1
|
Katamesh AA, Abdel-Bar HM, Break MKB, Hassoun SM, Subaiea G, Radwan A, Abo El-Enin HA. Manipulation of Lipid Nanocapsules as an Efficient Intranasal Platform for Brain Deposition of Clozapine as an Antipsychotic Drug. Pharmaceutics 2024; 16:1417. [PMID: 39598541 PMCID: PMC11597305 DOI: 10.3390/pharmaceutics16111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES The blood-brain barrier (BBB) significantly limits the treatment of central nervous system disorders, such as schizophrenia, by restricting drug delivery to the brain. This study explores the potential of intranasal clozapine-loaded lipid nanocapsules (IN LNCsClo) as a targeted and effective delivery system to the brain. METHODS LNCsClo were prepared using the phase inversion technique and characterized in terms of size, zeta potential, entrapment efficiency (EE%), and in vitro drug release. The pharmacokinetic, safety, and pharmacodynamic effects of LNCsClo were then evaluated in a rat model through intranasal (IN) administration and compared with those of oral and intravenous (IV) Clo solutions. RESULTS LNCsClo were prepared using a phase inversion technique, resulting in a nanocarrier with a particle size of 28.6 ± 3.6 nm, homogenous dispersion, and high EE% (84.66 ± 5.66%). Pharmacokinetic analysis demonstrated that IN LNCsClo provided enhanced Clo brain bioavailability, rapid CNS targeting, and prolonged drug retention compared to oral and intravenous routes. Notably, the area under the curve (AUC) for brain concentration showed more than two-fold and eight-fold increases with LNCsClo, compared to IV and oral solutions, respectively, indicating improved brain-targeting efficiency. Safety assessments indicated that LNCsClo administration mitigated Clo-associated metabolic side effects, such as hyperglycemia, insulin imbalance, and liver enzyme alterations. Additionally, pharmacodynamic studies showed that LNCsClo significantly improved antipsychotic efficacy and reduced schizophrenia-induced hyperactivity, while preserving motor function. CONCLUSIONS These results highlight the potential of IN LNCsClo as a novel drug delivery system, offering improved therapeutic efficacy, reduced systemic side effects, and better patient compliance in the treatment of schizophrenia and potentially other CNS disorders.
Collapse
Affiliation(s)
- Ahmed A. Katamesh
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics, Egyptian Drug Authority, Giza 12511, Egypt;
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Shimaa M. Hassoun
- Department of Pharmacology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Northeast Delta Branch, Department of Pharmacies, Health Insurance Organization, Mansoura 35511, Egypt
| | - Gehad Subaiea
- Department of Pharmacology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Amr Radwan
- Research Department, Academy of Scientific Research and Technology, Cairo 11694, Egypt
- Egyptian Center for Innovation and Technology Development, Cairo 11512, Egypt
| | | |
Collapse
|
2
|
Nugraha R, Kurniawan F, Abdullah A, Lopata AL, Ruethers T. Antihypertensive and Antidiabetic Drug Candidates from Milkfish ( Chanos chanos)-Identification and Characterization through an Integrated Bioinformatic Approach. Foods 2024; 13:2594. [PMID: 39200521 PMCID: PMC11353658 DOI: 10.3390/foods13162594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Integrated bioinformatics tools have created more efficient and robust methods to overcome in vitro challenges and have been widely utilized for the investigation of food proteins and the generation of peptide sequences. This study aimed to analyze the physicochemical properties and bioactivities of novel peptides derived from hydrolyzed milkfish (Chanos chanos) protein sequences and to discover their potential angiotensin-converting enzyme (ACE)- and dipeptidyl peptidase-4 (DPPIV)-inhibitory activities using machine learning-based tools, including BIOPEP-UWM, PeptideRanker, and the molecular docking software HADDOCK 2.4. Nine and three peptides were predicted to have ACE- and DPPIV-inhibitory activities, respectively. The DPPIV-inhibitory peptides were predicted to inhibit the compound with no known specific mode. Meanwhile, two tetrapeptides (MVWH and PPPS) were predicted to possess a competitive mode of ACE inhibition by directly binding to the tetra-coordinated Zn ion. Among all nine discovered ACE-inhibitory peptides, only the PPPS peptide satisfied the drug-likeness analysis requirements with no violations of the Lipinski rule of five and should be further investigated in vitro.
Collapse
Affiliation(s)
- Roni Nugraha
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Dramaga 16680, Indonesia; (F.K.); (A.A.)
- Tropical Futures Institute, James Cook University, Singapore 387380, Singapore; (A.L.L.); (T.R.)
| | - Fahmi Kurniawan
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Dramaga 16680, Indonesia; (F.K.); (A.A.)
| | - Asadatun Abdullah
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Dramaga 16680, Indonesia; (F.K.); (A.A.)
| | - Andreas L. Lopata
- Tropical Futures Institute, James Cook University, Singapore 387380, Singapore; (A.L.L.); (T.R.)
- Molecular Allergy Research Laboratory, Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD 4811, Australia
| | - Thimo Ruethers
- Tropical Futures Institute, James Cook University, Singapore 387380, Singapore; (A.L.L.); (T.R.)
