1
|
Safi D, Khouri F, Zareef R, Arabi M. Antivirals in COVID-19: A Focus on Pediatric Cardiac Patients. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2025; 2025:4573096. [PMID: 40196380 PMCID: PMC11972864 DOI: 10.1155/cjid/4573096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/17/2025] [Indexed: 04/09/2025]
Abstract
The COVID-19 pandemic created an unprecedented public health crisis, driven by its rapid global spread and the urgent need for worldwide collaborative interventions to contain it. This urgency spurred the search for therapeutic agents to prevent or manage the infection. Among these, various types of antivirals emerged as a prominent treatment option, supported by a wealth of observational studies and randomized controlled trials. The results from such studies conflict, with some concluding efficacy and others the lack thereof, with variability also occurring depending on the severity of COVID-19 in the studied population. In addition, many agents have been explored using randomized controlled trials-the gold standard in evaluating the efficacy of an intervention-to only a limited degree, with most of the evidence behind their use concluded using observational studies. Thus, the sheer volume of data has made it challenging to resolve inconsistencies and determine true efficacy. Furthermore, there is a paucity in the literature regarding the use of antivirals in the pediatric population infected with COVID-19, with their use being extrapolated from the results of studies done on adult patients. As such, additional trials are needed to solidify the effectiveness of antivirals in managing COVID-19, particularly in the underexplored and especially vulnerable pediatric cardiac patients. Therefore, utilizing the results from randomized controlled trials, this narrative review evaluates the rationale behind the use of antivirals, summarizes the findings from the literature, and concludes with a focused discussion on their application in pediatric cardiac patients.
Collapse
Affiliation(s)
- Dalia Safi
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Farah Khouri
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rana Zareef
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mariam Arabi
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
2
|
Viermyr HK, Tonby K, Ponzi E, Trouillet-Assant S, Poissy J, Arribas JR, Dyon-Tafani V, Bouscambert-Duchamp M, Assoumou L, Halvorsen B, Tekin NB, Diallo A, De Gastines L, Munthe LA, Murphy SL, Ueland T, Michelsen AE, Lund-Johansen F, Aukrust P, Mootien J, Dervieux B, Zerbib Y, Richard JC, Prével R, Malvy D, Timsit JF, Peiffer-Smadja N, Roux D, Piroth L, Ait-Oufella H, Vieira C, Dalgard O, Heggelund L, Müller KE, Møller JH, Kildal AB, Skogen V, Aballi S, Sjøberg Øgaard JD, Dyrhol-Riise AM, Tveita A, Alirezaylavasani A, Costagliola D, Yazdanpanah Y, Olsen IC, Dahl TB, Kared H, Holten AR, Trøseid M. Safety of baricitinib in vaccinated patients with severe and critical COVID-19 sub study of the randomised Bari-SolidAct trial. EBioMedicine 2025; 111:105511. [PMID: 39731852 PMCID: PMC11743795 DOI: 10.1016/j.ebiom.2024.105511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND The Bari-SolidAct randomized controlled trial compared baricitinib with placebo in patients with severe COVID-19. A post hoc analysis revealed a higher incidence of serious adverse events (SAEs) among SARS-CoV-2-vaccinated participants who had received baricitinib. This sub-study aimed to investigate whether vaccination influences the safety profile of baricitinib in patients with severe COVID-19. METHODS Biobanked samples from 146 participants (55 vaccinated vs. 91 unvaccinated) were analysed longitudinally for inflammation markers, humoral responses, tissue viral loads, and plasma viral antigens on days 1, 3, and 8. High-dimensional analyses, including RNA sequencing and flow cytometry, were performed on available samples. Mediation analyses were used to assess relationships between SAEs, baseline-adjusted biomarkers, and treatment-vaccination status. FINDINGS Vaccinated participants were older, more frequently hospitalized, had more comorbidities, and exhibited higher nasopharyngeal viral loads. Baricitinib treatment did not affect antibody responses or viral clearance, but reduced markers of T-cell and monocyte activation compared to placebo (sCD25, sCD14, sCD163, sTIM-3). Age, baseline levels of plasma viral antigen, and several inflammatory markers, as well as IL-2, IL-6, Neopterin, CXCL16, sCD14, and suPAR on day 8 were associated with the occurrence of SAEs. However, mediation analyses of markers linked to SAEs, baricitinib treatment, or vaccination status did not reveal statistically significant interactions between vaccination status and SAEs. INTERPRETATION This sub-study did not identify any virus- or host-related biomarkers significantly associated with the interaction between SARS-CoV-2 vaccination status and the safety of baricitinib. However, caution should be exercised due to the moderate sample size. FUNDING EU Horizon 2020 (grant number 101015736).
