1
|
Ge D, Yin C, Jing J, Li Z, Liu L. Relationship Between the Host Plant Range of Insects and Symbiont Bacteria. Microorganisms 2025; 13:189. [PMID: 39858957 PMCID: PMC11767274 DOI: 10.3390/microorganisms13010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The evolution of phytophagous insects has resulted in the development of feeding specializations that are unique to this group. The majority of current research on insect palatability has concentrated on aspects of ecology and biology, with relatively little attention paid to the role of insect gut symbiotic bacteria. Symbiont bacteria have a close relationship with their insect hosts and perform a range of functions. This research aimed to investigate the relationship between insect host plant range and gut symbiotic bacteria. A synthesis of the extant literature on the intestinal commensal bacteria of monophagous, oligophagous, and polyphagous tephritids revealed no evidence of a positive correlation between the plant host range and the diversity of larval intestinal microbial species. The gut symbionts of same species were observed to exhibit discrepancies between different literature sources, which were attributed to variations in multiple environmental factors. However, following beta diversity analysis, monophagy demonstrated the lowest level of variation in intestinal commensal bacteria, while polyphagous tephritids exhibited the greatest variation in intestinal commensal bacteria community variation. In light of these findings, this study proposes the hypothesis that exclusive or closely related plant hosts provide monophagy and oligophagy with a stable core colony over long evolutionary periods. The core flora is closely associated with host adaptations in monophagous and oligophagous tephritids, including nutritional and detoxification functions. This is in contrast to polyphagy, whose dominant colony varies in different environments. Our hypothesis requires further refinement of the data on the gut commensal bacteria of monophagy and oligophagy as the number of species and samples is currently limited.
Collapse
Affiliation(s)
- Doudou Ge
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chongwen Yin
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Jiayu Jing
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhihong Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lijun Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.G.); (C.Y.); (J.J.); (Z.L.)
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
2
|
Shao Y, Mason CJ, Felton GW. Toward an Integrated Understanding of the Lepidoptera Microbiome. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:117-137. [PMID: 37585608 DOI: 10.1146/annurev-ento-020723-102548] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Research over the past 30 years has led to a widespread acceptance that insects establish widespread and diverse associations with microorganisms. More recently, microbiome research has been accelerating in lepidopteran systems, leading to a greater understanding of both endosymbiont and gut microorganisms and how they contribute to integral aspects of the host. Lepidoptera are associated with a robust assemblage of microorganisms, some of which may be stable and routinely detected in larval and adult hosts, while others are ephemeral and transient. Certain microorganisms that populate Lepidoptera can contribute significantly to the hosts' performance and fitness, while others are inconsequential. We emphasize the context-dependent nature of the interactions between players. While our review discusses the contemporary literature, there are major avenues yet to be explored to determine both the fundamental aspects of host-microbe interactions and potential applications for the lepidopteran microbiome; we describe these avenues after our synthesis.
Collapse
Affiliation(s)
- Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China;
| | - Charles J Mason
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye US Pacific Basin Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Hilo, Hawaii, USA;
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
3
|
Van Cauwenberghe J, Simms EL. How might bacteriophages shape biological invasions? mBio 2023; 14:e0188623. [PMID: 37812005 PMCID: PMC10653932 DOI: 10.1128/mbio.01886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Invasions by eukaryotes dependent on environmentally acquired bacterial mutualists are often limited by the ability of bacterial partners to survive and establish free-living populations. Focusing on the model legume-rhizobium mutualism, we apply invasion biology hypotheses to explain how bacteriophages can impact the competitiveness of introduced bacterial mutualists. Predicting how phage-bacteria interactions affect invading eukaryotic hosts requires knowing the eco-evolutionary constraints of introduced and native microbial communities, as well as their differences in abundance and diversity. By synthesizing research from invasion biology, as well as bacterial, viral, and community ecology, we create a conceptual framework for understanding and predicting how phages can affect biological invasions through their effects on bacterial mutualists.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Ellen L. Simms
- Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|
4
|
Yuan J, Wen T, Yang S, Zhang C, Zhao M, Niu G, Xie P, Liu X, Zhao X, Shen Q, Bezemer TM. Growth substrates alter aboveground plant microbial and metabolic properties thereby influencing insect herbivore performance. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1728-1741. [PMID: 36932313 DOI: 10.1007/s11427-022-2279-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/19/2023] [Indexed: 03/19/2023]
Abstract
The gut microbiome of plant-eaters is affected by the food they eat, but it is currently unclear how the plant metabolome and microbiome are influenced by the substrate the plant grows in and how this subsequently impacts the feeding behavior and gut microbiomes of insect herbivores. Here, we use Plutella xylostella caterpillars and show that the larvae prefer leaves of cabbage plants growing in a vermiculite substrate to those from plants growing in conventional soil systems. From a plant metabolomics analysis, we identified 20 plant metabolites that were related to caterpillar feeding performance. In a bioassay, the effects of these plant metabolites on insects' feeding were tested. Nitrate and compounds enriched with leaves of soilless cultivation promoted the feeding of insects, while compounds enriched with leaves of plants growing in natural soil decreased feeding. Several microbial groups (e.g., Sporolactobacillus, Haliangium) detected inside the plant correlated with caterpillar feeding performance and other microbial groups, such as Ramlibacter and Methylophilus, correlated with the gut microbiome. Our results highlight the role of growth substrates on the food metabolome and microbiome and on the feeding performance and the gut microbiome of plant feeders. It illustrates how belowground factors can influence the aboveground properties of plant-animal systems, which has important implications for plant growth and pest control.