- Molecular Allergy Research Laboratory, Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD 4811, Australia
| |
Collapse
|
3
|
Singh N, Chakravarti R, Das A, Gupta S, Ghosh D, Datta P. A Lipophilic Salt Form to Enhance the Lipid Solubility and Certain Biopharmaceutical Properties of Lapatinib. Mol Pharm 2024; 21:3921-3935. [PMID: 38935681 DOI: 10.1021/acs.molpharmaceut.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Lapatinib (LTP) commercially available as lapatinib ditosylate (LTP-DTS) salt is the only drug approved for the treatment of HER-positive metastatic breast cancer. A low and pH-dependent solubility results in poor and variable oral bioavailability, thus driving significant interest in molecular modification and formulation strategies of the drug. Furthermore, due to very high crystallinity, LTP and LTP-DTS have low solubility in lipid excipients, making it difficult to be delivered by lipid-based carrier systems. Thus, the present work reports a new salt form of LTP with a docusate counterion to enhance the pharmaceutical properties of the drug (LTP-DOC). NMR spectra showed a downfield shift of the methylene singlet proton from 3.83 and 4.41 ppm, indicating a lowering of electron density on the adjacent nitrogen atom and confirming the formation of amine-sulfonyl salt through the specified basic nitrogen center located adjacent to the furan ring. PXRD diffractograms of LTP-DOC indicated a reduced crystallinity of the prepared salt. The dissolution, equilibrium solubility, lipid excipient solubility, partitioning coefficient, distribution coefficient, tabletability, and in vitro cytotoxicity of the lipophilic salt of LTP were investigated. The equilibrium solubility data showed that LTP-DOC possesses a pH-independent solubility profile in the pH range of 3.5 to 7.4 with a 3.14 times higher permeability coefficient than commercial ditosylate salt. Furthermore, the prepared LTP-DOC salts showed twice higher log P than the free base and 8 times higher than LTP-DTS. The prepared LTP-DOC was found to have 4- to 9-fold higher solubility in lipid excipients like Capmul MCM C8 and Maisine CC compared to the ditosylate salt. The LTP-DOC salt was tabletable and showed approximately 1.2 times lower dissolution than commercial ditosylate salt, indicating extended-release behavior. A cytotoxicity study of LTP-DOC salt showed an approximately 2.5 times lower IC50 value than the LTP-free base and 1.7 times lower than commercial ditosylate salt with an approximately 3 times higher selectivity index. The investigations strongly indicate a high translational potential of the prepared salt form in maintaining solubility-lipophilicity interplay, enhancing the drug's bioavailability, and developing lipidic formulations.
Collapse
Affiliation(s)
- Nidhi Singh
- Polymer-based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, Jadavpur 700032, India
| | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata, Jadavpur 700032, India
| | - Arka Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| | - Sreya Gupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata, Jadavpur 700032, India
| | - Pallab Datta
- Polymer-based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, Jadavpur 700032, India
| |
Collapse
|
4
|
Buchalska B, Kamińska K, Owe-Larsson M, Cudnoch-Jędrzejewska A. Cannabinoids in the treatment of glioblastoma. Pharmacol Rep 2024; 76:223-234. [PMID: 38457018 DOI: 10.1007/s43440-024-00580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Glioblastoma (GBM) is the most prevalent primary malignant tumor of the nervous system. While the treatment of other neoplasms is increasingly more efficacious the median survival rate of GBM patients remains low and equals about 14 months. Due to this fact, there are intensive efforts to find drugs that would help combat GBM. Nowadays cannabinoids are becoming more and more important in the field of cancer and not only because of their properties of antiemetic drugs during chemotherapy. These compounds may have a direct cytotoxic effect on cancer cells. Studies indicate GBM has disturbances in the endocannabinoid system-changes in cannabinoid metabolism as well as in the cannabinoid receptor expression. The GBM cells show expression of cannabinoid receptors 1 and 2 (CB1R and CB2R), which mediate various actions of cannabinoids. Through these receptors, cannabinoids inhibit the proliferation and invasion of GBM cells, along with changing their morphology. Cannabinoids also induce an intrinsic pathway of apoptosis in the tumor. Hence the use of cannabinoids in the treatment of GBM may be beneficial to the patients. So far, studies focusing on using cannabinoids in GBM therapy are mainly preclinical and involve cell lines and mice. The results are promising and show cannabinoids inhibit GBM growth. Several clinical studies are also being carried out. The preliminary results show good tolerance of cannabinoids and prolonged survival after administration of these drugs. In this review, we describe the impact of cannabinoids on GBM and glioma cells in vitro and in animal studies. We also provide overview of clinical trials on using cannabinoids in the treatment of GBM.
