1
|
Mafakheri A, Fathi F, Majidpoor J, Moayeri H, Mortezaee K. Secretory exosomes from modified immune cells against cancer. Med Oncol 2025; 42:159. [PMID: 40208472 DOI: 10.1007/s12032-025-02706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
Extracellular vesicles (EVs) play significant roles in cancer progression through mediating inter/intra cellular communications within tumor microenvironment (TME). EVs are used as non-invasive diagnostic tools, drug delivery systems, and cancer vaccines, considering the anti-tumor potential, safety, biocompatibility and physiochemical stability of endogenous EVs. Modification of immune cells, either genetically or epigenetically, is a growing field of cancer research with the goal of enhancing efficacy of immunotherapy. This review focuses on the possibility of manipulating immune cells including dendritic cells (DCs), natural killer (NK) cells and T cells to secrete EVs that exert immune function either by activating immune responses or altering immune cell behavior to enhance anti-tumor efficacy, and discusses potential obstacles and recommendations for improved functionality of this therapeutic method.
Collapse
Affiliation(s)
- Asrin Mafakheri
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hasan Moayeri
- Department of General Surgery, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
2
|
Ghoshal B, Jhunjhunwala S. A game of hide-and-seek: how extracellular vesicles evade the immune system. Drug Deliv Transl Res 2025:10.1007/s13346-025-01789-w. [PMID: 39843837 DOI: 10.1007/s13346-025-01789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneously sized, cell-derived nanoparticles operating as proficient mediators of intercellular communication. They are produced by normal as well as diseased cells and carry a variety of cargo. While the molecular details of EV biology have been worked out over the past two decades, one question that continues to intrigue many is how are EVs able to evade the phagocytic immune cells while also being effectively internalized by the target cell or tissue. While some of the components that facilitate this process have started to be identified, many mechanisms are yet to be dissected. This review summarises some of the key mechanisms that cancer cell-derived and viral infected cell-derived EVs utilize to evade the immune system. It will discuss the diverse cloaking mechanisms, in the form of membrane proteins and cargo content that these EVs utilize to enhance pathogenesis. Further, it will highlight the different strategies that have been used to design EVs to escape the immune system, thereby increasing their circulation time with no major toxic effects in vivo. An understanding of the potential EV components that allow better immune evasion can be used to bioengineer EVs with better circulation times for therapeutic purposes.
Collapse
Affiliation(s)
- Bartika Ghoshal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India.
| | | |
Collapse
|
3
|
Lu Y, Zheng J, Lin P, Lin Y, Zheng Y, Mai Z, Chen X, Xia T, Zhao X, Cui L. Tumor Microenvironment-Derived Exosomes: A Double-Edged Sword for Advanced T Cell-Based Immunotherapy. ACS NANO 2024; 18:27230-27260. [PMID: 39319751 DOI: 10.1021/acsnano.4c09190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and immune evasion, partially mediated by the activity of the TME-derived exosomes. These extracellular vesicles are pivotal in shaping immune responses through the transfer of proteins, lipids, and nucleic acids between cells, facilitating a complex interplay that promotes tumor growth and metastasis. This review delves into the dual roles of exosomes in the TME, highlighting both their immunosuppressive functions and their emerging therapeutic potential. Exosomes can inhibit T cell function and promote tumor immune escape by carrying immune-modulatory molecules, such as PD-L1, yet they also hold promise for cancer therapy as vehicles for delivering tumor antigens and costimulatory signals. Additionally, the review discusses the intricate crosstalk mediated by exosomes among various cell types within the TME, influencing both cancer progression and responses to immunotherapies. Moreover, this highlights current challenges and future directions. Collectively, elucidating the detailed mechanisms by which TME-derived exosomes mediate T cell function offers a promising avenue for revolutionizing cancer treatment. Understanding these interactions allows for the development of targeted therapies that manipulate exosomal pathways to enhance the immune system's response to tumors.
Collapse
Affiliation(s)
- Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Chen Y, Tang S, Cai F, Wan Y. Strategies for Small Extracellular Vesicle-Based Cancer Immunotherapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0421. [PMID: 39040921 PMCID: PMC11260559 DOI: 10.34133/research.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed vesicles released by cells. EVs encapsulate proteins and nucleic acids of their parental cell and efficiently deliver the cargo to recipient cells. These vesicles act as mediators of intercellular communication and thus play a crucial role in various physiological and pathological processes. Moreover, EVs hold promise for clinical use. They have been explored as drug delivery vehicles, therapeutic agents, and targets for disease diagnosis. In the landscape of cancer research, while strides have been made in EV-focused cancer physiopathology, liquid biopsy, and drug delivery, the exploration of EVs as immunotherapeutic agents may not have seen substantial progress to date. Despite promising findings reported in cell and animal studies, the clinical translation of EV-based cancer immunotherapeutics encounters challenges. Here, we review the existing strategies used in EV-based cancer immunotherapy, aiming to propel the development of this emerging yet crucial field.
Collapse
Affiliation(s)
- Yundi Chen
- Department of Breast Surgery, Tongji Hospital, School of Medicine,
Tongji University, Shanghai, China
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering,
Binghamton University, Binghamton, NY, USA
| | - Shasha Tang
- Department of Breast Surgery, Tongji Hospital, School of Medicine,
Tongji University, Shanghai, China
| | - Fengfeng Cai
- Department of Breast Surgery, Tongji Hospital, School of Medicine,
Tongji University, Shanghai, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering,
Binghamton University, Binghamton, NY, USA
| |
Collapse
|
5
|
Essola JM, Zhang M, Yang H, Li F, Xia B, Mavoungou JF, Hussain A, Huang Y. Exosome regulation of immune response mechanism: Pros and cons in immunotherapy. Bioact Mater 2024; 32:124-146. [PMID: 37927901 PMCID: PMC10622742 DOI: 10.1016/j.bioactmat.2023.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Due to its multiple features, including the ability to orchestrate remote communication between different tissues, the exosomes are the extracellular vesicles arousing the highest interest in the scientific community. Their size, established as an average of 30-150 nm, allows them to be easily uptaken by most cells. According to the type of cells-derived exosomes, they may carry specific biomolecular cargoes used to reprogram the cells they are interacting with. In certain circumstances, exosomes stimulate the immune response by facilitating or amplifying the release of foreign antigens-killing cells, inflammatory factors, or antibodies (immune activation). Meanwhile, in other cases, they are efficiently used by malignant elements such as cancer cells to mislead the immune recognition mechanism, carrying and transferring their cancerous cargoes to distant healthy cells, thus contributing to antigenic invasion (immune suppression). Exosome dichotomic patterns upon immune system regulation present broad advantages in immunotherapy. Its perfect comprehension, from its early biogenesis to its specific interaction with recipient cells, will promote a significant enhancement of immunotherapy employing molecular biology, nanomedicine, and nanotechnology.
Collapse
Affiliation(s)
- Julien Milon Essola
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Jacques François Mavoungou
- Université Internationale de Libreville, Libreville, 20411, Gabon
- Central and West African Virus Epidemiology, Libreville, 2263, Gabon
- Département de phytotechnologies, Institut National Supérieur d’Agronomie et de Biotechnologie, Université des Sciences et Techniques de Masuku, Franceville, 901, Gabon
- Institut de Recherches Agronomiques et Forestiers, Centre National de la Recherche Scientifique et du développement Technologique, Libreville, 16182, Gabon
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Rigerna Therapeutics Co. Ltd., China
| |
Collapse
|
6
|
Kwantwi LB. Exosome-mediated crosstalk between tumor cells and innate immune cells: implications for cancer progression and therapeutic strategies. J Cancer Res Clin Oncol 2023; 149:9487-9503. [PMID: 37154928 DOI: 10.1007/s00432-023-04833-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
The increasing number of cancer-associated deaths despite the substantial improvement in diagnosis and treatment has sparked discussions on the need for novel biomarkers and therapeutic strategies for cancer. Exosomes have become crucial players in tumor development and progression, largely due to the diverse nature of their cargo content released to recipient cells. Importantly, exosome-mediated crosstalk between tumor and stromal cells is essential in reprogramming the tumor microenvironment to facilitate tumor progression. As a result, exosomes have gradually become a marker for the early diagnosis of many diseases and an important tool in drug delivery systems. However, the precise mechanisms by which exosomes participate in tumor progression remain elusive, multifaceted, and a double-edged sword, thus requiring further clarification. The available evidence suggests that exosomes can facilitate communication between innate immune cells and tumor cells to either support or inhibit tumor progression. Herein, this review focused on exosome-mediated intercellular communication between tumor cells and macrophages, neutrophils, mast cells, monocytes, dendritic cells, and natural killer cells. Specifically, how such intercellular communication affects tumor progression has been described. It has also been discussed that, depending on their cargo, exosomes can suppress or promote tumor cell progression. In addition, the potential application of exosomes and strategies to target exosomes in cancer treatment has been comprehensively discussed.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Medical Imaging Sciences, Klintaps College of Health and Allied Sciences, Accra, DTD. TDC, 30A Klagon, Com. 19, Tema, Ghana.
