1
|
Kaczmarek-Szczepańska B, Glajc P, Chmielniak D, Gwizdalska K, Swiontek Brzezinska M, Dembińska K, Shinde AH, Gierszewska M, Łukowicz K, Basta-Kaim A, D’Amora U, Zasada L. Development and Characterization of Biocompatible Chitosan-Aloe Vera Films Functionalized with Gluconolactone and Sorbitol for Advanced Wound Healing Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15196-15207. [PMID: 39999379 PMCID: PMC11912206 DOI: 10.1021/acsami.5c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Chitosan (CTS) has emerged as a promising biopolymer for wound healing due to its biocompatibility, biodegradability, and intrinsic bioactive properties. This study explores the development and characterization of CTS-based films enhanced with natural bioactive agents, aloe vera (A), gluconolactone (GL), and sorbitol (S), to improve their mechanical, antimicrobial, and regenerative performance for potential use in advanced wound care. A series of CTS-based films were fabricated with varying concentrations of A, GL, and S, and their physicochemical, mechanical, and biological properties were comprehensively evaluated. Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) analysis revealed modifications in the film structure attributable to these additives, influencing the surface roughness, hydrophilicity, and thermal stability. Biocidal assays confirmed enhanced antimicrobial activity, particularly in films containing GL and A. Biodegradation studies demonstrated a significant enhancement in microbial decomposition of the films, while cytocompatibility tests confirmed minimal cytotoxic effects and improved cellular response. This research underscores the potential of combining CS with A, GL, and S to engineer multifunctional biomaterials tailored for effectively tackling different phases of the wound healing process, offering a sustainable and biocompatible alternative for clinical applications.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Patrycja Glajc
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Dorota Chmielniak
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Klaudia Gwizdalska
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Maria Swiontek Brzezinska
- Department
of Environmental Microbiology and Biotechnology, Faculty of Biological
and Veterinary Sciences, Nicolaus Copernicus
University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Katarzyna Dembińska
- Department
of Environmental Microbiology and Biotechnology, Faculty of Biological
and Veterinary Sciences, Nicolaus Copernicus
University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Ambika H. Shinde
- Department
of Environmental Microbiology and Biotechnology, Faculty of Biological
and Veterinary Sciences, Nicolaus Copernicus
University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Magdalena Gierszewska
- Department
of Physical Chemistry and Polymer Physical Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland
| | - Krzysztof Łukowicz
- Department
of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, PolishAcademy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Agnieszka Basta-Kaim
- Department
of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, PolishAcademy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Ugo D’Amora
- Institute
of Polymers, Composites and Biomaterials, National Research Council, v.le J.F. Kennedy 54, Mostra d’Oltremare,
Pad. 20, 80125 Naples, Italy
| | - Lidia Zasada
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
2
|
Rajalekshmi R, Agrawal DK. Therapeutic Efficacy of Medicinal Plants with Allopathic Medicine in Musculoskeletal Diseases. INTERNATIONAL JOURNAL OF PLANT, ANIMAL AND ENVIRONMENTAL SCIENCES 2024; 14:104-129. [PMID: 39866300 PMCID: PMC11765655 DOI: 10.26502/ijpaes.4490170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Musculoskeletal diseases encompass a diverse array of disorders affecting the muscles, bones, joints, and connective tissues, leading to significant impairments in mobility, function, and quality of life. Affecting over 1.3 billion individuals globally, musculoskeletal diseases represent a major source of disability and economic burden. Conventional treatment modalities, including pharmacological interventions and surgical procedures, are frequently limited by adverse side effects, prolonged recovery periods, and patient dissatisfaction, particularly when focused solely on symptom management. In response, complementary and alternative medicine, particularly the use of medicinal plants, has garnered increasing interest to enhance the management of musculoskeletal diseases. Medicinal plants possess a wide spectrum of pharmacologically active compounds with anti-inflammatory, analgesic, and antioxidant properties, making them promising adjuncts to conventional therapies. This review critically evaluates the potential synergy between medicinal plants and allopathic medicine for the management of musculoskeletal diseases, with an emphasis on integrated therapy that combines both modalities. Specifically, a critical discussion is presented on how medicinal plants with scientifically supported pharmacological properties can augment the therapeutic efficacy of conventional medications, reduce their doses, and mitigate adverse effects. Furthermore, the challenges associated with incorporating herbal medicine into established healthcare systems are discussed, including the need for rigorous clinical validation, standardization, and regulatory frameworks. Overall, the article underscores the potential of integrated therapeutic approaches to improve clinical outcomes, enhance patient well-being, and establish a more sustainable model for the treatment of musculoskeletal diseases.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
3
|
Singh S, Kumar S, Dhanasingh I. Overexpression, purification and biochemical studies of Sortase A from Enterococcus faecalis (Ef) and its inhibition studies with Aloenin. Acta Trop 2024; 260:107419. [PMID: 39353540 DOI: 10.1016/j.actatropica.2024.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Sortase A (SrtA) is a bacterial transpeptidase that garnishes the bacterial surface by adding various virulent factors or proteins by cleaving the LPXTG-specific motif between T and G amino acids. These virulence factors assist in the attachment of host cells, which are essential for bacterial virulence. Enterococcus species are among the multidrug-resistant bacteria that cause nosocomial infections; they have drawn a lot of attention recently. SrtA from E. faecalis (Ef) plays a critical role in pathogenesis, making it a suitable target for the development of antibacterial agents. Since SrtA is not involved in bacterial growth and is present on the surface of bacteria, the probability of developing antibiotic resistance is minimal. In this work, we have done cloning, expression and purification of Ef-SrtA using IMAC (Immobilised Metal Affinity Chromatography) followed by Gel filtration chromatography. Purified Ef-SrtA showed maximum activity at pH-8 and temperature between 45 and 55 °C. The fluorescent assay for kinetic studies of Ef-SrtA showed Vmax 3.852 µM.min-1 and kcat 7.7 × 10-2s-1 for the hydrolysis of substrate using Abz-LPETG-K(Dnp)-NH2. We have selected fifteen Aloe vera extracted compounds and performed virtual screening and docking experiments to identify potential inhibitors against Ef-SrtA. Among fifteen molecules, Aloenin-a which was bound to the active site with a binding energy of -6.1 kcal/mol, interacted with the active site residues, Arg139, Pro105, Leu39, Ala46, and Cys126. Aloenin-a showed a significant inhibitory effect against Ef-SrtA, with an IC50 value of 20.68 µM. Aloenin-a inhibits biofilm formation at concentrations of 20-250 µg/mL. The fibrinogen assay showed adherence to fibrinogen was reduced in the presence of Aloenin-a for E. faecalis. The results demonstrated that Aloe vera extracts containing Aloenin-a can be a significant antagonist of Ef-SrtA.
