikneswari Rajasegaran
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Jolene S.M. Wong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
| | - Chin Jin Seo
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
| | - Choon Kiat Ong
- Cancer and Stem Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Lymphoma Genomics Translational Laboratory, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Tony K. H. Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
- Pathology Academic Clinical Program, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Bin Tean Teh
- Cancer and Stem Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, ASTAR Research Entities, Singapore, Singapore
| | - Oi Lian Kon
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Claramae S. Chia
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Khee Chee Soo
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - N. Gopalakrishna Iyer
- Department of Head and Neck Surgery, Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Cancer and Stem Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Cancer Therapeutics Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Chin-Ann J. Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, ASTAR Research Entities, Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
5
|
Dharavath B, Butle A, Chaudhary A, Pal A, Desai S, Chowdhury A, Thorat R, Upadhyay P, Nair S, Dutt A. Recurrent UBE3C-LRP5 translocations in head and neck cancer with therapeutic implications. NPJ Precis Oncol 2024; 8:63. [PMID: 38438481 PMCID: PMC10912599 DOI: 10.1038/s41698-024-00555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Head and neck cancer is a major cause of morbidity and mortality worldwide. The identification of genetic alterations in head and neck cancer may improve diagnosis and treatment outcomes. In this study, we report the identification and functional characterization of UBE3C-LRP5 translocation in head and neck cancer. Our whole transcriptome sequencing and RT-PCR analysis of 151 head and neck cancer tumor samples identified the LRP5-UBE3C and UBE3C-LRP5 fusion transcripts in 5.3% of patients of Indian origin (n = 151), and UBE3C-LRP5 fusion transcripts in 1.2% of TCGA-HNSC patients (n = 502). Further, whole genome sequencing identified the breakpoint of UBE3C-LRP5 translocation. We demonstrate that UBE3C-LRP5 fusion is activating in vitro and in vivo, and promotes the proliferation, migration, and invasion of head and neck cancer cells. In contrast, depletion of UBE3C-LRP5 fusion suppresses the clonogenic, migratory, and invasive potential of the cells. The UBE3C-LRP5 fusion activates the Wnt/β-catenin signaling by promoting nuclear accumulation of β-catenin, leading to upregulation of Wnt/β-catenin target genes, MYC, CCND1, TCF4, and LEF1. Consistently, treatment with the FDA-approved drug, pyrvinium pamoate, significantly reduced the transforming ability of cells expressing the fusion protein and improved survival in mice bearing tumors of fusion-overexpressing cells. Interestingly, fusion-expressing cells upon knockdown of CTNNB1, or LEF1 show reduced proliferation, clonogenic abilities, and reduced sensitivity to pyrvinium pamoate. Overall, our study suggests that the UBE3C-LRP5 fusion is a promising therapeutic target for head and neck cancer and that pyrvinium pamoate may be a potential drug candidate for treating head and neck cancer harboring this translocation.
Collapse
Affiliation(s)
- Bhasker Dharavath
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Ashwin Butle
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Department of Biochemistry, All India Institute of Medical Sciences, Nagpur, Maharashtra, 441108, India
| | - Akshita Chaudhary
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Ankita Pal
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Sanket Desai
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Aniket Chowdhury
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Pawan Upadhyay
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Sudhir Nair
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
- Division of Head and Neck Oncology, Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Parel, Mumbai, 400012, India
| | - Amit Dutt
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India.
- Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
6
|
Krishnan RP, Pandiar D, Ramani P, Jayaraman S. Necroptosis in human cancers with special emphasis on oral squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101565. [PMID: 37459966 DOI: 10.1016/j.jormas.2023.101565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 11/06/2023]
Abstract
Necroptosis is a type of caspase independent 'programmed or regulated' necrotic cell death that has a morphological resemblance to necrosis and mechanistic analogy to apoptosis. This type of cell death requires RIPK1, RIPK3, MLKL, death receptors, toll like receptors, interferons, and various other proteins. Necroptosis is implicated in plethora of diseases like rheumatoid arthritis, Alzheimer's disease, Crohn's disease, and head and neck cancers including oral squamous cell carcinoma. Oral carcinomas show dysregulation or mutation of necroptotic proteins, mediate antitumoral immunity, activate immune response and control tumor progression. Necroptosis is known to play a dual role (pro tumorigenic and anti-tumorigenic) in cancer progression and targeting this pathway could be an effective approach in cancer therapy. Necroptosis based chemotherapy has been proposed in malignancies, highlighting the importance of necroptotic pathway to overcome apoptosis resistance and serve as a "fail-safe" pathway to modulate cancer initiation, progression, and metastasis. However, there is dearth of information regarding the use of necroptotic cell death mechanism in the treatment of oral squamous cell carcinoma. In this review, we summarise molecular mechanism of necroptosis, and its protumorigenic and antitumorigenic role in cancers to shed light on the possible therapeutic significance of necroptosis in oral squamous cell carcinoma.
Collapse
Affiliation(s)
| | - Deepak Pandiar
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu.
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu.
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu.
| |
Collapse
|
7
|
de Paula Souza DPS, Dos Reis Pereira Queiroz L, de Souza MG, de Jesus SF, Gomes ESB, Vitorino RT, Santos SHS, Farias LC, de Paula AMB, D'Angelo MFSV, de Carvalho Fraga CA, Guimarães ALS. Identification of potential biomarkers and survival analysis for oral squamous cell carcinoma: A transcriptomic study. Oral Dis 2023; 29:2658-2666. [PMID: 35796645 DOI: 10.1111/odi.14302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is one of the most common neoplasms worldwide. The current study aimed to identify potential biomarkers associated with OSCC survival. MATERIALS AND METHODS Differentially expressed genes (DEGs) in atypical OSCC cases were identified using two public datasets: The Cancer Genome Atlas and the Gene Expression Omnibus database. Receiver operating characteristic (ROC) analysis was performed to identify the cutoff, and the candidate DEGs related to survival. Kaplan-Meier and Cox regression analysis using the categorized genes were employed to identify genes that impact the overall survival in OSCC. RESULTS A total of 263 OSCC samples and 105 healthy tissues were used to identify 295 upregulated and 131 downregulated genes expressed only in non-smokers. ROC analyses identified 25 candidate genes associated with death. Survival analyses demonstrated that the following DEGs, namely CSTA, FGFR2, MMP19, OLR1, PCSK1, RAMP2, and CGB5, are potential OSCC prognostic factors. CONCLUSION We found that CSTA, FGFR2, MMP19, OLR1, PCSK1, RAMP2, and CGB5 are associated with a low survival rate in OSCC. However, further studies are needed to validate our findings and facilitate the development of these factors as potential biomarkers for OSCC survival.
Collapse
|
8
|
Huang X, Duijf PHG, Sriram S, Perera G, Vasani S, Kenny L, Leo P, Punyadeera C. Circulating tumour DNA alterations: emerging biomarker in head and neck squamous cell carcinoma. J Biomed Sci 2023; 30:65. [PMID: 37559138 PMCID: PMC10413618 DOI: 10.1186/s12929-023-00953-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/16/2023] [Indexed: 08/11/2023] Open
Abstract
Head and Neck cancers (HNC) are a heterogeneous group of upper aero-digestive tract cancer and account for 931,922 new cases and 467,125 deaths worldwide. About 90% of these cancers are of squamous cell origin (HNSCC). HNSCC is associated with excessive tobacco and alcohol consumption and infection with oncogenic viruses. Genotyping tumour tissue to guide clinical decision-making is becoming common practice in modern oncology, but in the management of patients with HNSCC, cytopathology or histopathology of tumour tissue remains the mainstream for diagnosis and treatment planning. Due to tumour heterogeneity and the lack of access to tumour due to its anatomical location, alternative methods to evaluate tumour activities are urgently needed. Liquid biopsy approaches can overcome issues such as tumour heterogeneity, which is associated with the analysis of small tissue biopsy. In addition, liquid biopsy offers repeat biopsy sampling, even for patients with tumours with access limitations. Liquid biopsy refers to biomarkers found in body fluids, traditionally blood, that can be sampled to provide clinically valuable information on both the patient and their underlying malignancy. To date, the majority of liquid biopsy research has focused on blood-based biomarkers, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), and circulating microRNA. In this review, we will focus on ctDNA as a biomarker in HNSCC because of its robustness, its presence in many body fluids, adaptability to existing clinical laboratory-based technology platforms, and ease of collection and transportation. We will discuss mechanisms of ctDNA release into circulation, technological advances in the analysis of ctDNA, ctDNA as a biomarker in HNSCC management, and some of the challenges associated with translating ctDNA into clinical and future perspectives. ctDNA provides a minimally invasive method for HNSCC prognosis and disease surveillance and will pave the way in the future for personalized medicine, thereby significantly improving outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
- Xiaomin Huang
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery (GRIDD), School of Environment and Science, Griffith University, QLD, Brisbane, Australia
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- University Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Ganganath Perera
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Sarju Vasani
- Department of Otolaryngology, Royal Brisbane Women's Hospital, Brisbane, QLD, Australia
- The School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Lizbeth Kenny
- The School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Paul Leo
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Translational Genomics Centre, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery (GRIDD), School of Environment and Science, Griffith University, QLD, Brisbane, Australia.
- Menzies Health Institute Queensland (MIHQ), Griffith University, Gold coast, QLD, Australia.
| |
Collapse
|
9
|
Abed H. Dental considerations for head and neck cancer: A clinical review. Saudi Dent J 2023; 35:476-486. [PMID: 37520601 PMCID: PMC10373080 DOI: 10.1016/j.sdentj.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Radiotherapy is one of the treatment modalities for the treatment of head and neck cancer (HNC). However, it leads to the development of chronic and acute side effects. These side effects impact negatively on the patient's quality of life and oral functioning. This clinical review aims to provide basic information about HNC, understand the impact of radiotherapy on oral health, and explain the role of dental care providers for HNC patients during the pre-and post-radiotherapy time. Materials and Methods Electronic databases (i.e., PubMed, Scopus, and Google Scholar) were searched using defined keywords. The main inclusion criteria were any studies describing "dental management of patients with head and neck cancer" and "dental management of patients treated with radiotherapy." Results Thematic analysis was used to summaries the findings of the included studies (n = 102) into main headings and subheadings. All studies were published between 1970 and 2023. Conclusion The number of HNC patients is increasing. This necessitates the need for raising the awareness of dental care providers to the side-effects of HNC therapy which includes treatment with radiotherapy, chemotherapy, and/or surgery. Dental care providers should understand the common side-effects and their treatments besides their role in the pre- (i.e., dental extraction of teeth with poor prognosis and maintaining good oral hygiene) and post- (i.e., oral rehabilitation and post-HNC dental care) radiotherapy dental care.
Collapse
|
10
|
Role of E2F transcription factor in Oral cancer: Recent Insight and Advancements. Semin Cancer Biol 2023; 92:28-41. [PMID: 36924812 DOI: 10.1016/j.semcancer.2023.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
The family of mammalian E2F transcription factors (E2Fs) comprise of 8 members (E2F1-E2F8) classified as activators (E2F1-E2F3) and repressors (E2F4-E2F8) primarily regulating the expression of several genes related to cell proliferation, apoptosis and differentiation, mainly in a cell cycle-dependent manner. E2F activity is frequently controlled via the retinoblastoma protein (pRb), cyclins, p53 and the ubiquitin-proteasome pathway. Additionally, genetic or epigenetic changes result in the deregulation of E2F family genes expression altering S phase entry and apoptosis, an important hallmark for the onset and development of cancer. Although studies reveal E2Fs to be involved in several human malignancies, the mechanisms underlying the role of E2Fs in oral cancer lies nascent and needs further investigations. This review focuses on the role of E2Fs in oral cancer and the etiological factors regulating E2Fs activity, which in turn transcriptionally control the expression of their target genes, thus contributing to cell proliferation, metastasis, and drug/therapy resistance. Further, we will discuss therapeutic strategies for E2Fs, which may prevent oral tumor growth, metastasis, and drug resistance.