Collapse
Affiliation(s)
- Barbara Buchalska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, 02097, Poland
| | - Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, 02097, Poland.
| | - Maja Owe-Larsson
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, 02097, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, 02097, Poland
| |
Collapse
|
5
|
Dehghani M, Zahir-Jouzdani F, Shahbaz S, Andarzbakhsh K, Dinarvand S, Fathian Nasab MH, Asadi Amoli F, Asgharian R, Atyabi F. Triamcinolone-loaded self nano-emulsifying drug delivery systems for ocular use: An alternative to invasive ocular surgeries and injections. Int J Pharm 2024; 653:123840. [PMID: 38262585 DOI: 10.1016/j.ijpharm.2024.123840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
Inflammation of the posterior segment of the eye is a severe condition and hard to cure as delivery of drugs to the inflammation site is inefficient. Currently, the primary treatment approach is ocular surgery or invasive ocular injections. Herein, we designed and developed a topically self nano-emulsifying drug delivery system (SNEDDs) to deliver triamcinolone acetonide (TCA) to the posterior segment of the eye. A screening based on TCA solubility was conducted on each excipient followed by preparation of various formulations using different ratios of the selected excipients. Vesicles of optimized SNEDDs had less than 100 nm size and spherical morphology. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay showed self-emulsified vesicles have relatively high safety on retinal pigment epithelium (RPE) cell line. Furthermore, efficient cellular uptake of coumarin 6-loaded SNEDDs in RPE using confocal laser scanning microscopy (CLSM) was confirmed. In addition, an in-vivo study using hematoxylin and eosin (H&E) staining revealed that 14 days of topical treatment of albino rabbit eyes with TCA-loaded SNEDDs was safe and no sign of tissue destruction and inflammation was detected in different parts of the eye sections including cornea, sclera, retina, and optic nerve. Also, the CLSM images from topically treated eyes with coumarin 6 (a hydrophobic, fluorescent drug model) loaded SNEDDs, showed that the optimized SNEDDs could properly penetrate toward the posterior segments of the eye especially the retina, posterior parts of the choroid, and sclera. Considering the outstanding results obtained by ocular tissue penetration and low toxicity, prepared SNEDDs, have the potential to be used as a topical administration for treating posterior segment disorders of the eye through an utterly non-invasive route and TCA-loaded SNEDDs could be an alternative for TCA intravitreal and intra conjunctival injections.
Collapse
Affiliation(s)
- Mohammad Dehghani
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Forouhe Zahir-Jouzdani
- Arvan Pharmed Pharmaceutical Co., Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Shahbaz
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyab Andarzbakhsh
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sajad Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fahimeh Asadi Amoli
- Farabi Hospital, Pathology Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Asgharian
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Berida T, McKee SR, Chatterjee S, Manning DL, Li W, Pandey P, Tripathi SK, Mreyoud Y, Smirnov A, Doerksen RJ, Jackson M, Ducho C, Stallings CL, Roy S. Discovery, Synthesis, and Optimization of 1,2,4-Triazolyl Pyridines Targeting Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:2282-2298. [PMID: 37788674 PMCID: PMC10807233 DOI: 10.1021/acsinfecdis.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The rise in multidrug resistant tuberculosis cases underscores the urgent need to develop new treatment strategies for tuberculosis. Herein, we report the discovery and synthesis of a new series of compounds containing a 3-thio-1,2,4-triazole moiety that show inhibition of Mycobacterium tuberculosis (Mtb) growth and survival. Structure-activity relationship studies led us to identify several potent analogs displaying low micromolar to nanomolar inhibitory activity, specifically against Mtb. The potent analogs demonstrated no cytotoxicity in mammalian cells at over 100 times the effective concentration required in Mtb and were bactericidal against Mtb during infection of macrophages. In the exploratory ADME investigations, we observed suboptimal ADME characteristics, which prompted us to identify potential metabolic liabilities for further optimization. Our preliminary investigations into the mechanism of action suggest that this series is not engaging the promiscuous targets that arise from many phenotypic screens. We selected for resistant mutants with the nanomolar potent nitro-containing compound 20 and identified resistant isolates with mutations in genes required for coenzyme F420 biosynthesis and the nitroreductase Ddn. This suggests that the aromatic nitro-1,2,4-triazolyl pyridines are activated by F420-dependent Ddn activity, similar to the nitro-containing TB drug pretomanid. We were able to circumvent the requirement for F420-dependent Ddn activity using compounds that contained non-nitro groups, identifying a key feature to be modified to avoid this predominant resistance mechanism. These studies provide the foundation for the development of a new class of 1,2,4-triazole compounds for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Tomayo Berida
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Samuel R McKee
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Shamba Chatterjee
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Destinee L Manning
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Pankaj Pandey
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| | - Siddharth Kaushal Tripathi
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| | - Yassin Mreyoud
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Robert J Doerksen
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken 66123, Germany
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Sudeshna Roy
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
7
|
Saha SK, Joshi A, Singh R, Dubey K. Review of industrially recognized polymers and manufacturing processes for amorphous solid dispersion based formulations. Pharm Dev Technol 2023; 28:678-696. [PMID: 37427544 DOI: 10.1080/10837450.2023.2233595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Evolving therapeutic landscape through combinatorial chemistry and high throughput screening have resulted in an increased number of poorly soluble drugs. Drug delivery strategies quickly adapted to convert these drugs into successful therapies. Amorphous solid dispersion (ASD) technology is widely employed as a drug delivery strategy by pharmaceutical industries to overcome the challenges associated with these poorly soluble drugs. The development of ASD formulation requires an understanding of polymers and manufacturing techniques. A review of US FDA-approved ASD-based products revealed that only a limited number of polymers and manufacturing technologies are employed by pharmaceutical industries. This review provides a comprehensive guide for the selection and overview of polymers and manufacturing technologies adopted by pharmaceutical industries for ASD formulation. The various employed polymers with their underlying mechanisms for solution-state and solid-state stability are discussed. ASD manufacturing techniques, primarily implemented by pharmaceutical industries for commercialization, are presented in Quality by Design (QbD) format. An overview of novel excipients and progress in manufacturing technologies are also discussed. This review provides insights to the researchers on the industrially accepted polymers and manufacturing technology for ASD formulation that has translated these challenging drugs into successful therapies.
