1
|
Ferapontov A, Mellemkjær A, McGettrick HM, Vorup-Jensen T, Kragstrup TW, Juul-Madsen K. Large soluble CD18 complexes with exclusive ICAM-1-binding properties are shed during immune cell migration in inflammation. J Transl Autoimmun 2025; 10:100266. [PMID: 39867459 PMCID: PMC11759538 DOI: 10.1016/j.jtauto.2025.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
The family of heterodimeric CD11/CD18 integrins facilitate leukocyte adhesion and migration in a wide range of normal physiologic responses, as well as in the pathology of inflammatory diseases. Soluble CD18 (sCD18) is found mainly in complexes with hydrodynamic radii of 5 and 7.2 nm, suggesting a compositional difference. Earlier work reported that the complexes include at least part of the CD11a or CD11b chains containing the intercellular adhesion molecule (ICAM)-1 binding domain, and that sCD18 is capable of quantitatively competing with the cell membrane-bound form for ICAM-1 binding. However, it is not clear if the size differences between the sCD18 complexes reflect any functional variance regarding shedding from the cell membrane or binding to ICAM-1. Here, we show evidence that sCD18 found in serum regulates release of the proinflammatory cytokine monocyte chemoattractant protein-1 (MCP-1/CCL2) from fibroblast-like synovial cells. Further, only large sCD18 complexes are capable of binding to ICAM-1. Migrating neutrophils shed large, but not small, sCD18 complexes. Together, these observations explain results measured from patients with rheumatoid arthritis (RA), where large sCD18 complexes dominated in local inflammatory processes involving neutrophil influx into zones of inflammation. Our data points to a previously unappreciated aspect of sCD18 integrin biology as regulators of inflammation in the context of migrating leukocyte. Surprisingly, this regulation is tied to sCD18 complex size, opening new opportunities for therapeutic intervention in serious inflammatory diseases such as arthritis.
Collapse
Affiliation(s)
| | | | - Helen M. McGettrick
- Rheumatology Research Group, Department of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Tue W. Kragstrup
- Department of Biomedicine, Aarhus University, Denmark
- Rheumatology Section, Diagnostic Center and University Clinic, Silkeborg, Denmark
| | | |
Collapse
|
2
|
Liu Z, Cai M, Ke H, Deng H, Ye W, Wang T, Chen Q, Cen S. Fibroblast Insights into the Pathogenesis of Ankylosing Spondylitis. J Inflamm Res 2023; 16:6301-6317. [PMID: 38149115 PMCID: PMC10750494 DOI: 10.2147/jir.s439604] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023] Open
Abstract
Purpose of the Review Emerging evidence has shown that ankylosing spondylitis fibroblasts (ASFs) act as crucial participants in inflammation and abnormal ossification in ankylosing spondylitis (AS). This review examines the investigations into ASFs and their pathological behavior, which contributes to inflammatory microenvironments and abnormal bone formation. The review spans the period from 2000 to 2023, with a primary focus on the most recent decade. Additionally, the review provides an in-depth discussion on studies on ASF ossification at the cellular level. Recent Findings ASFs organize immune functions by recruiting immune cells and influencing their differentiation and activation, thus mediate the inflammatory response in the early phase of disease. ASFs promote joint destruction at sites of cartilage and actively promote abnormal ossification by recruiting osteoblasts, differentiation into myofibroblasts or ossification directly. Many signaling pathways and cytokines such as Wnt signaling and BMP/TGF-β signaling are involved in ASF ossification. Summary ASFs play a key role in AS inflammation and osteogenesis. Further studies are required to elucidate molecular mechanisms behind that and provide new targets and directions for AS diagnosis and treatment from a new perspective of fibroblasts.