Collapse
|
11
|
DNA Methylation as a Diagnostic, Prognostic, and Predictive Biomarker in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24032996. [PMID: 36769317 PMCID: PMC9917637 DOI: 10.3390/ijms24032996] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a term collectively used to describe all cancers that develop in the oral and nasal cavities, the paranasal sinuses, the salivary glands, the pharynx, and the larynx. The majority (75%) of all newly diagnosed cases are observed in patients with locally advanced and aggressive disease, associated with significant relapse rates (30%) and poor prognostic outcomes, despite advances in multimodal treatment. Consequently, there is an unmet need for the identification and application of tools that would enable diagnosis at the earliest possible stage, accurately predict prognostic outcomes, contribute to the timely detection of relapses, and aid in the decision for therapy selection. Recent evidence suggests that DNA methylation can alter the expression of genes in a way that it favors tumorigenesis and tumor progression in HNSCC, and therefore represents a potential source for biomarker identification. This study summarizes the current knowledge on how abnormally methylated DNA profiles in HNSCC patients may contribute to the pathogenesis of HNSCC and designate the methylation patterns that have the potential to constitute clinically valuable biomarkers for achieving significant advances in the management of the disease and for improving survival outcomes in these patients.
Collapse
|
12
|
Smith CDL, McMahon AD, Ross A, Inman GJ, Conway DI. Risk prediction models for head and neck cancer: A rapid review. Laryngoscope Investig Otolaryngol 2022; 7:1893-1908. [PMID: 36544947 PMCID: PMC9764804 DOI: 10.1002/lio2.982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Background Cancer risk assessment models are used to support prevention and early detection. However, few models have been developed for head and neck cancer (HNC). Methods A rapid review of Embase and MEDLINE identified n = 3045 articles. Following dual screening, n = 14 studies were included. Quality appraisal using the PROBAST (risk of bias) instrument was conducted, and a narrative synthesis was performed to identify the best performing models in terms of risk factors and designs. Results Six of the 14 models were assessed as "high" quality. Of these, three had high predictive performance achieving area under curve values over 0.8 (0.87-0.89). The common features of these models were their inclusion of predictors carefully tailored to the target population/anatomical subsite and development with external validation. Conclusions Some existing models do possess the potential to identify and stratify those at risk of HNC but there is scope for improvement.
Collapse
Affiliation(s)
- Craig D. L. Smith
- School of Medicine, Dentistry, and NursingUniversity of GlasgowGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Alex D. McMahon
- School of Medicine, Dentistry, and NursingUniversity of GlasgowGlasgowUK
| | - Alastair Ross
- School of Medicine, Dentistry, and NursingUniversity of GlasgowGlasgowUK
| | - Gareth J. Inman
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
- Cancer Research UK Beatson InstituteGlasgowUK
| | - David I. Conway
- School of Medicine, Dentistry, and NursingUniversity of GlasgowGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
13
|
Daneste H, Sadeghzadeh A, Mokhtari M, Mohammadkhani H, Lavaee F, Moayedi J. Immunoexpression of p53 mutant-type in Iranian patients with primary and recurrence oral squamous cell carcinoma. Eur J Transl Myol 2022; 33:10847. [PMID: 36413207 PMCID: PMC10141754 DOI: 10.4081/ejtm.2022.10847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
Mutations in tumor suppressor p53 protein can occur at different phases of malignant transformation and affect the patient's prognosis. This study aimed to evaluate the expression of mutant p53 protein in Iranian patients with the primary and recurrence oral squamous cell carcinoma (OSCC). This retrospective cross-sectional study conducted on a group of patients with the primary OSCC (n=122) and the control subjects with oral noncancerous reactive lesions (n=80). Immunohistochemistry was performed with the DO-7 monoclonal antibody against p53 protein, and samples with ≥10% immunostaining were considered positive. Statistical analyses were carried out using SPSS. Positive staining for p53 was observed in none of the control subjects and 57.4% (70 of 122) of the primary OSCC patients (p<0.0001, OR=107.69, 95%CI=6.49-179.0). The p53 immunopositivity had no significant differences between males and females (54.2% vs. 62%, p=0.390), but significantly different between those aged below and over 50 years (p<0.0001, OR=4.52, 95%CI=1.07-12.05). During follow-up, OSCC recurrence occurred in 104 patients, but the phenotype of the mutant p53 protein in patients who relapsed was the same as in matched primary tumors (p=0.763). Risk of recurrence had no significant differences between p53-positive and p53-negative cases (p=0.953), males and females (p=0.263), and age below and over 50 years (p=0.223). Despite its confirmed diagnostic value, the immunoexpression of the p53 mutant protein in OSCC in cancer recurrence was the same as in the primary tumor. However, further studies with a larger sample size and longer follow-up are needed to confirm or change our conclusions.
Collapse
Affiliation(s)
- Hossein Daneste
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz.
| | - Azita Sadeghzadeh
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz.
| | - Maral Mokhtari
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz.
| | - Hossein Mohammadkhani
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz.
| | - Fatemeh Lavaee
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz.
| | - Javad Moayedi
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz.
| |
Collapse
|
14
|
Jing L, Du Y, Fu D. Characterization of tumor immune microenvironment and cancer therapy for head and neck squamous cell carcinoma through identification of a genomic instability-related lncRNA prognostic signature. Front Genet 2022; 13:979575. [PMID: 36105083 PMCID: PMC9465021 DOI: 10.3389/fgene.2022.979575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents one of the most prevalent and malignant tumors of epithelial origins with unfavorable outcomes. Increasing evidence has shown that dysregulated long non-coding RNAs (lncRNAs) correlate with tumorigenesis and genomic instability (GI), while the roles of GI-related lncRNAs in the tumor immune microenvironment (TIME) and predicting cancer therapy are still yet to be clarified. In this study, transcriptome and somatic mutation profiles with clinical parameters were obtained from the TCGA database. Patients were classified into GI-like and genomic stable (GS)-like groups according to the top 25% and bottom 25% cumulative counts of somatic mutations. Differentially expressed lncRNAs (DElncRNAs) between GI- and GS-like groups were identified as GI-related lncRNAs. These lncRNA-related coding genes were enriched in cancer-related KEGG pathways. Patients totaling 499 with clinical information were randomly divided into the training and validation sets. A total of 18 DElncRNAs screened by univariate Cox regression analysis were associated with overall survival (OS) in the training set. A GI-related lncRNA signature that comprised 10 DElncRNAs was generated through least absolute shrinkage and selection operator (Lasso)-Cox regression analysis. Patients in the high-risk group have significantly decreased OS vs. patients in the low-risk group, which was verified in internal validation and entire HNSCC sets. Integrated HNSCC sets from GEO confirmed the notable survival stratification of the signature. The time-dependent receiver operating characteristic curve demonstrated that the signature was reliable. In addition, the signature retained a strong performance of OS prediction for patients with various clinicopathological features. Cell composition analysis showed high anti-tumor immunity in the low-risk group which was evidenced by increased infiltrating CD8+ T cells and natural killer cells and reduced cancer-associated fibroblasts, which was convinced by immune signatures analysis via ssGSEA algorithm. T helper/IFNγ signaling, co-stimulatory, and co-inhibitory signatures showed increased expression in the low-risk group. Low-risk patients were predicted to be beneficial to immunotherapy, which was confirmed by patients with progressive disease who had high risk scores vs. complete remission patients. Furthermore, the drugs that might be sensitive to HNSCC were identified. In summary, the novel prognostic GILncRNA signature provided a promising approach for characterizing the TIME and predicting therapeutic strategies for HNSCC patients.
Collapse
Affiliation(s)
- Lijun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Denggang Fu,
| | - Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Denggang Fu,
| | - Denggang Fu
- School of Medicine, Indiana University, Indianapolis, IN, United States
- *Correspondence: Denggang Fu,
| |
Collapse
|
15
|
Novel Systemic Treatment Modalities Including Immunotherapy and Molecular Targeted Therapy for Recurrent and Metastatic Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23147889. [PMID: 35887235 PMCID: PMC9320653 DOI: 10.3390/ijms23147889] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common cancers worldwide. More than half of patients with HNSCC eventually experience disease recurrence and/or metastasis, which can threaten their long-term survival. HNSCCs located in the oral cavity and larynx are usually associated with tobacco and/or alcohol use, whereas human papillomavirus (HPV) infection, particularly HPV16 infection, is increasingly recognized as a cause of oropharyngeal HNSCC. Despite clinical, histologic, and molecular differences between HPV-positive and HPV-negative HNSCCs, current treatment approaches are the same. For recurrent disease, these strategies include chemotherapy, immunotherapy with PD-1-inhibitors, or a monoclonal antibody, cetuximab, that targets epidermal growth factor; these therapies can be administered either as single agents or in combination. However, these treatment strategies carry a high risk of toxic side effects; therefore, more effective and less toxic treatments are needed. The landscape of HNSCC therapy is changing significantly; numerous clinical trials are underway to test novel therapeutic options like adaptive cellular therapy, antibody-drug conjugates, new targeted therapy agents, novel immunotherapy combinations, and therapeutic vaccines. This review helps in understanding the various developments in HNSCC therapy and sheds light on the path ahead in terms of further research in this field.
Collapse
|
16
|
Germline variants in DNA repair genes are associated with young-onset head and neck cancer. Oral Oncol 2021; 122:105545. [PMID: 34598035 DOI: 10.1016/j.oraloncology.2021.105545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 01/04/2023]
Abstract
The genetic predisposition to head and neck carcinomas (HNSCC) and how the known risk factors (papillomavirus infection, alcohol, and tobacco consumption) contribute to the early-onset disease are barely explored. Although HNSCC at early onset is rare, its frequency is increasing in recent years. Germline and somatic variants were assessed to build a comprehensive genetic influence pattern in HNSCC predisposition and patient outcome. Whole-exome sequencing was performed in 45 oral and oropharynx carcinomas paired with normal samples of young adults (≤49 years). We found FANCG, CDKN2A, and TPP germline variants previously associated with HNSCC risk. At least one germline variant in DNA repair pathway genes was detected in 67% of cases. Germline and somatic variants (including copy number variations) in FAT1 gene were identified in 9 patients (20%) and 12 tumors (30%), respectively. Somatic variants were found in HNSCC associated genes, such as TP53, CDKN2A, and PIK3CA. To date, 55 of 521 cases from the large cohort of TCGA presented < 49 years old. A comparison between the somatic alterations of TCGA-HNSCC at early onset and our dataset revealed strong similarities. Protein-protein interaction analysis between somatic and germline altered genes revealed a central role of TP53. Altogether, germline alterations in DNA repair genes potentially contribute to an increased risk of developing HNSCC at early-onset, while FAT1 could impact the prognosis.
Collapse
|
17
|
Brennan S, Baird AM, O’Regan E, Sheils O. The Role of Human Papilloma Virus in Dictating Outcomes in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:677900. [PMID: 34250016 PMCID: PMC8262095 DOI: 10.3389/fmolb.2021.677900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
The Human Papilloma Virus (HPV) is an oncogenic virus which is associated with the development of head and neck squamous cell carcinoma (HNSCC), predominantly within the oropharynx. Approximately 25% of oropharyngeal squamous cell carcinoma (OPSCC) cases worldwide are attributable to HPV infection, with an estimated 65% in the United States. Transmission is via exposure during sexual contact, with distinctive anatomical features of the tonsils providing this organ with a predilection for infection by HPV. No premalignant lesion is identifiable on clinical examination, thus no comparative histological features to denote the stages of carcinogenesis for HPV driven HNSCC are identifiable. This is in contrast to HPV-driven cervical carcinoma, making screening a challenge for the head and neck region. However, HPV proffers a favorable prognosis in the head and neck region, with better overall survival rates in contrast to its HPV negative counterparts. This has resulted in extensive research into de-intensifying therapies aiming to minimize the morbidity induced by standard concurrent chemo-radiotherapy without compromising efficacy. Despite the favorable prognosis, cases of recurrence and/or metastasis of HPV positive HNSCC do occur, and are linked with poor outcomes. HPV 16 is the most frequent genotype identified in HNSCC, yet there is limited research to date studying the impact of other HPV genotype with respect to overall survival. A similar situation pertains to genetic aberrations associated in those with HPV positive HNSCC who recur, with only four published studies to date. Somatic mutations in TSC2, BRIP1, NBN, TACC3, NFE2l2, STK11, HRAS, PIK3R1, TP63, and FAT1 have been identified in recurrent HPV positive OPSCC. Finding alternative therapeutic strategies for this young cohort may depend on upfront identification of HPV genotypes and mutations which are linked with worse outcomes, thus ensuring appropriate stratification of treatment regimens.