Collapse
Affiliation(s)
- Sumit Kumar Saha
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
- Formulation Research and Development - Orals, Sun Pharmaceuticals Industries Limited, Gurugram, India
| | | | - Romi Singh
- Formulation Research and Development - Orals, Sun Pharmaceuticals Industries Limited, Gurugram, India
| | - Kiran Dubey
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Kontogiannis O, Selianitis D, Lagopati N, Pippa N, Pispas S, Gazouli M. Surfactant and Block Copolymer Nanostructures: From Design and Development to Nanomedicine Preclinical Studies. Pharmaceutics 2023; 15:501. [PMID: 36839826 PMCID: PMC9963006 DOI: 10.3390/pharmaceutics15020501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The medical application of nanotechnology in the field of drug delivery has so far exhibited many efforts in treating simple to extremely complicated and life-threatening human conditions, with multiple products already existing in the market. A plethora of innovative drug delivery carriers, using polymers, surfactants and the combination of the above, have been developed and tested pre-clinically, offering great advantages in terms of targeted drug delivery, low toxicity and immune system activation, cellular biomimicry and enhanced pharmacokinetic properties. Furthermore, such artificial systems can be tailor-made with respect to each therapeutic protocol and disease type falling under the scope of personalized medicine. The simultaneous delivery of multiple therapeutic entities of different nature, such as genes and drugs, can be achieved, while novel technologies can offer systems with multiple modalities often combining therapy with diagnosis. In this review, we present prominent, innovative and state-of-the-art scientific efforts on the applications of surfactant-based, polymer-based, and mixed surfactant-polymer nanoparticle drug formulations intended for use in the medical field and in drug delivery. The materials used, formulation steps, nature, properties, physicochemical characteristics, characterization techniques and pharmacokinetic behavior of those systems, are presented extensively in the length of this work. The material presented is focused on research projects that are currently in the developmental, pre-clinical stage.
Collapse
Affiliation(s)
- Orestis Kontogiannis
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zographou, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
9
|
A Solid Self-Emulsifying Formulation for the Enhanced Solubility, Release and Digestion of Apigenin. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Reddy MR, Gubbiyappa KS. Formulation development, optimization and characterization of Pemigatinib-loaded supersaturable self-nanoemulsifying drug delivery systems. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Pemigatinib is a small molecule tyrosine kinase inhibitor of fibroblast growth factor receptor inhibitors. The oral bioavailability of Pemigatinib is constricted due to its limited solubility at physiological pH. It is essential to develop a novel formulation of Pemigatinib to improve the intrinsic solubility and to reduce the pharmacokinetic variability. Self-nanoemulsifying drug delivery system is an effective, smart and more adequate formulation approach for poorly soluble drugs. Different from conventional self-nanoemulsifying drug delivery system, a supersaturable self-nanoemulsifying drug delivery system of Pemigatinib was prepared by using a supersaturation promoter.
Results
Among all the oils, Captex® 300 have shown maximum solubility of Pemigatinib. Considering the solubilization potential and emulsification ability Kolliphor®RH 40 was selected as surfactant. Transcutol®HP was selected as co-surfactant. The composition of oil, surfactant and co-surfactant was identified using phase diagrams and further adjusted by simplex-lattice design. HPMC K4M as precipitation inhibitor at 5% concentration resulted in effective supersaturating with increased self-emulsification time. The droplet of sSNEDDS ranges from 166.78 ± 3.14 to 178.86 ± 1.24 nm with PDI 0.212 – 0.256, which is significantly smaller than that observed with plain SNEDDS. TEM images revealed the spherical shape of the nanodroplets. The final optimized formulation formed spontaneous nanoemulsion within 15 secs when added to physiological fluids. The percent transmittance of the diluted formulation was found to be 99.12 ± 0.46. The viscosity was found to be 574 ± 26 centipoises indicating the good flow ability. FTIR and DSC studies indicated the amorphization of the drug. The dissolution profile of sSNEDDS indicated the faster release of drug compared to both pure drug suspension and SNEDDS formulation. The drug release rate is directly proportional to the concentration of the drug. The drug release from the insoluble matrix is a square root of time-dependent Fickian diffusion process. The formulation was found to be stable and transparent at all pH values and the percent transmittance was more than 95%. Any kind of separation or precipitation was not observed at different temperatures cycles. No significant difference was observed with all the samples exposed at different storage conditions.
Conclusions
This study demonstrated the feasibility of stabilizing and improving the in-vitro performance of self-nanoemulsifying drug delivery systems of Pemigatinib by incorporating HPMC K4M as precipitation inhibitor.
