1
|
Dastjerdi A, Davies H, Inglese N, Holland S, Samborskiy DV, Gorbalenya AE. Intraspecific variation of the hedgehog arteriviruses, which may constitute a new genus in the subfamily Heroarterivirinae of the family Arteriviridae. Arch Virol 2025; 170:49. [PMID: 39921690 PMCID: PMC11807078 DOI: 10.1007/s00705-025-06231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/19/2024] [Indexed: 02/10/2025]
Abstract
We recently discovered a novel member of the family Arteriviridae, hedgehog arterivirus 1 (HhAV-1), in the brains of hedgehogs with fatal encephalitis. In this study, we classified this virus and investigated its intrahost genomic diversity using next-generation sequencing. We sequenced HhAV-1 genomes from specimens from seven hedgehogs (two males and five females) with signs of encephalitis that were collected in Buckinghamshire, Gloucestershire, and Cambridgeshire, England, and had died or been euthanised between 2013 and 2024. Analysis of the intrahost populations of these seven HhAV-1 isolates and a previously described isolate revealed the presence of single-nucleotide polymorphisms (SNPs), which were most frequent in open reading frames 5, 6, and 7, encoding glycoprotein 5, the membrane protein, and the nucleocapsid protein. Pairwise comparisons of the eight HhAV-1 variants showed that the nucleotide sequence identity values in their combined complete coding sequences ranged from 76.2% to 100%. The eight HhAV-1 variants also shared at least 82.8% amino acid sequence identity in five domains that are involved in replication and are used for the classification of nidoviruses: 3CLpro, NiRAN, RdRp, ZBD, and HEL1. In a replicase-based phylogenetic tree of members of the family Arteriviridae, the HhAV-1 variants formed a sister cluster to African pouched rat arterivirus. A DEmARC-based pairwise distance analysis indicated that these viruses may comprise a new species, for which we propose the name "Xiarterivirus erinaceid", in a new genus in the subfamily Heroarterivirinae.
Collapse
Affiliation(s)
- Akbar Dastjerdi
- Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, Surrey, KT15 3NB, UK.
| | - Hannah Davies
- Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, Surrey, KT15 3NB, UK
| | - Nadia Inglese
- Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, Surrey, KT15 3NB, UK
| | - Samantha Holland
- Animal and Plant Health Agency (APHA)-Weybridge, Addlestone, Surrey, KT15 3NB, UK
| | - Dmitry V Samborskiy
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119899, Russia
| | - Alexander E Gorbalenya
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, P.O. Box 9600, E4-P, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
2
|
Guo L, Li B, Han P, Dong N, Zhu Y, Li F, Si H, Shi Z, Wang B, Yang X, Zhang Y. Identification of a Novel Hepacivirus in Southeast Asian Shrew ( Crocidura fuliginosa) from Yunnan Province, China. Pathogens 2023; 12:1400. [PMID: 38133285 PMCID: PMC10745850 DOI: 10.3390/pathogens12121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
The genus Hepacivirus contains single-stranded positive-sense RNA viruses belonging to the family Flaviviridae, which comprises 14 species. These 14 hepaciviruses have been found in different mammals, such as primates, dogs, bats, and rodents. To date, Hepacivirus has not been reported in the shrew genus of Crocidura. To study the prevalence and genetic evolution of Hepacivirus in small mammals in Yunnan Province, China, molecular detection of Hepacivirus in small mammals from Yunnan Province during 2016 and 2017 was performed using reverse-transcription polymerase chain reaction (RT-PCR). Our results showed that the overall infection rate of Hepacivirus in small mammals was 0.12% (2/1602), and the host animal was the Southeast Asian shrew (Crocidura fuliginosa) (12.5%, 2/16). Quantitative real-time PCR showed that Hepacivirus had the highest viral RNA copy number in the liver. Phylogenetic analysis revealed that the hepaciviruses obtained in this study does not belong to any designated species of hepaciviruses and forms an independent clade. To conclude, a novel hepacivirus was identified for the first time in C. fuliginosa specimens from Yunnan Province, China. This study expands the host range and viral diversity of hepaciviruses.