Collapse
Affiliation(s)
- Suraj Singh
- Centre for Bio-Separation and Technology (CBST), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Sanjit Kumar
- Centre for Bio-Separation and Technology (CBST), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India; Department of Biotechnology, School of Interdisciplinary Education and Research Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India.
| | - Immanuel Dhanasingh
- Centre for Bio-Separation and Technology (CBST), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
4
|
Chavan S, Bhuvad S, Gupta V, Deshmukh V, Sardeshmukh S. Industrial manufacturing method and characterization of Ayurvedic marine drugs: mother pearl, cowry, coral and pearl. Drug Dev Ind Pharm 2024; 50:721-734. [PMID: 39210691 DOI: 10.1080/03639045.2024.2396902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Ayurvedic marine drugs derived from mollusc shells and coral are regularly used by Ayurvedic physicians to treat several disease conditions like acid peptic disease, irritable bowel syndrome, osteoporosis, etc. However, standard operating procedures for manufacturing these drugs and their complete characterization have not been published in the Ayurvedic Formulary and Ayurvedic Pharmacopeia of India to date. METHODS Present study describes the traditional manufacturing process and thorough characterization using classical and advanced analytical tools. The raw materials characters, in-process parameters, and finished product specifications have been elaborated to develop monographs. Especially, the identity and purity of raw coral and pearl were checked by Raman Spectroscopy and Energy Dispersive X-ray Fluorescence analysis. RESULTS In the finished product analysis, the X-Ray Diffraction study revealed that incineration after trituration with Aloe barbadensis leaf pulp or rose water converted the aragonite phase of calcium carbonate into calcite phase in mother pearl, cowry, and pearl while the calcite form of raw coral was retained. The prominent bands around 1390, 870, and 712 cm-1 detected by Fourier Transform-Infrared Spectroscopy and mass loss between 39-44% (w/w) revealed by thermogravimetric analysis confirmed the carbonate form of these calcium-based drugs. The finished products were very fine grayish-white powders constituted by irregularly shaped nano-micro particulate calcium carbonate exhibiting particle size between 600 nm (D10 value) to 1.2 µm (D90 value). CONCLUSION The quality control and assurance achieved in this study may be further utilized by the pharmaceutical industries to manufacture quality marine drugs and conduct efficacy studies.
Collapse
Affiliation(s)
- Sandeep Chavan
- Ayurvedic Drug Testing and Standardization Laboratory, Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, India
- Bhasma Section, Atharva Nature Healthcare Pvt Ltd, Wagholi, India
| | - Sushama Bhuvad
- Ayurvedic Drug Testing and Standardization Laboratory, Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, India
| | - Vidya Gupta
- Ayurvedic Drug Testing and Standardization Laboratory, Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, India
| | - Vineeta Deshmukh
- Ayurvedic Drug Testing and Standardization Laboratory, Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, India
| | - Sadanand Sardeshmukh
- Ayurvedic Drug Testing and Standardization Laboratory, Bharatiya Sanskriti Darshan Trust's Integrated Cancer Treatment and Research Centre, Wagholi, India
- Bhasma Section, Atharva Nature Healthcare Pvt Ltd, Wagholi, India
| |
Collapse
|
5
|
Gantumur M, Hossain MI, Shahiduzzaman M, Tamang A, Rafij JH, Shahinuzzaman M, Thi Cam Tu H, Nakano M, Karakawa M, Ohdaira K, AlMohamadi H, Ibrahim MA, Sopian K, Akhtaruzzaman M, Nunzi JM, Taima T. Tungsten-Doped ZnO as an Electron Transport Layer for Perovskite Solar Cells: Enhancing Efficiency and Stability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36255-36271. [PMID: 38959094 DOI: 10.1021/acsami.4c03591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
This study delves into enhancing the efficiency and stability of perovskite solar cells (PSCs) by optimizing the surface morphologies and optoelectronic properties of the electron transport layer (ETL) using tungsten (W) doping in zinc oxide (ZnO). Through a unique green synthesis process and spin-coating technique, W-doped ZnO films were prepared, exhibiting improved electrical conductivity and reduced interface defects between the ETL and perovskite layers, thus facilitating efficient electron transfer at the interface. High-quality PSCs with superior ETL demonstrated a substantial 30% increase in power conversion efficiency (PCE) compared to those employing pristine ZnO ETL. These solar cells retained over 70% of their initial PCE after 4000 h of moisture exposure, surpassing reference PSCs by 50% PCE over this period. Advanced numerical multiphysics solvers, employing finite-difference time-domain (FDTD) and finite element method (FEM) techniques, were utilized to elucidate the underlying optoelectrical characteristics of the PSCs, with simulated results corroborating experimental findings. The study concludes with a thorough discussion on charge transport and recombination mechanisms, providing insights into the enhanced performance and stability achieved through W-doped ZnO ETL optimization.