Collapse
|
11
|
Vásquez AF, Gómez LA, González Barrios A, Riaño-Pachón DM. Identification of Active Compounds against Melanoma Growth by Virtual Screening for Non-Classical Human DHFR Inhibitors. Int J Mol Sci 2022; 23:13946. [PMID: 36430425 PMCID: PMC9694616 DOI: 10.3390/ijms232213946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Antifolates such as methotrexate (MTX) have been largely known as anticancer agents because of their role in blocking nucleic acid synthesis and cell proliferation. Their mechanism of action lies in their ability to inhibit enzymes involved in the folic acid cycle, especially human dihydrofolate reductase (hDHFR). However, most of them have a classical structure that has proven ineffective against melanoma, and, therefore, inhibitors with a non-classical lipophilic structure are increasingly becoming an attractive alternative to circumvent this clinical resistance. In this study, we conducted a protocol combining virtual screening (VS) and cell-based assays to identify new potential non-classical hDHFR inhibitors. Among 173 hit compounds identified (average logP = 3.68; average MW = 378.34 Da), two-herein, called C1 and C2-exhibited activity against melanoma cell lines B16 and A375 by MTT and Trypan-Blue assays. C1 showed cell growth arrest (39% and 56%) and C2 showed potent cytotoxic activity (77% and 51%) in a dose-dependent manner. The effects of C2 on A375 cell viability were greater than MTX (98% vs 60%) at equivalent concentrations and times. Our results indicate that the integrated in silico/in vitro approach provided a benchmark to identify novel promising non-classical DHFR inhibitors showing activity against melanoma cells.
Collapse
Affiliation(s)
- Andrés Felipe Vásquez
- Grupo de Diseño de Productos y Procesos (GDPP), School of Chemical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
- Naturalius SAS, Bogotá 110221, Colombia
| | - Luis Alberto Gómez
- Laboratorio de Fisiología Molecular, Instituto Nacional de Salud, Bogotá 111321, Colombia
- Department of Physiological Sciences, School of Medicine, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Andrés González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), School of Chemical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Diego M. Riaño-Pachón
- Laboratório de Biologia Computacional, Evolutiva e de Sistemas, Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Piracicaba 05508-060, SP, Brazil
| |
Collapse
|
12
|
Bakr AF, Shao P, Farag MA. Recent advances in glycyrrhizin metabolism, health benefits, clinical effects and drug delivery systems for efficacy improvement; a comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153999. [PMID: 35220130 DOI: 10.1016/j.phymed.2022.153999] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Glycyrrhizin (GL) is a major active constituent of licorice root (Glycyrrhiza glabra) that is considered one of the oldest and most frequently employed botanicals in Chinese medicine and worldwide, with most effects attributed to its rich GL content. Structurally, GL a triterpene saponin that is widely used as a flavoring agent in foodstuffs and cosmetics, and also proposed for various clinical applications with a myriad of health benefits. Pharmacological and biological activities of GL include antiviral, anti-inflammatory, antioxidant, and anticancer activities (in vitro and in vivo). Currently, there is no comprehensive review on GL biological effects and its action mechanisms. PURPOSE This review summarizes GL pharmacological actions from a molecular biology perception, presented on its metabolism and side effects based on in vitro, in vitro and clinical studies. Moreover, the potential of GL as a nanomedicine delivery system is also summarized. The progress in drug delivery research using GL presented herein is expected to provide a theoretical basis for developing other novel drugs formulations. METHODS A systematic review was carried out in several electronic databases (Science Direct, SpringerLink, CNKI, PubMed, Web of Science, Elsevier, and Scopus), using the following key words: glycyrrhizin "AND" bioactivity "OR" clinic "OR" therapeutic "OR" drug delivery. This search included manuscripts published between 1989 and 2021. RESULTS 126 researches were selected and summarized in this review. The analysis of these studies indicated that GL has antiviral activity against different viruses. Further, GL efficiently suppressed the respiratory manifestations associated with COVID-19 by reducing the expression of angiotensin converting enzyme 2 (ACE2) that employed by the virus as an entry point. Otherwise, GL was found to induce antioxidant, anti-inflammatory, immune-modulatory, and anticancer activity. Besides, diminution the particle size of GL to nanometer size significantly augments their action and biodistribution. CONCLUSION This article summarizes the pharmacological actions of GL. The potential of GL as a nanomedicine delivery system is also presented. Nevertheless, most studies reported provide no deep insight of GL health effects warranting for more future studies to elucidate its action mechanism and potential therapeutic benefits through preclinical and clinical trials.