Collapse
Affiliation(s)
- Shane Brennan
- School of Medicine, Faculty of Health Sciences, Trinity College, Dublin, Ireland
| | - Anne-Marie Baird
- School of Medicine, Faculty of Health Sciences, Trinity College, Dublin, Ireland
| | - Esther O’Regan
- Department of Histopathology, St. James’s Hospital, Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Faculty of Health Sciences, Trinity College, Dublin, Ireland
| |
Collapse
|
18
|
Mohanapriya S, Maheswaran T, Ganapathy N, Yoithapprabhunath TR, Dineshshankar J, Ilayaraja V, Vinodhini RS, Devi R. Evaluation of DNA damage in tobacco associated human buccal cells using comet assay. Med Pharm Rep 2021; 94:214-219. [PMID: 34013193 PMCID: PMC8118208 DOI: 10.15386/mpr-1692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/10/2020] [Accepted: 09/30/2020] [Indexed: 11/28/2022] Open
Abstract
Aim and objective To assess the DNA damage in tobacco associated human buccal cells using comet assay. Methods The study included 75 study subjects, which were divided into 3 groups on the basis of tobacco usage. Group I - 25 individuals with no history of tobacco usage, Group II - 25 individuals with tobacco usage but without oral lesions and Group III - 25 individuals with tobacco associated oral lesions. Cytological smears collected from these individuals were used to assess the tobacco associated DNA damage by measuring the tail length in the comet assay method. Results The average tail length was found to be 1.46 μm in the normal mucosa, 2.86 μm in tobacco users without oral lesions, 3.86 μm in the lesional sites of tobacco users and 3.67 μm in the non-lesional sites of these individuals. Factors like age, gender, duration and different forms of tobacco habit had their own impact on the oral mucosa. Conclusion Comet assay helps assess the subclinical genetic changes of oral mucosa even before the clinical manifestations of the precancerous lesions appeared due to tobacco usage. Thus, comet assay may bloom out as a novel adjuvant tool for the prevention of oral cancer in the near future.
Collapse
Affiliation(s)
- Shanmugam Mohanapriya
- Department of Oral and Maxillofacial Pathology, Vivekanandha Dental College for Women, Tamilnadu, India
| | - Thangadurai Maheswaran
- Department of Oral and Maxillofacial Pathology, Vivekanandha Dental College for Women, Tamilnadu, India
| | - Nalliapan Ganapathy
- Department of Oral and Maxillofacial Pathology, Vivekanandha Dental College for Women, Tamilnadu, India
| | | | - Janardhanam Dineshshankar
- Department of Oral and Maxillofacial Pathology, Vivekanandha Dental College for Women, Tamilnadu, India
| | - Vadivel Ilayaraja
- Department of Oral and Maxillofacial Pathology, Vivekanandha Dental College for Women, Tamilnadu, India
| | | | - Renuga Devi
- Vivekanandha Dental College for Women, Tamilnadu, India
| |
Collapse
|
19
|
An Y, Jeon J, Sun L, Derakhshan A, Chen J, Carlson S, Cheng H, Silvin C, Yang X, Van Waes C, Chen Z. Death agonist antibody against TRAILR2/DR5/TNFRSF10B enhances birinapant anti-tumor activity in HPV-positive head and neck squamous cell carcinomas. Sci Rep 2021; 11:6392. [PMID: 33737574 PMCID: PMC7973748 DOI: 10.1038/s41598-021-85589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) induced by human papillomavirus (HPV) have increased recently in the US. However, the distinct alterations of molecules involved in the death pathways and drug effects targeting inhibitor of apoptosis proteins (IAPs) have not been extensively characterized in HPV(+) HNSCC cells. In this study, we observed the distinct genomic and expression alterations of nine genes involved in cell death in 55% HNSCC tissues, which were associated with HPV status, tumor staging, and anatomic locations. Expression of four genes was statistically correlated with copy number variation. A panel of HPV(+) HNSCC lines showed abundant TRAILR2 and IAP1 protein expression, but were not sensitive to IAP inhibitor birinapant alone, while combinatory treatment with TNFα or especially TRAIL enhanced this drug sensitivity. The death agonistic TRAILR2 antibody alone showed no cell inhibitory effects, whereas its combination with birinapant and/or TRAIL protein demonstrated additive or synergistic effects. We observed predominantly late apoptosis mode of cell death after combinatorial treatments, and pan-caspase (ZVAD) and caspase-8 (ZIETD) inhibitors attenuated treatment-induced cell death. Our genomic and expression data-driven study provides a framework for identifying relevant combinatorial therapies targeting death pathways in HPV(+) HNSCC and other squamous cancer types.
Collapse
Affiliation(s)
- Yi An
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Jun Jeon
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA ,grid.94365.3d0000 0001 2297 5165NIH Medical Research Scholars Program, Bethesda, MD USA
| | - Lillian Sun
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Adeeb Derakhshan
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Jianhong Chen
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Sophie Carlson
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Hui Cheng
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Christopher Silvin
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Xinping Yang
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Carter Van Waes
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Zhong Chen
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| |
Collapse
|
20
|
Raudenská M, Balvan J, Masařík M. Cell death in head and neck cancer pathogenesis and treatment. Cell Death Dis 2021; 12:192. [PMID: 33602906 PMCID: PMC7893032 DOI: 10.1038/s41419-021-03474-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Many cancer therapies aim to trigger apoptosis in cancer cells. Nevertheless, the presence of oncogenic alterations in these cells and distorted composition of tumour microenvironment largely limit the clinical efficacy of this type of therapy. Luckily, scientific consensus describes about 10 different cell death subroutines with different regulatory pathways and cancer cells are probably not able to avoid all of cell death types at once. Therefore, a focused and individualised therapy is needed to address the specific advantages and disadvantages of individual tumours. Although much is known about apoptosis, therapeutic opportunities of other cell death pathways are often neglected. Molecular heterogeneity of head and neck squamous cell carcinomas (HNSCC) causing unpredictability of the clinical response represents a grave challenge for oncologists and seems to be a critical component of treatment response. The large proportion of this clinical heterogeneity probably lies in alterations of cell death pathways. How exactly cells die is very important because the predominant type of cell death can have multiple impacts on the therapeutic response as cell death itself acts as a second messenger. In this review, we discuss the different types of programmed cell death (PCD), their connection with HNSCC pathogenesis and possible therapeutic windows that result from specific sensitivity to some form of PCD in some clinically relevant subgroups of HNSCC.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masařík
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic. .,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic. .,Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic. .,BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
| |
Collapse
|
21
|
Usman S, Jamal A, Teh MT, Waseem A. Major Molecular Signaling Pathways in Oral Cancer Associated With Therapeutic Resistance. FRONTIERS IN ORAL HEALTH 2021; 1:603160. [PMID: 35047986 PMCID: PMC8757854 DOI: 10.3389/froh.2020.603160] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Oral cancer is a sub-category of head and neck cancers that primarily initiates in the oral cavity. The primary treatment option for oral cancer remains surgery but it is associated with massive disfigurement, inability to carry out normal oral functions, psycho-social stress and exhaustive rehabilitation. Other treatment options such as chemotherapy and radiotherapy have their own limitations in terms of toxicity, intolerance and therapeutic resistance. Immunological treatments to enhance the body's ability to recognize cancer tissue as a foreign entity are also being used but they are new and underdeveloped. Although substantial progress has been made in the treatment of oral cancer, its complex heterogeneous nature still needs to be explored, to elucidate the molecular basis for developing resistance to therapeutic agents and how to overcome it, with the aim of improving the chances of patients' survival and their quality of life. This review provides an overview of up-to-date information on the complex role of the major molecules and associated signaling, epigenetic changes, DNA damage repair systems, cancer stem cells and micro RNAs in the development of therapeutic resistance and treatment failure in oral cancer. We have also summarized the current strategies being developed to overcome these therapeutic challenges. This review will help not only researchers but also oral oncologists in the management of the disease and in developing new therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
22
|
Xie J, Huang L, Lu YG, Zheng DL. Roles of the Wnt Signaling Pathway in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 7:590912. [PMID: 33469547 PMCID: PMC7814318 DOI: 10.3389/fmolb.2020.590912] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck tumor. It is a high incidence malignant tumor associated with a low survival rate and limited treatment options. Accumulating conclusions indicate that the Wnt signaling pathway plays a vital role in the pathobiological process of HNSCC. The canonical Wnt/β-catenin signaling pathway affects a variety of cellular progression, enabling tumor cells to maintain and further promote the immature stem-like phenotype, proliferate, prolong survival, and gain invasiveness. Genomic studies of head and neck tumors have shown that although β-catenin is not frequently mutated in HNSCC, its activity is not inhibited by mutations in upstream gene encoding β-catenin, NOTCH1, FAT1, and AJUBA. Genetic defects affect the components of the Wnt pathway in oral squamous cell carcinoma (OSCC) and the epigenetic mechanisms that regulate inhibitors of the Wnt pathway. This paper aims to summarize the groundbreaking discoveries and recent advances involving the Wnt signaling pathway and highlight the relevance of this pathway in head and neck squamous cell cancer, which will help provide new insights into improving the treatment of human HNSCC by interfering with the transcriptional signaling of Wnt.
Collapse
Affiliation(s)
- Jing Xie
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Li Huang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Dentistry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - You-Guang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Da-Li Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
23
|
Stucky A, Gao L, Sun L, Li SC, Chen X, Park TH, Cai J, Kabeer MH, Zhang X, Sinha UK, Zhong JF. Evidence for AJUBA-catenin-CDH4-linked differentiation resistance of mesenchymal stem cells implies tumorigenesis and progression of head and neck squamous cell carcinoma: a single-cell transcriptome approach. BLOOD AND GENOMICS 2021; 5:29-39. [PMID: 34368804 PMCID: PMC8346230 DOI: 10.46701/bg.2021012021106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increasing number of reports indicate that mesenchymal stem cells (MSCs) play an essential role in promoting tumorigenesis and progression of head and neck squamous cell carcinoma (HNSCC). However, the molecular mechanisms underlying this process remain unclear. Using the MSC model system, this study analyzes the molecular pathway by which differentiation resistant MSCs promote HNSCC. MSCs were cultured in osteogenic differentiation media and harvested on days 12 and 19. Cells were stained for cell differentiation analysis using Alizarin Red. The osteogenesis-resistant MSCs (OR-MSCs) and MSC-differentiation-derived osteoblasts (D-OSTBs) were identified and subjected to the single-cell transcriptome analysis. Gene-specific analyses of these two sub-populations were performed for the patterns of differential expression. A total of 1 780 differentially expressed genes were determined to distinguish OR-MSCs significantly from D-OSTB. Notably, AJUBA, β-catenin, and CDH4 expression levels were upregulated considerably within the OR-MSCs compared to D-OSTBs. To confirm their clinical relevance, a survey of a clinical cohort revealed a high correlation among the expression levels of AJUBA, β-catenin and CDH4. The results shed new light that OR-MSCs participate in the development of HNSCC via a pathway mediated by AJUBA, β-catenin, CDH4, and CTNNB1, thereby implying that MSC-based therapy is a promising therapeutic approach in the management of HNSCC.
