1
|
Andrews PW. The origins of human pluripotent stem cells: the road from a cancer to regenerative medicine. In Vitro Cell Dev Biol Anim 2024; 60:514-520. [PMID: 38396072 PMCID: PMC11126438 DOI: 10.1007/s11626-024-00865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
The notion of using pluripotent stem cells (PSCs) as a source of differentiated cell types for replacement of disease or damaged tissues in regenerative medicine is now an active area of research, with approaches to treating eye diseases such as age-related macular degeneration or Parkinson's disease now on the horizon. But the foundations for this research lie in a quite different area of science, namely the role of genetics of cancer. In this review, we trace the evolution of ideas starting with the discovery that strain 129 mice are particularly subject to develop germ cell tumors, through the identification of embryonal carcinoma (EC) cells as the stem cells of the teratocarcinoma manifestation of these tumors, to the recognition of their relationship to pluripotent cells of the early embryo, and eventually their role in the derivation of embryonic stem cells, first from mouse embryos and then from primates including humans. This is a story that illustrates how science commonly develops through the interests and insights of individual investigators, often with unexpected and unintended outcomes.
Collapse
Affiliation(s)
- Peter W Andrews
- The Centre for Stem Cell Biology, The School of Biosciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
2
|
Cao Y, Wen J, Li Y, Chen W, Wu Y, Li J, Huang G. Uric acid and sphingomyelin enhance autophagy in iPS cell-originated cardiomyocytes through lncRNA MEG3/miR-7-5p/EGFR axis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3774-3785. [PMID: 31559872 DOI: 10.1080/21691401.2019.1667817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yinyin Cao
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai, PR China
| | - Junxiang Wen
- Clinical Laboratory Center, Children’s Hospital of Fudan University, Shanghai, PR China
| | - Yang Li
- Clinical Laboratory Center, Children’s Hospital of Fudan University, Shanghai, PR China
| | - Weicheng Chen
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai, PR China
| | - Yao Wu
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai, PR China
| | - Jian Li
- Clinical Laboratory Center, Children’s Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai, PR China
| | - Guoying Huang
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai, PR China
| |
Collapse
|
3
|
The impact of growth factors on human induced pluripotent stem cells differentiation into cardiomyocytes. Life Sci 2018; 196:38-47. [DOI: 10.1016/j.lfs.2018.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 01/29/2023]
|
4
|
Bett GCL, Kaplan AD, Rasmusson RL. Action Potential Shape Is a Crucial Measure of Cell Type of Stem Cell-Derived Cardiocytes. Biophys J 2016; 110:284-6. [PMID: 26745432 DOI: 10.1016/j.bpj.2015.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/06/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022] Open
Affiliation(s)
- Glenna C L Bett
- Department of Obstetrics and Gynecology, Center for Cellular and Systems Electrophysiology, State University of New York, University at Buffalo, Buffalo, New York; Department of Physiology and Biophysics, Center for Cellular and Systems Electrophysiology, State University of New York, University at Buffalo, Buffalo, New York.
| | - Aaron D Kaplan
- Department of Medicine, Center for Cellular and Systems Electrophysiology, State University of New York, University at Buffalo, Buffalo, New York; Department of Biomedical Engineering, Center for Cellular and Systems Electrophysiology, State University of New York, University at Buffalo, Buffalo, New York
| | - Randall L Rasmusson
- Department of Physiology and Biophysics, Center for Cellular and Systems Electrophysiology, State University of New York, University at Buffalo, Buffalo, New York; Department of Biomedical Engineering, Center for Cellular and Systems Electrophysiology, State University of New York, University at Buffalo, Buffalo, New York.
| |
Collapse
|
5
|
Hasan A, Waters R, Roula B, Dana R, Yara S, Alexandre T, Paul A. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy. Macromol Biosci 2016; 16:958-77. [PMID: 26953627 PMCID: PMC4931991 DOI: 10.1002/mabi.201500396] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/18/2016] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Renae Waters
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Boustany Roula
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rahbani Dana
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Seif Yara
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Toubia Alexandre
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Arghya Paul
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
6
|
Characterization and cardiac differentiation of chicken spermatogonial stem cells. Anim Reprod Sci 2014; 151:244-55. [DOI: 10.1016/j.anireprosci.2014.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 11/22/2022]
|
7
|
Ma FC, Lyu PH, Yao Q, Yao L, Zhang SJ. Publication trends and knowledge maps of global translational medicine research. Scientometrics 2013. [DOI: 10.1007/s11192-013-1003-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|