Collapse
Affiliation(s)
- Ling Guo
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
- Chongqing Jiangbei District Center for Disease Control and Prevention, Chongqing 400020, China
| | - Bei Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (B.L.); (Y.Z.); (H.S.); (Z.S.)
| | - Peiyu Han
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
| | - Na Dong
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
| | - Yan Zhu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (B.L.); (Y.Z.); (H.S.); (Z.S.)
| | - Fuli Li
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
| | - Haorui Si
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (B.L.); (Y.Z.); (H.S.); (Z.S.)
| | - Zhengli Shi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (B.L.); (Y.Z.); (H.S.); (Z.S.)
| | - Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Xinglou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650023, China
| | - Yunzhi Zhang
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
| |
Collapse
|
3
|
Bond DM, Ortega-Recalde O, Laird MK, Hayakawa T, Richardson KS, Reese FCB, Kyle B, McIsaac-Williams BE, Robertson BC, van Heezik Y, Adams AL, Chang WS, Haase B, Mountcastle J, Driller M, Collins J, Howe K, Go Y, Thibaud-Nissen F, Lister NC, Waters PD, Fedrigo O, Jarvis ED, Gemmell NJ, Alexander A, Hore TA. The admixed brushtail possum genome reveals invasion history in New Zealand and novel imprinted genes. Nat Commun 2023; 14:6364. [PMID: 37848431 PMCID: PMC10582058 DOI: 10.1038/s41467-023-41784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Combining genome assembly with population and functional genomics can provide valuable insights to development and evolution, as well as tools for species management. Here, we present a chromosome-level genome assembly of the common brushtail possum (Trichosurus vulpecula), a model marsupial threatened in parts of their native range in Australia, but also a major introduced pest in New Zealand. Functional genomics reveals post-natal activation of chemosensory and metabolic genes, reflecting unique adaptations to altricial birth and delayed weaning, a hallmark of marsupial development. Nuclear and mitochondrial analyses trace New Zealand possums to distinct Australian subspecies, which have subsequently hybridised. This admixture allowed phasing of parental alleles genome-wide, ultimately revealing at least four genes with imprinted, parent-specific expression not yet detected in other species (MLH1, EPM2AIP1, UBP1 and GPX7). We find that reprogramming of possum germline imprints, and the wider epigenome, is similar to eutherian mammals except onset occurs after birth. Together, this work is useful for genetic-based control and conservation of possums, and contributes to understanding of the evolution of novel mammalian epigenetic traits.
Collapse
Affiliation(s)
- Donna M Bond
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | - Melanie K Laird
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, 060-0808, Japan
| | - Kyle S Richardson
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Biology Department, University of Montana Western, Dillon, MT, 59725, USA
| | - Finlay C B Reese
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Bruce Kyle
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | | | | | - Amy L Adams
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Wei-Shan Chang
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- Health and Biosecurity, CSIRO, Canberra, ACT, Australia
| | - Bettina Haase
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | | | | | - Joanna Collins
- Tree of Life, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Yasuhiro Go
- Graduate School of Information Science, Hyogo University, Hyogo, Japan
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan
- Department of System Neuroscience, National Institute for Physiological Sciences, Aichi, Japan
| | - Francoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas C Lister
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Paul D Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Alana Alexander
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
4
|
Harvey E, Mifsud JCO, Holmes EC, Mahar JE. Divergent hepaciviruses, delta-like viruses, and a chu-like virus in Australian marsupial carnivores (dasyurids). Virus Evol 2023; 9:vead061. [PMID: 37941997 PMCID: PMC10630069 DOI: 10.1093/ve/vead061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Although Australian marsupials are characterised by unique biology and geographic isolation, little is known about the viruses present in these iconic wildlife species. The Dasyuromorphia are an order of marsupial carnivores found only in Australia that include both the extinct Tasmanian tiger (thylacine) and the highly threatened Tasmanian devil. Several other members of the order are similarly under threat of extinction due to habitat loss, hunting, disease, and competition and predation by introduced species such as feral cats. We utilised publicly available RNA-seq data from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database to document the viral diversity within four Dasyuromorph species. Accordingly, we identified fifteen novel virus sequences from five DNA virus families (Adenoviridae, Anelloviridae, Gammaherpesvirinae, Papillomaviridae, and Polyomaviridae) and three RNA virus taxa: the order Jingchuvirales, the genus Hepacivirus, and the delta-like virus group. Of particular note was the identification of a marsupial-specific clade of delta-like viruses that may indicate an association of deltaviruses with marsupial species. In addition, we identified a highly divergent hepacivirus in a numbat liver transcriptome that falls outside of the larger mammalian clade. We also detect what may be the first Jingchuvirales virus in a mammalian host-a chu-like virus in Tasmanian devils-thereby expanding the host range beyond invertebrates and ectothermic vertebrates. As many of these Dasyuromorphia species are currently being used in translocation efforts to reseed populations across Australia, understanding their virome is of key importance to prevent the spread of viruses to naive populations.