Collapse
Affiliation(s)
- Zhenhua Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Mingxi Cai
- The Second Clinical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Haoteng Ke
- The Second Clinical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Huazong Deng
- The Second Clinical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Weijia Ye
- The Second Clinical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Tao Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Qifan Chen
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Shuizhong Cen
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| |
Collapse
|
3
|
Abstract
Fibrosis is a common and debilitating pathological process that affects many organ systems and contributes to connective tissue disorders in orthopaedics. Tendons heal after acute and chronic injury through a process of fibrovascular scar tissue formation, and soft tissue joint capsules can be affected after traumatic joint injury, leading to arthrofibrosis. Although the precise underlying mechanisms are still being elucidated, fibrosis is thought to be a consequence of dysregulated immune and cytokine signaling that leads to myofibroblast activation and proliferation and subsequent excessive collagen deposition. Current treatments for connective tissue fibrosis include physical therapy and surgery, but there are no therapies that directly target the underlying cellular and molecular mechanisms of fibrosis. Many pharmacological agents have been used to successfully target fibrosis in other tissues and organ systems and thus are a promising treatment option to fill this gap. However, limited evidence is available to guide the use of these agents in musculoskeletal connective tissues. This article provides an overview of pharmacological therapies that have potential to treat connective tissue fibrosis in patients with musculoskeletal conditions, along with the current supporting evidence and future uses of each therapy.
Collapse
Affiliation(s)
- Nathaniel P Disser
- Hospital for Special Surgery, New York, New York, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jonathan S Yu
- Hospital for Special Surgery, New York, New York, USA
- Weill Cornell Medicine, New York, New York, USA
| | - Vincent J H Yao
- Hospital for Special Surgery, New York, New York, USA
- Sophie Davis Biomedical Education Program at CUNY School of Medicine, New York, New York, USA
| | - Scott A Rodeo
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
4
|
Greisen SR, Kragstrup TW, Thomsen JS, Hørslev-Pedersen K, Hetland ML, Stengaard-Pedersen K, Østergaard M, Ørnbjerg L, Junker P, Sharpe AH, Freeman GJ, Hvid M, Moestrup SK, Hauge EM, Deleuran B. The Programmed Death-1 Pathway Counter-Regulates Inflammation-Induced Osteoclast Activity in Clinical and Experimental Settings. Front Immunol 2022; 13:773946. [PMID: 35356000 PMCID: PMC8959817 DOI: 10.3389/fimmu.2022.773946] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/04/2022] [Indexed: 01/08/2023] Open
Abstract
Objective The programmed death-1 (PD-1) pathway is essential for maintaining self-tolerance and plays an important role in autoimmunity, including rheumatoid arthritis (RA). Here, we investigated how membrane-bound and soluble (s)PD-1 influence bone homeostasis during chronic inflammation, exemplified in RA. Methods Bone mineral density and bone microstructure were examined in PD-1 and PD-L1 knockout (KO) mice and compared with wild-type (WT) mice. Receptor activator of nuclear factor kappa-B ligand (RANKL) was measured in serum, and the expression examined on activated bone marrow cells. Osteoclast formation was examined in cells from murine spleen and bone marrow and from human synovial fluid cells. sPD-1 was measured in chronic and early (e)RA patients and correlated to markers of disease activity and radiographic scores. Results PD-1 and PD-L1 KO mice showed signs of osteoporosis. This was supported by a significantly reduced trabecular bone volume fraction and deteriorated microstructure, as well as increased osteoclast formation and an increased RANKL/OPG ratio. The recombinant form of sPD-1 decreased osteoclast formation in vitro, but was closely associated with disease activity markers in eRA patients. Sustained elevated sPD-1 levels indicated ongoing inflammation and were associated with increased radiographic progression. Conclusion The PD-1 pathway is closely associated with bone homeostasis, and lacking members of this pathway causes a deteriorated bone structure. The immunological balance in the microenvironment determines how the PD-1 pathway regulates osteoclast formation. In eRA patients, sPD-1 may serve as a biomarker, reflecting residual but clinically silent disease activity and radiographic progression.
