1
|
Song HJ, Kim JE, Jin YJ, Roh YJ, Seol A, Kim TR, Park KH, Park ES, An BS, Yang SY, Seo S, Jo SM, Jung YS, Hwang DY. Complement C3-Deficiency-Induced Constipation in FVB/N-C3 em1Hlee/Korl Knockout Mice Was Significantly Relieved by Uridine and Liriope platyphylla L. Extracts. Int J Mol Sci 2023; 24:15757. [PMID: 37958740 PMCID: PMC10649790 DOI: 10.3390/ijms242115757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Complement component 3 (C3) deficiency has recently been known as a cause of constipation, without studies on the therapeutic efficacy. To evaluate the therapeutic agents against C3-deficiency-induced constipation, improvements in the constipation-related parameters and the associated molecular mechanisms were examined in FVB/N-C3em1Hlee/Korl knockout (C3 KO) mice treated with uridine (Urd) and the aqueous extract of Liriope platyphylla L. (AEtLP) with laxative activity. The stool parameters and gastrointestinal (GI) transit were increased in Urd- and AEtLP-treated C3 KO mice compared with the vehicle (Veh)-treated C3 KO mice. Urd and AEtLP treatment improved the histological structure, junctional complexes of the intestinal epithelial barrier (IEB), mucin secretion ability, and water retention capacity. Also, an improvement in the composition of neuronal cells, the regulation of excitatory function mediated via the 5-hydroxytryptamine (5-HT) receptors and muscarinic acetylcholine receptors (mAChRs), and the regulation of the inhibitory function mediated via the neuronal nitric oxide synthase (nNOS) and inducible NOS (iNOS) were detected in the enteric nervous system (ENS) of Urd- and AEtLP-treated C3 KO mice. Therefore, the results of the present study suggest that C3-deficiency-induced constipation can improve with treatment with Urd and AEtLP via the regulation of the mucin secretion ability, water retention capacity, and ENS function.
Collapse
Affiliation(s)
- Hee-Jin Song
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Ji-Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - You-Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Yu-Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Tae-Ryeol Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Ki-Ho Park
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Eun-Seo Park
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Seung-Yun Yang
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Seong-Min Jo
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea;
| | - Dae-Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.S.); (J.-E.K.); (Y.-J.J.); (Y.-J.R.); (A.S.); (T.-R.K.); (K.-H.P.); (E.-S.P.); (B.-S.A.); (S.-Y.Y.); (S.S.); (S.-M.J.)
| |
Collapse
|
2
|
Tanner SM, Lorenz RG. FVB/N mouse strain regulatory T cells differ in phenotype and function from the C57BL/6 and BALB/C strains. FASEB Bioadv 2022; 4:648-661. [PMID: 36238362 PMCID: PMC9536134 DOI: 10.1096/fba.2021-00161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/29/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
Regulatory T cells (Treg) are vital to the maintenance of immune homeostasis. The genetic background of an inbred mouse strain can have a profound effect on the immune response in the animal, including Treg responses. Most Treg studies focus on animals created on the C57BL/6 or BALB/c background. Recent studies have demonstrated a difference in the phenotype and behavior of C57BL/6 and BALB/c Tregs. In this study, we have investigated the function of FVB/N Tregs compared to C57BL/6 and BALB/c. We observed that while FVB/N Tregs appear to suppress normally in a cell contact-dependent system, FVB/N Tregs are less capable of suppressing when regulation depends on the secretion of a soluble factor. FVB/N Tregs produce IL-10; however, TGF-β was not detected in any culture from C57BL/6 or FVB/N. C57BL/6 Foxp3+ Tregs expressed more of the TGF-β-related proteins glycoprotein-A repetitions predominant (GARP) and latency-associated peptide (LAP) on the cell surface than both FVB/N and BALB/c, but C57BL/6 Tregs expressed significantly less Ctse (Cathepsin E) mRNA. Each strain displayed different abilities of thymic Tregs (tTreg) to maintain Foxp3 expression and had a varying generation of induced Tregs (iTregs). In vitro generated FVB/N iTregs expressed significantly less GARP and LAP. These results suggest Tregs of different strains have varying phenotypes and dominant mechanisms of action for the suppression of an immune response. This information should be taken into consideration when Tregs are examined in future studies, particularly for therapeutic purposes in a genetically diverse population.