| |
Collapse
|
7
|
Hady TF, Hwang B, Waworuntu RL, Ratner BD, Bryers JD. Cells resident to precision templated 40-µm pore scaffolds generate small extracellular vesicles that affect CD4 + T cell phenotypes through regulatory TLR4 signaling. Acta Biomater 2023; 166:119-132. [PMID: 37150279 PMCID: PMC10330460 DOI: 10.1016/j.actbio.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Precision porous templated scaffolds (PTS) are a hydrogel construct of uniformly sized interconnected spherical pores that induce a pro-healing response (reducing the foreign body reaction, FBR) exclusively when the pores are 30-40µm in diameter. Our previous work demonstrated the necessity of Tregs in the maintenance of PTS pore size specific differences in CD4+ T cell phenotype. Work here characterizes the role of Tregs in the responses to implanted 40µm and 100µm PTS using WT and FoxP3+ cell (Treg) depleted mice. Proteomic analyses indicate that integrin signaling, monocytes/macrophages, cytoskeletal remodeling, inflammatory cues, and vesicule endocytosis may participate in Treg activation and the CD4+ T cell equilibrium modulated by PTS resident cell-derived small extracellular vesicles (sEVs). The role of MyD88-dependent and MyD88-independent TLR4 activation in PTS cell-derived sEV-to-T cell signaling is quantified by treating WT, TLR4ko, and MyD88ko splenic T cells with PTS cell-derived sEVs. STAT3 and mTOR are identified as mechanisms for further study for pore-size dependent PTS cell-derived sEV-to-T cell signaling. STATEMENT OF SIGNIFICANCE: Unique cell populations colonizing only within 40µm pore size PTS generate sEVs that resolve inflammation by modifying CD4+ T cell phenotypes through TLR4 signaling.
Collapse
Affiliation(s)
- T F Hady
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - B Hwang
- Center for Lung Biology, Department of Surgery, University of Washington Seattle, WA 98109, USA
| | - R L Waworuntu
- Center for Lung Biology, Department of Surgery, University of Washington Seattle, WA 98109, USA
| | - B D Ratner
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - J D Bryers
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
8
|
Basak M, Chaudhary DK, Takahashi RU, Yamamoto Y, Tiwari S, Tahara H, Mittal A. Immunocyte Derived Exosomes: Insight into the Potential Chemo-immunotherapeutic Nanocarrier Targeting the Tumor Microenvironment. ACS Biomater Sci Eng 2023; 9:20-39. [PMID: 36524837 DOI: 10.1021/acsbiomaterials.2c00893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
"Cancer" is a dreadful immune-pathological condition that is characterized by anti-inflammatory and tumorigenic responses, elicited by the infiltrating immune cells in the vicinity of an uncontrollably proliferative tumor in the tumor microenvironment (TME). The TME offers a conducive microenvironment that supports cancer cell survival by modulating the host immune defense. Recent advancement in exosomal research has shown exosomes, originating from immune cells as well as the cancer cells, have immense potential for suppressing cancer progression and survival in the TME. Additionally, exosomes, irrespective of their diverse sources, have been reported to be efficient nanocarriers for cancer therapeutics with the ability for targeted delivery due to their biogenic nature, ease of cellular uptake, and scope for functionalization with biomolecules like peptides, aptamers, targeting ligands, etc. Immune cell-derived exosomes per se have been found efficacious against cancer owing to their immune-stimulant properties (in either naive or antigen primed form) even without loading any of cancer therapeutics or targeting ligand conjugation. Nevertheless, exosomes are being primarily explored as nanovesicular carriers for therapeutic molecules with different loading and targeting strategies, and the synergism between immunotherapeutic behavior of exosomes and the anticancer effect of the therapeutic molecules is yet to be explored. Hence, this review focuses specifically on the possible strategies to modulate the immunological nature of the source immune cells to obtain immune stimulant exosomes and bring these into the spotlight as chemo-immunotherapeutic nanovesicles, that can easily target and modulate the TME.
Collapse
Affiliation(s)
- Moumita Basak
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Dharmendra Kumar Chaudhary
- Molecular Medicine and Biotechnology Division, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Ryou-U Takahashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuki Yamamoto
- Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Swasti Tiwari
- Molecular Medicine and Biotechnology Division, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India.,Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
9
|
Wang S, Shi Y. Exosomes Derived from Immune Cells: The New Role of Tumor Immune Microenvironment and Tumor Therapy. Int J Nanomedicine 2022; 17:6527-6550. [PMID: 36575698 PMCID: PMC9790146 DOI: 10.2147/ijn.s388604] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
Exosomes are small vesicles secreted by living cells, with a typical lipid bilayer structure. They carry a variety of proteins, lipids, RNA and other important information, play an important role in the transmission of substances and information between cells, and gradually become a marker for early diagnosis of many diseases and an important tool in drug delivery system. Immune cells are an important part of tumor microenvironment, and they can affect tumor progression by secreting a variety of immunoreactive substances. This review focuses on the effects of various immune cell-derived exosomes on tumor cells, different immune cells and other stromal cells in tumor microenvironment. Exosomes derived from different immune cells can not only reshape a pro-inflammatory microenvironment to inhibit tumor progression, but also promote tumor progression by inhibiting the killing effect of NK cells, CD8+T cells and other cells or promoting tumor cells and immunosuppressive immune cells. In addition, we also discussed that some exosomes derived from immune cells (such as DC, M1 macrophages and neutrophils) play a tumor inhibitory role after being engineered.
Collapse
Affiliation(s)
- Shiyang Wang
- Department of Geriatric Surgery, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Yue Shi
- Department of Geriatric Surgery, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China,Correspondence: Yue Shi, Department of Geriatric Surgery, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China, Tel +86-13842073309, Email
| |
Collapse
|
10
|
Li J, Huang F, Jiang Y, Zhao J, Wan J, Hao S. A novel costimulatory molecule gene-modified leukemia cell-derived exosome-targeted CD4 + T cell vaccine efficiently enhances anti-leukemia immunity. Front Immunol 2022; 13:1043484. [PMID: 36466863 PMCID: PMC9709463 DOI: 10.3389/fimmu.2022.1043484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/31/2022] [Indexed: 01/06/2024] Open
Abstract
Previous studies demonstrated that CD4+ T cells can uptake tumor antigen-pulsed dendritic cell-derived exosomes (DEXO), which harbor tumor antigen peptide/pMHC I complex and costimulatory molecules and show potent effects on inducing antitumor immunity. However, in preliminary study, CD4+ T cells targeted by leukemia cell-derived exosomes (LEXs) did not show the expected effects in inducing effective anti-leukemia immunity, indicating that LEX is poorly immunogenetic largely due to an inadequate costimulatory capacity. Therefore, LEX-based anti-leukemia vaccines need to be optimized. In this study, we constructed a novel LEX-based vaccine by combining CD4+ T cells with costimulatory molecules gene-modified LEXs, which harbor upregulated CD80 and CD86, and the anti-leukemia immunity of CD80 and CD86 gene-modified LEX-targeted CD4+ T cells was investigated. We used lentiviral vectors encoding CD80 and CD86 to successfully transduced the L1210 leukemia cells, and the expression of CD80 and CD86 was remarkably upregulated in leukemia cells. The LEXs highly expressing CD80 and CD86 were obtained from the supernatants of gene-transduced leukemia cells. Our data have shown that LEX-CD8086 could promote CD4+ T cell proliferation and Th1 cytokine secretion more efficiently than control LEXs. Moreover, CD4+ TLEX-CD8086 expressed the acquired exosomal costimulatory molecules. With acquired costimulatory molecules, CD4+ TLEX-CD8086 can act as APCs and are capable of directly stimulating the leukemia cell antigen-specific CD8+ CTL response. This response was higher in potency compared to that noted by the other formulations. Furthermore, the animal study revealed that the CD4+ TLEX-CD8086 significantly inhibited tumor growth and prolonged survival of tumor-bearing mice than other formulations did in both protective and therapeutic models. In conclusion, this study revealed that CD4+ TLEX-CD8086 could effectively induce more potential anti-leukemia immunity than LEX-CD8086 alone, suggesting that the utilization of a costimulatory molecule gene-modified leukemia cell-derived exosome-targeted CD4+ T cell vaccine may have promising potential for leukemia immunotherapy.
Collapse
|
11
|
Qian K, Fu W, Li T, Zhao J, Lei C, Hu S. The roles of small extracellular vesicles in cancer and immune regulation and translational potential in cancer therapy. J Exp Clin Cancer Res 2022; 41:286. [PMID: 36167539 PMCID: PMC9513874 DOI: 10.1186/s13046-022-02492-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles (EVs) facilitate the extracellular transfer of proteins, lipids, and nucleic acids and mediate intercellular communication among multiple cells in the tumour environment. Small extracellular vesicles (sEVs) are defined as EVs range in diameter from approximately 50 to 150 nm. Tumour-derived sEVs (TDsEVs) and immune cell-derived sEVs have significant immunological activities and participate in cancer progression and immune responses. Cancer-specific molecules have been identified on TDsEVs and can function as biomarkers for cancer diagnosis and prognosis, as well as allergens for TDsEVs-based vaccination. Various monocytes, including but not limited to dendritic cells (DCs), B cells, T cells, natural killer (NK) cells, macrophages, and myeloid-derived suppressor cells (MDSCs), secrete sEVs that regulate immune responses in the complex immune network with either protumour or antitumour effects. After engineered modification, sEVs from immune cells and other donor cells can provide improved targeting and biological effects. Combined with their naïve characteristics, these engineered sEVs hold great potential as drug carriers. When used in a variety of cancer therapies, they can adjunctly enhance the safety and antitumor efficacy of multiple therapeutics. In summary, both naïve sEVs in the tumour environment and engineered sEVs with effector cargoes are regarded as showing promising potential for use in cancer diagnostics and therapeutics.