Collapse
Affiliation(s)
- Andres Stucky
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li Gao
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lan Sun
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shengwen Calvin Li
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children's Research Institute, Children's Hospital of Orange County (CHOC), Orange, CA 92868, USA
- Department of Neurology, University of California - Irvine School of Medicine, Orange, CA 92868, USA
| | - Xuelian Chen
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tiffany H. Park
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jin Cai
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mustafa H. Kabeer
- Division of Pediatric General and Thoracic Surgery, Children's Hospital of Orange County, Orange, CA 92868, USA
- Department of Surgery, University of California - Irvine School of Medicine, Orange, CA 92868, USA
| | - Xi Zhang
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Uttam K. Sinha
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jiang F. Zhong
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
24
|
Sorgini A, Kim HAJ, Zeng PYF, Shaikh MH, Mundi N, Ghasemi F, Di Gravio E, Khan H, MacNeil D, Khan MI, Mendez A, Yoo J, Fung K, Lang P, Palma DA, Mymryk JS, Barrett JW, Patel KB, Boutros PC, Nichols AC. Analysis of the TCGA Dataset Reveals that Subsites of Laryngeal Squamous Cell Carcinoma are Molecularly Distinct. Cancers (Basel) 2020; 13:cancers13010105. [PMID: 33396315 PMCID: PMC7794818 DOI: 10.3390/cancers13010105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Squamous cell carcinomas from different parts of the larynx have distinct presentations and prognoses, but the molecular basis for this discrepancy has yet to be characterized. We aimed to determine whether different types of mutations at the DNA, mRNA, and protein levels exist to explain the differential prognoses observed. We found that cancers of the supraglottis had higher overall and smoking-associated genome mutations. Further, supraglottic cancers had a significantly poorer prognosis when other clinical variables and mutational status were controlled for. Different protein pathways were enriched in each subsite: muscle-related in the glottis and neural in the supraglottis. Specific cancer-related proteins were also differentially abundant between the supraglottis and glottis. Our findings may partially explain therapeutic response differences, but further study is required for validation. Abstract Laryngeal squamous cell carcinoma (LSCC) from different subsites have distinct presentations and prognosis. In this study, we carried out a multiomic comparison of LSCC subsites. The Cancer Genome Atlas (TCGA) LSCC cohort was analyzed in the R statistical environment for differences between supraglottic and glottic cancers in single nucleotide variations (SNVs), copy number alterations (CNAs), mRNA abundance, protein abundance, pathway overrepresentation, tumor microenvironment (TME), hypoxia status, and patient outcome. Supraglottic cancers had significantly higher overall and smoking-associated SNV mutational load. Pathway analysis revealed upregulation of muscle related pathways in glottic cancer and neural pathways in supraglottic cancer. Proteins involved in cancer relevant signaling pathways including PI3K/Akt/mTOR, the cell cycle, and PDL1 were differentially abundant between subsites. Glottic and supraglottic tumors have different molecular profiles, which may partially account for differences in presentation and response to therapy.
Collapse
Affiliation(s)
- Alana Sorgini
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Hugh Andrew Jinwook Kim
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Peter Y. F. Zeng
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Mushfiq Hassan Shaikh
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Neil Mundi
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Farhad Ghasemi
- Department of General Surgery, University of Western Ontario, London, ON N6A 5C5, Canada;
| | - Eric Di Gravio
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Halema Khan
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Danielle MacNeil
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Mohammed Imran Khan
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
| | - Adrian Mendez
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - John Yoo
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Kevin Fung
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Pencilla Lang
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - David A. Palma
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Joe S. Mymryk
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
- Department of Microbiology & Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - John W. Barrett
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Krupal B. Patel
- Department of Otolaryngology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, CA 90095, USA;
- Department of Urology, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Institute for Precision Health, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 90095, USA
| | - Anthony C. Nichols
- Department of Otolaryngology, Head and Neck Surgery, University of Western Ontario, London, ON N6A 5W9, Canada; (A.S.); (H.A.J.K.); (P.Y.F.Z.); (M.H.S.); (N.M.); (E.D.G.); (H.K.); (D.M.); (M.I.K.); (A.M.); (J.Y.); (K.F.); (D.A.P.); (J.S.M.); (J.W.B.)
- Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada;
- Correspondence: ; Tel.: +519-685-8804
| |
Collapse
|
25
|
Madhukar G, Subbarao N. In-silico prediction of potential inhibitors against phosphatidylinositol 3-kinase catalytic subunit alpha involved in head and neck squamous cell carcinomas. J Biomol Struct Dyn 2020; 40:4697-4712. [PMID: 33356909 DOI: 10.1080/07391102.2020.1861980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers, globally. Its high mortality rates remained unaltered in the last three decades, therefore, there is an enormous need for novel therapeutics. The most frequent somatically mutated oncogenic pathway in HNSCC tumors is the Phosphatidylinositol-3-kinases (PI3K) pathway. PI3Ks are lipid kinases involved in the regulation of cell survival, growth and metabolism. PI3Ks phosphorylates PI (4,5) P2 (PIP2) converting it to PI (3, 4, 5) P3 (PIP3). Alterations such as mutation, gene amplification and overexpression in PIK3CA, encoding the catalytic subunit p110α of PI3K pathway were found to be prevalent. The aberrant activation leads to irregulated cell growth due to improper p110α enzymatic activity. p110α is therefore, considered a potential oncogenic target for cancer therapy. The only FDA approved specific inhibitor of p110α is Alpelisib (BYL719). Therefore, designing more effective and specific p110α inhibitors could be a promising strategy in the treatment of HNSCC. The present study aims to find out the potent and novel inhibitors of p110α using High Throughput Screening (HTS) of huge databases (National Cancer Institute (NCI), Life Chemicals, ChemDiv and ChEMBL) and Molecular Dynamic Simulations. As a result, from more than 400,000 compounds, a total of 3 best candidate compounds (Echinacoside, Isoacteoside, K284-4402) were selected and validated for their binding to catalytic site of p110α and stability during Molecular Dynamics (MD) simulations. The binding free energy (calculated from MM-PBSA) of the selected compounds, Echinacoside, Isoacteoside, K284-4402 were -23.43 kcal/mol, -33.02 kcal/mol and -30.57 kcal/mol, respectively, which suggested these compounds bind to p110α with higher affinity than Alpelisib which has binding free energy -20.9 kcal/mol. This study provides a significant in-depth understanding of p110α inhibitors that can be used in the development of potential therapeutics against HNSCC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Geet Madhukar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
26
|
Li H, Ngan HL, Liu Y, Chan HHY, Poon PHY, Yeung CK, Peng Y, Lam WY, Li BX, He Y, Lui VWY. Comprehensive Exome Analysis of Immunocompetent Metastatic Head and Neck Cancer Models Reveals Patient Relevant Landscapes. Cancers (Basel) 2020; 12:cancers12102935. [PMID: 33053752 PMCID: PMC7601118 DOI: 10.3390/cancers12102935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/04/2023] Open
Abstract
Immunocompetent metastatic head and neck cancer (HNC) models, although scarce, can help understanding cancer progression and therapy responses in vivo. Their comprehensive genome characterizations are essential for translational research. We first exome-sequenced the two most widely used spontaneous metastatic immunocompetent models, namely AT-84 and SCC VII, followed by comprehensive genomic analyses with three prior-sequenced models (MOC2, MOC2-10, and 4MOSC2), together with patient tumors for utility assessment. AT-84 and SCC VII bear high HNC tumor resemblance regarding mutational signatures-Trp53, Fanconi anemia, and MAPK and PI3K pathway defects. Collectively, the five models harbor genetic aberrations across 10 cancer hallmarks and 14 signaling pathways and machineries (metabolic, epigenetic, immune evasion), to extents similar in patients. Immune defects in HLA-A (H2-Q10, H2-Q4, H2-Q7, and H2-K1), Pdcd1, Tgfb1, Il2ra, Il12a, Cd40, and Tnfrsf14 are identified. Invasion/metastatic genome analyses first highlight potential druggable ERBB4 and KRAS mutations, for advanced/metastatic oral cavity cancer, as well as known metastasis players (Muc5ac, Trem3, Trp53, and Ttn) frequently captured by all models. Notable immunotherapy and precision druggable targets (Pdcd1, Erbb4, Fgfr1, H/Kras, Jak1, and Map2k2) and three druggable hubs (RTK family, MAPK, and DNA repair pathways) are frequently represented by these models. Immunocompetent metastatic HNC models are worth developing to address therapy- and invasion/metastasis-related questions in host immunity contexts.
Collapse
Affiliation(s)
- Hui Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.L.); (H.-L.N.); (Y.L.); (H.H.Y.C.); (P.H.Y.P.); (C.K.Y.)
| | - Hoi-Lam Ngan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.L.); (H.-L.N.); (Y.L.); (H.H.Y.C.); (P.H.Y.P.); (C.K.Y.)
| | - Yuchen Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.L.); (H.-L.N.); (Y.L.); (H.H.Y.C.); (P.H.Y.P.); (C.K.Y.)
| | - Helen Hoi Yin Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.L.); (H.-L.N.); (Y.L.); (H.H.Y.C.); (P.H.Y.P.); (C.K.Y.)
| | - Peony Hiu Yan Poon
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.L.); (H.-L.N.); (Y.L.); (H.H.Y.C.); (P.H.Y.P.); (C.K.Y.)
| | - Chun Kit Yeung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.L.); (H.-L.N.); (Y.L.); (H.H.Y.C.); (P.H.Y.P.); (C.K.Y.)
| | - Yibing Peng
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (Y.P.); (Y.H.)
| | - Wai Yip Lam
- Lee’s Pharmaceutical (HK) Limited, Hong Kong Science Park, Hong Kong SAR, China; (W.Y.L.); (B.X.L.)
| | - Benjamin Xiaoyi Li
- Lee’s Pharmaceutical (HK) Limited, Hong Kong Science Park, Hong Kong SAR, China; (W.Y.L.); (B.X.L.)
| | - Yukai He
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (Y.P.); (Y.H.)
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.L.); (H.-L.N.); (Y.L.); (H.H.Y.C.); (P.H.Y.P.); (C.K.Y.)
- Correspondence: ; Tel.: +852-3943-5388; Fax: +852-2603-5123
| |
Collapse
|
27
|
Fang Z, Jung KH, Lee JE, Cho J, Lim JH, Hong SS. MEK blockade overcomes the limited activity of palbociclib in head and neck cancer. Transl Oncol 2020; 13:100833. [PMID: 32712554 PMCID: PMC7385517 DOI: 10.1016/j.tranon.2020.100833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Head and neck cancer (HNC) is characterized with multiple aberrations in cell cycle pathways, including amplification of cyclin D1. Palbociclib (PAL), a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, has been reported to regulate cell cycle progression in HNC. However, recent studies have revealed the acquired resistance of certain cells to PAL through activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. Therefore, we investigated whether the inhibition of MEK/ERK pathway by trametinib (TRA) may overcome the limited efficacy of PAL in HNC. We evaluated the effect of PAL alone and in combination with TRA on the viability of HNC cells, and found that the combination treatment synergistically inhibited the proliferation of HNC cells. The combination treatment induced G0/G1 cell cycle arrest and apoptotic cell death. In particular, apoptosis mediated by the combination treatment was accompanied with an increase in caspase-3 activity and the number of TUNEL-positive apoptotic cells. These results were consistent with the decrease in cell cycle progression and mitogen-activated protein kinase (MAPK) pathway activation. In a xenograft mouse model of HNC, PAL and TRA synergistically inhibited tumor growth and enhanced tumor cell apoptosis, consistent with the increase in the number of TUNEL-positive cells. The anti-proliferative effects were evident in tumor tissues subjected to the combination treatment as compared with those treated with single drug. Taken together, our study demonstrates that the combination of PAL and TRA exerts synergistic anticancer effects and inhibits cell cycle check points and MEK/ERK pathway in HNC, suggestive of their potential application for HNC treatment.