Collapse
Affiliation(s)
- Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Flies AS, Flies EJ, Fountain-Jones NM, Musgrove RE, Hamede RK, Philips A, Perrott MRF, Dunowska M. Wildlife nidoviruses: biology, epidemiology, and disease associations of selected nidoviruses of mammals and reptiles. mBio 2023; 14:e0071523. [PMID: 37439571 PMCID: PMC10470586 DOI: 10.1128/mbio.00715-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
Wildlife is the source of many emerging infectious diseases. Several viruses from the order Nidovirales have recently emerged in wildlife, sometimes with severe consequences for endangered species. The order Nidovirales is currently classified into eight suborders, three of which contain viruses of vertebrates. Vertebrate coronaviruses (suborder Cornidovirineae) have been extensively studied, yet the other major suborders have received less attention. The aim of this minireview was to summarize the key findings from the published literature on nidoviruses of vertebrate wildlife from two suborders: Arnidovirineae and Tornidovirineae. These viruses were identified either during investigations of disease outbreaks or through molecular surveys of wildlife viromes, and include pathogens of reptiles and mammals. The available data on key biological features, disease associations, and pathology are presented, in addition to data on the frequency of infections among various host populations, and putative routes of transmission. While nidoviruses discussed here appear to have a restricted in vivo host range, little is known about their natural life cycle. Observational field-based studies outside of the mortality events are needed to facilitate an understanding of the virus-host-environment interactions that lead to the outbreaks. Laboratory-based studies are needed to understand the pathogenesis of diseases caused by novel nidoviruses and their evolutionary histories. Barriers preventing research progress include limited funding and the unavailability of virus- and host-specific reagents. To reduce mortalities in wildlife and further population declines, proactive development of expertise, technologies, and networks should be developed. These steps would enable effective management of future outbreaks and support wildlife conservation.
Collapse
Affiliation(s)
- Andrew S. Flies
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Emily J. Flies
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Healthy Landscapes Research Group, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Ruth E. Musgrove
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Rodrigo K. Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Annie Philips
- Natural Resources and Environment Tasmania, Hobart, Tasmania, Australia
| | | | - Magdalena Dunowska
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
6
|
Yuan S, Yao XY, Lian CY, Kong S, Shao JW, Zhang XL. Molecular detection and genetic characterization of bovine hepacivirus identified in ticks collected from cattle in Harbin, northeastern China. Front Vet Sci 2023; 10:1093898. [PMID: 36937022 PMCID: PMC10016144 DOI: 10.3389/fvets.2023.1093898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Bovine hepacivirus (BovHepV) is a member of the genus Hepacivirus of the family Flaviviridae, which can cause acute or persistent infections in cattle. Currently, BovHepV strains identified in cattle populations worldwide can be classified into two genotypes with eight subtypes in genotype 1. BovHepV has been identified in a wide geographic area in China. Interestingly, the viral RNA of BovHepV has also been detected in ticks in Guangdong province, China. In this study, Rhipicephalus microplus tick samples were collected in Heilongjiang province, northeastern China, and BovHepV was screened with an overall positive rate of 10.9%. Sequence comparison and phylogenetic analysis showed that the BovHepV strains detected in this study belong to the subtype G. This is the first report about the detection of BovHepV in ticks in Heilongjiang province, China, which expands our knowledge that ticks may be a transmission vector of BovHepV.