Collapse
|
12
|
Yao T, Lv M, Ma S, Chen J, Zhang Y, Yu Y, Zang G, Chen X. Ubiquitinated Hepatitis D Antigen-Loaded Microvesicles Induce a Potent Specific Cellular Immune Response to Inhibit HDV Replication in Vivo. Microbiol Spectr 2021; 9:e0102421. [PMID: 34908456 PMCID: PMC8672902 DOI: 10.1128/spectrum.01024-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatitis D is the most severe form of human viral hepatitis and currently lacks an efficient therapy. Dendritic cell-derived exosomes (Dexs) have been found to induce immune responses capable of eliminating viruses. However, the therapeutic potential of antigen-loaded exosomes in hepatitis D is still unknown. Recently, we designed exosomes loaded with ubiquitinated hepatitis delta virus (HDV) small delta antigen (Ub-S-HDAg) and then treated mice bearing replicating HDV with these exosomes to explore their antiviral effect and mechanism. Mature dendritic cell-derived exosomes (mDexs) were loaded with Ub-S-HDAg and their antivirus function was evaluated in mice with HDV viremia. Furthermore, the proportion of CD8+ cells, the ratio of Th1/Th2 cells, the postimmunization levels of cytokines were explored, and the Janus kinases (JAK)/signal transducer and activator of transcription (STAT) pathway was evaluated with a JAK2 inhibitor AG490. In Ub-S-HDAg-Dexs group, the HDV RNA viral load was significantly decreased compared with other groups by CD8+ cell enrichment and an increase Th1/Th2 cell ratio. Furthermore, lymphocyte infiltration was increased, while the HDAg level was decreased in mouse liver tissue. However, there were no significant differences in HBV surface antigen (HBsAg), alanine aminotransferase (ALT), or aspartate aminotransferase (AST) levels among the groups. Moreover, p-JAK2, p-STAT1, p-STAT4, STAT1, and STAT4 expression was increased in Ub-S-HDAg-Dexs group. In conclusion, Ub-S-HDAg-Dexs might be a potential immunotherapeutic agent for eradicating HDV by inducing specific cellular immune response via the JAK/STAT pathway. IMPORTANCE Hepatitis D is the most severe viral hepatitis with accelerating the process of liver cirrhosis and increasing the risk of hepatocellular carcinoma. However, there are no effective antiviral drugs. Exosomes derived from mature dendritic cells are used not only as immunomodulators, but also as biological carriers to deliver antigens to induce robust immune response. Based on these properties, exosomes could be used as a biological immunotherapy by enhancing adaptive immune response to inhibit hepatitis D virus replication. Our research may provide a new therapeutic strategy to eradicate HDV in the future.
Collapse
Affiliation(s)
- Ting Yao
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Mengjiao Lv
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Siyuan Ma
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jinmei Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yi Zhang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yongsheng Yu
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Guoqing Zang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaohua Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
13
|
Santos P, Almeida F. Exosome-Based Vaccines: History, Current State, and Clinical Trials. Front Immunol 2021; 12:711565. [PMID: 34335627 PMCID: PMC8317489 DOI: 10.3389/fimmu.2021.711565] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) are released by most cell types as part of an intracellular communication system in crucial processes such as inflammation, cell proliferation, and immune response. However, EVs have also been implicated in the pathogenesis of several diseases, such as cancer and numerous infectious diseases. An important feature of EVs is their ability to deliver a wide range of molecules to nearby targets or over long distances, which allows the mediation of different biological functions. This delivery mechanism can be utilized for the development of therapeutic strategies, such as vaccination. Here, we have highlighted several studies from a historical perspective, with respect to current investigations on EV-based vaccines. For example, vaccines based on exosomes derived from dendritic cells proved to be simpler in terms of management and cost-effectiveness than dendritic cell vaccines. Recent evidence suggests that EVs derived from cancer cells can be leveraged for therapeutics to induce strong anti-tumor immune responses. Moreover, EV-based vaccines have shown exciting and promising results against different types of infectious diseases. We have also summarized the results obtained from completed clinical trials conducted on the usage of exosome-based vaccines in the treatment of cancer, and more recently, coronavirus disease.
Collapse
Affiliation(s)
- Patrick Santos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
14
|
Wu J, Zhao R, Dai J, Lai G, Khan AU, Yu X, Wu S, Ouyang J, Sang H. Analysis of differential expression of long non‑coding RNAs in exosomes derived from mature and immature dendritic cells. Mol Med Rep 2021; 23:132. [PMID: 33313954 PMCID: PMC7751491 DOI: 10.3892/mmr.2020.11771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells release bioactive exosomes involved in immune regulation. Long non‑coding RNAs (lncRNAs) are implicated in a number of immunoregulatory mechanisms. However, the roles of lncRNAs in dendritic cell‑derived exosomes remain to be elucidated. The present study aimed to investigate the roles of lncRNAs in exosomes derived from mature and immature dendritic cells and to find specific lncRNAs with immunoregulatory function. The expression profiles of lncRNAs in exosomes derived from bone marrow dendritic cells of C57 mice were illustrated. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and Gene Set Enrichment Analysis were performed to identify potential targets correlated with immune regulation. In addition, lncRNA‑miRNA‑mRNA networks were predicted using bioinformatics methods. Representative lncRNAs were further validated via reverse transcription‑quantitative PCR. A total of 437 lncRNAs were analyzed using RNA‑seq. Among these, the expression of ~87 lncRNAs was upregulated and 21 lncRNAs was downregulated in mature dendritic cell‑derived exosomes (Dex) compared with immature Dex. GO analyses indicated the involvement of upregulated lncRNAs in multiple biological functions, such as the immune system process, while downregulated lncRNAs were involved in poly(A) RNA binding. Analysis of the KEGG pathway identified the relationship of TNF signaling and ribosome pathway with upregulated lncRNAs and downregulated lncRNAs, respectively. The results of gene set enrichment analysis identified that three lncRNA‑associated transcripts (Procr‑203, Clec4e‑202 and Traf1‑203) were highly associated with immunoregulatory functions including T helper cell differentiation and Janus kinase‑STAT signaling pathway. The results indicated the involvement of candidate lncRNAs in immunoregulation and suggested a new perspective on the modulation of lncRNAs in Dex.
Collapse
Affiliation(s)
- Jiachang Wu
- Department of Orthopedic Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Renli Zhao
- Department of Orthopedic Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jingxing Dai
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Medical Biomechanical Key Laboratory, Guangzhou, Guangdong 510515, P.R. China
| | - Guohua Lai
- Department of Orthopedic Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Asmat Ullah Khan
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Medical Biomechanical Key Laboratory, Guangzhou, Guangdong 510515, P.R. China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jun Ouyang
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Medical Biomechanical Key Laboratory, Guangzhou, Guangdong 510515, P.R. China
| | - Hongxun Sang
- Department of Orthopedic Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
15
|
Orally Administered Exosomes Suppress Mouse Delayed-Type Hypersensitivity by Delivering miRNA-150 to Antigen-Primed Macrophage APC Targeted by Exosome-Surface Anti-Peptide Antibody Light Chains. Int J Mol Sci 2020; 21:ijms21155540. [PMID: 32748889 PMCID: PMC7432818 DOI: 10.3390/ijms21155540] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022] Open
Abstract
We previously discovered suppressor T cell-derived, antigen (Ag)-specific exosomes inhibiting mouse hapten-induced contact sensitivity effector T cells by targeting antigen-presenting cells (APCs). These suppressive exosomes acted Ag-specifically due to a coating of antibody free light chains (FLC) from Ag-activated B1a cells. Current studies are aimed at determining if similar immune tolerance could be induced in cutaneous delayed-type hypersensitivity (DTH) to the protein Ag (ovalbumin, OVA). Intravenous administration of a high dose of OVA-coupled, syngeneic erythrocytes similarly induced CD3+CD8+ suppressor T cells producing suppressive, miRNA-150-carrying exosomes, also coated with B1a cell-derived, OVA-specific FLC. Simultaneously, OVA-immunized B1a cells produced an exosome subpopulation, originally coated with Ag-specific FLC, that could be rendered suppressive by in vitro association with miRNA-150. Importantly, miRNA-150-carrying exosomes from both suppressor T cells and B1a cells efficiently induced prolonged DTH suppression after single systemic administration into actively immunized mice, with the strongest effect observed after oral treatment. Current studies also showed that OVA-specific FLC on suppressive exosomes bind OVA peptides suggesting that exosome-coating FLC target APCs by binding to peptide-Ag-major histocompatibility complexes. This renders APCs capable of inhibiting DTH effector T cells. Thus, our studies describe a novel immune tolerance mechanism mediated by FLC-coated, Ag-specific, miRNA-150-carrying exosomes that act on the APC and are particularly effective after oral administration.