Collapse
Affiliation(s)
- Munkhtuul Gantumur
- Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa 920-1292, Japan
| | - Mohammad Ismail Hossain
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
- Research and Development, Meta Materials Inc. (META), Pleasanton, California 94588, United States
| | - Md Shahiduzzaman
- Nanomaterials Research Institute, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Asman Tamang
- Research and Development, Meta Materials Inc. (META), Pleasanton, California 94588, United States
| | - Junayed Hossain Rafij
- Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional(@The Energy University), Kajang, Selangor 43000, Malaysia
| | - Md Shahinuzzaman
- Institute of Energy Research and Development, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Huynh Thi Cam Tu
- Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Nakano
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Makoto Karakawa
- Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa 920-1292, Japan
- Nanomaterials Research Institute, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Keisuke Ohdaira
- Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Sustainable Research Center, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Mohd Adib Ibrahim
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Kamaruzzaman Sopian
- Department of Mechanical Engineering, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia
| | - Md Akhtaruzzaman
- Sustainable Research Center, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- The Department of Chemistry, Faculty of Science, The Islamic University of Madinah, Madinah, Abo Bakr Al Siddiq, Al Jamiah, Madinah 42351, Saudi Arabia
| | - Jean Michel Nunzi
- Nanomaterials Research Institute, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
- Department of Physics, Engineering Physics and Astronomy, Queens University, Kingston K7L 3N6, Ontario, Canada
| | - Tetsuya Taima
- Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa 920-1292, Japan
- Nanomaterials Research Institute, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| |
Collapse
|
6
|
Catalano A, Ceramella J, Iacopetta D, Marra M, Conforti F, Lupi FR, Gabriele D, Borges F, Sinicropi MS. Aloe vera-An Extensive Review Focused on Recent Studies. Foods 2024; 13:2155. [PMID: 38998660 PMCID: PMC11241682 DOI: 10.3390/foods13132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Since ancient times, Aloe vera L. (AV) has attracted scientific interest because of its multiple cosmetic and medicinal properties, attributable to compounds present in leaves and other parts of the plant. The collected literature data show that AV and its products have a beneficial influence on human health, both by topical and oral use, as juice or an extract. Several scientific studies demonstrated the numerous biological activities of AV, including, for instance, antiviral, antimicrobial, antitumor, and antifungal. Moreover, its important antidepressant activity in relation to several diseases, including skin disorders (psoriasis, acne, and so on) and prediabetes, is a growing field of research. This comprehensive review intends to present the most significant and recent studies regarding the plethora of AV's biological activities and an in-depth analysis exploring the component/s responsible for them. Moreover, its morphology and chemical composition are described, along with some studies regarding the single components of AV available in commerce. Finally, valorization studies and a discussion about the metabolism and toxicological aspects of this "Wonder Plant" are reported.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Fernanda Borges
- CIQUP-IMS-Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
7
|
Gang R, Okello D, Kang Y. Medicinal plants used for cutaneous wound healing in Uganda; ethnomedicinal reports and pharmacological evidences. Heliyon 2024; 10:e29717. [PMID: 38694090 PMCID: PMC11058731 DOI: 10.1016/j.heliyon.2024.e29717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/29/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024] Open
Abstract
Background Wounds have become a major health challenge worldwide, presenting marked humanistic and economic burdens such as disabilities and death. Annually, approximately 14 million people suffer from wounds worldwide and 80 % of these occur in developing countries like Uganda. In Uganda, besides many cases of daily wound occurrences, approximately 10 % of surgical procedures become septic wounds and consequently lead to increased morbidity and mortality. Accordingly, several ethnomedicinal studies have identified plants used for wound treatment in different parts of Uganda and the wound healing activities of some plants have been reported. However, at present, these information remain largely separated without an all-inclusive repository containing ethnomedicinal and pharmacological information of the plants used for wound healing in Uganda, thus retarding appropriate evaluation. Therefore, this review focused on extensively exploring the plants used for treating cutaneous wounds in Uganda, along with associated ethnomedicinal information and their globally reported pharmacological potential. Methods Electronic data bases including Google Scholar, PubMed, and Science Direct were searched using key terms for required information contained in English peer reviewed articles, books, and dissertations. Additionally, correlations between selected parameters were determined with coefficient of determination (r2). Results The literature survey revealed that 165 species belonging to 62 families are traditionally used to treat wounds in Uganda. Most of the species belonged to families of Asteraceae (14 %), Fabaceae (10 %), and Euphorbiaceae (7 %). The commonest plant parts used for wound treatment include leaf (48 %), root (22 %), stembark (11 %), and stem (7 %), which are prepared majorly by poultice (34 %), decoction (13 %), as well as powdering (25 %). Fifty-four (33 %) of the plant species have been investigated for their wound healing activities whereas, one hundred eleven (67 %) have not been scientifically investigated for their wound healing effects. Pearson correlation coefficient between the number of wound healing plant families per part used and percent of each plant part used was 0.97, and between the number of wound healing plant families per method of preparation and percent of each method of preparation was 0.95, showing in both strong positively marked relationships. Conclusion The preliminarily investigated plants with positive wound healing properties require further evaluation to possible final phases, with comprehensive identification of constituent bioactive agents. Additionally, the wound healing potential of the scientifically uninvestigated plants with claimed healing effects needs examination. Subsequently, information regarding efficacy, safety, bioactive principles, and mechanism of action could prove valuable in future development of wound healing therapies.