Collapse
Affiliation(s)
- Alaa F Bakr
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Gamaa St., Giza 12211, Egypt
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, China.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562, Cairo, Egypt.
| |
Collapse
|
13
|
Formulation, Characterization and Permeability Studies of Fenugreek ( Trigonella foenum-graecum) Containing Self-Emulsifying Drug Delivery System (SEDDS). Molecules 2022; 27:molecules27092846. [PMID: 35566198 PMCID: PMC9104395 DOI: 10.3390/molecules27092846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Fenugreek is used as a spice and a traditional herbal medicine for a variety of purposes, given its antidiabetic and antioxidant effects. Self-emulsifying drug delivery systems (SEDDS) of herbal drugs are targets of extensive research aiming to increase bioavailability and stability. The study’s objective was to formulate SEDDS containing Trigonella foenum-graecum extract to improve the stability of herbal extract and to increase their permeability through a Caco-2 monolayer. A characterized fenugreek dry extract was used for the formulations, while the SEDDS properties were examined by particle size analysis and zeta potential measurements. Permeability assays were carried out on Caco-2 cell monolayers, the integrity of which was monitored by follow-up trans-epithelial electric resistance measurements (TEER). Cytocompatibility was tested by the MTT method, and an indirect dissolution test was performed, using DPPH antioxidant reagent. Two different SEDDS compositions were formulated from a standardized fenugreek dry extract at either the micro- or the nanoemulsion scale with sufficient stability, enhanced bioavailability of the compounds, and sustained release from HPMC capsules. Based on our results, a modern, non-toxic, cytocompatible fenugreek SEDDS formulation with high antioxidant capacity was developed in order to improve the permeability and bioavailability of all components.
Collapse
|
14
|
Poudwal S, Shende P. Multi-strategic approaches for enhancing active transportation using self-emulsifying drug delivery system. J Drug Target 2022; 30:726-736. [PMID: 35451898 DOI: 10.1080/1061186x.2022.2069783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oral delivery is the most desired route of drug administration and it can be more beneficial for patients suffering from chronic diseases wherein frequent parenteral administration of proteins such as insulin and calcitonin is required. The BCS class II drugs show low aqueous solubility and high permeability whereas BCS class IV drugs suffer from low aqueous solubility and low permeability. Additionally, biologic drugs are highly sensitive to presence of bioenzymes and bile salts when administered orally. Self-emulsifying drug delivery system (SEDDS) is a thermodynamically stable lipid formulation that enhances oral absorption of active ingredients via the opening of tight junctions, increasing the membrane fluidity, and thus overcomes the physiological barriers like viscous mucus layer, strong acid conditions and enzymatic degradation. An understanding of different theories that govern SEDDS formation and drug release can help in formulating a highly stable and effective drug delivery system. Poorly permeable drugs such as chlorpromazine require modification using methods like hydrophobic ion pairing, complexation with phospholipids, etc. to enable high entrapment efficiency which is discussed in the article. Additionally, the article gives an overview of the influence of polymers, length of fatty acids chain and zeta potential in enhancing permeation across the intestinal membrane.
Collapse
Affiliation(s)
- Swapna Poudwal
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
15
|
Soliman ME, Adewumi AT, Akawa OB, Subair TI, Okunlola FO, Akinsuku OE, Khan S. Simulation Models for Prediction of Bioavailability of Medicinal Drugs-the Interface Between Experiment and Computation. AAPS PharmSciTech 2022; 23:86. [PMID: 35292867 DOI: 10.1208/s12249-022-02229-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
The oral drug bioavailability (BA) problems have remained inevitable over the years, impairing drug efficacy and indirectly leading to eventual human morbidity and mortality. However, some conventional lab-based methods improve drug absorption leading to enhanced BA, and the recent experimental techniques are up-and-coming. Nevertheless, some have inherent drawbacks in improving the efficacy of poorly insoluble and low impermeable drugs. Drug BA and strategies to overcome these challenges were briefly highlighted. This review has significantly unravelled the different computational models for studying and predicting drug bioavailability. Several computational approaches provide mechanistic insights into the oral drug delivery system simulation of descriptors like solubility, permeability, transport protein-ligand interactions, and molecular structures. The in silico techniques have long been known still are just being applied to unravel drug bioavailability issues. Many publications have reported novel applications of the computational models towards achieving improved drug BA, including predicting gastrointestinal tract (GIT) drug absorption properties and passive intestinal membrane permeability, thus maximizing time and resources. Also, the classical molecular simulation models for free solvation energies of soluble-related processes such as solubilization, dissolutions, supersaturation, and precipitation have been used in virtual screening studies. A few of the tools are GastroPlusTM that supports biowaiver for drugs, mainly BCS class III and predicts drug compounds' absorption and pharmacokinetic process; SimCyp® simulator for mechanistic modelling and simulation of drug formulation processes; pharmacodynamics analysis on non-linear mixed-effects modelling; and mathematical models, predicting absorption potential/maximum absorption dose. This review provides in silico-experiment annexation in the drug bioavailability enhancement, possible insights that lead to critical opinion on the applications and reliability of the various in silico models as a growing tool for drug development and discovery, thus accelerating drug development processes.