Collapse
|
16
|
Li C, Donninger H, Eaton J, Yaddanapudi K. Regulatory Role of Immune Cell-Derived Extracellular Vesicles in Cancer: The Message Is in the Envelope. Front Immunol 2020; 11:1525. [PMID: 32765528 PMCID: PMC7378739 DOI: 10.3389/fimmu.2020.01525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/09/2020] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous group of membrane-surrounded structures. Besides serving as a harbor for the unwanted material exocytosed by cells, EVs play a critical role in conveying intact protein, genetic, and lipid contents that are important for intercellular communication. EVs, broadly comprised of microvesicles and exosomes, are released to the extracellular environment from nearly all cells either via shedding from the plasma membrane or by originating from the endosomal system. Exosomes are 40–150 nm, endosome-derived small EVs (sEVs) that are released by cells into the extracellular environment. This review focuses on the biological properties of immune cell-derived sEVs, including composition and cellular targeting and mechanisms by which these immune cell-derived sEVs influence tumor immunity either by suppressing or promoting tumor growth, are discussed. The final section of this review discusses how the biological properties of immune cell-derived sEVs can be manipulated to improve their immunogenicity.
Collapse
Affiliation(s)
- Chi Li
- Experimental Therapeutics Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Howard Donninger
- Experimental Therapeutics Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Department of Medicine, University of Louisville, Louisville, KY, United States
| | - John Eaton
- Department of Medicine, University of Louisville, Louisville, KY, United States.,Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Kavitha Yaddanapudi
- Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, United States.,Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
17
|
Exosomes: Versatile Nano Mediators of Immune Regulation. Cancers (Basel) 2019; 11:cancers11101557. [PMID: 31615107 PMCID: PMC6826959 DOI: 10.3390/cancers11101557] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 01/02/2023] Open
Abstract
One of many types of extracellular vesicles (EVs), exosomes are nanovesicle structures that are released by almost all living cells that can perform a wide range of critical biological functions. Exosomes play important roles in both normal and pathological conditions by regulating cell-cell communication in cancer, angiogenesis, cellular differentiation, osteogenesis, and inflammation. Exosomes are stable in vivo and they can regulate biological processes by transferring lipids, proteins, nucleic acids, and even entire signaling pathways through the circulation to cells at distal sites. Recent advances in the identification, production, and purification of exosomes have created opportunities to exploit these structures as novel drug delivery systems, modulators of cell signaling, mediators of antigen presentation, as well as biological targeting agents and diagnostic tools in cancer therapy. This review will examine the functions of immunocyte-derived exosomes and their roles in the immune response under physiological and pathological conditions. The use of immunocyte exosomes in immunotherapy and vaccine development is discussed.
Collapse
|
18
|
CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat Commun 2019; 10:4355. [PMID: 31554797 PMCID: PMC6761190 DOI: 10.1038/s41467-019-12321-3] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Genetically engineered T cells expressing a chimeric antigen receptor (CAR) are rapidly emerging a promising new treatment for haematological and non-haematological malignancies. CAR-T therapy can induce rapid and durable clinical responses but is associated with unique acute toxicities. Moreover, CAR-T cells are vulnerable to immunosuppressive mechanisms. Here, we report that CAR-T cells release extracellular vesicles, mostly in the form of exosomes that carry CAR on their surface. The CAR-containing exosomes express a high level of cytotoxic molecules and inhibit tumour growth. Compared with CAR-T cells, CAR exosomes do not express Programmed cell Death protein 1 (PD1), and their antitumour effect cannot be weakened by recombinant PD-L1 treatment. In a preclinical in vivo model of cytokine release syndrome, the administration of CAR exosomes is relatively safe compared with CAR-T therapy. This study supports the use of exosomes as biomimetic nanovesicles that may be useful in future therapeutic approaches against tumours. Genetically engineered T cells expressing a chimeric antigen receptor (CAR-T cells) are a promising new treatment for cancer, but are associated with unique toxicities. Here, the authors test CAR-T-cell-derived exosomes as a surrogate for CAR-T cells and show that they can elicit a potent antitumour immune response in preclinical models of breast cancer with reduced signs of cytokine release syndrome compared with CAR-T therapy.
Collapse
|
19
|
Rutman AK, Negi S, Gasparrini M, Hasilo CP, Tchervenkov J, Paraskevas S. Immune Response to Extracellular Vesicles From Human Islets of Langerhans in Patients With Type 1 Diabetes. Endocrinology 2018; 159:3834-3847. [PMID: 30307543 DOI: 10.1210/en.2018-00649] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
The autoimmune response that characterizes type 1 diabetes (T1D) has no clear cause. Extracellular vesicles (EVs) play an important role in triggering the immune response in other contexts. Here, we propose a model by which EVs isolated from human islets stimulate proinflammatory immune responses and lead to peripheral blood mononuclear cell (PBMC) activation. We show that human islet EVs are internalized by monocytes and B cells and lead to an increase in T-helper 1, 2, and 17 cytokine expression, as well as T and B cell proliferation. Importantly, we demonstrate memory T and B cell activation by EVs selectively in PBMCs of patients with T1D. Additionally, human islet EVs induce an increase in antibodies against glutamic acid decarboxylase 65 (GAD65) in T1D PBMCs. Furthermore, pretreatment of T1D PBMCs with ibrutinib, an inhibitor of Bruton tyrosine kinase, dampens EV-induced memory B cell activation and GAD65 antibody production. Collectively, our findings indicate a role for human islet EVs in mediating activation of B and T cells and GAD65 autoantibody production.
Collapse
Affiliation(s)
- Alissa K Rutman
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Sarita Negi
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Marco Gasparrini
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Craig P Hasilo
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Jean Tchervenkov
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Steven Paraskevas
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montréal, Québec, Canada
- Center of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Li R, Chibbar R, Xiang J. Novel EXO-T vaccine using polyclonal CD4 + T cells armed with HER2-specific exosomes for HER2-positive breast cancer. Onco Targets Ther 2018; 11:7089-7093. [PMID: 30410365 PMCID: PMC6200095 DOI: 10.2147/ott.s184898] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is the leading cause of death in women globally. The human epidermal growth factor receptor 2 (HER2)-positive breast cancer is often associated with poor prognosis and high mortality. Even though anti-HER2 monoclonal antibodies have improved the clinical outcome, resistance to the antibody therapy becomes a major obstacle in the treatment of HER2-positive breast cancer patients. Alternative approaches are therefore needed. HER2-specific vaccines have been developed to trigger patient’s immune system against HER2-positive breast cancer. This article describes the development of novel HER2-specific exosome (EXO)-T vaccine using polyclonal CD4+ T cells armed with HER2-specific dendritic cell-released EXO and demonstrates its therapeutic effect against HER2-positive tumor in double-transgenic HER2/HLA-A2 mice with HER2-specific self-immune tolerance. Therefore, our novel HER2-specific EXO-T vaccines are likely to assist in the treatment of HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Rong Li
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK, Canada, .,Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada,
| | - Rajni Chibbar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK, Canada, .,Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada,
| |
Collapse
|
21
|
Ara A, Ahmed KA, Xiang J. Multiple effects of CD40-CD40L axis in immunity against infection and cancer. Immunotargets Ther 2018; 7:55-61. [PMID: 29988701 PMCID: PMC6029590 DOI: 10.2147/itt.s163614] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CD8+ cytotoxic T lymphocyte (CTL) protects against infection and cancer cells. Understanding the mechanisms involved in generation and maintenance of effective CTL responses is essential for improving disease therapy and vaccine protocols. During CTL responses, immune cells encounter several tightly regulated signaling pathways; therefore, in such a dynamic process, proper integration of critical signals is necessary to orchestrate an effective immune response. In this review, we have focused on CD40-CD40L interactions (a key signal) in the regulation of dendritic cell (DC)-T cell (CD4+ T and CD8+ T) cross-talk, rescuing CTL exhaustion, and converting DC tolerization. We have also highlighted the knowledge gap and future directions to design immunotherapies.
Collapse
Affiliation(s)
- Anjuman Ara
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada, .,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| | - Khawaja Ashfaque Ahmed
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada, .,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada, .,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| |
Collapse
|
22
|
New insights into the biological impacts of immune cell-derived exosomes within the tumor environment. Cancer Lett 2018; 431:115-122. [PMID: 29857125 DOI: 10.1016/j.canlet.2018.05.040] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/15/2023]
Abstract
Exosomes are a group of nano-sized membrane vesicles that transfer proteins, nucleic acids, and lipids to nearby and faraway cells, playing an important role in the intercellular communication within the extracellular environment. Emerging evidences show that exosomes derived from immunocytes, including dendritic cells, T cells, B cells, macrophages, natural killer cells and myeloid-derived suppressor cells, can play an intimate role in the crosstalk among immunocytes in a tumor microenvironment. In this review, we highlight that under tumor conditions, immune cells and tumor cells can be influenced by immunocyte-derived exosomes, resulting in modifications of their phenotype and function. Thus, a better understanding of exosomes derived from different immunocytes would provide novel strategies in generating effective vaccines or improving treatment efficacy in anticancer therapies.