Collapse
Affiliation(s)
- Sheng Yuan
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xin-Yan Yao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chun-Yang Lian
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Sa Kong
- Beijing Biomedical Technology Center of Jofunhwa Biotechnology (Nanjing) Co., Ltd., Beijing, China
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xue-Lian Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Xue-Lian Zhang
| |
Collapse
|
7
|
Expanded Diversity and Host Range of Bovine Hepacivirus—Genomic and Serological Evidence in Domestic and Wild Ruminant Species. Viruses 2022; 14:v14071457. [PMID: 35891438 PMCID: PMC9319978 DOI: 10.3390/v14071457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
The hepatitis C virus (HCV)-related bovine hepacivirus (BovHepV) can cause acute as well as persistent infections in cattle. The true clinical relevance of the virus is not yet known. As reliable antibody detection methods are lacking and prevalence studies have only been conducted in cattle and few countries to date, the true distribution, genetic diversity, and host range is probably greatly underestimated. In this study, we applied several RT-PCR methods and a nano-luciferase-based immunoprecipitation system (LIPS) assay to analyze bovine serum samples from Bulgaria as well as wild ruminant sera from Germany and the Czech Republic. Using these methods, BovHepV infections were confirmed in Bulgarian cattle, with viral genomes detected in 6.9% and serological reactions against the BovHepV NS3 helicase domain in 10% of bovine serum samples. Genetic analysis demonstrated co-circulation of highly diverse BovHepV strains in Bulgarian cattle, and three novel BovHepV subtypes within the genotype 1 could be defined. Furthermore, application of a nested RT-PCR led to the first description of a BovHepV variant (genotype 2) in a wild ruminant species. The results of this study significantly enhance our knowledge of BovHepV distribution, genetic diversity, and host range.
Collapse
|
8
|
A Highly Divergent Hepacivirus Identified in Domestic Ducks Further Reveals the Genetic Diversity of Hepaciviruses. Viruses 2022; 14:v14020371. [PMID: 35215964 PMCID: PMC8879383 DOI: 10.3390/v14020371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
Hepaciviruses represent a group of viruses that pose a significant threat to the health of humans and animals. During the last decade, new members of the genus Hepacivirus have been identified in various host species worldwide, indicating the widespread distribution of genetically diversified hepaciviruses among animals. By applying unbiased high-throughput sequencing, a novel hepacivirus, provisionally designated Hepacivirus Q, was discovered in duck liver samples collected in Guangdong province of China. Genetic analysis revealed that the complete polyprotein of Hepacivirus Q shares 23.9–46.6% amino acid identity with other representatives of the genus Hepacivirus. Considering the species demarcation criteria for hepaciviruses, Hepacivirus Q should be regarded as a novel hepacivirus species of the genus Hepacivirus within the family Flaviviridae. Phylogenetic analyses also indicate the large genetic distance between Hepacivirus Q and other known hepaciviruses. Molecular detection of this novel hepacivirus showed an overall prevalence of 15.9% in duck populations in partial areas of Guangdong province. These results expand knowledge about the genetic diversity and evolution of hepaciviruses and indicate that genetically divergent hepaciviruses are circulating in duck populations in China.