Collapse
Affiliation(s)
- Hans-Kittil Viermyr
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Section for Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kristian Tonby
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway
| | - Erica Ponzi
- Department of Research Support for Clinical Trials, Oslo University Hospital, Oslo, Norway
| | - Sophie Trouillet-Assant
- Centre International de Recherche en Infectiologie (CIRI), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France; Joint Research Unit Hospices Civils de Lyon-bioMerieux S.A., Hôpital Lyon Sud, Pierre-Bénite, France
| | - Julien Poissy
- Université Lille, Inserm U1285, CHU Lille, Pôle de Médecine Intensive-Réanimatin, CNRS, UMR 8576, France; Université Lille, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000, Lille, France
| | - José R Arribas
- Infectious Diseases Unit, Internal Medicine Department, La Paz University Hospital, IdiPAZ, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Virginie Dyon-Tafani
- Centre International de Recherche en Infectiologie (CIRI), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Maude Bouscambert-Duchamp
- Hospices Civils de Lyon, Laboratoire de Virologie, Institut des Agents Infectieux de Lyon, Centre National de Référence des Virus Respiratoires France Sud, F-69317, Lyon, France; Université Claude Bernard Lyon 1, Virpath, CIRI, INSERM U1111, CNRS UMR5308, ENS Lyon, F-69372, Lyon, France
| | - Lambert Assoumou
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Paris, France
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nuriye Basdag Tekin
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alpha Diallo
- ANRS, Maladies Infectieuses Emergentes, F-75015, Paris, France; Institut National de la Santé et de la Recherche Médicale, INSERM, F-75013, Paris, France
| | - Lucie De Gastines
- ANRS, Maladies Infectieuses Emergentes, F-75015, Paris, France; Institut National de la Santé et de la Recherche Médicale, INSERM, F-75013, Paris, France
| | - Ludvig A Munthe
- Department of Immunology, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sarah Louise Murphy
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Joy Mootien
- Intensive Care Unit, Antibiotic Stewardship Team, Groupe Hospitalier Région Mulhouse et Sud Alsace, Mulhouse, France
| | - Benjamin Dervieux
- Infectious Diseases Unit, Groupe Hospitalier Région Mulhouse et Sud Alsace, Mulhouse, France
| | - Yoann Zerbib
- Intensive Care Department, Amiens-Picardie University Hospital, Amiens, France
| | - Jean-Christophe Richard
- Medical Intensive Care Unit, Hospices Civils de Lyon, Croix-Rousse Hospital - Université Lyon 1, Lyon, France; CREATIS INSERM 1044 CNRS 5220, Villeurbanne, France
| | - Renaud Prével
- CHU Bordeaux, Medical Intensive Care Unit, Bordeaux, France; Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
| | - Denis Malvy
- Department of Infectious and Tropical Diseases, University Hospital, UMR 1219 Inserm/EMR 271 IRD, University of Bordeaux, Bordeaux, France
| | - Jean-François Timsit
- AP-HP, Bichat Hospital, Medical and Infectious Diseases ICU (MI2), F-75018, Paris, France; Université Paris-Cité, INSERM, F-75018, Paris, France; OUCTOME REA Research Network, France
| | - Nathan Peiffer-Smadja
- Université Paris Cité, Inserm, IAME, Paris, 75018, France; Service de Maladies Infectieuses et Tropicales, Hôpital Bichat Claude Bernard, AP-HP, Paris, 75018, France
| | - Damien Roux
- Université Paris Cité, AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France
| | - Lionel Piroth
- Infectious Diseases Department, University Hospital, Dijon, France; INSERM CIC 1432, University of Burgundy, Dijon, France
| | - Hafid Ait-Oufella
- Service de Médecine Intensive-Réanimation, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, F-75012, France
| | - Cesar Vieira
- Centro Hospitalar Universitário de Lisboa Central, Hospital Curry Cabral, Department of Intensive Care Medicine - Lisbon, Portugal
| | - Olav Dalgard
- Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway; Department of Infectious Diseases, Akershus University Hospital, Norway
| | - Lars Heggelund
- Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Norway; Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Karl Erik Müller
- Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Norway; Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway
| | | | - Anders Benjamin Kildal
- Department of Anesthesiology and Intensive Care, University Hospital of North Norway, Tromsø, Norway; Faculty of Health Sciences, UIT The Arctic University of Norway, Norway
| | - Vegard Skogen
- Department of Infectious Diseases, University Hospital of North Norway, Tromsø, Norway; Faculty of Health Sciences, UIT The Arctic University of Norway, Norway
| | - Saad Aballi
- Department of Infectious Diseases, Østfold Hospital Kalnes, Grålum, Norway
| | - Jonas Daniel Sjøberg Øgaard
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Ma Dyrhol-Riise
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway
| | - Anders Tveita
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Section for Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway; Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, 1346, Gjettum, Norway
| | | | - Dominique Costagliola
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Paris, France
| | - Yazdan Yazdanpanah
- Infectious and Tropical Diseases Department, Bichat - Claude Bernard Hospital, AP-HP Nord-Université Paris Cité, Paris, France; IAME INSERM UMR 1137, Université Paris Cité, Paris, France; ANRS, Maladies Infectieuses Emergentes, F-75015, Paris, France; Institut National de la Santé et de la Recherche Médicale, INSERM, F-75013, Paris, France
| | - Inge Christoffer Olsen
- Department of Research Support for Clinical Trials, Oslo University Hospital, Oslo, Norway
| | - Tuva Børresdatter Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hassen Kared
- Department of Immunology, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aleksander Rygh Holten
- Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway; Department of Acute Medicine, Oslo University Hospital, Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Section for Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| |
Collapse
|
3
|
Anwar S, Alhumaydhi FA, Rahmani AH, Kumar V, Alrumaihi F. A Review on Risk Factors, Traditional Diagnostic Techniques, and Biomarkers for Pneumonia Prognostication and Management in Diabetic Patients. Diseases 2024; 12:310. [PMID: 39727640 PMCID: PMC11726889 DOI: 10.3390/diseases12120310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
People of all ages can contract pneumonia, and it can cause mild to severe disease and even death. In addition to being a major cause of death for elderly people and those with prior medical conditions such as diabetes, it isthe world's biggest infectious cause of death for children. Diabetes mellitus is a metabolic condition with a high glucose level and is a leading cause of lower limb amputation, heart attacks, strokes, blindness, and renal failure. Hyperglycemia is known to impair neutrophil activity, damage antioxidant status, and weaken the humoral immune system. Therefore, diabetic patients are more susceptible to pneumonia than people without diabetes and linked fatalities. The absence of quick, precise, simple, and affordable ways to identify the etiologic agents of community-acquired pneumonia has made diagnostic studies' usefulness contentious. Improvements in biological markers and molecular testing techniques have significantly increased the ability to diagnose pneumonia and other related respiratory infections. Identifying the risk factors for developing severe pneumonia and early testing in diabetic patients might lead to a significant decrease in the mortality of diabetic patients with pneumonia. In this regard, various risk factors, traditional testing techniques, and pathomechanisms are discussed in this review. Further, biomarkers and next-generation sequencing are briefly summarized. Finding biomarkers with the ability to distinguish between bacterial and viral pneumonia could be crucial because identifying the precise pathogen would stop the unnecessary use of antibiotics and effectively save the patient's life.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratory Technology, College of Nursing and Paramedical Sciences, Bareilly 243302, Uttar Pradesh, India
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.A.); (A.H.R.)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.A.); (A.H.R.)