Collapse
Affiliation(s)
- Stinne R Greisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology , Aarhus University Hospital, Aarhus, Denmark
| | - Tue W Kragstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology , Aarhus University Hospital, Aarhus, Denmark
| | | | - Kim Hørslev-Pedersen
- Danish Hospital for the Rheumatic Diseases , and University of Southern Denmark, Sonderborg, Denmark
| | - Merete Lund Hetland
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mikkel Østergaard
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lykke Ørnbjerg
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Peter Junker
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Malene Hvid
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine , Aarhus University, Aarhus, Denmark
| | | | - Ellen Margrethe Hauge
- Department of Rheumatology , Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine , Aarhus University, Aarhus, Denmark
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology , Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Nitro-fatty acids decrease type I interferons and monocyte chemoattractant protein 1 in ex vivo models of inflammatory arthritis. BMC Immunol 2021; 22:77. [PMID: 34920714 PMCID: PMC8684285 DOI: 10.1186/s12865-021-00471-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Inflammatory arthritis including rheumatoid arthritis (RA) and spondyloarthritis (SpA) is characterized by inflammation and destruction of the joints. Approximately one third of patients do not respond to first-line treatments. Nitro-fatty acids are bioactive lipids with anti-inflammatory properties and tissue-protective functions. The nitro-fatty acid 10-NO2-oleic acid (10-NO2-OA) is being tested in clinical trials for patients with fibrotic and inflammatory conditions. Here, we tested whether 10-NO2-OA could inhibit immune reactions involved in the inflammatory and joint destructive processes in inflammatory arthritis. METHODS Synovial fluid and blood samples were obtained from 14 patients with active RA or SpA. The in vitro models consisted of synovial fluid mononuclear cells (SFMCs) cultured for 48 h, SFMCs cultured for 21 days, and fibroblast-like synovial cells (FLSs) co-cultured with peripheral blood mononuclear cells (PBMCs) for 48 h. Cells were treated with or without 10-NO2-OA or the tumor necrosis factor alpha (TNFα) inhibitor etanercept. Supernatants were analyzed for type I interferon, monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase 3 (MMP3) and tartrate resistant acid phosphatase (TRAP). RESULTS In SFMCs cultured for 48 h, 10-NO2-OA dose-dependently decreased the secretion of bioactive type I interferons and MCP-1 but not MMP3 (P = 0.032, P = 0.0001, and P = 0.58, respectively). Both MCP-1 and MMP3 were decreased by etanercept (P = 0.0031 and P = 0.026, respectively). In SFMCs cultured for 21 days, 10-NO2-OA significantly decreased the production of MCP-1 but not TRAP (P = 0.027 and P = 0.1523, respectively). Etanercept decreased the production of TRAP but not MCP-1 (P < 0.001 and P = 0.84, respectively). In co-cultures of FLSs and PBMCs, 10-NO2-OA decreased the production of MCP-1 (P < 0.0001). This decrease in MCP-1 production was not seen with etanercept treatment (P = 0.47). CONCLUSION 10-NO2-OA decreased the release of MCP-1 in three models of inflammatory arthritis. Of particular interest, 10-NO2-OA inhibited type I interferon, and 10-NO2-OA was more effective in reducing MCP-1 production in cultures dominated by FLSs compared with etanercept. Our results encourage clinical investigations of 10-NO2-OA in patients with inflammatory arthritis.
Collapse
|
6
|
Køster D, Egedal JH, Lomholt S, Hvid M, Jakobsen MR, Müller-Ladner U, Eibel H, Deleuran B, Kragstrup TW, Neumann E, Nielsen MA. Phenotypic and functional characterization of synovial fluid-derived fibroblast-like synoviocytes in rheumatoid arthritis. Sci Rep 2021; 11:22168. [PMID: 34772990 PMCID: PMC8590001 DOI: 10.1038/s41598-021-01692-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
Fibroblast-like synoviocytes (FLS) play an important pathological role in persistent inflammatory joint diseases such as rheumatoid arthritis (RA). These cells have primarily been characterized in the RA synovial membrane. Here we aim to phenotypically and functionally characterize cultured synovial fluid-derived FLS (sfRA-FLS). Paired peripheral blood mononuclear cells (PBMC) and sfRA-FLS from patients with RA were obtained and monocultures of sfRA-FLS and autologous co-cultures of sfRA-FLS and PBMC were established. The in situ activated sfRA-FLS were CD34-, CD45-, Podoplanin+, Thymocyte differentiation antigen-1+. SfRA-FLS expressed uniform levels of NFкB-related pathway proteins and secreted several pro-inflammatory cytokines dominated by IL-6 and MCP-1. In a co-culture model with autologous PBMC, the ICAM-1 and HLA-DR expression on sfRA-FLS and secretion of IL-1β, IL-6, and MCP-1 increased. In vivo, human sfRA-FLS were cartilage invasive both at ipsilateral and contralateral implantation site. We conclude that, sfRA-FLS closely resemble the pathological sublining layer FLS subset in terms of surface protein expression, cytokine production and leukocyte cross-talk potential. Further, sfRA-FLS are comparable to tissue-derived FLS in their capabilities to invade cartilage at implantation sites but also spread tissue destruction to a distant site. Collectively, sfRA-FLS can serve as a an easy-to-obtain source of pathological sublining FLS in RA.