Collapse
|
23
|
Heterologous human/rat HER2-specific exosome-targeted T cell vaccine stimulates potent humoral and CTL responses leading to enhanced circumvention of HER2 tolerance in double transgenic HLA-A2/HER2 mice. Vaccine 2018; 36:1414-1422. [PMID: 29415817 DOI: 10.1016/j.vaccine.2018.01.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/05/2018] [Accepted: 01/29/2018] [Indexed: 01/20/2023]
Abstract
DNA vaccines composed of heterologous human HER2 and rat neu sequences induce stronger antibody response and protective antitumor immunity than either HER2 or neu DNA vaccines in transgenic mice. We previously developed HER2-specific exosome-targeted T-cell vaccine HER2-TEXO capable of stimulating HER2-specific CD8+ T-cell responses, but only leading to partial protective immunity in double-transgenic HLA-A2/HER2 mice with self-immune tolerance to HER2. Here, we constructed an adenoviral vector AdVHuRt expressing HuRt fusion protein composed of NH2-HER21-407 (Hu) and COOH-neu408-690 (Rt) fragments, and developed a heterologous human/rat HER2-specific exosome-targeted T-cell vaccine HuRt-TEXO using polyclonal CD4+ T-cells uptaking exosomes released by AdVHuRt-transfected dendritic cells. We found that the HuRt-TEXO vaccine stimulates enhanced CD4+ T-cell responses leading to increased induction of HER2-specific antibody (∼70 µg/ml) compared to that (∼40 µg/ml) triggered by the homologous HER2-TEXO vaccine. By using PE-H-2Kd/HER223-71 tetramer, we determined that HuRt-TEXO stimulates stronger HER2-specific CD8+ T-cell responses eradicating 90% of HER2-specific target cells, while HER2-TEXO-induced CD8+ T-cell responses only eliminating 53% targets. Furthermore, HuRt-TEXO, but not HER2-TEXO vaccination, is capable of suppressing early stage-established HER2-expressing 4T1HER2 breast cancer in its lung metastasis or subcutaneous form in BALB/c mice, and of completely protecting transgenic HLA-A2/HER2 mice from growth of HLA-A2/HER2-expressing BL6-10A2/HER2 melanoma. HuRt-TEXO-stimulated HER2-specific CD8+ T-cells not only are cytolytic to trastuzumab-resistant HLA-A2/HER2-expressing BT474/A2 breast tumor cells in vitro but also eradicates pre-established BT474/A2 tumors in athymic nude mice. Therefore, our novel heterologous human/rat HER2-specific T-cell vaccine HuRt-TEXO, circumventing HER2 tolerance, may provide a new therapeutic alternative for patients with trastuzumab-resistant HER2+ breast tumor.
Collapse
|
24
|
Xu A, Freywald A, Xiang J. Novel T-cell-based vaccines via arming polyclonal CD4 + T cells with antigen-specific exosomes. Immunotherapy 2018; 8:1265-1269. [PMID: 27993084 DOI: 10.2217/imt-2016-0094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Aizhang Xu
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jim Xiang
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
25
|
Abstract
Extracellular vesicles, such as exosomes and microvesicles, are host cell-derived packages of information that allow cell-cell communication and enable cells to rid themselves of unwanted substances. The release and uptake of extracellular vesicles has important physiological functions and may also contribute to the development and propagation of inflammatory, vascular, malignant, infectious and neurodegenerative diseases. This Review describes the different types of extracellular vesicles, how they are detected and the mechanisms by which they communicate with cells and transfer information. We also describe their physiological functions in cellular interactions, such as in thrombosis, immune modulation, cell proliferation, tissue regeneration and matrix modulation, with an emphasis on renal processes. We discuss how the detection of extracellular vesicles could be utilized as biomarkers of renal disease and how they might contribute to disease processes in the kidney, such as in acute kidney injury, chronic kidney disease, renal transplantation, thrombotic microangiopathies, vasculitides, IgA nephropathy, nephrotic syndrome, urinary tract infection, cystic kidney disease and tubulopathies. Finally, we consider how the release or uptake of extracellular vesicles can be blocked, as well as the associated benefits and risks, and how extracellular vesicles might be used to treat renal diseases by delivering therapeutics to specific cells.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Klinikgatan 28, 22184 Lund, Sweden
| | - Anne-Lie Ståhl
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Klinikgatan 28, 22184 Lund, Sweden
| | - Ida Arvidsson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Klinikgatan 28, 22184 Lund, Sweden
| |
Collapse
|
26
|
Wang R, Xu A, Zhang X, Wu J, Freywald A, Xu J, Xiang J. Novel exosome-targeted T-cell-based vaccine counteracts T-cell anergy and converts CTL exhaustion in chronic infection via CD40L signaling through the mTORC1 pathway. Cell Mol Immunol 2016; 14:529-545. [PMID: 27264687 DOI: 10.1038/cmi.2016.23] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 12/16/2022] Open
Abstract
CD8+ cytotoxic T lymphocyte (CTL) exhaustion is a chief issue for ineffective virus elimination in chronic infectious diseases. We generated novel ovalbumin (OVA)-specific OVA-Texo and HIV-specific Gag-Texo vaccines inducing therapeutic immunity. To assess their therapeutic effect in chronic infection, we developed a new chronic infection model by i.v. infecting C57BL/6 mice with the OVA-expressing adenovirus AdVova. During chronic AdVova infection, mouse CTLs were found to express the inhibitory molecules programmed cell-death protein-1 (PD-1) and lymphocyte-activation gene-3 (LAG-3) and to be functionally exhausted, showing a significant deficiency in T-cell proliferation, IFN-γ production and cytolytic effects. Naive CD8+ T cells upregulated inhibitory PD-ligand 1 (PD-L1), B- and T-lymphocyte attenuator and T-cell anergy-associated molecules (Grail and Itch) while down-regulating the proliferative response upon stimulation in mice with chronic infection. Remarkably, the OVA-Texo vaccine counteracted T-cell anergy and converted CTL exhaustion. The latter was associated with (i) the upregulation of a marker for CTL functionality, diacetylated histone-H3 (diAcH3), (ii) a fourfold increase in CTLs, occurring independent of host DCs or CD4+ T cells, and (iii) the restoration of CTL IFN-γ production and cytotoxicity. In vivo OVA-Texo-stimulated CTLs upregulated the activities of the mTORC1 pathway-related molecules Akt, S6, eIF4E and T-bet, and treatment of the CTLs with an mTORC1 inhibitor, rapamycin, significantly reduced the OVA-Texo-induced increase in CTLs. Interestingly, OVA-Texo-mediated CD40L signaling played a critical role in the observed immunological effects. Importantly, the Gag-Texo vaccine induced Gag-specific therapeutic immunity in chronic infection. Therefore, this study should have a serious impact on the development of new therapeutic vaccines for human immunodeficiency virus (HIV-1) infection.
Collapse
Affiliation(s)
- Rong Wang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada S7N4H4.,School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Aizhang Xu
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada S7N4H4
| | - Xueying Zhang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada S7N4H4.,School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Jie Wu
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada S7N4H4
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada S7N4H4.,School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5.,Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| |
Collapse
|
27
|
Xu A, Bhanumathy KK, Wu J, Ye Z, Freywald A, Leary SC, Li R, Xiang J. IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia. Cell Biosci 2016; 6:30. [PMID: 27158441 PMCID: PMC4858849 DOI: 10.1186/s13578-016-0098-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/25/2016] [Indexed: 11/28/2022] Open
Abstract
Background Lymphopenia promotes naïve T-cell homeostatic proliferation and adoptive effector T-cell survival and memory formation. IL-7 plays a critical role in homeostatic proliferation, survival and memory formation of naïve T-cells in lymphopenia, and its underlying molecular mechanism has also been well studied. However, the mechanism for adoptively transferred effector T-cell survival and memory formation is not fully understood. Here, we transferred in vitro-activated transgenic OT-I CD8+ effector T-cells into irradiation (600 rads)-induced lymphopenic C57BL/6, IL-7 knockout (KO) and IL-15 KO mice, and investigated the survival and memory formation of transferred T-cells in lymphopenia. Results We demonstrate that transferred T-cells prolong their survival and enhance their memory in lymphopenic mice, in a manner that depends on IL-15 signaling, but not IL-7. We determine that in vitro stimulation of naïve or effector T-cells with IL-7 and IL-15 reduces IL-7Rα, and increases and/or maintains IL-15Rβ expression, respectively. Consistent with these findings, the expression of IL-7Rα and IL-15Rβ is down- and up-regulated, respectively, in vivo on transferred T-cells in an early phase post T-cell transfer in lymphopenia. We further show that in vitro IL-15 restimulation-induced memory T-cells (compared to IL-2 restimulation-induced effector T-cells) and in vivo transferred T-cells in irradiated IL-15-sufficient C57BL/6 mice (compared to IL-15-deficient IL-15 KO mice) have increased mitochondrial content, but less NADH and lower mitochondrial potential (ΔΨm), and demonstrate greater phosphorylation of signal transducers and activators of transcription-5 (STAT5) and Unc-51-like kinase-1 (ULK1), and higher expression of B-cell leukemia/lymphoma-2 (Bcl2) and memory-, autophagy- and mitochondrial biogenesis-related molecules. Conclusion Irradiation-induced lymphopenia promotes effector T-cell survival via IL-15 signaling the STAT5/Bcl2 pathway, enhances T-cell memory formation via IL-15 activation of the forkhead-box family of transcription factor (FOXO)/eomesodermin (Eomes) memory and ULK1/autophagy-related gene-7 (ATG7) autophagy pathways, and via IL-15 activation of the mitochondrial remodeling. Our data thus identify some important targets to consider when designing potent adoptive T-cell immunotherapies of cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13578-016-0098-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aizhang Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China ; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kalpana Kalyanasundaram Bhanumathy
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK Canada ; Departments of Oncology, University of Saskatchewan, HSB Room 4D30.1, 107 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
| | - Jie Wu
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK Canada
| | - Zhenmin Ye
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK Canada
| | - Andrew Freywald
- Department of Pathology, University of Saskatchewan, Saskatoon, SK Canada
| | - Scot C Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK Canada
| | - Rongxiu Li
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China ; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China ; Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK Canada ; Departments of Oncology, University of Saskatchewan, HSB Room 4D30.1, 107 Wiggins Road, Saskatoon, SK S7N 5E5 Canada
| |
Collapse
|
28
|
Phenotyping of Leukocytes and Leukocyte-Derived Extracellular Vesicles. J Immunol Res 2016; 2016:6391264. [PMID: 27195303 PMCID: PMC4852366 DOI: 10.1155/2016/6391264] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/04/2016] [Accepted: 03/20/2016] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have a demonstrated involvement in modulating the immune system. It has been proposed that EVs could be used as biomarkers for detection of inflammatory and immunological disorders. Consequently, it is of great interest to investigate EVs in more detail with focus on immunological markers. In this study, five major leukocyte subpopulations and the corresponding leukocyte-derived EVs were phenotyped with focus on selected immunological lineage-specific markers and selected vesicle-related markers. The leukocyte-derived EVs displayed phenotypic differences in the 34 markers investigated. The majority of the lineage-specific markers used for identification of the parent cell types could not be detected on EVs released from monocultures of the associated cell types. In contrast, the vesicular presentation of CD9, CD63, and CD81 correlated to the cell surface expression of these markers, however, with few exceptions. Furthermore, the cellular expression of CD9, CD63, and CD81 varied between leukocytes present in whole blood and cultured leukocytes. In summary, these data demonstrate that the cellular and vesicular presentation of selected lineage-specific and vesicle-related markers may differ, supporting the accumulating observations that sorting of molecular cargo into EVs is tightly controlled.