| | - Vikalp Kumar
- Department of Medical Laboratory Technology, College of Nursing and Paramedical Sciences, Bareilly 243302, Uttar Pradesh, India
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.A.); (A.H.R.)
| |
Collapse
|
4
|
Chung YS, Lam CY, Tan PH, Tsang HF, Wong SCC. Comprehensive Review of COVID-19: Epidemiology, Pathogenesis, Advancement in Diagnostic and Detection Techniques, and Post-Pandemic Treatment Strategies. Int J Mol Sci 2024; 25:8155. [PMID: 39125722 PMCID: PMC11312261 DOI: 10.3390/ijms25158155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
At present, COVID-19 remains a public health concern due to the ongoing evolution of SARS-CoV-2 and its prevalence in particular countries. This paper provides an updated overview of the epidemiology and pathogenesis of COVID-19, with a focus on the emergence of SARS-CoV-2 variants and the phenomenon known as 'long COVID'. Meanwhile, diagnostic and detection advances will be mentioned. Though many inventions have been made to combat the COVID-19 pandemic, some outstanding ones include multiplex RT-PCR, which can be used for accurate diagnosis of SARS-CoV-2 infection. ELISA-based antigen tests also appear to be potential diagnostic tools to be available in the future. This paper also discusses current treatments, vaccination strategies, as well as emerging cell-based therapies for SARS-CoV-2 infection. The ongoing evolution of SARS-CoV-2 underscores the necessity for us to continuously update scientific understanding and treatments for it.
Collapse
Affiliation(s)
| | | | | | | | - Sze-Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (Y.-S.C.); (C.-Y.L.); (P.-H.T.); (H.-F.T.)
| |
Collapse
|
5
|
Sakai H, Kamuro H, Tokunoh N, Izawa T, Tamiya S, Yamamoto A, Tanaka S, Okuzaki D, Ono C, Matsuura Y, Okada Y, Yoshioka Y, Fujio Y, Obana M. JAK inhibition during the early phase of SARS-CoV-2 infection worsens kidney injury by suppressing endogenous antiviral activity in mice. Am J Physiol Renal Physiol 2024; 326:F931-F941. [PMID: 38634132 PMCID: PMC11381010 DOI: 10.1152/ajprenal.00011.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) induces respiratory dysfunction as well as kidney injury. Although the kidney is considered a target organ of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and affected by the COVID-19-induced cytokine storm, the mechanisms of renal reaction in SARS-CoV-2 infection are unknown. In this study, a murine COVID-19 model was induced by nasal infection with mouse-adapted SARS-CoV-2 (MA10). MA10 infection induced body weight loss along with lung inflammation in mice 4 days after infection. Serum creatinine levels and the urinary albumin/creatinine ratio increased on day 4 after MA10 infection. Measurement of the urinary neutrophil gelatinase-associated lipocalin/creatinine ratio and hematoxylin and eosin staining revealed tubular damage in MA10-infected murine kidneys, indicating kidney injury in the murine COVID-19 model. Interferon (IFN)-γ and interleukin-6 upregulation in the sera of MA10-infected mice, along with the absence of MA10 in the kidneys, implied that the kidneys were affected by the MA10 infection-induced cytokine storm rather than by direct MA10 infection of the kidneys. RNA-sequencing analysis revealed that antiviral genes, such as the IFN/Janus kinase (JAK) pathway, were upregulated in MA10-infected kidneys. Upon administration of the JAK inhibitor baricitinib on days 1-3 after MA10 infection, an antiviral pathway was suppressed, and MA10 was detected more frequently in the kidneys. Notably, JAK inhibition upregulated the hypoxia response and exaggerated kidney injury. These results suggest that endogenous antiviral activity protects against SARS-CoV-2-induced kidney injury in the early phase of infection, providing valuable insights into the pathogenesis of COVID-19-associated nephropathy.NEW & NOTEWORTHY Patients frequently present with acute kidney injury or abnormal urinary findings after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we investigated how the kidneys respond during SARS-CoV-2 infection using a murine coronavirus disease 2019 (COVID-19) model and showed that Janus kinase-mediated endogenous antiviral activity protects against kidney injury in the early phase of SARS-CoV-2 infection. These findings provide valuable insights into the renal pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Hibiki Sakai
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyasu Kamuro