Collapse
Affiliation(s)
- Jun Yuan
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tao Wen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengdie Yang
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Zhang
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengli Zhao
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guoqing Niu
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Penghao Xie
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Liu
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyuan Zhao
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
| | - T Martijn Bezemer
- Institute of Biology, Above-Belowground Interactions group, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| |
Collapse
|
5
|
Abstract
The concept of a core microbiome has been broadly used to refer to the consistent presence of a set of taxa across multiple samples within a given habitat. The assignment of taxa to core microbiomes can be performed by several methods based on the abundance and occupancy (i.e., detection across samples) of individual taxa. These approaches have led to methodological inconsistencies, with direct implications for ecological interpretation. Here, we reviewed a set of methods most commonly used to infer core microbiomes in divergent systems. We applied these methods using large data sets and analyzed simulations to determine their accuracy in core microbiome assignments. Our results show that core taxa assignments vary significantly across methods and data set types, with occupancy-based methods most accurately defining true core membership. We also found the ability of these methods to accurately capture core assignments to be contingent on the distribution of taxon abundance and occupancy in the data set. Finally, we provide specific recommendations for further studies using core taxa assignments and discuss the need for unifying methodical approaches toward data processing to advance ecological synthesis. IMPORTANCE Different methods are commonly used to assign core microbiome membership, leading to methodological inconsistencies across studies. In this study, we review a set of the most commonly used core microbiome assignment methods and compare their core assignments using both simulated and empirical data. We report inconsistent classifications from commonly applied core microbiome assignment methods. Furthermore, we demonstrate the implication that variable core assignments may have on downstream ecological interpretations. Although we still lack a standardized approach to core taxa assignments, our study provides a direction to properly test core assignment methods and offers advances in model parameterization and method choice across distinct data types.
Collapse
|
6
|
Wang YP, Liu X, Yi CY, Chen XY, Liu CH, Zhang CC, Chen QD, Chen S, Liu HL, Pu DQ. The Adaptive Evolution in the Fall Armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) Revealed by the Diversity of Larval Gut Bacteria. Genes (Basel) 2023; 14:genes14020321. [PMID: 36833248 PMCID: PMC9956290 DOI: 10.3390/genes14020321] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Insect gut microbes have important roles in host feeding, digestion, immunity, development, and coevolution with pests. The fall armyworm, Spodoptera frugiperda (Smith, 1797), is a major migratory agricultural pest worldwide. The effects of host plant on the pest's gut bacteria remain to be investigated to better understand their coevolution. In this study, differences in the gut bacterial communities were examined for the fifth and sixth instar larvae of S. frugiperda fed on leaves of different host plants (corn, sorghum, highland barley, and citrus). The 16S rDNA full-length amplification and sequencing method was used to determine the abundance and diversity of gut bacteria in larval intestines. The highest richness and diversity of gut bacteria were in corn-fed fifth instar larvae, whereas in sixth instar larvae, the richness and diversity were higher when larvae were fed by other crops. Firmicutes and Proteobacteria were dominant phyla in gut bacterial communities of fifth and sixth instar larvae. According to the LDA Effect Size (LEfSe) analysis, the host plants had important effects on the structure of gut bacterial communities in S. frugiperda. In the PICRUSt2 analysis, most predicted functional categories were associated with metabolism. Thus, the host plant species attacked by S. frugiperda larvae can affect their gut bacterial communities, and such changes are likely important in the adaptive evolution of S. frugiperda to host plants.