Collapse
|
9
|
Gagne RB, Crooks KR, Craft ME, Chiu ES, Fountain-Jones NM, Malmberg JL, Carver S, Funk WC, VandeWoude S. Parasites as conservation tools. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13719. [PMID: 33586245 DOI: 10.1111/cobi.13719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Parasite success typically depends on a close relationship with one or more hosts; therefore, attributes of parasitic infection have the potential to provide indirect details of host natural history and are biologically relevant to animal conservation. Characterization of parasite infections has been useful in delineating host populations and has served as a proxy for assessment of environmental quality. In other cases, the utility of parasites is just being explored, for example, as indicators of host connectivity. Innovative studies of parasite biology can provide information to manage major conservation threats by using parasite assemblage, prevalence, or genetic data to provide insights into the host. Overexploitation, habitat loss and fragmentation, invasive species, and climate change are major threats to animal conservation, and all of these can be informed by parasites.
Collapse
Affiliation(s)
- Roderick B Gagne
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kevin R Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Elliott S Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Jennifer L Malmberg
- Department of Veterinary Sciences, Wyoming State Veterinary Laboratory, University of Wyoming, Laramie, Wyoming, USA
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - W Chris Funk
- Graduate Degree Program in Ecology, Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
10
|
Shao JW, Guo LY, Yuan YX, Ma J, Chen JM, Liu Q. A Novel Subtype of Bovine Hepacivirus Identified in Ticks Reveals the Genetic Diversity and Evolution of Bovine Hepacivirus. Viruses 2021; 13:v13112206. [PMID: 34835012 PMCID: PMC8623979 DOI: 10.3390/v13112206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022] Open
Abstract
Hepaciviruses represent a group of viruses that pose a significant threat to the health of humans and animals. New members of the genus Hepacivirus in the family Flaviviridae have recently been identified in a wide variety of host species worldwide. Similar to the Hepatitis C virus (HCV), bovine hepacivirus (BovHepV) is hepatotropic and causes acute or persistent infections in cattle. BovHepVs are distributed worldwide and classified into two genotypes with seven subtypes in genotype 1. In this study, three BovHepV strains were identified in the samples of ticks sucking blood on cattle in the Guangdong province of China, through unbiased high-throughput sequencing. Genetic analysis revealed the polyprotein-coding gene of these viral sequences herein shared 67.7–84.8% nt identity and 76.1–95.6% aa identity with other BovHepVs identified worldwide. As per the demarcation criteria adopted for the genotyping and subtyping of HCV, these three BovHepV strains belonged to a novel subtype within the genotype 1. Additionally, purifying selection was the dominant evolutionary pressure acting on the genomes of BovHepV, and genetic recombination was not common among BovHepVs. These results expand the knowledge about the genetic diversity and evolution of BovHepV distributed globally, and also indicate genetically divergent BovHepV strains were co-circulating in cattle populations in China.
Collapse
|
11
|
Geoghegan JL, Di Giallonardo F, Wille M, Ortiz-Baez AS, Costa VA, Ghaly T, Mifsud JCO, Turnbull OMH, Bellwood DR, Williamson JE, Holmes EC. Virome composition in marine fish revealed by meta-transcriptomics. Virus Evol 2021; 7:veab005. [PMID: 33623709 PMCID: PMC7887440 DOI: 10.1093/ve/veab005] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Revealing the determinants of virome composition is central to placing disease emergence in a broader evolutionary context. Fish are the most species-rich group of vertebrates and so provide an ideal model system to study the factors that shape virome compositions and their evolution. We characterized the viromes of nineteen wild-caught species of marine fish using total RNA sequencing (meta-transcriptomics) combined with analyses of sequence and protein structural homology to identify divergent viruses that often evade characterization. From this, we identified twenty-five new vertebrate-associated viruses and a further twenty-two viruses likely associated with fish diet or their microbiomes. The vertebrate-associated viruses identified here included the first fish virus in the Matonaviridae (single-strand, negative-sense RNA virus). Other viruses fell within the Astroviridae, Picornaviridae, Arenaviridae, Reoviridae, Hepadnaviridae, Paramyxoviridae, Rhabdoviridae, Hantaviridae, Filoviridae, and Flaviviridae, and were sometimes phylogenetically distinct from known fish viruses. We also show how key metrics of virome composition-viral richness, abundance, and diversity-can be analysed along with host ecological and biological factors as a means to understand virus ecology. Accordingly, these data suggest that that the vertebrate-associated viromes of the fish sampled here are predominantly shaped by the phylogenetic history (i.e. taxonomic order) of their hosts, along with several biological factors including water temperature, habitat depth, community diversity and swimming behaviour. No such correlations were found for viruses associated with porifera, molluscs, arthropods, fungi, and algae, that are unlikely to replicate in fish hosts. Overall, these data indicate that fish harbour particularly large and complex viromes and the vast majority of fish viromes are undescribed.