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Nagisa Tokunoh
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Research Foundation for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka, Japan
| | - Shigeyuki Tamiya
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Ayaha Yamamoto
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Shota Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Yoshiaki Okada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yasuo Yoshioka
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Research Foundation for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Sunita S, Negi MB, Lal M, Kumar C, Kumar M. Insights from assessment for arrhythmia after CoViD-19 vaccination among Indians. Bioinformation 2024; 20:430-433. [PMID: 39132225 PMCID: PMC11309109 DOI: 10.6026/973206300200430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/13/2024] Open
Abstract
Post-vaccination myocarditis is usually moderate and transient, recovering quickly with conservative treatment. Therefore, it is of interest to assess for arrhythmia after CoViD-19 vaccination among Indians. We looked for ECG abnormalities in a small cohort of 50 participants after 52 weeks after receiving the Oxford/AstraZeneca CoViD-19 vaccination. Data shows that post-vaccination myocarditis is typically mild and transient, with most cases resolving swiftly through conservative management. Thus, it is unlikely that this vaccine will induce severe arrhythmias or life-threatening cardiac events in the general population.
Collapse
Affiliation(s)
- S Sunita
- Department of Physiology, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | | | - Moti Lal
- Lady Hardinge Medical College, New Delhi, India
| | - Chandan Kumar
- Department of Physiology, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Manish Kumar
- Department of Physiology, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| |
Collapse
|
7
|
Cai B, Guo Z, Yan Q, Li H, Song H, Gong Y, Long X. Clinical features and risk factors of primary Sjögren's syndrome complicated with severe pneumonia: a case-control study. Clin Rheumatol 2024; 43:1665-1674. [PMID: 38512512 DOI: 10.1007/s10067-024-06942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVES To analyze clinical characteristics, risk factors, pathogen distribution, and prognostic markers in primary Sjögren's syndrome (pSS) patients with severe pneumonia (SP) compared to those without severe pneumonia (NSP). METHODS This case-control study included 24 hospitalized pSS patients with SP and 96 NSP at the first affiliated hospital of Soochow university from June 2014 to May 2023. Data encompassing demographics, comorbidities, treatments, and laboratory results were retrospectively collected. Univariate and multivariate regression analyses, ROC curves, and statistical analyses using SPSS 23.0 assessed risk factors. The study retrospectively analyzed clinical features and risk factors, highlighting distinct parameters between pSS patients with and without SP. RESULTS Marked differences were observed in several parameters: pSS activity(P < 0.001), white blood cell (P = 0.043), lymphocyte (P < 0.001), neutrophils (P = 0.042), C-reactive protein (P = 0.042), and CD8+ T cell (P = 0.017). Notably, lymphocyte count and SS activity demonstrated robust discrimination ability (AUC > 0.85). C-reactive protein (CRP), procalcitonin, CD4+ T cell, and IgA showed significant associations with SP; higher CRP levels correlated with increased risk, while lower CD4+ T cell and IgA levels associated with increased risk. SS activity significantly impacted outcomes. Various biomarkers exhibited diverse discriminatory abilities but lacked strong predictive associations with outcomes. CONCLUSION pSS patients with SP exhibited higher disease activity and altered immune profiles compared to those NSP. Lymphocyte count and SS activity emerged as robust discriminators. Higher CRP levels correlated with increased risk of SP, while lower CD4+T cell and IgA levels associated with increased risk. SS activity significantly impacted patient outcomes. Key Points • pSS patients with SP exhibited higher disease activity and altered immune profiles compared to those NSP. • Lymphocyte count and SS activity emerged as robust discriminators. • Higher CRP levels correlated with increased risk of SP, while lower CD4+ T cell and IgA levels associated with decreased risk. • SS activity significantly impacted patient outcomes.