Collapse
Affiliation(s)
- Ditte Køster
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus, Denmark
| | - Johanne Hovgaard Egedal
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus, Denmark
| | - Søren Lomholt
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus, Denmark
| | - Malene Hvid
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin R Jakobsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus, Denmark
| | - Ulf Müller-Ladner
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Campus Kerckhoff, Bad Nauheim, Germany
| | - Hermann Eibel
- Department of Rheumatology and Clinical Immunology and Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Tue Wenzel Kragstrup
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Elena Neumann
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Campus Kerckhoff, Bad Nauheim, Germany
| | - Morten Aagaard Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus, Denmark.
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
7
|
Wei Q, Kong N, Liu X, Tian R, Jiao M, Li Y, Guan H, Wang K, Yang P. Pirfenidone attenuates synovial fibrosis and postpones the progression of osteoarthritis by anti-fibrotic and anti-inflammatory properties in vivo and in vitro. J Transl Med 2021; 19:157. [PMID: 33874948 PMCID: PMC8054406 DOI: 10.1186/s12967-021-02823-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background Osteoarthritis (OA) is a disease of the entire joint involving synovial fibrosis and inflammation. Pathological changes to the synovium can accelerate the progression of OA. Pirfenidone (PFD) is a potent anti-fibrotic drug with additional anti-inflammatory properties. However, the influence of PFD on OA is unknown. Methods Proliferation of human fibroblast-like synoviocytes (FLSs) after treatment with TGF-β1 or PFD was evaluated using a Cell Counting Kit-8 assay and their migration using a Transwell assay. The expression of fibrosis-related genes (COL1A1, TIMP-1, and ACTA-2) and those related to inflammation (IL-6 and TNF-α) was quantified by real-time quantitative PCR. The protein expression levels of COL1A1, α-SMA (coded by ACTA-2), IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay. A rabbit model of OA was established and then PFD was administered by gavage. The expression of genes related to fibrosis (COL1A1, TIMP-1, and ADAM-12) and inflammation (IL-6 and TNF-α) was measured using RNA extracted from the synovium. Synovial tissue was examined histologically after staining with H&E, Masson’s trichrome, and immunofluorescence. Synovitis scores, the volume fraction of collagen, and mean fluorescence intensity were calculated. Degeneration of articular cartilage was analyzed using a Safranin O-fast green stain and OARSI grading. Results The proliferation of FLSs was greatest when induced with 2.5 ng/ml TGF-β1 although it did not promote their migration. Therefore, 2.5 ng/ml TGF-β1 was used to stimulate the FLSs and evaluate the effects of PFD, which inhibited the migration of FLSs at concentrations as low as 1.0 mg/ml. PFD decreased the expression of COL1A1 while TGF-β1 increased both mRNA and protein expression levels of IL-6 but had no effect on α-SMA or TNF-α expression. PFD decreased mRNA expression levels of COL1A1, IL-6, and TNF-α in vivo. H&E staining and synovitis scores indicated that PFD reduced synovial inflammation, while Masson’s trichrome and immunofluorescence staining suggested that PFD decreased synovial fibrosis. Safranin O-Fast Green staining and the OARSI scores demonstrated that PFD delayed the progression of OA. Conclusions PFD attenuated synovial fibrosis and inflammation, and postponed the progression of osteoarthritis in a modified Hulth model of OA in rabbits, which was related to its anti-fibrotic and anti-inflammatory properties.