Collapse
|
29
|
Liu H, Gao W, Yuan J, Wu C, Yao K, Zhang L, Ma L, Zhu J, Zou Y, Ge J. Exosomes derived from dendritic cells improve cardiac function via activation of CD4(+) T lymphocytes after myocardial infarction. J Mol Cell Cardiol 2015; 91:123-33. [PMID: 26746143 DOI: 10.1016/j.yjmcc.2015.12.028] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/25/2015] [Accepted: 12/28/2015] [Indexed: 01/10/2023]
Abstract
CD4(+) T cell activation plays a key role in facilitating wound healing after myocardial infarction (MI). Exosomes (EXs) secreted from dendritic cells (DCs) can activate T cells in tumor models; however, whether DEXs (DC-EXs) can mediate CD4(+) T cell activation and improve wound healing post-MI remains unknown. This study sought to determine whether DEXs mediate CD4(+) T cell activation and improve cardiac function post-MI in mice. We used supernatants of hypoxic primary or necrotic HL-1 cardiomyocytes to simulate the post-MI cardiomyocyte microenvironment in vitro. Cultured bone marrow-derived DCs (BMDCs) from mice were stimulated with the supernatants of normal (Control group), hypoxic primary or necrotic HL-1 cardiomyocytes (MI group); a subset of BMDCs remained unstimulated (Negative group). DEXs were then isolated from the BMDC supernatants and either incubated with CD4(+) T cells or injected into mice via the tail vein. In this study, we found that the supernatants of both hypoxic primary and necrotic HL-1 cardiomyocytes upregulate DC maturation markers. After the injection of DEXs, a greater number of MI-DEXs are recruited by the mouse spleen and with greater rapidity than control- or negative-DEXs. Confocal imaging and flow cytometry revealed that MI-DEXs exhibited higher uptake by splenic CD4(+) T cells than the control- and negative-DEXs, and this increase was correlated with significantly greater increases in the expression of chemokines and the inflammatory cytokines IFN-γ and TNF by the CD4(+) T cells in vitro and in vivo. In addition, the injection of MI-DEXs improved cardiac function in mice post-MI. These results suggest that DEXs could mediate the activation of CD4(+) T cells through an endocrine mechanism and improve cardiac function post-MI. Our findings provide the basis for a novel strategy for the treatment of MI through the systemic delivery of DEXs.
Collapse
Affiliation(s)
- Haibo Liu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, PR China; Department of Cardiology, Yinzhou People's Hospital Affiliated with the Medical School of Ningbo University, 315040 Ningbo; PR China.
| | - Wei Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, PR China.
| | - Jie Yuan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, PR China.
| | - Chaoneng Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, PR China.
| | - Kang Yao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, PR China.
| | - Li Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, PR China.
| | - Leilei Ma
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, PR China.
| | - Jianbing Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, PR China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, PR China.
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, PR China.
| |
Collapse
|
30
|
A novel platform for cancer therapy using extracellular vesicles. Adv Drug Deliv Rev 2015; 95:50-5. [PMID: 26482189 DOI: 10.1016/j.addr.2015.10.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/24/2015] [Accepted: 10/09/2015] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are nanometer-sized membranous vesicles and are involved in cell-to-cell communication. EVs contain several types of functional molecules, such as proteins, mRNAs, and microRNAs (miRNAs). Over the past several years, EVs have emerged as potential tools for a drug delivery system (DDS) that can target organs or cells. EVs have a function of organ tropism and are naturally occurring from cells. Therefore, EVs have expected as naturally DDSs, which have the organ tropism and a low side effect. Actually, some reports showed that EVs delivered drugs to specific organ. However, despite observed the organ tropism, the mechanisms of organ tropism of EVs are still unclear. Moreover, preservation and efficient collection of EVs are desired to be investigated. Here, we provide an overview of the methods for using EVs as DDSs.
Collapse
|
31
|
Muto M, Baghdadi M, Maekawa R, Wada H, Seino KI. Myeloid molecular characteristics of human γδ T cells support their acquisition of tumor antigen-presenting capacity. Cancer Immunol Immunother 2015; 64:941-9. [PMID: 25904200 PMCID: PMC11028926 DOI: 10.1007/s00262-015-1700-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
Human T cells expressing γδ T cell receptor have a potential to show antigen-presenting cell-like phenotype and function upon their activation. However, the mechanisms that underlie the alterations in human γδ T cells remain largely unclear. In this study, we have investigated the molecular characteristics of human γδ T cells related to their acquisition of antigen-presenting capacity in comparison with activated αβ T cells. We found that activated γδ but not αβ T cells upregulated cell surface expression of a scavenger receptor, CD36, which seemed to be mediated by signaling through mitogen-activated protein kinase and/or NF-κB pathways. Confocal microscopical analysis revealed that activated γδ T cells can phagocytose protein antigens. Activated γδ T cells could induce tumor antigen-specific CD8(+) T cells using both apoptotic and live tumor cells as antigen resources. Furthermore, we detected that C/EBPα, a critical transcription factor for the development of myeloid-lineage cells, is expressed much higher in γδ T cells than in αβ T cells. These results unveiled the molecular mechanisms for the elicitation of antigen-presenting functions in γδ T cells and would also help designing new approaches for γδ T cell-mediated human cancer immunotherapy.
Collapse
Affiliation(s)
- Masato Muto
- Institute for Genetic Medicine, Hokkaido University, Kita15 Nishi7, Sapporo, Hokkaido 060-0815 Japan
- Medinet Medical Institute, MEDINET Co., Ltd., Tokyo, Japan
| | - Muhammad Baghdadi
- Institute for Genetic Medicine, Hokkaido University, Kita15 Nishi7, Sapporo, Hokkaido 060-0815 Japan
| | - Ryuji Maekawa
- Medinet Medical Institute, MEDINET Co., Ltd., Tokyo, Japan
| | - Haruka Wada
- Institute for Genetic Medicine, Hokkaido University, Kita15 Nishi7, Sapporo, Hokkaido 060-0815 Japan
| | - Ken-ichiro Seino
- Institute for Genetic Medicine, Hokkaido University, Kita15 Nishi7, Sapporo, Hokkaido 060-0815 Japan
| |
Collapse
|
32
|
Kambe S, Yoshitake H, Yuge K, Ishida Y, Ali MM, Takizawa T, Kuwata T, Ohkuchi A, Matsubara S, Suzuki M, Takeshita T, Saito S, Takizawa T. Human exosomal placenta-associated miR-517a-3p modulates the expression of PRKG1 mRNA in Jurkat cells. Biol Reprod 2014; 91:129. [PMID: 25273530 DOI: 10.1095/biolreprod.114.121616] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During pregnancy, human placenta-associated microRNAs (miRNAs) derived from the miRNA cluster in human chromosome 19 are expressed in villous trophoblasts and secreted into maternal circulation via exosomes; however, little is known about whether circulating placenta-associated miRNAs are transferred into maternal immune cells via exosomes, and modulate expression of target genes in the recipient cells. We employed an in vitro model of trophoblast-immune cell communication using BeWo cells (a human trophoblast cell line) and Jurkat cells (a human leukemic T-cell line) and investigated whether BeWo exosomal placenta-associated miRNAs can suppress expression of target genes in the recipient Jurkat cells. Using this system, we identified PRKG1 as a target gene of placenta-associated miRNA miR-517a-3p. Moreover, we demonstrated that BeWo exosomal miR-517a-3p was internalized into Jurkat cells and subsequently suppressed the expression of PRKG1 in recipient Jurkat cells. Furthermore, using peripheral blood natural killer (NK) cells in vivo, we confirmed that circulating miR-517a-3p was delivered into maternal NK cells as it was into Jurkat cells in vitro. Placenta-associated miR-517a-3p was incorporated into maternal NK cells in the third trimester, and it was rapidly cleared after delivery. Expression levels of miR-517a-3p and its target mRNA PRKG1 were inversely correlated in NK cells before and after delivery. These in vitro and in vivo results suggest that exosome-mediated transfer of placenta-associated miRNAs and subsequent modulation of their target genes occur in maternal NK cells. The present study provides novel insight into our understanding of placenta-maternal communication.