Collapse
Affiliation(s)
- Bo Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhiliang Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qing Yan
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Hui Li
- Department of Rheumatology and Immunology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Hua Song
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yan Gong
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China.
| | - Xianming Long
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
8
|
Komai T, Sawada T, Tsuchiya H, Harada H, Shoda H, Fujio K. Resolution of exacerbated rheumatoid arthritis-associated interstitial lung disease under baricitinib treatment. Scand J Rheumatol 2024; 53:146-148. [PMID: 38031721 DOI: 10.1080/03009742.2023.2274707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Affiliation(s)
- T Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - T Sawada
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - H Tsuchiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - H Harada
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - H Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - K Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Chandrasekaran B, Saravanan M. Editorial: Pharmacological and biochemical perspectives of kinase inhibitors in cancer and COVID-19 therapeutics. Front Pharmacol 2023; 14:1229673. [PMID: 37346302 PMCID: PMC10280165 DOI: 10.3389/fphar.2023.1229673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, India
| |
Collapse
|
10
|
Ni R, Jiang L, Zhang C, Liu M, Luo Y, Hu Z, Mou X, Zhu Y. Biologic Mechanisms of Macrophage Phenotypes Responding to Infection and the Novel Therapies to Moderate Inflammation. Int J Mol Sci 2023; 24:ijms24098358. [PMID: 37176064 PMCID: PMC10179618 DOI: 10.3390/ijms24098358] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Pro-inflammatory and anti-inflammatory types are the main phenotypes of the macrophage, which are commonly notified as M1 and M2, respectively. The alteration of macrophage phenotypes and the progression of inflammation are intimately associated; both phenotypes usually coexist throughout the whole inflammation stage, involving the transduction of intracellular signals and the secretion of extracellular cytokines. This paper aims to address the interaction of macrophages and surrounding cells and tissues with inflammation-related diseases and clarify the crosstalk of signal pathways relevant to the phenotypic metamorphosis of macrophages. On these bases, some novel therapeutic methods are proposed for regulating inflammation through monitoring the transition of macrophage phenotypes so as to prevent the negative effects of antibiotic drugs utilized in the long term in the clinic. This information will be quite beneficial for the diagnosis and treatment of inflammation-related diseases like pneumonia and other disorders involving macrophages.
Collapse
Affiliation(s)
- Renhao Ni
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Lingjing Jiang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Chaohai Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Mujie Liu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianbo Mou
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
11
|
Jain NK, Tailang M, Jain HK, Chandrasekaran B, Sahoo BM, Subramanian A, Thangavel N, Aldahish A, Chidambaram K, Alagusundaram M, Kumar S, Selvam P. Therapeutic implications of current Janus kinase inhibitors as anti-COVID agents: A review. Front Pharmacol 2023; 14:1135145. [PMID: 37021053 PMCID: PMC10067607 DOI: 10.3389/fphar.2023.1135145] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Severe cases of COVID-19 are characterized by hyperinflammation induced by cytokine storm, ARDS leading to multiorgan failure and death. JAK-STAT signaling has been implicated in immunopathogenesis of COVID-19 infection under different stages such as viral entry, escaping innate immunity, replication, and subsequent inflammatory processes. Prompted by this fact and prior utilization as an immunomodulatory agent for several autoimmune, allergic, and inflammatory conditions, Jakinibs have been recognized as validated small molecules targeting the rapid release of proinflammatory cytokines, primarily IL-6, and GM-CSF. Various clinical trials are under investigation to evaluate Jakinibs as potential candidates for treating COVID-19. Till date, there is only one small molecule Jakinib known as baricitinib has received FDA-approval as a standalone immunomodulatory agent in treating critical COVID-19 patients. Though various meta-analyses have confirmed and validated the safety and efficacy of Jakinibs, further studies are required to understand the elaborated pathogenesis of COVID-19, duration of Jakinib treatment, and assess the combination therapeutic strategies. In this review, we highlighted JAK-STAT signalling in the pathogenesis of COVID-19 and clinically approved Jakinibs. Moreover, this review described substantially the promising use of Jakinibs and discussed their limitations in the context of COVID-19 therapy. Hence, this review article provides a concise, yet significant insight into the therapeutic implications of Jakinibs as potential anti-COVID agents which opens up a new horizon in the treatment of COVID-19, effectively.