Collapse
Affiliation(s)
- Roggers Gang
- Korean Convergence Medical Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, South Korea
- National Agricultural Research Organization (NARO), National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
| | - Denis Okello
- Department of Biological Sciences, Faculty of Sciences, Kabale University, P. O. Box 317, Kabale, Uganda
| | - Youngmin Kang
- Korean Convergence Medical Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, South Korea
| |
Collapse
|
8
|
Edis Z, Bloukh SH. Thymol, a Monoterpenoid within Polymeric Iodophor Formulations and Their Antimicrobial Activities. Int J Mol Sci 2024; 25:4949. [PMID: 38732168 PMCID: PMC11084924 DOI: 10.3390/ijms25094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Antimicrobial resistance (AMR) poses an emanating threat to humanity's future. The effectiveness of commonly used antibiotics against microbial infections is declining at an alarming rate. As a result, morbidity and mortality rates are soaring, particularly among immunocompromised populations. Exploring alternative solutions, such as medicinal plants and iodine, shows promise in combating resistant pathogens. Such antimicrobials could effectively inhibit microbial proliferation through synergistic combinations. In our study, we prepared a formulation consisting of Aloe barbadensis Miller (AV), Thymol, iodine (I2), and polyvinylpyrrolidone (PVP). Various analytical methods including SEM/EDS, UV-vis, Raman, FTIR, and XRD were carried out to verify the purity, composition, and morphology of AV-PVP-Thymol-I2. We evaluated the inhibitory effects of this formulation against 10 selected reference strains using impregnated sterile discs, surgical sutures, gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thymol-I2 were assessed through disc diffusion methods against 10 reference strains in comparison with two common antibiotics. The 25-month-old formulation exhibited slightly lower inhibitory zones, indicating changes in the sustained-iodine-release reservoir. Our findings confirm AV-PVP-Thymol-I2 as a potent antifungal and antibacterial agent against the reference strains, demonstrating particularly strong inhibitory action on surgical sutures, cotton bandages, and face masks. These results enable the potential use of the formulation AV-PVP-Thymol-I2 as a promising antimicrobial agent against wound infections and as a spray-on contact-killing agent.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Samir Haj Bloukh
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
9
|
Edis Z, Bloukh SH, Sara HA, Bloukh IH. Green Synthesized Polymeric Iodophors with Thyme as Antimicrobial Agents. Int J Mol Sci 2024; 25:1133. [PMID: 38256211 PMCID: PMC10815993 DOI: 10.3390/ijms25021133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing concern for the future of mankind. Common antibiotics fail in the treatment of microbial infections at an alarming rate. Morbidity and mortality rates increase, especially among immune-compromised populations. Medicinal plants and their essential oils, as well as iodine could be potential solutions against resistant pathogens. These natural antimicrobials abate microbial proliferation, especially in synergistic combinations. We performed a simple, one-pot synthesis to prepare our formulation with polyvinylpyrrolidone (PVP)-complexed iodine (I2), Thymus Vulgaris L. (Thyme), and Aloe Barbadensis Miller (AV). SEM/EDS, UV-vis, Raman, FTIR, and XRD analyses verified the purity, composition, and morphology of AV-PVP-Thyme-I2. We investigated the inhibitory action of the bio-formulation AV-PVP-Thyme-I2 against 10 selected reference pathogens on impregnated sterile discs, surgical sutures, cotton gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thyme-I2 were studied by disc diffusion methods and compared with those of the antibiotics gentamycin and nystatin. The results confirm AV-PVP-Thyme-I2 as a strong antifungal and antibacterial agent against the majority of the tested microorganisms with excellent results on cotton bandages and face masks. After storing AV-PVP-Thyme-I2 for 18 months, the inhibitory action was augmented compared to the fresh formulation. Consequently, we suggest AV-PVP-Thyme-I2 as an antimicrobial agent against wound infections and a spray-on contact killing agent.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.)
| | - Samir Haj Bloukh
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.)
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Hamed Abu Sara
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.)