Collapse
|
16
|
Abdulla NA, Balata GF, El-ghamry HA, Gomaa E. Intranasal delivery of Clozapine using nanoemulsion-based in-situ gels: An approach for bioavailability enhancement. Saudi Pharm J 2022; 29:1466-1485. [PMID: 35002385 PMCID: PMC8720818 DOI: 10.1016/j.jsps.2021.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
Limited solubility and hepatic first-pass metabolism are the main causes of low bioavailability of anti-schizophrenic drug, Clozapine (CZP). The objective of the study was to develop and validate nanoemulsion (NE) based in-situ gel of CZP for intranasal administration as an approach for bioavailability enhancement. Solubility of CZP was initially investigated in different oils, surfactants and co-surfactants, then pseudoternary phase diagrams were constructed to select the optimized ratio of oil, surfactant and co-surfactant. Clear and transparent NE formulations were characterized in terms of droplet size, viscosity, solubilization capacity, transmission electron microscopy, in-vitro drug release and compatibility studies. Selected NEs were incorporated into different in-situ gel bases using combination of two thermosensitive polymers; Pluronic® F-127 (PF127) and F-68 (PF68). NE-based gels (NG) were investigated for gelation temperature, viscosity, gel strength, spreadability and stability. Moreover, selected NGs were evaluated for ex-vivo permeation, mucoadhesive strength and nasal ciliotoxicity. Peppermint oil, tween 80 and transcutol P were chosen for NE preparation owing to their maximum CZP solubilization. Clear NE points extrapolated from tween 80:transcutol P (1:1) phase diagram and passed dispersibility and stability tests, demonstrated globule size of 67.99 to 354.96 nm and zeta potential of −12.4 to −3.11 mV with enhanced in-vitro CZP release (>90% in some formulations). After incorporation of the selected N3 and N9 formulations of oil:Smix of 1:7 and 2:7, respectively to a mixture of PF127 and PF68 (20:2% w/w), the resultant NG formulations exhibited optimum gelation temperature and viscosity with enhanced CZP permeation and retention through sheep nasal mucosa. Ciliotoxicity examinations of the optimum NGs displayed no inflammation or damage of the lining epithelium and the underlying cells of the nasal mucosa. In conclusion, NE-based gels may be a promising dosage form of CZP for schizophrenia treatment.
Collapse
Affiliation(s)
- Nourhan A. Abdulla
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Corresponding author.
| | - Gehan F. Balata
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Hanaa A. El-ghamry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
17
|
Structure-based design and synthesis of conformationally constrained derivatives of methyl-piperidinopyrazole (MPP) with estrogen receptor (ER) antagonist activity. Bioorg Chem 2021; 119:105554. [PMID: 34923243 DOI: 10.1016/j.bioorg.2021.105554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022]
Abstract
Nuclear Estrogen receptors (ER) are cytoplasmic proteins; translocated to the nucleus to induce transcriptional signals after getting bound to the estrogen hormone. ER activation implicated in cancer cell proliferation of female reproductive organs. Thus, the discovery of ER antagonists is a reliable strategy to combat estrogen-dependent breast cancer. Endometrial carcinoma is one of the complications encountered upon long-term therapy by selective estrogen receptor modulators (SERMs) like Tamoxifen (TMX) and methyl piperidinopyrazole (MPP). Thus, the ER-full antagonist is a solution to improve the safety of this class of therapeutics during the treatment of breast cancer. We selected MPP as a lead structure to design conformationally constrained analogs. Structural rigidification is a proven strategy to transform the SERMs into full antagonists. Accordingly, we synthesized 7-methoxy-3-(4-methoxyphenyl)-4,5-dihydro-2H-benzo[g]indazoles (4), (6a-c),(8-12) along with the biphenolic counterparts(13-19)that are the anticipated active metabolites. The 4-nitrophenyl derivative(4)is with the most balanced profile regardingthe in vivoanti-uterotrophic potential (EC50 = 4.160 μM); and the cytotoxicity assay of the corresponding active metabolite(13)against ER+ breast cancer cell lines (MCF-7 IC50 = 7.200 μM, T-47D IC50 = 11.710 μM). The inconsiderable uterotrophic activities of the elaborated ER-antagonists and weak antiproliferative activity of the compound(13)against ovarian cancer (SKOV-3 IC50 = 29.800 μM) highlighted it as a good start point to elaborate potential ER-full antagonists devoid of endometrial carcinoma. Extending the pendant chain that protrudes from the 2-(4-(substituted)-phenyl) ring of the new benzo-indazoles is recommended for enhancing the potency based on the binding mode of compound(13)in the ligand-binding domain (LBD) of ER.
Collapse
|
18
|
Gorain B, Al-Dhubiab BE, Nair A, Kesharwani P, Pandey M, Choudhury H. Multivesicular liposome: A lipid-based drug delivery system for efficient drug delivery. Curr Pharm Des 2021; 27:4404-4415. [PMID: 34459377 DOI: 10.2174/1381612827666210830095941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
The advancement of delivery tools for therapeutic agents has brought several novel formulations with increased drug loading, sustained release, targeted delivery, and prolonged efficacy. Amongst the several novel delivery approaches, multivesicular liposome has gained potential interest because this delivery system possesses the above advantages. In addition, this multivesicular liposomal delivery prevents degradation of the entrapped drug within the physiological environment while administered. The special structure of the vesicles allowed successful entrapment of hydrophobic and hydrophilic therapeutic agents, including proteins and peptides. Furthermore, this novel formulation could maintain the desired drug concentration in the plasma for a prolonged period, which helps to reduce the dosing frequencies, improve bioavailability, and safety. This tool could also provide stability of the formulation, and finally gaining patient compliance. Several multivesicular liposomes received approval for clinical research, while others are at different stages of laboratory research. In this review, we have focused on the preparation of multivesicular liposomes along with their application in different ailments for the improvement of the performance of the entrapped drug. Moreover, the challenges of delivering multivesicular vesicles have also been emphasized. Overall, it could be inferred that multivesicular liposomal delivery is a novel platform of advanced drug delivery with improved efficacy and safety.