Collapse
Affiliation(s)
- Scott M. Tanner
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Division of Natural Sciences and EngineeringUniversity of South Carolina UpstateSpartanburgSouth CarolinaUSA
| | - Robin G. Lorenz
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of PathologyGenentechSouth San FransiscoCaliforniaUSA
| |
Collapse
|
3
|
Dysregulation of the Enteric Nervous System in the Mid Colon of Complement Component 3 Knockout Mice with Constipation Phenotypes. Int J Mol Sci 2022; 23:ijms23126862. [PMID: 35743302 PMCID: PMC9225043 DOI: 10.3390/ijms23126862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023] Open
Abstract
Complement component 3 (C3) contributes to neurogenesis, neural migration, and synaptic elimination under normal and disease conditions of the brain, even though it has not been studied in the enteric nervous system (ENS). To determine the role of C3 in the regulatory mechanism of ENS during C3 deficiency-induced constipation, the changes in the markers of neuronal and interstitial cells of Cajal (ICCs), the markers for excitatory and inhibitory transmission of ENS, and expression of C3 receptors were analyzed in the mid colon of C3 knockout (KO) mice at 16 weeks of age. Prominent constipation phenotypes, including the decrease in stool parameters, changes in the histological structure, and suppression of mucin secretion, were detected in C3 KO mice compared to wildtype (WT) mice. The expression levels of the neuron specific enolase (NSE), protein gene product 9.5 (PGP9.5), and C-kit markers for myenteric neurons and ICCs were lower in the mid colon of C3 KO mice than WT mice. Excitatory transmission analysis revealed similar suppression of the 5-hydroxytryptamine (5-HT) concentration, expression of 5-HT receptors, acetylcholine (ACh) concentration, ACh esterase (AChE) activity, and expression of muscarinic ACh receptors (mAChRs), despite the mAChRs downstream signaling pathway being activated in the mid colon of C3 KO mice. In inhibitory transmission analysis, C3 KO mice showed an increase in the nitric oxide (NO) concentration and inducible nitric oxide synthase (iNOS) expression, while neuronal NOS (nNOS) expression, cholecystokinin (CCK), and gastrin concentration were decreased in the same mice. Furthermore, the levels of C3a receptor (C3aR) and C3bR expression were enhanced in the mid colon of C3 KO mice compared to the WT mice during C3 deficiency-induced constipation. Overall, these results indicate that a dysregulation of the ENS may play an important role in C3 deficiency-induced constipation in the mid colon of C3 KO mice.
Collapse
|
4
|
Lee H, Hwang-Bo H, Ji SY, Kim MY, Kim SY, Woo M, Keum YS, Noh JS, Park JH, Lee BJ, Kim GY, Park EK, Chang YC, Jeon YJ, Choi YH. Effect of fermented oyster extract on growth promotion in Sprague-Dawley rats. Integr Med Res 2020; 9:100412. [PMID: 32509520 PMCID: PMC7264051 DOI: 10.1016/j.imr.2020.100412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Background Oysters (Crassostrea gigas) are a popular marine product worldwide and have the advantage of nutritional benefits. This study aimed to investigate the effect of fermented oyster extract (FO) on growth promotion, including analysis of body size, bone microarchitecture, hematology and biochemistry in vivo. Methods The amount of nutrients and gamma aminobutyric acid (GABA) were determined. Sprague–Dawley rats were randomly divided into four groups: the control group, FO 50 group (FO 50 mg/kg), and FO 100 group (FO 100 mg/kg) were administered orally once daily and the recombinant human growth hormone (rhGH) group (200 μg/kg) was intraperitoneally injected once daily for 14 days. Results Oral administration of FO 100 significantly increased body length and had no effect on organ damage or hematological profiles. However, administration of rhGH significantly induced hypertrophy of the liver, kidney and spleen along with a marked increase in body length. Tibia length and the growth plate were increased, and bone morphometric parameters were slightly improved by FO and rhGH administration. Serum analysis showed that the levels of GH and insulin like growth factor-1 (IGF-1) were slightly upregulated by FO administration. Nevertheless, the protein expression of hepatic IGF-1 was markedly increased by FO 100 and rhGH administration. Conclusions FO have high content of GABA, and induced positive effects on body length, tibial length, growth-plate length and hepatic IGF-1 synthesis in SD rats with no toxicity or alterations of hematological profile. Therefore, these results suggest that GABA-enriched FO could be considered a potential alternative treatment for growth stimulation.
Collapse
Affiliation(s)
- Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
| | - Hyun Hwang-Bo
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
| | - So Young Kim
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
| | - Minji Woo
- Busan Innovation Institute of Industry, Science & Technology Planning, Busan, Republic of Korea
| | - Young-Sam Keum
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Goyang, Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan, Republic of Korea
| | - Joung-Hyun Park
- Ocean Fisheries & Biology Center, Marine Bioprocess Co., Ltd., Busan, Republic of Korea
| | - Bae-Jin Lee
- Ocean Fisheries & Biology Center, Marine Bioprocess Co., Ltd., Busan, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea
| |
Collapse
|