Collapse
Affiliation(s)
- Nem Kumar Jain
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Mukul Tailang
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Hemant Kumar Jain
- Department of General Medicine, Government Medical College, Datia, Madhya Pradesh, India
| | - Balakumar Chandrasekaran
- Faculty of Pharmacy, Philadelphia University, Amman, Jordan
- *Correspondence: Balakumar Chandrasekaran, ; Palani Selvam,
| | - Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Berhampur, Odisha, India
| | - Anandhalakshmi Subramanian
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Afaf Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - M. Alagusundaram
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
| | - Santosh Kumar
- School of Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Palani Selvam
- School of Medicine, College of Medicine and Health Sciences, Jijiga University, Jijiga, Ethiopia
- *Correspondence: Balakumar Chandrasekaran, ; Palani Selvam,
| |
Collapse
|
12
|
Velez AP, Handley G, Morison A, Katzman JH, kinkhova O, Quiltz R, Greene J, Pasikhova Y. Safety and Outcomes With Combination Therapy With Sarilumab and Baricitinib for Severe COVID-19 Respiratory Infection in Cancer Patients. Cancer Control 2023; 30:10732748231205864. [PMID: 37817417 PMCID: PMC10566286 DOI: 10.1177/10732748231205864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVES This study aims to describe the clinical outcomes of combination therapy with sarilumab and baricitinib for severe novel Coronavirus-19 (COVID-19) infection in cancer patients. With this study, we aim to evaluate the role of expanded immunotherapy for severely ill patients with COVID-19 respiratory infections with limited options. The secondary objective is to assess the safety of combination therapy with sarilumab and baricitinib for severe COVID-19 infection. METHODS This was a retrospective cohort study of patients admitted to Moffitt Cancer Center with COVID-19 infection between January 2020 and April 2022. Our research received a waiver to sign consent by the patients according to our institutional IRB because it was free of any risk for the patients and respected the patient's privacy. Following the Institutional IRB approval and relevant Equator guidelines, we collected information on patients with severe COVID-19 infection and received sarilumab and baricitinib. We evaluated the survival rate and safety of combination therapy. All the patient's information was de-identified to protect their information according to Health Insurance Portability and Accountability Act (HIPAA). RESULTS Four patients were included in the data analysis. Two survived, and two of them died (Table 1). All the patients that survived were previously vaccinated. Among the two patients who died, one was vaccinated, and the other was unvaccinated. All the patients tolerated the combination therapy well, and none of the patients who survived developed secondary infections or COVID-19-associated complications beyond 12 months of discharge. CONCLUSION Our study explores the potential safe combination use of different immune modulators targeting multiple pathways of the inflammatory cascade for severe and refractory COVID-19 respiratory infections in high-risk oncology patients. The small number of patients in our observational study was a limitation. A larger sample of patients will be needed to conclude more precisely the efficacy of the combination therapy of sarilumab and baricitinib for refractory cases of severe COVID-19 respiratory infection. Moreover, exploring other cytokine release signaling pathway targets may be the key to significantly reducing inflammation and further pulmonary fibrosis with chronic unbearable respiratory sequela.
Collapse
Affiliation(s)
- Ana Paula Velez
- University of South Florida, Tampa, FL, USA
- Moffitt Cancer Center, Tampa, FL, USA
| | - Guy Handley
- University of South Florida, Tampa, FL, USA
- Moffitt Cancer Center, Tampa, FL, USA
| | | | - Ju Hee Katzman
- University of South Florida, Tampa, FL, USA
- Moffitt Cancer Center, Tampa, FL, USA
| | - Olga kinkhova
- University of South Florida, Tampa, FL, USA
- Moffitt Cancer Center, Tampa, FL, USA
| | | | - John Greene
- University of South Florida, Tampa, FL, USA
- Moffitt Cancer Center, Tampa, FL, USA
| | | |
Collapse
|