Collapse
Affiliation(s)
- Saori Kambe
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan Department of Reproductive Medicine, Perinatology and Gynecologic Oncology, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Yoshitake
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan
| | - Kazuya Yuge
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan
| | - Yoichi Ishida
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi, Japan
| | - Md Moksed Ali
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan
| | - Takami Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan
| | - Tomoyuki Kuwata
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi, Japan
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi, Japan
| | - Shigeki Matsubara
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi, Japan
| | - Mitsuaki Suzuki
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi, Japan
| | - Toshiyuki Takeshita
- Department of Reproductive Medicine, Perinatology and Gynecologic Oncology, Nippon Medical School, Tokyo, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
33
|
Wang R, Freywald A, Chen Y, Xu J, Tan X, Xiang J. Transgenic 4-1BBL-engineered vaccine stimulates potent Gag-specific therapeutic and long-term immunity via increased priming of CD44(+)CD62L(high) IL-7R(+) CTLs with up- and downregulation of anti- and pro-apoptosis genes. Cell Mol Immunol 2014; 12:456-65. [PMID: 25195511 DOI: 10.1038/cmi.2014.72] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 02/04/2023] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1)-specific dendritic cell (DC) vaccines have been used in clinical trials. However, they have been found to only induce some degree of immune responses in these studies. We previously demonstrated that the HIV-1 Gag-specific Gag-Texo vaccine stimulated Gag-specific effector CD8(+) cytotoxic T lymphocyte (CTL) responses, leading to completely protective, but very limited, therapeutic immunity. In this study, we constructed a recombinant adenoviral vector, adenovirus (AdV)4-1BBL, which expressed mouse 4-1BB ligand (4-1BBL), and generated transgenic 4-1BBL-engineered OVA-Texo/4-1BBL and Gag-Texo/4-1BBL vaccines by transfecting ovalbumin (OVA)-Texo and Gag-Texo cells with AdV4-1BBL, respectively. We demonstrate that the OVA-specific OVA-Texo/4-1BBL vaccine stimulates more efficient OVA-specific CTL responses (3.26%) compared to OVA-Texo-activated responses (1.98%) in wild-type C57BL/6 mice and the control OVA-Texo/Null vaccine without transgenic 4-1BBL expression, leading to enhanced therapeutic immunity against 6-day established OVA-expressing B16 melanoma BL6-10OVA cells. OVA-Texo/4-1BBL-stimulated CTLs, which have a CD44(+)CD62L(high) IL-7R(+) phenotype, are likely memory CTL precursors, demonstrating prolonged survival and enhanced differentiation into memory CTLs with functional recall responses and long-term immunity against BL6-10OVA melanoma. In addition, we demonstrate that OVA-Texo/4-1BBL-stimulated CTLs up- and downregulate the expression of anti-apoptosis (Bcl2l10, Naip1, Nol3, Pak7 and Tnfrsf11b) and pro-apoptosis (Casp12, Trp63 and Trp73) genes, respectively, by RT(2) Profiler PCR array analysis. Importantly, the Gag-specific Gag-Texo/4-1BBL vaccine also stimulates more efficient Gag-specific therapeutic and long-term immunity against HLA-A2/Gag-expressing B16 melanoma BL6-10Gag/A2 cells than the control Gag-Texo/Null vaccine in transgenic HLA-A2 mice. Taken together, our novel Gag-Texo/4-1BBL vaccine, which is capable of stimulating potent Gag-specific therapeutic and long-term immunity, may represent a new immunotherapeutic vaccine for controlling HIV-1 infection.
Collapse
Affiliation(s)
- Rong Wang
- 1] Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada [2] Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andrew Freywald
- Department of Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yue Chen
- Department of Epidemiology and Community Health, University of Ottawa, Canada
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xin Tan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jim Xiang
- 1] Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada [2] Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
34
|
Fan W, Tian XD, Huang E, Zhang JJ. Exosomes from CIITA-transfected CT26 cells enhance anti- tumor effects. Asian Pac J Cancer Prev 2014; 14:987-91. [PMID: 23621273 DOI: 10.7314/apjcp.2013.14.2.987] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AIM To study anti-tumor effects of exosomes from class II transactivator (CIITA) gene transfected CT26 cells. METHODS In this study, we established an MHC class II molecule-expressing murine colon cancer cell line (CT26-CIITA) by transduction of the CIITA gene. Immune effects in vitro and tumor protective results in vivo were tested and monitored. RESULTS Exosomes from CT26-CIITA cells were found to contain a high level of MHC class II protein. When loaded on dendritic cells (DCs), exosomes from CT26-CIITA cells significantly increased expression of MHC class II molecules, CD86 and CD80, as compared to exosomes from CT26 cells. In vitro assays using co-culture of immunized splenocytes and exosome-loaded DCs demonstrated that CIITA- Exo enhanced splenocyte proliferation and IFN-γ production of CD4+T cells, while inhibiting IL-10 secretion. In addition, compared to exosomes from CT26 cells, CT26-CIITA-derived exosomes induced higher TNF-α and IL-12 mRNA levels. A mouse tumour preventive model showed that CT26-CIITA derived exosomes significantly inhibited tumour growth in a dose-dependent manner and significantly prolonged the survival time of tumour- bearing mice. CONCLUSION Our findings indicate that CT26-CIITA-released exosomes are more efficient to induce anti-tumour immune responses, suggesting a potential role of MHC class II-containing tumour exosomes as cancer vaccine candidates.
Collapse
Affiliation(s)
- Wen Fan
- First Affiliated Hospital of Yangtze University, Jingzhou, HuBei, China.
| | | | | | | |
Collapse
|
35
|
Wang R, Xie Y, Zhao T, Tan X, Xu J, Xiang J. HIV-1 Gag-specific exosome-targeted T cell-based vaccine stimulates effector CTL responses leading to therapeutic and long-term immunity against Gag/HLA-A2-expressing B16 melanoma in transgenic HLA-A2 mice. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.trivac.2013.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Exosomal pMHC-I complex targets T cell-based vaccine to directly stimulate CTL responses leading to antitumor immunity in transgenic FVBneuN and HLA-A2/HER2 mice and eradicating trastuzumab-resistant tumor in athymic nude mice. Breast Cancer Res Treat 2013; 140:273-84. [DOI: 10.1007/s10549-013-2626-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/28/2013] [Indexed: 12/23/2022]
|
37
|
Gutiérrez-Vázquez C, Villarroya-Beltri C, Mittelbrunn M, Sánchez-Madrid F. Transfer of extracellular vesicles during immune cell-cell interactions. Immunol Rev 2013; 251:125-42. [PMID: 23278745 DOI: 10.1111/imr.12013] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The transfer of molecules between cells during cognate immune cell interactions has been reported, and recently a novel mechanism of transfer of proteins and genetic material such as small RNA between T cells and antigen-presenting cells (APCs) has been described, involving exchange of extracellular vesicles (EVs) during the formation of the immunological synapse (IS). EVs, a term that encompasses exosomes and microvesicles, has been implicated in cell-cell communication during immune responses associated with tumors, pathogens, allergies, and autoimmune diseases. This review focuses on EV transfer as a mechanism for the exchange of molecules during immune cell-cell interactions.
Collapse
|
38
|
Nanjundappa RH, Wang R, Xie Y, Umeshappa CS, Xiang J. Novel CD8+ T cell-based vaccine stimulates Gp120-specific CTL responses leading to therapeutic and long-term immunity in transgenic HLA-A2 mice. Vaccine 2012; 30:3519-25. [PMID: 22484292 DOI: 10.1016/j.vaccine.2012.03.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/12/2012] [Accepted: 03/25/2012] [Indexed: 12/14/2022]
Abstract
The limitations of highly active anti-retroviral therapy have necessitated the development of alternative therapeutics for human immunodeficiency virus type-1 (HIV-1)-infected patients with dysfunctional dendritic cells (DCs) and CD4(+) T cell deficiency. We previously demonstrated that HIV-1 Gp120-specific T cell-based Gp120-Texo vaccine by using ConA-stimulated C57BL/6 (B6) mouse CD8(+) T (ConA-T) cells with uptake of pcDNA(Gp120)-transfected B6 mouse DC line DC2.4 (DC2.4(Gp120))-released exosomes (EXO(Gp120)) was capable of stimulating DC and CD4(+) T cell-independent CD8(+) cytotoxic T lymphocyte (CTL) responses detected in wild-type B6 mice using non-specific PE-anti-CD44 and anti-IFN-γ antibody staining by flow cytometry. To assess effectiveness of Gp120-Texo vaccine in transgenic (Tg) HLA-A2 mice mimicking the human situation, we constructed adenoviral vector AdV(Gp120) expressing HIV-1 GP120 by recombinant DNA technology, and generated Gp120-Texo vaccine by using Tg HLA-A2 mouse CD8(+) ConA-T cells with uptake of AdV(Gp120)-transfected HLA-A2 mouse bone marrow DC (DC(Gp120))-released EXO(Gp120). We then performed animal studies to assess Gp120-Texo-induced stimulation of Gp120-specific CTL responses and antitumor immunity in Tg HLA-A2 mice. We demonstrate that Gp120-Texo vaccine stimulates Gp120-specific CTL responses detected in Tg HLA-A2 mice using Gp120-specific PE-HLA-A2/Gp120 peptide (KLTPLCVTL) tetramer staining by flow cytometry. These Gp120-specific CTLs are capable of further differentiating into functional effectors with killing activity to Gp120 peptide-pulsed splenocytes in vivo. In addition, Gp120-Texo vaccine also induces Gp120-specific preventive, therapeutic (for 6 day tumor lung metastasis) and CD4(+) T cell-independent long-term immunity against B16 melanoma BL6-10(Gp120/A2Kb) expressing both Gp120 and A2Kb (α1 and α2 domains of HLA-A2 and α3 domain of H-2K(b)) in Tg HLA-A2 mice. Taken together, the novel CD8(+) Gp120-Texo vaccine capable of stimulating efficient CD4(+) T cell-independent Gp120-specific CD8(+) CTL responses leading to therapeutic and long-term immunity in Tg HLA-A2 mice may represent a new immunotherapeutic vaccine for treatment of HIV-1 patients with CD4(+) T cell deficiency.