Collapse
Affiliation(s)
- Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, Selangor. Malaysia
| | - Bandar E Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa. Saudi Arabia
| | - Anroop Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa. Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi. India
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur. Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur. Malaysia
| |
Collapse
|
19
|
Pandey R, Bhairam M, Shukla SS, Gidwani B. Colloidal and vesicular delivery system for herbal bioactive constituents. ACTA ACUST UNITED AC 2021; 29:415-438. [PMID: 34327650 DOI: 10.1007/s40199-021-00403-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The main objective of the present review is to explore and examine the effectiveness of currently developed novel techniques to resolve the issues which are associated with the herbal constituents/extract. METHODS A systematic thorough search and collection of reviewed information from Science direct, PubMed and Google Scholar databases based on various sets of key phrases have been performed. All the findings from these data have been studied and briefed based on their relevant and irrelevant information. RESULT Herbal drugs are gaining more popularity in the modern world due to their applications in curing various ailments with minimum toxic effects, side effect or adverse effect. However, various challenges exist with herbal extracts/plant actives such as poor solubility (water/lipid), poor permeation, lack of targeting specificity, instability in highly acidic pH, and liver metabolism, etc. Nowadays with the expansion in the technology, novel drug delivery system provides avenues and newer opportunity towards the delivery of herbal drugs with improved physical chemical properties, pharmacokinetic and pharmacodynamic. Developing nano-strategies like Polymeric nanoparticles, Liposomes, Niosomes, Microspheres, Phytosomes, Nanoemulsion and Self Nano Emulsifying Drug Delivery System, etc. imparts benefits for delivery of phyto formulation and herbal bioactives. Nano formulation of phytoconstituents/ herbal extract could lead to enhancement of aqueous solubility, dissolution, bioavailability, stability, reduce toxicity, permeation, sustained delivery, protection from enzymatic degradation, etc. CONCLUSION: Based on the above findings, the conclusion can be drawn that the nano sized novel drug delivery systems of herbal and herbal bioactives have a potential future for upgrading the pharmacological action and defeating or overcoming the issues related with these constituents. The aims of the present review was to summarize and critically analyze the recent development of nano sized strategies for promising phytochemicals delivery systems along with their therapeutic applications supported by experimental evidence and discussing the opportunities for further aspects.
Collapse
Affiliation(s)
- Ravindra Pandey
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India.
| | - Monika Bhairam
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India
| | | | - Bina Gidwani
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India
| |
Collapse
|
20
|
Shehata TM, Ibrahim MM, Elsewedy HS. Curcumin Niosomes Prepared from Proniosomal Gels: In Vitro Skin Permeability, Kinetic and In Vivo Studies. Polymers (Basel) 2021; 13:polym13050791. [PMID: 33806659 PMCID: PMC7961916 DOI: 10.3390/polym13050791] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Curcumin is a poorly water-soluble drug that is used for the treatment of inflammations, tumors, wound healing antioxidant and other diseases. In the current manuscript, it is successfully formulated into proniosome gels. The proniosomes are readily hydrated into niosomal formulations using warm water. Proniosomes were prepared using nonionic surfactants (tween 80, span 60) either solely or in combinations with cholesterol. The produced niosomal formulations were homogenous in size with vesicular sizes >343 and <1800 nm. The encapsulation efficiency percentage “EE%” of curcumin in niosomal formulations was different according to niosomal composition. It increased up to 99.74% in formulations of tween 80/Chol of 200 μmole/mL lipid concentration. Span 60/chol niosomes showed decreased curcumin EE%. Niosomal formulations showed increased SSTF and PC with enhancement ratios of more than 20-fold compared with curcumin suspension form. Kinetically, niosomes fitted to the Korsemeyer-Peppas model with non-Fickian transport according to their calculated n-values where curcumin suspension form showed Korsemeyer-Peppas kinetics with Fickian transport. Niosomal formulations deposited higher curcumin amounts in the skin compared with the suspension form. The best niosomal formulation (F9) was used for niosomal gel and emulgel fabrication. Finally, the anti-inflammatory activity of curcumin in various formulations was evaluated using a rat hind paw edema method and the % of swelling was 17.5% following 24 h in group treated with curcumin niosomal emulgel. In conclusion, this study suggests that the developed niosomal emulgel could significantly enhance the anti-inflammatory effect of curcumin and be an efficient carrier for the transdermal delivery of the drug.
Collapse
Affiliation(s)
- Tamer M. Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia;
- Correspondence: ; Tel.: +966-5647-87190
| | - Mahmoud M. Ibrahim
- Department of Pharmaceutics, Oman College of Health Sciences, Pharmacy Program, Ministry of Health, Muscat 123, Oman;
| | - Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia;
| |
Collapse
|
21
|
Bahadur S, Yadu K, Baghel P, Naurange T, Sahu M. Review of formulation and evaluation of self-micro emulsifying drug delivery system (SMEDDS). SCIENCERISE: PHARMACEUTICAL SCIENCE 2020. [DOI: 10.15587/2519-4852.2020.210825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|