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Iman Haj Bloukh
- College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| |
Collapse
|
10
|
Syed Mohamad SNA, Khatib A, So’ad SZM, Ahmed QU, Ibrahim Z, Nipun TS, Humaryanto H, AlAjmi MF, Khalifa SAM, El-Seedi HR. In Vitro Anti-Diabetic, Anti-Inflammatory, Antioxidant Activities and Toxicological Study of Optimized Psychotria malayana Jack Leaves Extract. Pharmaceuticals (Basel) 2023; 16:1692. [PMID: 38139818 PMCID: PMC10747829 DOI: 10.3390/ph16121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Psychotria malayana Jack (Family: Rubiaceae, local name: Salung) is a traditional herb used to treat diabetes. A previous study by our research group demonstrated that P. malayana methanolic and water extract exhibits significant potential as an effective agent for managing diabetes. Further research has been performed on the extraction optimization of this plant to enhance its inhibitory activity against α-glucosidase, a key enzyme associated with diabetes, and to reduce its toxicity. The objectives of this study are to evaluate the anti-diabetic, anti-inflammatory, and antioxidant properties of the optimized P. malayana leaf extract (OE), to evaluate its toxicity using a zebrafish embryo/larvae model, and to analyze its metabolites. The anti-diabetic effects were assessed by investigating α-glucosidase inhibition (AGI), while the inflammation inhibitory activity was performed using the soybean lipoxygenase inhibitory (SLOXI) test. The assessment of antioxidant activity was performed utilizing FRAP and DPPH assays. The toxicology study was conducted using the zebrafish embryo/larvae (Danio rerio) model. The metabolites present in the extracts were analyzed using GC-MS and LC-MS. OE demonstrated significant AGI and SLOXI activities, represented as 2.02 and 4.92 µg/mL for IC50 values, respectively. It exhibited potent antioxidant activities as determined by IC50 values of 13.08 µg/mL (using the DPPH assay) and 95.44 mmol TE/mg DW (using the FRAP assay), and also demonstrated an LC50 value of 224.29 µg/mL, which surpasses its therapeutic index of 111.03. OE exhibited a higher therapeutic index compared to that of the methanol extract (13.84) stated in the previous state of the art. This suggests that OE exhibits a lower level of toxicity, making it safer for use, and has the potential to be highly effective in its anti-diabetic activity. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) demonstrated the presence of several constituents in this extract. Among them, several compounds, such as propanoic acid, succinic acid, D-tagatose, myo-inositol, isorhamnetin, moracin M-3'-O-β-D-glucopyranoside, procyanidin B3, and leucopelargonidin, have been reported as possessing anti-diabetic and antioxidant activities. This finding offers great potential for future research in diabetes treatment.
Collapse
Affiliation(s)
- Sharifah Nurul Akilah Syed Mohamad
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
- Central Research and Animal Facility, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Siti Zaiton Mat So’ad
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Zalikha Ibrahim
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Tanzina Sharmin Nipun
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh;
| | | | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Shaden A. M. Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden;
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing 210024, China
| |
Collapse
|
11
|
Liao X, Han Y, Shen C, Liu J, Wang Y. Targeting the NLRP3 inflammasome for the treatment of hypertensive target organ damage: Role of natural products and formulations. Phytother Res 2023; 37:5622-5638. [PMID: 37690983 DOI: 10.1002/ptr.8009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND AIM Hypertension is a major global health problem that causes target organ damage (TOD) in the heart, brain, kidney, and blood vessels. The mechanisms of hypertensive TOD are not fully understood, and its treatment is challenging. This review provides an overview of the current knowledge on the role of Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome in hypertensive TOD and the natural products and formulations that inhibit it. METHODS We searched PubMed, Web of Science, Google Scholar, and CNKI for relevant articles using the keywords "hypertension," "target organ damage," "NLRP3 inflammasome," "natural products," and "formulations." We reviewed the effects of the NLRP3 inflammasome on hypertensive TOD in different organs and discussed the natural products and formulations that modulate it. KEY RESULTS In hypertensive TOD, the NLRP3 inflammasome is activated by various stimuli such as oxidative stress and inflammation. Activation of NLRP3 inflammasome leads to the production of pro-inflammatory cytokines that exacerbate tissue damage and dysfunction. Natural products and formulations, including curcumin, resveratrol, triptolide, and allicin, have shown protective effects against hypertensive TOD by inhibiting the NLRP3 inflammasome. CONCLUSIONS AND IMPLICATIONS The NLRP3 inflammasome is a promising therapeutic target in hypertensive TOD. Natural products and formulations that inhibit the NLRP3 inflammasome may provide novel drug candidates or therapies for hypertensive TOD. Further studies are needed to elucidate the molecular mechanisms and optimize the dosages of these natural products and formulations and evaluate their clinical efficacy and safety.
Collapse
Affiliation(s)
- Xiaolin Liao
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuanshan Han
- Scientific Research Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Chuanpu Shen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University Hefei, Hefei, China
| | - Jianjun Liu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Al-Huqail AA, Kumar P, Kumari S, Eid EM. Biosolids application enhances the growth of Aloe vera plants and provides a sustainable practice for nutrient recirculation in agricultural soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104246-104257. [PMID: 37702869 DOI: 10.1007/s11356-023-29763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023]
Abstract
In the present study, the fertilization potential of biosolids (sewage sludge; SS) for the cultivation of Aloe vera plants was investigated using block design. Pot experiments were conducted in this study using 50, 100, 150, and 200 g/kg of SS. Results showed that SS-fertilized soils significantly (p < 0.05) affected the proximate, biochemical, and heavy metal parameters of A. vera plants. In particular, the T4 treatment gave the best results with maximum plant height 62.21 ± 0.10 cm, number of leaves per plant 18.00 ± 4.00, shoot-to-root ratio 6:1, fresh weight 1972.10 ± 0.07 g per plant, dry weight 175.49 ± 0.15 g per plant, total chlorophyll content (TCC) 0.41 ± 0.02 mg/g fwt., carotenoids 0.25 ± 0.04 mg/g, total flavonoids 7.55 ± 0.05 mg/g, total tannins 3.87 ± 0.06 µg/g, ascorbic acid 532.14 ± 0.10 µg/g, superoxide dismutase (SOD) 46.28 ± 0.19 µg/g, catalase (CAT) 119.23 ± 0.17 µg/g, salicylic acid 3.05 ± 0.12 mg/ml and anthraquinones 0.45 ± 0.04 mg/ml, respectively. The proximate plant characteristics were 96.25 ± 2.71% moisture content, crude protein 0.93 ± 0.05%, crude fiber 5.78 ± 0.44%, crude lipid 3.25 ± 0.02%, lignin 10.74 ± 0.30%, cellulose 13.56 ± 1.06%, hemicellulose 7.24 ± 0.14%, ash 8.75 ± 0.03%, and carbohydrate contents 52.18 ± 1.10% in comparison with control treatment. The bioaccumulation factor showed that heavy metal accumulation was in the order of Cd < Ni < Cu < Pb < Cr < Zn < Fe. The prediction models developed on the basis of soil properties showed good fitness results for the prediction of heavy metal uptake by A. vera plants. The study presented a sustainable approach for managing SS in an eco-friendly way while producing good-quality A. vera plants.