Collapse
Affiliation(s)
- Zhenghuan Fang
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Ji Eun Lee
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Jinhyun Cho
- Department of Internal Medicine, Inha University Hospital, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Joo Han Lim
- Department of Internal Medicine, Inha University Hospital, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, Sinheung-dong, Jung-gu, Incheon 22332, Republic of Korea.
| |
Collapse
|
28
|
Katsoulakis E, Yu Y, Apte AP, Leeman JE, Katabi N, Morris L, Deasy JO, Chan TA, Lee NY, Riaz N, Hatzoglou V, Oh JH. Radiomic analysis identifies tumor subtypes associated with distinct molecular and microenvironmental factors in head and neck squamous cell carcinoma. Oral Oncol 2020; 110:104877. [PMID: 32619927 DOI: 10.1016/j.oraloncology.2020.104877] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE To identify whether radiomic features from pre-treatment computed tomography (CT) scans can predict molecular differences between head and neck squamous cell carcinoma (HNSCC) using The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA). METHODS 77 patients from the TCIA with HNSCC had imaging suitable for analysis. Radiomic features were extracted and unsupervised consensus clustering was performed to identify subtypes. Genomic data was extracted from the matched patients in the TCGA database. We explored relationships between radiomic features and molecular profiles of tumors, including the tumor immune microenvironment. A machine learning method was used to build a model predictive of CD8 + T-cells. An independent cohort of 83 HNSCC patients was used to validate the radiomic clusters. RESULTS We initially extracted 104 two-dimensional radiomic features, and after feature stability tests and removal of volume dependent features, reduced this to 67 features for subsequent analysis. Consensus clustering based on these features resulted in two distinct clusters. The radiomic clusters differed by primary tumor subsite (p = 0.0096), HPV status (p = 0.0127), methylation-based clustering results (p = 0.0025), and tumor immune microenvironment. A random forest model using radiomic features predicted CD8 + T-cells independent of HPV status with R2 = 0.30 (p < 0.0001) on cross validation. Consensus clustering on the validation cohort resulted in two distinct clusters that differ in tumor subsite (p = 1.3 × 10-7) and HPV status (p = 4.0 × 10-7). CONCLUSION Radiomic analysis can identify biologic features of tumors such as HPV status and T-cell infiltration and may be able to provide other information in the near future to help with patient stratification.
Collapse
Affiliation(s)
- Evangelia Katsoulakis
- Department of Radiation Oncology, Veterans Affairs, James A Haley, Tampa, FL 33612, USA
| | - Yao Yu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aditya P Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan E Leeman
- Department of Radiation Oncology, Dana Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA 02189, USA
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Luc Morris
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
29
|
Gauthaman A, Moorthy A. Prevalence of K-ras Codon 12 Mutations in Indian Patients with Head and Neck Cancer. Indian J Clin Biochem 2020; 36:370-374. [PMID: 34220014 DOI: 10.1007/s12291-020-00882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
In human tumors, somatic mutation frequently occur in K-ras gene at codon 12, which makes the K-ras protein hyper active leading to uncontrolled signaling for cell division: one of the important hall mark of cancer. In order to correlate mutations in K-ras to cause, response to treatment, disease progression and recurrence of Head and Neck Squamous Cell Carcinoma (HNSCC) the following study was undertaken. By using PCR-RFLP method prevalence of codon 12 in K-ras gene was studied in 56 HNSCC patients. High frequency of K-ras mutation was detected in codon 12 (60.71%). The result of this study helps us in understanding the role of K-ras somatic mutations in HNSCC patients and in designing novel treatment protocols for HNSCC patients.
Collapse
Affiliation(s)
- Ashna Gauthaman
- Department of Integrative Biology, School of Bio Sciences and Technology, VIT University, Vellore, 632014 India
| | - Anbalagan Moorthy
- Department of Integrative Biology, School of Bio Sciences and Technology, VIT University, Vellore, 632014 India
| |
Collapse
|
30
|
Cotoi L, Amzar D, Sporea I, Borlea A, Navolan D, Varcus F, Stoian D. Shear Wave Elastography versus Strain Elastography in Diagnosing Parathyroid Adenomas. Int J Endocrinol 2020; 2020:3801902. [PMID: 32256571 PMCID: PMC7103049 DOI: 10.1155/2020/3801902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/27/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The aim of the study was to compare elastographic means in parathyroid adenomas, using shear wave elastography and strain elastography. METHODS This prospective study examined 20 consecutive patients diagnosed with primary hyperparathyroidism and parathyroid adenoma, confirmed by biochemical assay, technetium-99 sestamibi scintigraphy, and pathology report, after parathyroid surgery. All patients were examined on conventional 2B ultrasound, 2D shear wave elastography, and strain elastography. We determined using 2D shear wave elastography (SWE) the elasticity index (EI) in parathyroid adenoma, thyroid parenchyma, and surrounding muscle and examined using strain elastography the parathyroid adenoma, and determined the strain ratio with the thyroid tissue and muscle tissue. RESULTS All patients had positive sestamibi scintigraphy and underwent surgery, with confirmation of parathyroid adenoma in all cases. The mean parathormone (PTH) value before surgery was 153.29 pg/ml (36.5, 464.8) and serum calcium concentration was 10.5 mg/dl (9, 11.5). We compared using 2D-SWE and strain elastography parathyroid adenoma with thyroid tissue and with surrounding muscle. The mean EI measured by SWE in parathyroid adenoma was 4.74 ± 2.74 kPa and in thyroid parenchyma was 11.718 ± 4.206 kPa (mean difference = 6.978 kPa, p < 0.001), and the mean EI value in muscle tissue was 16.362 ± 3.829 kPa (mean difference = 11.622, p < 0.001). Using ROC analysis, we found that an EI below 7 kPa correctly identifies parathyroid tissue. We evaluated parathyroid adenomas using strain elastography by color mapping and strain ratio as a semiquantitative measurement; however, we could not find any statistical correlation comparing the strain ratio obtained from the parathyroid adenoma with the thyroid tissue (p=0.485). CONCLUSION Ultrasound elastography is a helpful tool in identifying parathyroid adenomas. A cutoff value below 7 kPa can be used in 2D-SWE. Color maps in strain elastography without adding strain ratio can be used, parathyroid adenoma being identified as score 1 in the Rago criteria.
Collapse
Affiliation(s)
- Laura Cotoi
- PhD School Department, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Daniela Amzar
- Department of Endocrinology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Ioan Sporea
- Department of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Andreea Borlea
- PhD School Department, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Dan Navolan
- Department of Obstetrics and Gynecology III, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Flore Varcus
- Department of Surgery II, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Dana Stoian
- Department of Endocrinology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
31
|
Majounie E, Wee K, Williamson LM, Jones MR, Pleasance E, Lim HJ, Ho C, Renouf DJ, Yip S, Jones SJM, Marra MA, Laskin J. Fluorouracil sensitivity in a head and neck squamous cell carcinoma with a somatic DPYD structural variant. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a004713. [PMID: 31871216 PMCID: PMC6996515 DOI: 10.1101/mcs.a004713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide and represents a heterogeneous group of tumors, the majority of which are treated with a combination of surgery, radiation, and chemotherapy. Fluoropyrimidine (5-FU) and its oral prodrug, capecitabine, are commonly prescribed treatments for several solid tumor types including HNSCC. 5-FU-associated toxicity is observed in ∼30% of treated patients and is largely caused by germline polymorphisms in DPYD, which encodes dihydropyrimidine dehydrogenase, a key enzyme of 5-FU catabolism and deactivation. Although the association of germline DPYD alterations with toxicity is well-described, the potential contribution of somatic DPYD alterations to 5-FU sensitivity has not been explored. In a patient with metastatic HNSCC, in-depth genomic and transcriptomic integrative analysis on a biopsy from a metastatic neck lesion revealed alterations in genes that are associated with 5-FU uptake and metabolism. These included a novel somatic structural variant resulting in a partial deletion affecting DPYD, a variant of unknown significance affecting SLC29A1, and homozygous deletion of MTAP. There was no evidence of deleterious germline polymorphisms that have been associated with 5-FU toxicity, indicating a potential vulnerability of the tumor to 5-FU therapy. The discovery of the novel DPYD variant led to the initiation of 5-FU treatment that resulted in a rapid response lasting 17 wk, with subsequent relapse due to unknown resistance mechanisms. This suggests that somatic alterations present in this tumor may serve as markers for tumor sensitivity to 5-FU, aiding in the selection of personalized treatment strategies.
Collapse
Affiliation(s)
- Elisa Majounie
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 4S6, Canada
| | - Kathleen Wee
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 4S6, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 4S6, Canada
| | - Martin R Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 4S6, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 4S6, Canada
| | - Howard J Lim
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | - Cheryl Ho
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | - Daniel J Renouf
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada.,Pancreas Centre BC, Vancouver, British Columbia V5Z 1L8, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 4S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, British Columbia V5A 1S6, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 4S6, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| |
Collapse
|
32
|
van Caloen G, Schmitz S, El Baroudi M, Caignet X, Pyr Dit Ruys S, Roger PP, Vertommen D, Machiels JP. Preclinical Activity of Ribociclib in Squamous Cell Carcinoma of the Head and Neck. Mol Cancer Ther 2020; 19:777-789. [PMID: 31924739 DOI: 10.1158/1535-7163.mct-19-0695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/06/2019] [Accepted: 01/03/2020] [Indexed: 11/16/2022]
Abstract
Cell-cycle pathway impairments resulting in CDK4 and 6 activation are frequently observed in human papillomavirus (HPV)-negative squamous cell carcinoma of the head and neck (SCCHN). We investigated the activity of ribociclib, a CDK4/6 inhibitor, in SCCHN models with the aim of identifying predictive biomarkers of response. HPV-negative or HPV-positive SCCHN cell lines (n = 8) and patient-derived tumor xenograft (PDTX) models (n = 6) were used. The models were classified according to their sensitivity to ribociclib to investigate potential predictive biomarkers. Ribociclib had a cytostatic effect in some HPV-negative SCCHN models but had no effect in HPV-positive models. In SCCHN cell lines and PDTXs, the retinoblastoma (Rb) protein expression level correlated with ribociclib activity. Rb knockdown was, however, not sufficient to block G0-G1 arrest induced by ribociclib in Detroit-562 where p107, p130, and Forkhead BOX M1 (FOXM1) were also implicated in ribociclib activity. Cell lines harboring epithelial-to-mesenchymal transition (EMT) features were less sensitive to ribociclib than those with an epithelial phenotype. Rb downregulation induced EMT in our Rb-expressing SCCHN cell lines. However, ribociclib still had significant activity in one PDTX model with high Rb and vimentin expression, suggesting that the presence of vimentin alone is not enough to induce ribociclib resistance. These findings suggest that CDK4/6 inhibitors should be investigated in patients with HPV-negative SCCHN with high Rb expression and an epithelial phenotype. Although these biomarkers are not predictive in all cases, they may enrich the population that could benefit from CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Gabrielle van Caloen
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Sandra Schmitz
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.,Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.,Department of Head and Neck Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Mariama El Baroudi
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Xavier Caignet
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Sébastien Pyr Dit Ruys
- Protein Phosphorylation Unit, de Duve Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pierre P Roger
- ULB-Cancer Research Center (U-CRC) Université Libre de Bruxelles, Brussels, Belgium
| | - Didier Vertommen
- Protein Phosphorylation Unit, de Duve Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jean-Pascal Machiels
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université Catholique de Louvain (UCLouvain), Brussels, Belgium. .,Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.,Department of Head and Neck Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
33
|
Jiang L, Zheng J, Kwan JSH, Dai S, Li C, Li MJ, Yu B, To KF, Sham PC, Zhu Y, Li M. WITER: a powerful method for estimation of cancer-driver genes using a weighted iterative regression modelling background mutation counts. Nucleic Acids Res 2019; 47:e96. [PMID: 31287869 PMCID: PMC6895256 DOI: 10.1093/nar/gkz566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/30/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022] Open
Abstract
Genomic identification of driver mutations and genes in cancer cells are critical for precision medicine. Due to difficulty in modelling distribution of background mutation counts, existing statistical methods are often underpowered to discriminate cancer-driver genes from passenger genes. Here we propose a novel statistical approach, weighted iterative zero-truncated negative-binomial regression (WITER, http://grass.cgs.hku.hk/limx/witer or KGGSeq,http://grass.cgs.hku.hk/limx/kggseq/), to detect cancer-driver genes showing an excess of somatic mutations. By fitting the distribution of background mutation counts properly, this approach works well even in small or moderate samples. Compared to alternative methods, it detected more significant and cancer-consensus genes in most tested cancers. Applying this approach, we estimated 229 driver genes in 26 different types of cancers. In silico validation confirmed 78% of predicted genes as likely known drivers and many other genes as very likely new drivers for corresponding cancers. The technical advances of WITER enable the detection of driver genes in TCGA datasets as small as 30 subjects and rescue of more genes missed by alternative tools in moderate or small samples.