Collapse
Affiliation(s)
- Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.,Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Institute of Environmental Science and Research, Wellington 5018, New Zealand
| | | | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ayda Susana Ortiz-Baez
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Vincenzo A Costa
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Timothy Ghaly
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jonathon C O Mifsud
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Olivia M H Turnbull
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Jane E Williamson
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Bletsa M, Vrancken B, Gryseels S, Boonen I, Fikatas A, Li Y, Laudisoit A, Lequime S, Bryja J, Makundi R, Meheretu Y, Akaibe BD, Mbalitini SG, Van de Perre F, Van Houtte N, Těšíková J, Wollants E, Van Ranst M, Pybus OG, Drexler JF, Verheyen E, Leirs H, Gouy de Bellocq J, Lemey P. Molecular detection and genomic characterization of diverse hepaciviruses in African rodents. Virus Evol 2021; 7:veab036. [PMID: 34221451 PMCID: PMC8242229 DOI: 10.1093/ve/veab036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV; genus Hepacivirus) represents a major public health problem, infecting about three per cent of the human population. Because no animal reservoir carrying closely related hepaciviruses has been identified, the zoonotic origins of HCV still remain unresolved. Motivated by recent findings of divergent hepaciviruses in rodents and a plausible African origin of HCV genotypes, we have screened a large collection of small mammals samples from seven sub-Saharan African countries. Out of 4,303 samples screened, eighty were found positive for the presence of hepaciviruses in twenty-nine different host species. We, here, report fifty-six novel genomes that considerably increase the diversity of three divergent rodent hepacivirus lineages. Furthermore, we provide strong evidence for hepacivirus co-infections in rodents, which were exclusively found in four sampled species of brush-furred mice. We also detect evidence of recombination within specific host lineages. Our study expands the available hepacivirus genomic data and contributes insights into the relatively deep evolutionary history of these pathogens in rodents. Overall, our results emphasize the importance of rodents as a potential hepacivirus reservoir and as models for investigating HCV infection dynamics.
Collapse
Affiliation(s)
- Magda Bletsa
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sophie Gryseels
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Ine Boonen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Antonios Fikatas
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Yiqiao Li
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Sebastian Lequime
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Rhodes Makundi
- Pest Management Center -Sokoine University of Agriculture, Morogoro, Tanzania
| | - Yonas Meheretu
- Department of Biology and Institute of Mountain Research & Development, Mekelle University, Mekelle, Ethiopia
| | - Benjamin Dudu Akaibe
- Department of Ecology and Animal Resource Management, Faculty of Science, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Sylvestre Gambalemoke Mbalitini
- Department of Ecology and Animal Resource Management, Faculty of Science, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Frederik Van de Perre
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Natalie Van Houtte
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Jana Těšíková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Elke Wollants
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Jan Felix Drexler
- Charite-Universitatsmedizin Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Erik Verheyen
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
- OD Taxonomy and Phylogeny-Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Herwig Leirs