Collapse
Affiliation(s)
- Yan-Ping Wang
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xu Liu
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Chun-Yan Yi
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xing-Yu Chen
- Service Center of Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Chang-Hua Liu
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Cui-Cui Zhang
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Qing-Dong Chen
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Song Chen
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Hong-Ling Liu
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - De-Qiang Pu
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Correspondence:
| |
Collapse
|
7
|
Studying Plant-Insect Interactions through the Analyses of the Diversity, Composition, and Functional Inference of Their Bacteriomes. Microorganisms 2022; 11:microorganisms11010040. [PMID: 36677331 PMCID: PMC9863603 DOI: 10.3390/microorganisms11010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
As with many other trophic interactions, the interchange of microorganisms between plants and their herbivorous insects is unavoidable. To test the hypothesis that the composition and diversity of the insect bacteriome are driven by the bacteriome of the plant, the bacteriomes of both the plant Datura inoxia and its specialist insect Lema daturaphila were characterised using 16S sRNA gene amplicon sequencing. Specifically, the bacteriomes associated with seeds, leaves, eggs, guts, and frass were described and compared. Then, the functions of the most abundant bacterial lineages found in the samples were inferred. Finally, the patterns of co-abundance among both bacteriomes were determined following a multilayer network approach. In accordance with our hypothesis, most genera were shared between plants and insects, but their abundances differed significantly within the samples collected. In the insect tissues, the most abundant genera were Pseudomonas (24.64%) in the eggs, Serratia (88.46%) in the gut, and Pseudomonas (36.27%) in the frass. In contrast, the most abundant ones in the plant were Serratia (40%) in seeds, Serratia (67%) in foliar endophytes, and Hymenobacter (12.85%) in foliar epiphytes. Indeed, PERMANOVA analysis showed that the composition of the bacteriomes was clustered by sample type (F = 9.36, p < 0.001). Functional inferences relevant to the interaction showed that in the plant samples, the category of Biosynthesis of secondary metabolites was significantly abundant (1.4%). In turn, the category of Xenobiotics degradation and metabolism was significantly present (2.5%) in the insect samples. Finally, the phyla Proteobacteria and Actinobacteriota showed a pattern of co-abundance in the insect but not in the plant, suggesting that the co-abundance and not the presence−absence patterns might be more important when studying ecological interactions.
Collapse
|
8
|
Aphid species specializing on milkweed harbor taxonomically similar bacterial communities that differ in richness and relative abundance of core symbionts. Sci Rep 2022; 12:21127. [PMID: 36477425 PMCID: PMC9729595 DOI: 10.1038/s41598-022-25554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Host plant range is arguably one of the most important factors shaping microbial communities associated with insect herbivores. However, it is unclear whether host plant specialization limits microbial community diversity or to what extent herbivores sharing a common host plant evolve similar microbiomes. To investigate whether variation in host plant range influences the assembly of core herbivore symbiont populations we compared bacterial diversity across three milkweed aphid species (Aphis nerii, Aphis asclepiadis, Myzocallis asclepiadis) feeding on a common host plant (Asclepias syriaca) using 16S rRNA metabarcoding. Overall, although there was significant overlap in taxa detected across all three aphid species (i.e. similar composition), some structural differences were identified within communities. Each aphid species harbored bacterial communities that varied in terms of richness and relative abundance of key symbionts. However, bacterial community diversity did not vary with degree of aphid host plant specialization. Interestingly, the narrow specialist A. asclepiadis harbored significantly higher relative abundances of the facultative symbiont Arsenophonus compared to the other two aphid species. Although many low abundance microbes were shared across all milkweed aphids, key differences in symbiotic partnerships were observed that could influence host physiology or additional ecological variation in traits that are microbially-mediated. Overall, this study suggests overlap in host plant range can select for taxonomically similar microbiomes across herbivore species, but variation in core aphid symbionts within these communities may still occur.
Collapse
|
9
|
Krawczyk K, Szabelska-Beręsewicz A, Przemieniecki SW, Szymańczyk M, Obrępalska-Stęplowska A. Insect Gut Bacteria Promoting the Growth of Tomato Plants ( Solanum lycopersicum L.). Int J Mol Sci 2022; 23:13548. [PMID: 36362334 PMCID: PMC9657159 DOI: 10.3390/ijms232113548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/10/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
We investigated gut bacteria from three insect species for the presence of plant growth properties (PGP). Out of 146 bacterial strains obtained from 20 adult specimens of Scolytidae sp., 50 specimens of Oulema melanopus, and 150 specimens of Diabrotica virgifera, we selected 11 strains displaying the following: PGP, phosphate solubility, production of cellulase, siderophore, lipase, protease, and hydrogen cyanide. The strains were tested for growth promotion ability on tomato (Lycopersicon esculentum) plants. Each strain was tested individually, and all strains were tested together as a bacterial consortium. Tomato fruit yield was compared with the negative control. The plants treated with bacterial consortium showed a significant increase in fruit yield, in both number of fruits (+41%) and weight of fruits (+44%). The second highest yield was obtained for treatment with Serratia liquefaciens Dv032 strain, where the number and weight of yielded fruits increased by 35% and 30%, respectively. All selected 11 strains were obtained from Western Corn Rootworm (WCR), Diabrotica virgifera. The consortium comprised: Ewingella americana, Lactococcus garvieae, L. lactis, Pseudomonas putida, Serratia liquefaciens, and S. plymuthica. To our knowledge, this is the first successful application of D. virgifera gut bacteria for tomato plant growth stimulation that has been described.