Collapse
Affiliation(s)
- Lin Jiang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Genome Research, Sun Yat-sen University, Guangzhou 510080, China.,First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingjing Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Genome Research, Sun Yat-sen University, Guangzhou 510080, China
| | - Johnny S H Kwan
- Departmelnt of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, New Territories, Hong Kong.,State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, New Territories, Hong Kong.,Li Ka-Shing Institute of Health Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Sheng Dai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Genome Research, Sun Yat-sen University, Guangzhou 510080, China
| | - Cong Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Mulin Jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin 300070, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ka F To
- Departmelnt of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, New Territories, Hong Kong.,State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, New Territories, Hong Kong.,Li Ka-Shing Institute of Health Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Pak C Sham
- The Centre for Genomic Sciences, the University of Hong Kong, Pokfulam, Hong Kong.,Department of Psychiatry, the University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Cognitive and Brain Sciences, the University of Hong Kong, Pokfulam, Hong Kong
| | - Yonghong Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Miaoxin Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Genome Research, Sun Yat-sen University, Guangzhou 510080, China.,The Centre for Genomic Sciences, the University of Hong Kong, Pokfulam, Hong Kong.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
34
|
Ghias K, Rehmani SS, Razzak SA, Madhani S, Azim MK, Ahmed R, Khan MJ. Mutational landscape of head and neck squamous cell carcinomas in a South Asian population. Genet Mol Biol 2019; 4242:526-542. [PMID: 31188922 PMCID: PMC6905448 DOI: 10.1590/1678-4685-gmb-2018-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer
type globally and contributes significantly to burden of disease in South Asia.
In Pakistan, HNSCC is among the most commonly diagnosed cancer in males and
females. The increasing regional burden of HNSCC along with a unique set of risk
factors merited a deeper investigation of the disease at the genomic level.
Whole exome sequencing of HNSCC samples and matched normal genomic DNA analysis
(n=7) was performed. Significant somatic single nucleotide variants (SNVs) were
identified and pathway analysis performed to determine frequently affected
signaling pathways. We identified significant, novel recurrent mutations in
ASNS (asparagine synthetase) that may affect substrate
binding, and variants in driver genes including TP53, PIK3CA, FGFR2,
ARID2, MLL3, MYC and ALK. Using the IntOGen
platform, we identified MAP kinase, cell cycle, actin cytoskeleton regulation,
PI3K-Akt signaling and other pathways in cancer as affected in the samples. This
data is the first of its kind from the Pakistani population. The results of this
study can guide a better mechanistic understanding of HNSCC in the population,
ultimately contributing new, rational therapeutic targets for the treatment of
the disease.
Collapse
Affiliation(s)
- Kulsoom Ghias
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Sadiq S Rehmani
- Department of Thoracic Surgery, Mount Sinai St. Luke's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Safina A Razzak
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | | | - M Kamran Azim
- Department of Biosciences, Mohammad Ali Jinnah University, Karachi, Pakistan
| | - Rashida Ahmed
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Mumtaz J Khan
- Surgical Specialty Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| |
Collapse
|
35
|
Su SC, Chang LC, Lin CW, Chen MK, Yu CP, Chung WH, Yang SF. Mutational signatures and mutagenic impacts associated with betel quid chewing in oral squamous cell carcinoma. Hum Genet 2019; 138:1379-1389. [DOI: 10.1007/s00439-019-02083-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/26/2019] [Indexed: 12/12/2022]
|
36
|
Gan CP, Sam KK, Yee PS, Zainal NS, Lee BKB, Abdul Rahman ZA, Patel V, Tan AC, Zain RB, Cheong SC. IFITM3 knockdown reduces the expression of CCND1 and CDK4 and suppresses the growth of oral squamous cell carcinoma cells. Cell Oncol (Dordr) 2019; 42:477-490. [PMID: 30949979 PMCID: PMC7771307 DOI: 10.1007/s13402-019-00437-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Oral squamous cell carcinoma (OSCC) is a challenging disease to treat. Up to 50% of OSCC patients with advanced disease develop recurrences. Elucidation of key molecular mechanisms underlying OSCC development may provide opportunities to target specific genes and, thus, to improve patient survival. In this study, we examined the expression and functional role of interferon transmembrane protein 3 (IFITM3) in OSCC development. METHODS The expression of IFITM3 in OSCC and normal oral mucosal tissues was assessed by qRT-PCR and immunohistochemistry. The role of IFITM3 in driving OSCC cell proliferation and survival was examined using siRNA-mediated gene knockdown, and the role of IFITM3 in driving cell cycle regulators was examined using Western blotting. RESULTS We found that IFITM3 is overexpressed in more than 79% of primary OSCCs. We also found that IFITM3 knockdown led to impaired OSCC cell growth through inhibition of cell proliferation, induction of cell cycle arrest, senescence and apoptosis. In addition, we found that IFITM3 knockdown led to reduced expressions of CCND1 and CDK4 and reduced RB phosphorylation, leading to inhibition of OSCC cell growth. This information may be instrumental for the design of novel targeted therapeutic strategies. CONCLUSIONS From our data we conclude that IFITM3 is overexpressed in OSCC and may regulate the CCND1-CDK4/6-pRB axis to mediate OSCC cell growth.
Collapse
Affiliation(s)
- Chai Phei Gan
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 2nd Floor, Outpatient Centre, Subang Jaya Medical Centre, 47500, Subang Jaya, Selangor, Malaysia
| | - Kin Kit Sam
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 2nd Floor, Outpatient Centre, Subang Jaya Medical Centre, 47500, Subang Jaya, Selangor, Malaysia
| | - Pei San Yee
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 2nd Floor, Outpatient Centre, Subang Jaya Medical Centre, 47500, Subang Jaya, Selangor, Malaysia
| | - Nur Syafinaz Zainal
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 2nd Floor, Outpatient Centre, Subang Jaya Medical Centre, 47500, Subang Jaya, Selangor, Malaysia
| | - Bernard Kok Bang Lee
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 2nd Floor, Outpatient Centre, Subang Jaya Medical Centre, 47500, Subang Jaya, Selangor, Malaysia
| | - Zainal Ariff Abdul Rahman
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Vyomesh Patel
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 2nd Floor, Outpatient Centre, Subang Jaya Medical Centre, 47500, Subang Jaya, Selangor, Malaysia
| | - Aik Choon Tan
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rosnah Binti Zain
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Sok Ching Cheong
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 2nd Floor, Outpatient Centre, Subang Jaya Medical Centre, 47500, Subang Jaya, Selangor, Malaysia.
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
37
|
Preda C, Branisteanu D, Armasu I, Danila R, Velicescu C, Ciobanu D, Covic A, Grigorovici A. Coexistent papillary thyroid carcinoma diagnosed in surgically treated patients for primary versus secondary hyperparathyroidism: same incidence, different characteristics. BMC Surg 2019; 19:94. [PMID: 31311533 PMCID: PMC6636032 DOI: 10.1186/s12893-019-0556-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/03/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The coexistence of hyperparathyroidism and thyroid cancer presents important diagnostic and management challenges. With minimally invasive parathyroid surgery trending, preoperative thyroid imaging becomes more important as concomitant thyroid and parathyroid lesions are reported. The aim of the study was to evaluate the rate of thyroid cancer in patients operated for either primary (PHPT) or secondary hyperparathyroidism (SHPT). METHODS Our retrospective study included PHPT and SHPT patients submitted to parathyroidectomy and, when indicated, concomitant thyroid surgery between 2010 and 2017. RESULTS Parathyroidectomy was performed in 217 patients: 140 (64.5%) for PHPT and 77 (35.5%) for SHPT. Concomitant thyroid surgery was performed in 75 patients with PHPT (53.6%), and 19 papillary thyroid carcinomas (PTC) were found, accounting for 13.6% from all cases with PHPT and 25.3% from PHPT cases with concomitant thyroid surgery. Thirty-one of operated SHPT patients (40.3%) also underwent thyroid surgery and 9 PTC cases were diagnosed (11.7% of all SHPT patients and 29% of patients with concomitant thyroid surgery). We found differences between PHPT and SHPT patients (p < 0.001) with respect to age (54.6 ± 13y versus 48.8 ± 12y), female-to-male ratio (8:1 versus ~ 1:1), surgical technique (single gland parathyroidectomy in 82.8% PHPT cases; versus subtotal parathyroidectomy in 85.7% SHPT cases) and presurgical PTH (357.51 ± 38.11 pg/ml versus 1020 ± 161.38 pg/ml). Morphopathological particularities, TNM classification and multifocality incidence of PTC were similar in the two groups. All PTC from patients with SHPT were thyroid microcarcinomas (TMC, i.e. tumors with a diameter smaller than 1 cm), whereas seven out of the 19 cases with PTC and PHPT were larger than 1 cm. CONCLUSIONS PTC was frequently and similarly associated with both PHPT and SHPT irrespective of presurgical PTH levels. Thyroid tumors above 1 cm were found only in patients with PHPT. Investigators should focus also on associated thyroid nodular pathology in patients with PHPT.
Collapse
Affiliation(s)
- Cristina Preda
- Faculty of Medicine, Department of Endocrinology, "Gr igore T Popa" University of Medicine and Pharmacy, 16 Universitatii Str, 700115, Iasi, Romania
| | - Dumitru Branisteanu
- Faculty of Medicine, Department of Endocrinology, "Gr igore T Popa" University of Medicine and Pharmacy, 16 Universitatii Str, 700115, Iasi, Romania.
| | - Ioana Armasu
- Department of Morphofunctional Sciences, "Grigore T. Popa" University of Medicine, Iasi, Romania
| | - Radu Danila
- Faculty of Medicine, Department of Surgery, "Grigore T Popa" University of Medicine and Pharmacy, 16 Universitatii Str, 700115, Iasi, Romania
| | - Cristian Velicescu
- Faculty of Medicine, Department of Surgery, "Grigore T Popa" University of Medicine and Pharmacy, 16 Universitatii Str, 700115, Iasi, Romania
| | - Delia Ciobanu
- Faculty of Medicine, Department of Morphopathology, "Grigore T Popa" University of Medicine and Pharmacy, 16 Universitatii Str, 700115, Iasi, Romania
| | - Adrian Covic
- Faculty of Medicine, Department of Nephrology, "Grigore T Popa" University of Medicine and Pharmacy, 16 Universitatii Str, 700115, Iasi, Romania.,Academy of Romanian Scientists, Bucuresti, Romania
| | - Alexandru Grigorovici
- Faculty of Medicine, Department of Surgery, "Grigore T Popa" University of Medicine and Pharmacy, 16 Universitatii Str, 700115, Iasi, Romania
| |
Collapse
|
38
|
McIntyre JB, Ko JJ, Siever J, Chan AMY, Simpson RHW, Hao D, Lau HY. MYB-NFIB gene fusions identified in archival adenoid cystic carcinoma tissue employing NanoString analysis: an exploratory study. Diagn Pathol 2019; 14:78. [PMID: 31301736 PMCID: PMC6626627 DOI: 10.1186/s13000-019-0855-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/04/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Adenoid cystic carcinoma (ACC) is a slow growing salivary gland malignancy that is molecularly characterized by t(6:9)(q22-23;p23-24) translocations which predominantly result in MYB-NFIB gene fusions in nearly half of tumours. Detection of MYB-NFIB transcripts is typically performed with fresh ACC tissue using conventional RT-PCR fragment analysis or FISH techniques, which are prone to failure when only archival formalin fixed paraffin embedded (FFPE) tissue is available. The purpose of this pilot study was to evaluate the utility of NanoString probe technology for the detection of MYB-NFIB transcripts in archival ACC tissue. METHODS A NanoString probeset panel was designed targeting the junctions of three currently annotated MYB-NFIB fusion genes as well as 5'/3' MYB probesets designed to detect MYB gene expression imbalance. RNA isolated from twenty-five archival ACC specimens was profiled and analyzed. RT-qPCR and sequencing were performed to confirm NanoString results. MYB protein expression was analyzed by immunohistochemistry. RESULTS Of the 25 samples analyzed, 11/25 (44%) expressed a high degree of MYB 5'/3' imbalance and five of these samples were positive for at least one specific MYB-NFIB variant in our panel. MYB-NFIB variant detection on NanoString analysis was confirmed by direct cDNA sequencing. No clinical correlations were found to be associated with MYB fusion status. CONCLUSION We conclude that the application of NanoString digital probe counting technology is well suited for the detection and quantification of MYB-NFIB fusion transcripts in archival ACC specimens.