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Porter AF, Pettersson JHO, Chang WS, Harvey E, Rose K, Shi M, Eden JS, Buchmann J, Moritz C, Holmes EC. Novel hepaci- and pegi-like viruses in native Australian wildlife and non-human primates. Virus Evol 2020; 6:veaa064. [PMID: 33240526 PMCID: PMC7673076 DOI: 10.1093/ve/veaa064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Flaviviridae family of positive-sense RNA viruses contains important pathogens of humans and other animals, including Zika virus, dengue virus, and hepatitis C virus. The Flaviviridae are currently divided into four genera-Hepacivirus, Pegivirus, Pestivirus, and Flavivirus-each with a diverse host range. Members of the genus Hepacivirus are associated with an array of animal species, including humans, non-human primates, other mammalian species, as well as birds and fish, while the closely related pegiviruses have been identified in a variety of mammalian taxa, also including humans. Using a combination of total RNA and whole-genome sequencing we identified four novel hepaci-like viruses and one novel variant of a known hepacivirus in five species of Australian wildlife. The hosts infected comprised native Australian marsupials and birds, as well as a native gecko (Gehyra lauta). From these data we identified a distinct marsupial clade of hepaci-like viruses that also included an engorged Ixodes holocyclus tick collected while feeding on Australian long-nosed bandicoots (Perameles nasuta). Distinct lineages of hepaci-like viruses associated with geckos and birds were also identified. By mining the SRA database we similarly identified three new hepaci-like viruses from avian and primate hosts, as well as two novel pegi-like viruses associated with primates. The phylogenetic history of the hepaci- and pegi-like viruses as a whole, combined with co-phylogenetic analysis, provided support for virus-host co-divergence over the course of vertebrate evolution, although with frequent cross-species virus transmission. Overall, our work highlights the diversity of the Hepacivirus and Pegivirus genera as well as the uncertain phylogenetic distinction between.
Collapse
Affiliation(s)
- Ashleigh F Porter
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - John H-O Pettersson
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Wei-Shan Chang
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Erin Harvey
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman 2088, Australia
| | - Mang Shi
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - John-Sebastian Eden
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Jan Buchmann
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| | - Craig Moritz
- Research School of Biology, Centre for Biodiversity Analysis, Australian National University, Acton, ACT, Australia
| | - Edward C Holmes
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
14
|
Tolpinrud A, Firestone SM, Diaz-Méndez A, Wicker L, Lynch SE, Dunowska M, Devlin JM. Serological evidence for the presence of wobbly possum disease virus in Australia. PLoS One 2020; 15:e0237091. [PMID: 32750064 PMCID: PMC7402471 DOI: 10.1371/journal.pone.0237091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/20/2020] [Indexed: 11/26/2022] Open
Abstract
Wobbly possum disease virus (WPDV) is an arterivirus that was originally identified in common brushtail possums (Trichosurus vulpecula) in New Zealand, where it causes severe neurological disease. In this study, serum samples (n = 188) from Australian common brushtail, mountain brushtail (Trichosurus cunninghami) and common ringtail (Pseudocheirus peregrinus) possums were tested for antibodies to WPDV using ELISA. Antibodies to WPDV were detected in possums from all three species that were sampled in the states of Victoria and South Australia. Overall, 16% (30/188; 95% CI 11.0-22.0) of possums were seropositive for WPDV and 11.7% (22/188; 95% CI 7.5-17.2) were equivocal. The frequency of WPDV antibody detection was the highest in possums from the two brushtail species. This is the first reported serological evidence of infection with WPDV, or an antigenically similar virus, in Australian possums, and the first study to find antibodies in species other than common brushtail possums. Attempts to detect viral RNA in spleens by PCR were unsuccessful. Further research is needed to characterise the virus in Australian possums and to determine its impact on the ecology of Australian marsupials.
Collapse
Affiliation(s)
- Anita Tolpinrud
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
- Australian Wildlife Health Centre, Healesville Sanctuary, Zoos Victoria, Badger Creek, Victoria, Australia
| | - Simon M Firestone
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrés Diaz-Méndez
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Leanne Wicker
- Australian Wildlife Health Centre, Healesville Sanctuary, Zoos Victoria, Badger Creek, Victoria, Australia
| | - Stacey E Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Magdalena Dunowska
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Joanne M Devlin
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|