Collapse
Affiliation(s)
- Krzysztof Krawczyk
- Department of Virusology and Bacteriology, Institute of Plant Protection-National Research Institute, Władysława Węgorka 20, 60-318 Poznan, Poland
| | - Alicja Szabelska-Beręsewicz
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 28 Wojska Polskiego St, 60-624 Poznan, Poland
| | - Sebastian Wojciech Przemieniecki
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| | - Mateusz Szymańczyk
- Department of Breeding and Agriculture Technology for Fibrous and Energy Plants, Wojska Polskiego 70B, 60-630 Poznan, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection—National Research Institute, 20 Węgorka St, 60-318 Poznan, Poland
| |
Collapse
|
10
|
Paddock KJ, Finke DL, Kim KS, Sappington TW, Hibbard BE. Patterns of Microbiome Composition Vary Across Spatial Scales in a Specialist Insect. Front Microbiol 2022; 13:898744. [PMID: 35722352 PMCID: PMC9201478 DOI: 10.3389/fmicb.2022.898744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Microbial communities associated with animals vary based on both intrinsic and extrinsic factors. Of many possible determinants affecting microbiome composition, host phylogeny, host diet, and local environment are the most important. How these factors interact across spatial scales is not well understood. Here, we seek to identify the main influences on microbiome composition in a specialist insect, the western corn rootworm (WCR; Diabrotica virgifera virgifera), by analyzing the bacterial communities of adults collected from their obligate host plant, corn (Zea mays), across several geographic locations and comparing the patterns in communities to its congeneric species, the northern corn rootworm (NCR; Diabrotica barberi). We found that bacterial communities of WCR and NCR shared a portion of their bacterial communities even when collected from disparate locations. However, within each species, the location of collection significantly influenced the composition of their microbiome. Correlations of geographic distance between sites with WCR bacterial community composition revealed different patterns at different spatial scales. Community similarity decreased with increased geographic distance at smaller spatial scales (~25 km between the nearest sites). At broad spatial scales (>200 km), community composition was not correlated with distances between sites, but instead reflected the historical invasion path of WCR across the United States. These results suggest bacterial communities are structured directly by dispersal dynamics at small, regional spatial scales, while landscape-level genetic or environmental differences may drive community composition across broad spatial scales in this specialist insect.
Collapse
Affiliation(s)
- Kyle J Paddock
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Deborah L Finke
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Kyung Seok Kim
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, United States
| | - Thomas W Sappington
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA, United States
| | - Bruce E Hibbard
- USDA-ARS, Plant Genetics Research Unit, University of Missouri, Columbia, MO, United States
| |
Collapse
|
11
|
Hansen TE, Enders LS. Host Plant Species Influences the Composition of Milkweed and Monarch Microbiomes. Front Microbiol 2022; 13:840078. [PMID: 35283842 PMCID: PMC8908431 DOI: 10.3389/fmicb.2022.840078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
Plants produce defensive chemicals for protection against insect herbivores that may also alter plant and insect associated microbial communities. However, it is unclear how expression of plant defenses impacts the assembly of insect and plant microbiomes, for example by enhancing communities for microbes that can metabolize defensive chemicals. Monarch butterflies (Danaus plexippus) feed on milkweed species (Asclepias spp.) that vary in production of toxic cardiac glycosides, which could alter associated microbiomes. We therefore sought to understand how different milkweed species, with varying defensive chemical profiles, influence the diversity and composition of monarch and milkweed (root and leaf) bacterial communities. Using a metabarcoding approach, we compared rhizosphere, phyllosphere and monarch microbiomes across two milkweed species (Asclepias curassavica, Asclepias syriaca) and investigated top-down effects of monarch feeding on milkweed microbiomes. Overall, monarch feeding had little effect on host plant microbial communities, but each milkweed species harbored distinct rhizosphere and phyllosphere microbiomes, as did the monarchs feeding on them. There was no difference in diversity between plants species for any of the microbial communities. Taxonomic composition significantly varied between plant species for rhizospheres, phyllospheres, and monarch microbiomes and no dispersion were detected between samples. Interestingly, phyllosphere and monarch microbiomes shared a high proportion of bacterial taxa with the rhizosphere (88.78 and 95.63%, respectively), while phyllosphere and monarch microbiomes had fewer taxa in common. Overall, our results suggest milkweed species select for unique sets of microbial taxa, but to what extent differences in expression of defensive chemicals directly influences microbiome assembly remains to be tested. Host plant species also appears to drive differences in monarch caterpillar microbiomes. Further work is needed to understand how monarchs acquire microbes, for example through horizontal transfer during feeding on leaves or encountering soil when moving on or between host plants.