Collapse
Affiliation(s)
- John B McIntyre
- Translational Laboratory, Department of Oncology, University of Calgary, Calgary, AB, Canada.
| | - Jenny J Ko
- Department of Medical Oncology, BC Cancer - Abbotsford, Abbotsford, BC, Canada
| | - Jodi Siever
- Faculty of Medicine, Southern Medical Program University of British Columbia, Kelowna, BC, Canada
| | - Angela M Y Chan
- Translational Laboratory, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Roderick H W Simpson
- Department of Anatomical Pathology, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | - Desiree Hao
- Department of Medical Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - Harold Y Lau
- Department of Radiation Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, AB, Canada
| |
Collapse
|
39
|
Javed Z, Farooq HM, Ullah M, Iqbal MZ, Raza Q, Sadia H, Pezzani R, Salehi B, Sharifi-Rad J, Cho WC. Wnt Signaling: A Potential Therapeutic Target in Head and
Neck Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2019; 20:995-1003. [PMID: 31030466 PMCID: PMC6948882 DOI: 10.31557/apjcp.2019.20.4.995] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/15/2019] [Indexed: 12/24/2022] Open
Abstract
Cellular maintenance and development are two fundamental mechanisms regulated by the canonical Wnt signaling pathway. Wnt/beta-catenin signaling pathway controls a myriad of cellular processes that are essential for normal cell functioning. Cell cycle progression, differentiation, fate determination, and migration are generally orchestrated by canonical Wnt signaling. Altered Wnt/beta-catenin signaling has been considered a promoting event for different types of cancers and the oncogenic potential of Wnt signaling have been discussed in many cancer types, including breast, colon, pancreatic as well as head and neck. Furthermore, Wnt signaling is critical for the maintenance and stemness of both the normal as well as cancer stem cells. This review sheds new light on Wnt signaling and explains how it can regulate normal physiological processes and curtail the development of cancer. It depicts the vital functions of Wnt signaling in the stem cell growth and differentiation by focusing on current druggable targets that have been ascribed by recent studies. Thus, Wnt signaling pathway retains a tremendous potential in eradicating head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
| | | | | | - Muhammad Zaheer Iqbal
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Pakistan,
| | - Qamar Raza
- Center for Excellence in Molecular Biology, University of The Punjab, Lahore,
| | | | - Raffaele Pezzani
- OU Endocrinology, Department of Medicine (DIMED), University of Padova, via Ospedale 105,
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy,
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam,
| | - Javad Sharifi-Rad
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran,
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| |
Collapse
|
40
|
ZNF185 is a p63 target gene critical for epidermal differentiation and squamous cell carcinoma development. Oncogene 2018; 38:1625-1638. [PMID: 30337687 PMCID: PMC6755960 DOI: 10.1038/s41388-018-0509-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/13/2018] [Accepted: 08/17/2018] [Indexed: 01/04/2023]
Abstract
Development and maintenance of healthy stratified epithelia require the coordination of complex transcriptional programmes. The transcription factor p63, a member of the p53 family, plays a crucial role in epithelial development and homeostasis. Analysis of the p63-dependent transcriptome indicated that one important aspect of p63 functions in epithelial development is the regulation of cell–cell and cell–matrix adhesion programmes. However, limited knowledge exists on the relevant cell–cell adhesion molecules involved in physiological epithelial formation. Similarly, limited data are available to understand if deregulation of the cell–cell adhesion programme is important in tumour formation. Here, using the epidermis as an experimental model with the RNA sequencing approach, we identify a novel p63-regulated gene induced during differentiation, ZNF185. ZNF185 is an actin-cytoskeleton-associated Lin-l 1, Isl-1 and Mec-3 (LIM) domain-containing protein, whose function is poorly known. We found that p63 binds to a specific enhancer region, promoting its expression to sustain epithelial differentiation. ZNF185 silencing strongly impaired keratinocyte differentiation according to gene array analysis. ZNF185 is detected at the cell–cell periphery where it physically interacts with E-cadherin, indicating that it is important to maintain epithelial integrity beyond its pro-differentiation role. Interestingly, poorly differentiated, including head and neck, cervical and oesophageal, squamous cell carcinomas display loss of ZNF185 expression. Together, these studies reinforce that p63 is a crucial gene for maintaining epithelial tissue integrity and support the deregulation of the cell-cell adhesion programme,which plays a critical role in carcinoma development.
Collapse
|
41
|
Read ML, Modasia B, Fletcher A, Thompson RJ, Brookes K, Rae PC, Nieto HR, Poole VL, Roberts S, Campbell MJ, Boelaert K, Turnell AS, Smith VE, Mehanna H, McCabe CJ. PTTG and PBF Functionally Interact with p53 and Predict Overall Survival in Head and Neck Cancer. Cancer Res 2018; 78:5863-5876. [PMID: 30154144 DOI: 10.1158/0008-5472.can-18-0855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/05/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer worldwide and poses a significant health burden due to its rising incidence. Although the proto-oncogene pituitary tumor-transforming gene 1 (PTTG) predicts poor patient outcome, its mechanisms of action are incompletely understood. We show here that the protein PBF modulates PTTG function, is overexpressed in HNSCC tumors, and correlates with significantly reduced survival. Lentiviral shRNA attenuation of PTTG or PBF expression in HNSCC cells with either wild-type or mutant p53, and with and without HPV infection, led to dysregulated expression of p53 target genes involved in DNA repair and apoptosis. Mechanistically, PTTG and PBF affected each other's interaction with p53 and cooperated to reduce p53 protein stability in HNSCC cells independently of HPV. Depletion of either PTTG or PBF significantly repressed cellular migration and invasion and impaired colony formation in HNSCC cells, implicating both proto-oncogenes in basic mechanisms of tumorigenesis. Patients with HNSCC with high tumoral PBF and PTTG had the poorest overall survival, which reflects a marked impairment of p53-dependent signaling.Significance: These findings reveal a complex and novel interrelationship between the expression and function of PTTG, PBF, and p53 in human HNSCC that significantly influences patient outcome. Cancer Res; 78(20); 5863-76. ©2018 AACR.
Collapse
Affiliation(s)
- Martin L Read
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.
| | - Bhavika Modasia
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Alice Fletcher
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca J Thompson
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Katie Brookes
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Peter C Rae
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hannah R Nieto
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Vikki L Poole
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Kristien Boelaert
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Andrew S Turnell
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Vicki E Smith
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Hisham Mehanna
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher J McCabe
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
42
|
Biphenotypic sinonasal sarcoma: demographics, clinicopathological characteristics, molecular features, and prognosis of a recently described entity. Virchows Arch 2018; 473:615-626. [PMID: 30109475 DOI: 10.1007/s00428-018-2426-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 01/23/2023]
Abstract
Biphenotypic sinonasal sarcoma (BSNS) is a recently recognized type of sarcoma arising exclusively in the sinonasal tract displaying unique clinical course, histopathology, and genetics. Due to its rarity, only case series and case reports are available. In order to provide an overview of the current understanding of this disease, we present a comprehensive review of the literature and present three previously unreported cases of BSNS. A total of 55 genetically characterized and 41 cases without molecular data were identified in the literature. Two-thirds of patients were female and the peak incidence was in the fifth decade. Fatal outcome was rare (two cases with intracranial extension) and local recurrence occurred in 31.6%, all occurring within 5 years after initial treatment. Histologically, BSNS is highly cellular in the majority of cases and composed of fascicles of spindle cells, with entrapped hyperplastic surface epithelium being a frequent finding. The immunohistochemical profile is characteristic due to the biphasic nature of this lesion, with shared features of both myogenic and neural origin. Rhabdomyoblastic differentiation is apparent in a subset of cases. The most common genetic event is the PAX3-MAML3 fusion (58.6%) but isolated PAX3 rearrangement (19.2%), absence of rearrangements (9.1%), PAX3-FOXO1 (8.1%), PAX3-NCOA1 (4%), and isolated MAML3 rearrangement (2%) have also been reported. In conclusion, the recognition of BSNS is crucial due to its relatively indolent clinical course. A selected immunohistochemical panel and/or molecular confirmation can be used to aid in appropriate diagnosis and consequently in prognostication and to avoid overtreatment with chemotherapy regimens used in its mimics.
Collapse
|
43
|
Abstract
Head and neck cancer presents primarily as head and neck squamous cell carcinoma (HNSCC), a debilitating malignancy fraught with high morbidity, poor survival rates, and limited treatment options. Mounting evidence indicates that the Wnt/β-catenin signaling pathway plays important roles in the pathobiology of HNSCC. Wnt/β-catenin signaling affects multiple cellular processes that endow cancer cells with the ability to maintain and expand immature stem-like phenotypes, proliferate, extend survival, and acquire aggressive characteristics by adopting mesenchymal traits. A central component of canonical Wnt signaling is β-catenin, which balances its role as a structural component of E-cadherin junctions with its function as a transcriptional coactivator of numerous target genes. Recent genomic characterization of head and neck cancer revealed that while β-catenin is not frequently mutated in HNSCC, its activity is unchecked by more common mutations in genes encoding upstream regulators of β-catenin, NOTCH1, FAT1, and AJUBA. Wnt/β-catenin signaling affects a wide range epigenetic and transcriptional activities, mediated by the interaction of β-catenin with different transcription factors and transcriptional coactivators and corepressors. Furthermore, Wnt/β-catenin functions in a network with many signaling and metabolic pathways that modulate its activity. In addition to its effects on tumor epithelia, β-catenin activity regulates the tumor microenvironment by regulating extracellular matrix remodeling, fibrotic processes, and immune response. These multifunctional oncogenic effects of β-catenin make it an attractive bona fide target for HNSCC therapy.
Collapse
Affiliation(s)
- K A Alamoud
- 1 Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| | - M A Kukuruzinska
- 1 Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
44
|
Hanna GJ, Kofman ER, Shazib MA, Woo SB, Reardon B, Treister NS, Haddad RI, Cutler CS, Antin JH, Van Allen EM, Uppaluri R, Soiffer RJ. Integrated genomic characterization of oral carcinomas in post-hematopoietic stem cell transplantation survivors. Oral Oncol 2018; 81:1-9. [DOI: 10.1016/j.oraloncology.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/15/2018] [Accepted: 04/07/2018] [Indexed: 02/07/2023]
|
45
|
Abstract
Head and neck squamous cell carcinomas (HNSCCs) arise in the mucosal linings of the upper aerodigestive tract and are unexpectedly heterogeneous in nature. Classical risk factors are smoking and excessive alcohol consumption, and in recent years, the role of human papillomavirus (HPV) has emerged, particularly in oropharyngeal tumours. HPV-induced oropharyngeal tumours are considered a separate disease entity, which recently has manifested in an adapted prognostic staging system while the results of de-intensified treatment trials are awaited. Carcinogenesis caused by HPV in the mucosal linings of the upper aerodigestive tract remains an enigma, but with some recent observations, a model can be proposed. In 2015, The Cancer Genome Atlas (TCGA) consortium published a comprehensive molecular catalogue on HNSCC. Frequent mutations of novel druggable oncogenes were not demonstrated, but the existence of a subgroup of genetically distinct HPV-negative head and neck tumours with favourable prognoses was confirmed. Tumours can be further subclassified based on genomic profiling. However, the amount of molecular data is currently overwhelming and requires detailed biological interpretation. It also became apparent that HNSCC is a disease characterized by frequent mutations that create neoantigens, indicating that immunotherapies might be effective. In 2016, the first results of immunotherapy trials with immune checkpoint inhibitors were published, and these may be considered as a paradigm shift in head and neck oncology.