Collapse
Affiliation(s)
- Qilu Wei
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ning Kong
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaohui Liu
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Run Tian
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ming Jiao
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yiyang Li
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Huanshuai Guan
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Kunzheng Wang
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Pei Yang
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
8
|
Mauro D, Simone D, Bucci L, Ciccia F. Novel immune cell phenotypes in spondyloarthritis pathogenesis. Semin Immunopathol 2021; 43:265-277. [PMID: 33569634 PMCID: PMC7990868 DOI: 10.1007/s00281-021-00837-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
Spondyloarthritis (SpA) is a heterogeneous group of chronic inflammatory diseases of unknown etiology. Over time, the plethora of cellular elements involved in its pathogenesis has progressively enriched together with the definition of specific cytokine pathways. Recent evidence suggests the involvement of new cellular mediators of inflammation in the pathogenesis of SpA or new subgroups of known cellular mediators. The research in this sense is ongoing, and it is clear that this challenge aimed at identifying new cellular actors involved in the perpetuation of the inflammatory process in AxSpA is not a mere academic exercise but rather aims to define a clear cellular hierarchy. Such a definition could pave the way for new targeted therapies, which could interfere with the inflammatory process and specific pathways that trigger immune system dysregulation and stromal cell activity, ultimately leading to significant control of the inflammation and new bone formation in a significant number of patients. In this review, we will describe the recent advances in terms of new cellular actors involved in the pathogenesis of SpA, focusing our attention on stromal cells and innate and adaptive immunity cells.
Collapse
Affiliation(s)
- Daniele Mauro
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Davide Simone
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Laura Bucci
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy.
| |
Collapse
|
9
|
Long non-coding RNA PVT1 can regulate the proliferation and inflammatory responses of rheumatoid arthritis fibroblast-like synoviocytes by targeting microRNA-145-5p. Hum Cell 2020; 33:1081-1090. [PMID: 32918701 DOI: 10.1007/s13577-020-00419-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Long non-coding RNAs (lncRNAs) function in rheumatoid arthritis (RA). The present work was designed to explore the roles of lncRNA PVT1 in RA and the related mechanism. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine mRNA level. The binding sites between PVT1 and miR-145-5p were verified by a dual-luciferase reporter assay. Furthermore, RA-FLSs were treated with TNF-α to establish the RA model. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and 5-ethynyl-2'-deoxyuridine (EdU) assays were performed to detect cell proliferation. Flow cytometry and TUNEL assays were performed to detect cell apoptosis. Enzyme-linked immunosorbent assay (ELISA) was used to determine levels of inflammatory cytokines. PVT1 was significantly increased and miR-145-5p was decreased in synovial tissues of RA patients. miR-145-5p is a target miRNA of PVT1, and the levels of PVT1 and miR-145-5p in synovial tissues of RA patients were negatively correlated. In RA-FLSs, tumour necrosis factor-α (TNF-α) led to increased PVT1 levels and decreased miR-145-5p levels. Knockdown of PVT1 inhibited TNF-α-induced RA-FLS over-proliferation and reversed TNF-α-induced RA-FLS apoptosis reduction. Moreover, knockdown of PVT1 inhibited TNF-α-induced production of interleukin (IL)-1β and IL-6 and the activation of NF-κB through miR-145-5p. PVT1 can regulate apoptosis and inflammatory responses in RA-FLSs by targeting miR-145-5p.