Collapse
Affiliation(s)
- Arwa A Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, India
- Research and Development Division, Society for AgroEnvironmental Sustainability, Dehradun, 248007, India
| | - Sonika Kumari
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, India.
| | - Ebrahem M Eid
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| |
Collapse
|
13
|
Moiketsi BN, Makale KPP, Rantong G, Rahube TO, Makhzoum A. Potential of Selected African Medicinal Plants as Alternative Therapeutics against Multi-Drug-Resistant Bacteria. Biomedicines 2023; 11:2605. [PMID: 37892979 PMCID: PMC10604549 DOI: 10.3390/biomedicines11102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/04/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
Antimicrobial resistance is considered a "One-Health" problem, impacting humans, animals, and the environment. The problem of the rapid development and spread of bacteria resistant to multiple antibiotics is a rising global health threat affecting both rich and poor nations. Low- and middle-income countries are at highest risk, in part due to the lack of innovative research on the surveillance and discovery of novel therapeutic options. Fast and effective drug discovery is crucial towards combatting antimicrobial resistance and reducing the burden of infectious diseases. African medicinal plants have been used for millennia in folk medicine to cure many diseases and ailments. Over 10% of the Southern African vegetation is applied in traditional medicine, with over 15 species being partially or fully commercialized. These include the genera Euclea, Ficus, Aloe, Lippia. And Artemisia, amongst many others. Bioactive compounds from indigenous medicinal plants, alone or in combination with existing antimicrobials, offer promising solutions towards overcoming multi-drug resistance. Secondary metabolites have different mechanisms and modes of action against bacteria, such as the inhibition and disruption of cell wall synthesis; inhibition of DNA replication and ATP synthesis; inhibition of quorum sensing; inhibition of AHL or oligopeptide signal generation, broadcasting, and reception; inhibition of the formation of biofilm; disruption of pathogenicity activities; and generation of reactive oxygen species. The aim of this review is to highlight some promising traditional medicinal plants found in Africa and provide insights into their secondary metabolites as alternative options in antibiotic therapy against multi-drug-resistant bacteria. Additionally, synergism between plant secondary metabolites and antibiotics has been discussed.
Collapse
Affiliation(s)
| | | | | | - Teddie O. Rahube
- Department of Biological Sciences and Biotechnology, Faculty of Science, Botswana International University of Science and Technology (BIUST), Private Bag 16, Palapye, Botswana; (B.N.M.); (K.P.P.M.); (G.R.)
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Faculty of Science, Botswana International University of Science and Technology (BIUST), Private Bag 16, Palapye, Botswana; (B.N.M.); (K.P.P.M.); (G.R.)
| |
Collapse
|
14
|
Salinas-Arellano ED, Castro-Dionicio IY, Jeyaraj JG, Mirtallo Ezzone NP, Carcache de Blanco EJ. Phytochemical Profiles and Biological Studies of Selected Botanical Dietary Supplements Used in the United States. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:1-162. [PMID: 37392311 DOI: 10.1007/978-3-031-26768-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Based on their current wide bioavailability, botanical dietary supplements have become an important component of the United States healthcare system, although most of these products have limited scientific evidence for their use. The most recent American Botanical Council Market Report estimated for 2020 a 17.3% increase in sales of these products when compared to 2019, for a total sales volume of $11,261 billion. The use of botanical dietary supplements products in the United States is guided by the Dietary Supplement Health and Education Act (DSHEA) from 1994, enacted by the U.S. Congress with the aim of providing more information to consumers and to facilitate access to a larger number of botanical dietary supplements available on the market than previously. Botanical dietary supplements may be formulated for and use only using crude plant samples (e.g., plant parts such as the bark, leaves, or roots) that can be processed by grinding into a dried powder. Plant parts can also be extracted with hot water to form an "herbal tea." Other preparations of botanical dietary supplements include capsules, essential oils, gummies, powders, tablets, and tinctures. Overall, botanical dietary supplements contain bioactive secondary metabolites with diverse chemotypes that typically are found at low concentration levels. These bioactive constituents usually occur in combination with inactive molecules that may induce synergy and potentiation of the effects observed when botanical dietary supplements are taken in their different forms. Most of the botanical dietary supplements available on the U.S. market have been used previously as herbal remedies or as part of traditional medicine systems from around the world. Their prior use in these systems also provides a certain level of assurance in regard to lower toxicity levels. This chapter will focus on the importance and diversity of the chemical features of bioactive secondary metabolites found in botanical dietary supplements that are responsible for their applications. Many of the active principles of botanical dietary substances are phenolics and isoprenoids, but glycosides and some alkaloids are also present. Biological studies on the active constituents of selected botanical dietary supplements will be discussed. Thus, the present chapter should be of interest for both members of the natural products scientific community, who may be performing development studies of the products available, as well as for healthcare professionals who are directly involved in the analysis of botanical interactions and evaluation of the suitability of botanical dietary supplements for human consumption.