Collapse
Affiliation(s)
- C René Leemans
- Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center
| | - Peter J F Snijders
- Department of Pathology, VU University Medical Center, Amsterdam, Netherlands
| | - Ruud H Brakenhoff
- Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center
| |
Collapse
|
46
|
Wang C, Dickie J, Sutavani RV, Pointer C, Thomas GJ, Savelyeva N. Targeting Head and Neck Cancer by Vaccination. Front Immunol 2018; 9:830. [PMID: 29740440 PMCID: PMC5924779 DOI: 10.3389/fimmu.2018.00830] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/05/2018] [Indexed: 12/16/2022] Open
Abstract
Head and neck cancer (HNC) is a heterogeneous group of squamous cell cancers that affect the oral cavity, pharynx, and larynx. Worldwide, it is the sixth most common cancer but in parts of Southern and South-East Asia, HNC is one of the most common cancers. A significant proportion of HNC is driven by human papillomavirus (HPV) infection, whereas HPV-independent HNC is associated with alcohol, smoking, and smokeless tobacco consumption. Here, we review the past and present experience of targeting HNC with vaccination focusing on HPV-derived antigens as well as non-viral antigens for HPV-negative HNC. Novel therapeutic approaches for HNC will focus not only on effective vaccine platforms but will also target the stroma-rich immunosuppressive microenvironment found in those tumours.
Collapse
Affiliation(s)
| | | | | | | | | | - Natalia Savelyeva
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
47
|
Sakuramoto A, Hasegawa Y, Sugahara K, Komoda Y, Hasegawa K, Hikasa S, Kurashita M, Sakai J, Arita M, Yasukawa K, Kishimoto H. New paste for severe stomatitis in patients undergoing head-and-neck cancer radiotherapy and/or chemotherapy with oral appliance. BMC Cancer 2018; 18:245. [PMID: 29499657 PMCID: PMC5834906 DOI: 10.1186/s12885-018-4017-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/22/2018] [Indexed: 11/17/2022] Open
Abstract
Background The aim of the present study was to evaluate the physical properties of “admixture paste”, which is a commercially available gel containing hinokitiol for use against severe stomatitis, and its characteristics as a moisturizing gel and denture adhesive. Methods The admixture paste, which contained dexamethasone (Dexaltin®), gel for oral care (Refrecare H®) and petrolatum, and its 3 components, either alone or in different combinations, were subjected to viscosity, adhesiveness and elution testing to compare their physical properties. Viscosity was measured with a stress-controlled rheometer. Adhesive force was measured by tension test. Elution under a simulated oral environment was evaluated by monitoring with a fixed-point camera and absorbance. Both adhesiveness and elution were evaluated every hour for 6 h. A linear mixed-effects model was used to assess differences in the time course of elution between samples. In 3 og-rank test was used to compare time to elution into saliva among samples. Results The results of viscosity testing demonstrated that the admixture paste had similar viscosity to cream-type denture adhesives and this was temperature independent. In the adhesiveness tests, the admixture paste showed stronger adhesiveness than that of cream-type denture adhesives. In the elution test, the admixture paste demonstrated gradual dissolution and apparent temporal changes for 6 h in a simulated oral environment. Conclusions The results of the present study demonstrated that the admixture paste has adhesive force similar to those of denture adhesives and good local retention in saliva, and that it might be suitable for therapeutic use in patients with severe stomatitis derived from radiotherapy and/or chemotherapy for cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4017-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ayumi Sakuramoto
- Department of Dentistry and Oral Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yoko Hasegawa
- Department of Dentistry and Oral Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Kazuma Sugahara
- Department of Dentistry and Oral Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yoshiyuki Komoda
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Kana Hasegawa
- Department of Dentistry and Oral Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Shinichi Hikasa
- Department of Pharmacy, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Mai Kurashita
- Department of Dentistry and Oral Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Junya Sakai
- Department of Dentistry and Oral Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Masahiro Arita
- Division of Occlusion & Maxillofacial Reconstruction, Department of Oral Function, School of Dentistry, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Kazuhiro Yasukawa
- Medical Research Group, Development Department. Takiron Co., Ltd., Osaka, Japan
| | - Hiromitsu Kishimoto
- Department of Dentistry and Oral Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|
48
|
Soulières D, Licitra L, Mesía R, Remenár É, Li SH, Karpenko A, Chol M, Wang YA, Solovieff N, Bourdeau L, Sellami D, Faivre S. Molecular Alterations and Buparlisib Efficacy in Patients with Squamous Cell Carcinoma of the Head and Neck: Biomarker Analysis from BERIL-1. Clin Cancer Res 2018; 24:2505-2516. [PMID: 29490986 DOI: 10.1158/1078-0432.ccr-17-2644] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/17/2018] [Accepted: 02/22/2018] [Indexed: 12/24/2022]
Abstract
Purpose: The preplanned exploratory analysis of the BERIL-1 trial presented here aimed to identify biomarkers of response to the combination of buparlisib and paclitaxel.Patients and Methods: BERIL-1 was a multicenter, randomized, double-blind, placebo-controlled phase II study. Patients with recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) progressing on/after one previous platinum-based chemotherapy regimen in the recurrent or metastatic setting were treated with either buparlisib plus paclitaxel or placebo plus paclitaxel. Archival tumor tissue and ctDNA samples were analyzed for molecular alterations and immune infiltration using next-generation sequencing or immunohistochemistry.Results: Biomarker analyses were performed in randomized patients (n = 158) with available biomarker data. The most frequently (>5%) mutated genes were TP53, FAT1, TET2, KMT2D, PIK3CA, NOTCH1, NFE2L2, NOTCH2, CCND1, and CDKN2A Patients with SCCHN tumors (from various primary sites) having HPV-negative status (HR = 0.51), TP53 alterations (HR = 0.55) or low mutational load (HR = 0.57) derived overall survival (OS) benefit with the combination of buparlisib and paclitaxel. OS benefit with this combination was also increased in patients with presence of intratumoral TILs ≥10% (HR = 0.51), stromal TILs ≥15% (HR = 0.53), intratumoral CD8-positive cells ≥5% (HR = 0.45), stromal CD8-positive cells ≥10% (HR = 0.47), or CD8-positive cells in invasive margins >25% (HR = 0.37). A trend for improved progression-free survival with the combination of buparlisib and paclitaxel was also observed in these patients.Conclusions: The BERIL-1 biomarker analyses showed that patients with TP53 alterations, HPV-negative status, low mutational load, or high infiltration of TILs or CD8-positive cells derived survival benefit with the combination of buparlisib and paclitaxel. Clin Cancer Res; 24(11); 2505-16. ©2018 AACR.
Collapse
Affiliation(s)
- Denis Soulières
- Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | - Lisa Licitra
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, and University of Milan, Milan, Italy
| | - Ricard Mesía
- Institut Català d'Oncologia-L'Hospitalet, Universitat de Barcelona, IDIBELL, Barcelona, Spain
| | - Éva Remenár
- Országos Onkológiai Intézet, Budapest, Hungary
| | - Shau-Hsuan Li
- Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Andrey Karpenko
- Leningrad Regional Oncology Dispensary, Saint Petersburg, Russian Federation
| | | | - Ying A Wang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Nadia Solovieff
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Dalila Sellami
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Sandrine Faivre
- Hôpitaux Universitaires Paris Nord Val de Seine, Paris, France.
| |
Collapse
|
49
|
Krishnan AR, Qu Y, Li PX, Zou AE, Califano JA, Wang-Rodriguez J, Ongkeko WM. Computational methods reveal novel functionalities of PIWI-interacting RNAs in human papillomavirus-induced head and neck squamous cell carcinoma. Oncotarget 2017; 9:4614-4624. [PMID: 29435129 PMCID: PMC5797000 DOI: 10.18632/oncotarget.23464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022] Open
Abstract
Human papillomavirus (HPV) infection is the fastest growing cause of head and neck squamous cell carcinoma (HNSCC) today, but its role in malignant transformation remains unclear. This study aimed to conduct a comprehensive investigation of PIWI-interacting RNA (piRNA) alterations and functionalities in HPV-induced HNSCC. Using 77 RNA-sequencing datasets from TCGA, we examined differential expression of piRNAs between HPV16(+) HNSCC and HPV(–) Normal samples, identifying a panel of 30 HPV-dysregulated piRNAs. We then computationally investigated the potential mechanistic significances of these transcripts in HPV-induced HNSCC, identifying our panel of piRNAs to associate with the protein PIWIL4 as well as the RTL family of retrotransposon-like genes, possibly through direct binding interactions. We also recognized several HPV-dysregulated transcripts for their correlations with well-documented mutations and copy number variations in HNSCC as well as HNSCC clinical variables, demonstrating the potential ability of our piRNAs to play important roles in large-scale modulation of HNSCC in addition to their direct, smaller-scale interactions in this malignancy. The differential expression of key piRNAs, including NONHSAT077364, NONHSAT102574, and NONHSAT128479, was verified in vitro by evaluating endogenous expression in HPV(+) cancer vs. HPV(–) normal cell lines. Overall, our novel study provides a rigorous investigation of piRNA dysregulation in HPV-related HNSCC, and lends critical insight into the idea that these small regulatory transcripts may play crucial and previously unidentified roles in tumor pathogenesis and progression.
Collapse
Affiliation(s)
- Aswini R Krishnan
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Yuanhao Qu
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Pin Xue Li
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Angela E Zou
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Joseph A Califano
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Jessica Wang-Rodriguez
- Veterans Administration San Diego Healthcare System and Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Weg M Ongkeko
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
50
|
Hughesman CB, Lu XJD, Liu KYP, Zhu Y, Towle RM, Haynes C, Poh CF. Detection of clinically relevant copy number alterations in oral cancer progression using multiplexed droplet digital PCR. Sci Rep 2017; 7:11855. [PMID: 28928368 PMCID: PMC5605662 DOI: 10.1038/s41598-017-11201-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Copy number alterations (CNAs), a common genomic event during carcinogenesis, are known to affect a large fraction of the genome. Common recurrent gains or losses of specific chromosomal regions occur at frequencies that they may be considered distinctive features of tumoral cells. Here we introduce a novel multiplexed droplet digital PCR (ddPCR) assay capable of detecting recurrent CNAs that drive tumorigenesis of oral squamous cell carcinoma. Applied to DNA extracted from oral cell lines and clinical samples of various disease stages, we found good agreement between CNAs detected by our ddPCR assay with those previously reported using comparative genomic hybridization or single nucleotide polymorphism arrays. Furthermore, we demonstrate that the ability to target specific locations of the genome permits detection of clinically relevant oncogenic events such as small, submicroscopic homozygous deletions. Additional capabilities of the multiplexed ddPCR assay include the ability to infer ploidy level, quantify the change in copy number of target loci with high-level gains, and simultaneously assess the status and viral load for high-risk human papillomavirus types 16 and 18. This novel multiplexed ddPCR assay therefore may have clinical value in differentiating between benign oral lesions from those that are at risk of progressing to oral cancer.
Collapse
Affiliation(s)
- Curtis B Hughesman
- Department of Oral Medical and Biological Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, V5Z 1L3, Canada
| | - X J David Lu
- Department of Oral Medical and Biological Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Kelly Y P Liu
- Department of Oral Medical and Biological Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Yuqi Zhu
- Department of Oral Medical and Biological Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Rebecca M Towle
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Charles Haynes
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Catherine F Poh
- Department of Oral Medical and Biological Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 2B5, Canada.
| |
Collapse
|