Collapse
|
10
|
Ruwanpura SM, Thomas BJ, Bardin PG. Pirfenidone: Molecular Mechanisms and Potential Clinical Applications in Lung Disease. Am J Respir Cell Mol Biol 2020; 62:413-422. [PMID: 31967851 DOI: 10.1165/rcmb.2019-0328tr] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pirfenidone (PFD) is a pharmacological compound with therapeutic efficacy in idiopathic pulmonary fibrosis. It has been chiefly characterized as an antifibrotic agent, although it was initially developed as an antiinflammatory compound because of its ability to diminish the accumulation of inflammatory cells and cytokines. Despite recent studies that have elucidated key mechanisms, the precise molecular activities of PFD remain incompletely understood. PFD modulates fibrogenic growth factors, thereby attenuating fibroblast proliferation, myofibroblast differentiation, collagen and fibronectin synthesis, and deposition of extracellular matrix. This effect is mediated by suppression of TGF-β1 (transforming growth factor-β1) and other growth factors. Here, we appraise the impact of PFD on TGF-β1 production and its downstream pathways. Accumulating evidence indicates that PFD also downregulates inflammatory pathways and therefore has considerable potential as a viable and innovative antiinflammatory compound. We examine the effects of PFD on inflammatory cells and the production of pro- and antiinflammatory cytokines in the lung. In this context, recent evidence that PFD can target inflammasome pathways and ensuing lung inflammation is highlighted. Finally, the antioxidant properties of PFD, such as its ability to inhibit redox reactions and regulate oxidative stress-related genes and enzymes, are detailed. In summary, this narrative review examines molecular mechanisms underpinning PFD and its recognized benefits in lung fibrosis. We highlight preclinical data that demonstrate the potential of PFD as a nonsteroidal antiinflammatory agent and outline areas for future research.
Collapse
Affiliation(s)
- Saleela M Ruwanpura
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - Belinda J Thomas
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and.,Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Philip G Bardin
- Monash Lung and Sleep, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia; and.,Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Manjusha P, prasana JC, Muthu S, Raajaraman BR. Density functional studies and spectroscopic analysis (FT-IR, FT-Raman, UV–visible, and NMR)with molecular docking approach on an antifibrotic drug Pirfenidone. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Fibroblast-like synovial cell production of extra domain A fibronectin associates with inflammation in osteoarthritis. BMC Rheumatol 2019; 3:46. [PMID: 31819923 PMCID: PMC6886182 DOI: 10.1186/s41927-019-0093-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background The pathophysiology of osteoarthritis (OA) involves wear and tear, and a state of low-grade inflammation. Tissue repair responses include transforming growth factor beta (TGFβ)-induced myofibroblast production of extracellular matrix. Fibronectins are an essential part of the extracellular matrix, and injection of fibronectin fragments into rabbit joints is a previously established animal model of OA. Fibronectin containing the ED-A domain is currently being used as drug delivery target in the development of anti-inflammatory drugs (e.g. Dekavil). Methods In this study, samples of synovial membrane were obtained from patients with knee OA undergoing joint replacement surgery. Immunostaining for ED-A fibronectin and the myofibroblast marker alpha smooth muscle actin (αSMA) was performed on fibroblast-like synovial cells (FLS) and synovial membranes. RAW 264.7 macrophages were incubated with recombinant ED-A fibronectin. Results The staining of ED-A fibronectin in OA FLS was increased by TGFβ but not by TNFα, lipopolysaccharide, or IL-6 (n = 3). ED-A fibronectin co-stained with the myofibroblast marker αSMA in both the OA FLS (n = 3) and in the OA synovial membranes (n = 8). ED-A fibronectin staining was associated with both number of lining layer cells (rho = 0.85 and p = 0.011) and sublining cells (rho = 0.88 and p = 0.007) in the OA synovium (n = 8), and co-distributed with TNFα (n = 5). Recombinant ED-A fibronectin increased the production of TNFα by RAW 264.7 macrophages (n = 3). Conclusions The disease process in OA shares features with the chronic wound healing response. Our findings support utilizing ED-A fibronectin for drug delivery or therapeutic targeting to reduce pro-inflammatory responses in OA.
Collapse
|
13
|
Kong Y, Zhang S, Su X, Peng D, Su Y. Serum levels of YKL-40 are increased in patients with psoriasis: a meta-analysis. Postgrad Med 2019; 131:405-412. [PMID: 31298974 DOI: 10.1080/00325481.2019.1643634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yi Kong
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomes, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Suhan Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomes, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xin Su
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuwen Su
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomes, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|