Collapse
Affiliation(s)
- Thorsten E. Hansen
- Entomology Department, Purdue University, West Lafayette, IN, United States
| | | |
Collapse
|
12
|
Gloder G, Bourne ME, Verreth C, Wilberts L, Bossaert S, Crauwels S, Dicke M, Poelman EH, Jacquemyn H, Lievens B. Parasitism by endoparasitoid wasps alters the internal but not the external microbiome in host caterpillars. Anim Microbiome 2021; 3:73. [PMID: 34654483 PMCID: PMC8520287 DOI: 10.1186/s42523-021-00135-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/01/2021] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The microbiome of many insects consists of a diverse community of microorganisms that can play critical roles in the functioning and overall health of their hosts. Although the microbial communities of insects have been studied thoroughly over the past decade, little is still known about how biotic interactions affect the microbial community structure in and on the bodies of insects. In insects that are attacked by parasites or parasitoids, it can be expected that the microbiome of the host insect is affected by the presence of these parasitic organisms that develop in close association with their host. In this study, we used high-throughput amplicon sequencing targeting both bacteria and fungi to test the hypothesis that parasitism by the endoparasitoid Cotesia glomerata affected the microbiome of its host Pieris brassicae. Healthy and parasitized caterpillars were collected from both natural populations and a laboratory culture. RESULTS Significant differences in bacterial community structure were found between field-collected caterpillars and laboratory-reared caterpillars, and between the external and the internal microbiome of the caterpillars. Parasitism significantly altered the internal microbiome of caterpillars, but not the external microbiome. The internal microbiome of all parasitized caterpillars and of the parasitoid larvae in the caterpillar hosts was dominated by a Wolbachia strain, which was completely absent in healthy caterpillars, suggesting that the strain was transferred to the caterpillars during oviposition by the parasitoids. CONCLUSION We conclude that biotic interactions such as parasitism have pronounced effects on the microbiome of an insect host and possibly affect interactions with higher-order insects.
Collapse
Affiliation(s)
- Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Mitchel E. Bourne
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Christel Verreth
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Liesbet Wilberts
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Sofie Bossaert
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
13
|
Ishigami K, Jang S, Itoh H, Kikuchi Y. Insecticide resistance governed by gut symbiosis in a rice pest, Cletus punctiger, under laboratory conditions. Biol Lett 2021; 17:20200780. [PMID: 33653096 DOI: 10.1098/rsbl.2020.0780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Resistance to toxins in insects is generally thought of as their own genetic trait, but recent studies have revealed that gut microorganisms could mediate resistance by detoxifying phytotoxins and man-made insecticides. By laboratory experiments, we here discovered a striking example of gut symbiont-mediated insecticide resistance in a serious rice pest, Cletus punctiger. The rice bug horizontally acquired fenitrothion-degrading Burkholderia through oral infection and housed it in midgut crypts. Fenitrothion-degradation test revealed that the gut-colonizing Burkholderia retains a high degrading activity of the organophosphate compound in the insect gut. This gut symbiosis remarkably increased resistance against fenitrothion treatment in the host rice bug. Considering that many stinkbug pests are associated with soil-derived Burkholderia, our finding strongly supports that a number of stinkbug species could gain resistance against insecticide simply by acquiring insecticide-degrading gut bacteria.
Collapse
Affiliation(s)
- Kota Ishigami
- Graduate School of Agriculture, Hokkaido University, 060-8589 Sapporo, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517 Sapporo, Japan
| | - Seonghan Jang
- Graduate School of Agriculture, Hokkaido University, 060-8589 Sapporo, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517 Sapporo, Japan
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517 Sapporo, Japan
| | - Yoshitomo Kikuchi
- Graduate School of Agriculture, Hokkaido University, 060-8589 Sapporo, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517 Sapporo, Japan
| |
Collapse
|