Collapse
Affiliation(s)
- Eric D Salinas-Arellano
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ines Y Castro-Dionicio
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jonathan G Jeyaraj
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Nathan P Mirtallo Ezzone
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Esperanza J Carcache de Blanco
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
15
|
LC-MS Based Phytochemical Profiling towards the Identification of Antioxidant Markers in Some Endemic Aloe Species from Mascarene Islands. Antioxidants (Basel) 2022; 12:antiox12010050. [PMID: 36670912 PMCID: PMC9854647 DOI: 10.3390/antiox12010050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Aloe plant species have been used for centuries in traditional medicine and are reported to be an important source of natural products. However, despite the large number of species within the Aloe genus, only a few have been investigated chemotaxonomically. A Molecular Network approach was used to highlight the different chemical classes characterizing the leaves of five Aloe species: Aloe macra, Aloe vera, Aloe tormentorii, Aloe ferox, and Aloe purpurea. Aloe macra, A. tormentorii, and A. purpurea are endemic from the Mascarene Islands comprising Reunion, Mauritius, and Rodrigues. UHPLC-MS/MS analysis followed by a dereplication process allowed the characterization of 93 metabolites. The newly developed MolNotator algorithm was usedfor molecular networking and allowed a better exploration of the Aloe metabolome chemodiversity. The five species appeared rich in polyphenols (anthracene derivatives, flavonoids, phenolic acids). Therefore, the total phenolic content and antioxidant activity of the five species were evaluated, and a DPPH-On-Line-HPLC assay was used to determine the metabolites responsible for the radical scavenging activity. The use of computational tools allowed a better description of the comparative phytochemical profiling of five Aloe species, which showed differences in their metabolite composition, both qualitative and quantitative. Moreover, the molecular network approach combined with the On-Line-HPLC assay allowed the identification of 9 metabolites responsible for the antioxidant activity. Two of them, aloeresin A and coumaroylaloesin, could be the principal metabolites responsible for the activity. From 374 metabolites calculated by MolNator, 93 could be characterized. Therefore, the Aloe species can be a rich source of new chemical structures that need to be discovered.
Collapse
|
16
|
Ahmad B, Chang L, Satti UQ, Rehman SU, Arshad H, Mustafa G, Shaukat U, Wang F, Tong C. Phyto-Synthesis, Characterization, and In Vitro Antibacterial Activity of Silver Nanoparticles Using Various Plant Extracts. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120779. [PMID: 36550985 PMCID: PMC9774305 DOI: 10.3390/bioengineering9120779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Aloe vera, Mentha arvensis (mint), Coriandrum sativum (coriander), and Cymbopogon citratus (lemongrass) leaf extracts were used to synthesize stable silver nanoparticles (Ag-NPs) by green chemistry. UV-vis spectrophotometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy techniques were used to characterize these biosynthesized nanoparticles. The data indicated that the silver nanoparticles were successfully synthesized, and the narrower particle size distribution was at 10-22 nm by maintaining a specific pH. As a short-term post-sowing treatment, Ag-NP solutions of different sizes (10 and 50 ppm) were introduced to mung bean seedlings, and the overall increase in plant growth was found to be more pronounced at 50 ppm concentration. The antibacterial activity of Ag-NPs was also investigated by disc diffusion test, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) test. The zones of inhibition (ZOI) were shown by Escherichia coli (E. coli) (1.9, 2.1, 1.7, and 2 mm), followed by Staphylococcus aureus (S. aureus) (1.8, 1.7, 1.6, and 1.9 mm), against coriander, mint, Aloe vera, and lemongrass, respectively. MIC and MBC values of E. coli, and S. aureus ranged from 7 to 8 µg/mL. Overall, this study demonstrates that Ag-NPs exhibit a strong antimicrobial activity and thus might be developed as a new type of antimicrobial agent for the treatment of bacterial infection.
Collapse
Affiliation(s)
- Bilal Ahmad
- College of Biology, Hunan University, Changsha 410082, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Correspondence: (B.A.); (F.W.); (C.T.)
| | - Li Chang
- College of Biology, Hunan University, Changsha 410082, China
- Institute of Bast Fiber Crop, Chinese Academy of Agriculture Sciences, Changsha 410082, China
| | - Usama Qamar Satti
- Key State Laboratory of Mechanical Behaviour of Materials, Department of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Sami ur Rehman
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Huma Arshad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Uzma Shaukat
- National Institute of Health (NIH) Park Road, Chak Shahzad, Islamabad 45550, Pakistan
| | - Fenghua Wang
- Institute of Physical Education, Xinjiang Normal University, 102 Xinyi Rd., Urumqi 830054, China
- Correspondence: (B.A.); (F.W.); (C.T.)
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha 410082, China
- Correspondence: (B.A.); (F.W.); (C.T.)
| |
Collapse
|
17
|
Sahoo A, Jena AK, Panda M. Experimental and clinical trial investigations of phyto-extracts, phyto-chemicals and phyto-formulations against oral lichen planus: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115591. [PMID: 35963418 DOI: 10.1016/j.jep.2022.115591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bio-assay guided phytoextracts and derived phytoconstituents reported having multipotent biological activities and nearly 60-80% of the global population still using natural regimens as an alternative therapeutic source. This study focused on the ethnopharmacological and experimental evidence of natural remedies that are effective in treating oral lichen planus (OLP), a chronic T-cell mediated autoimmune disease that is associated with oral cancer transmission. AIM OF THE REVIEW A number of studies have shown that antioxidants and antiinflammatory phytoextracts and phyto-constituents are effective against OLP. In this systematic review, we summarize the details of experimentally assessed ancient Traditional Chinese Medicine (TCM), Indian Ayurveda or Ayurvedic Medicine, and Japanese Kampo Medicine (JKM) regimens (crude extracts, individual phytochemicals, and phyto-formulations) that reduce oral lesion, severity index and pain associated with OLP based on studies conducted in vivo, in vitro, and in randomized controlled trials (RCTs). MATERIALS AND METHODS Experimental, clinical and RCT investigation reports were gathered and presented according to PRISMA-2020 format. Briefly, the information was obtained from PubMed, ScienceDirect, Wiley journal library, Scopus, Google Scholar with ClinicalTrials.gov (a clinical trial registry database operated by the National Library of Medicine in the United States). Further, individual phytochemical structures were verified from PubChem and ChemSpider databases and visualized by ChemDraw 18.0 software. RESULTS We summarized 11 crude phytoextracts, 7 individual phytochemicals, 9 crude formulations, 8 specific TCM and JKM herbal cocktails, and 6 RCTs/patents corroborated by multiple in vitro, in vivo and enzyme assay methods. Briefly, plants and their family name, used plant parts, reported phytochemicals and their chemical structure, treatment doses, and duration of each experiment were presented more concisely and scientifically. CONCLUSION Documentation of evidence-based natural ethnomedicines or remedies could be useful for promoting them as potential, cost-effective and less toxic alternatives or as complementary to commonly prescribed steroids towards the control of OLP.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| | - Ajaya K Jena
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Maitreyee Panda
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
18
|
Islam MA, Sarkar DK, Shahinuzzaman M, Wahab YA, Khandaker MU, Tamam N, Sulieman A, Amin N, Akhtaruzzaman M. Green Synthesis of Lead Sulphide Nanoparticles for High-Efficiency Perovskite Solar Cell Applications. NANOMATERIALS 2022; 12:nano12111933. [PMID: 35683787 PMCID: PMC9182155 DOI: 10.3390/nano12111933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023]
Abstract
In this study, lead sulfide (PbS) nanoparticles were synthesized by the chemical precipitation method using Aloe Vera extract with PbCl2 and Thiourea (H2N-CS-NH2). The synthesized nanoparticles have been investigated using x-ray diffraction (XRD), UV-Vis, energy-dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD and TEM results confirm that the films are in the cubic phase. The crystallite size, lattice constant, micro-strain, dislocation density, optical bandgap, etc. have been determined using XRD and UV-Vis for investigating the quality of prepared nanoparticles. The possible application of these synthesized nanoparticles in the solar cells was investigated by fabricating the thin films on an FTO-coated and bare glass substrate. The properties of nanoparticles were found to be nearly retained in the film state as well. The experimentally found properties of thin films have been implemented for perovskite solar cell simulation and current-voltage and capacitance-voltage characteristics have been investigated. The simulation results showed that PbS nanoparticles could be a potential hole transport layer for high-efficiency perovskite solar cell applications.
Collapse
Affiliation(s)
- Mohammad Aminul Islam
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Jalan Universiti, Kuala Lumpur 50603, Malaysia
- Correspondence:
| | - Dilip Kumar Sarkar
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (D.K.S.); (M.S.); (M.A.)
| | - Md. Shahinuzzaman
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (D.K.S.); (M.S.); (M.A.)
- School of Computer Science and Informational Technology, Central University of Science and Technology, Dhaka 1216, Bangladesh
| | - Yasmin Abdul Wahab
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Malaysia;
- Department of General Educational Development, Faculty of Science and Information Technology, Daffodil International University, DIU Rd, Dhaka 1341, Bangladesh
| | - Nissren Tamam
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Abdelmoneim Sulieman
- Department of Radiology and Medical Imaging, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Nowshad Amin
- College of Engineering, Universiti Tenaga Nasional (@The National Energy University), Jalan IKRAM-UNITEN, Kajang 43000, Malaysia;
| | - Md. Akhtaruzzaman
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (D.K.S.); (M.S.); (M.A.)
| |
Collapse
|
19
|
Muthukumaran M, Waseem Basha Z, Venkatachalam K, Rasheeth A. A New Chemically Modified Carbon Paste Electrode Derived from Aloe Vera Xanthate Nanoparticles to Detect Mercury Ions. ELECTROANAL 2021. [DOI: 10.1002/elan.202100361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. Muthukumaran
- Department of Analytical Chemistry University of Madras Guindy Campus Chennai India
| | - Z. Waseem Basha
- P.G. & Research Department of Chemistry The New College (Autonomous) Chennai India
| | - K. Venkatachalam
- Department of Analytical Chemistry University of Madras Guindy Campus Chennai India
| | - A. Rasheeth
- P.G. & Research Department of Chemistry The New College (Autonomous) Chennai India
| |
Collapse
|
20
|
Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. COSMETICS 2021. [DOI: 10.3390/cosmetics8040106] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In recent years, interest in the health effects of natural antioxidants has increased due to their safety and applicability in cosmetic formulation. Nevertheless, efficacy of natural antioxidants in vivo is less documented than their prooxidant properties in vivo. Plant extracts rich in vitamins, flavonoids, and phenolic compounds can induce oxidative damage by reacting with various biomolecules while also providing antioxidant properties. Because the biological activities of natural antioxidants differ, their effectiveness for slowing the aging process remains unclear. This review article focuses on the use of natural antioxidants in skincare and the possible mechanisms underlying their desired effect, along with recent applications in skincare formulation and their limitations.
Collapse
|