Collapse
Affiliation(s)
- Roopa Hebbandi Nanjundappa
- Cancer Research Unit, Saskatchewan Cancer Agency, Division of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
39
|
Single chain MHC I trimer-based DNA vaccines for protection against Listeria monocytogenes infection. Vaccine 2012; 30:2178-86. [PMID: 22285270 DOI: 10.1016/j.vaccine.2012.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 11/21/2022]
Abstract
To circumvent limitations of poor antigen presentation and immunogenicity of DNA vaccines that target induction of CD8(+) T cell immunity, we have generated single chain MHC I trimers (MHC I SCTs) composed of a single polypeptide chain with a linear composition of antigenic peptide, β2-microglobulin, and heavy chain of a MHC class I molecule connected by flexible linkers. Because of its pre-assembled nature, the SCT presents enhanced expression and presentation of the antigenic peptide/MHC complexes at the cell surface. Furthermore, DNA vaccination with a plasmid DNA encoding an SCT incorporating an immunodominant viral epitope elicited protective CD8(+) T cell responses against lethal virus infection. To extend these findings, here we tested the efficacy of SCT DNA vaccines against bacterial infections. In a mouse infection model of Listeria monocytogenes, the SCT DNA vaccine encoding H-2K(d) and the immunodominant peptide LLO 91-99 generated functional primary and memory peptide-specific CD8(+) T cells that confer partial protection against L. monocytogenes infection. DNA immunization of K(d)/LLO(91-99) SCTs generated functional memory CD8(+) T cells independently of CD4(+) T cells, although the expression of cognate or non-cognate CD4(+) helper T cell epitopes further enhanced the protective efficacy of SCTs. Our study further demonstrates that the SCT serves as a potent platform for DNA vaccines against various infectious diseases.
Collapse
|
40
|
Paine A, Kirchner H, Immenschuh S, Oelke M, Blasczyk R, Eiz-Vesper B. IL-2 Upregulates CD86 Expression on Human CD4+ and CD8+ T Cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:1620-9. [DOI: 10.4049/jimmunol.1100181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Gehrmann U, Qazi KR, Johansson C, Hultenby K, Karlsson M, Lundeberg L, Gabrielsson S, Scheynius A. Nanovesicles from Malassezia sympodialis and host exosomes induce cytokine responses--novel mechanisms for host-microbe interactions in atopic eczema. PLoS One 2011; 6:e21480. [PMID: 21799736 PMCID: PMC3142114 DOI: 10.1371/journal.pone.0021480] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/02/2011] [Indexed: 12/22/2022] Open
Abstract
Background Intercellular communication can occur via the release of membrane vesicles. Exosomes are nanovesicles released from the endosomal compartment of cells. Depending on their cell of origin and their cargo they can exert different immunoregulatory functions. Recently, fungi were found to produce extracellular vesicles that can influence host-microbe interactions. The yeast Malassezia sympodialis which belongs to our normal cutaneous microbial flora elicits specific IgE- and T-cell reactivity in approximately 50% of adult patients with atopic eczema (AE). Whether exosomes or other vesicles contribute to the inflammation has not yet been investigated. Objective To investigate if M. sympodialis can release nanovesicles and whether they or endogenous exosomes can activate PBMC from AE patients sensitized to M. sympodialis. Methods Extracellular nanovesicles isolated from M. sympodialis, co-cultures of M. sympodialis and dendritic cells, and from plasma of patients with AE and healthy controls (HC) were characterised using flow cytometry, sucrose gradient centrifugation, Western blot and electron microscopy. Their ability to stimulate IL-4 and TNF-alpha responses in autologous CD14, CD34 depleted PBMC was determined using ELISPOT and ELISA, respectively. Results We show for the first time that M. sympodialis releases extracellular vesicles carrying allergen. These vesicles can induce IL-4 and TNF-α responses with a significantly higher IL-4 production in patients compared to HC. Exosomes from dendritic cell and M. sympodialis co-cultures induced IL-4 and TNF-α responses in autologous CD14, CD34 depleted PBMC of AE patients and HC while plasma exosomes induced TNF-α but not IL-4 in undepleted PBMC. Conclusions Extracellular vesicles from M. sympodialis, dendritic cells and plasma can contribute to cytokine responses in CD14, CD34 depleted and undepleted PBMC of AE patients and HC. These novel observations have implications for understanding host-microbe interactions in the pathogenesis of AE.
Collapse
Affiliation(s)
- Ulf Gehrmann
- Clinical Allergy Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Nanjundappa RH, Wang R, Xie Y, Umeshappa CS, Chibbar R, Wei Y, Liu Q, Xiang J. GP120-specific exosome-targeted T cell-based vaccine capable of stimulating DC- and CD4(+) T-independent CTL responses. Vaccine 2011; 29:3538-47. [PMID: 21406265 DOI: 10.1016/j.vaccine.2011.02.095] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 12/26/2022]
Abstract
The limitations of highly active anti-retroviral therapy (HAART) have necessitated the development of alternative therapeutics. In this study, we generated ovalbumin (OVA)-pulsed and pcDNAgp120-transfected dendritic cell (DC)-released exosomes (EXOova and EXOgp120) and ConA-stimulated C57BL/6 CD8(+) T cells. OVA- and Gp120-Texo vaccines were generated from CD8(+) T cells with uptake of EXOova and EXOgp120, respectively. We demonstrate that OVA-Texo stimulates in vitro and in vivo OVA-specific CD4(+) and CD8(+) cytotoxic T lymphocyte (CTL) responses leading to long-term immunity against OVA-expressing BL6-10(OVA) melanoma. Interestingly, CD8(+) T cell responses are DC and CD4(+) T cell independent. Importantly, Gp120-Texo also stimulates Gp120-specific CTL responses and long-term immunity against Gp120-expressing B16 melanoma. Therefore, this novel HIV-1-specific EXO-targeted Gp120-Texo vaccine may be useful in induction of efficient CTL responses in AIDS patients with DC dysfunction and CD4(+) T cell deficiency.
Collapse
|
43
|
CD4(+) T cell-released exosomes inhibit CD8(+) cytotoxic T-lymphocyte responses and antitumor immunity. Cell Mol Immunol 2010; 8:23-30. [PMID: 21200381 DOI: 10.1038/cmi.2010.59] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
T cells secrete bioactive exosomes (EXO), but the potential immunoregulatory effect of T-cell EXO is largely unknown. In this study, we generated activated ovalbumin (OVA)-specific CD4(+) T cells in vitro via coculture of OVA-pulsed dendritic cells (DC(OVA)) with naive CD4(+) T cells derived from OVA-specific T-cell receptor (TCR) transgenic OTII mice. CD4(+) T-cell EXO were then purified from the CD4(+) T-cell culture supernatants by differential ultracentrifugation. CD4(+) T-cell EXO exhibited the 'saucer' shape that is characteristic of EXO with a diameter between 50 and 100 nm, as assessed by electron microscopy, and contained the EXO-associated proteins LAMP-1, TCR and lymphocyte function associated antigen-1 (LFA-1), as determined by western blot. Flow cytometric analysis showed that CD4(+) T-cell EXO expressed CD4(+) T-cell markers (CD4, TCR, LFA-1, CD25 and Fas ligand), but to a lesser extent than CD4(+) T cells. We demonstrated that DC(OVA) took up CD4(+) T-cell EXO via peptide/major histocompatibility complex (pMHC) II/TCR and CD54/LFA-1 interactions. OVA-specific CD4(+) T-cell EXO from OTII mice, but not ConA-stimulated polyclonal CD4(+) T-cell EXO from wild-type C57BL/6 mice inhibited DC(OVA)-stimulated in vitro CD4(+) T-cell proliferation and in vivo CD8(+) cytotoxic T lymphocyte (CTL) responses and antitumor immunity against OVA-expressing B16 melanoma BL6-10(OVA) cells. In addition, EXO derived from a T-cell hybridoma cell line, MF72.2D9, expressing an OVA-specific CD4(+) TCR, had a similar inhibitory effect as OTII CD4(+) T-cell EXO on CTL-mediated antitumor immunity. Taken together, our data indicate that antigen-specific T-cell EXO may serve as a new type of immunosuppressive reagent for use in transplant rejection and treatment of autoimmune diseases.
Collapse
|
44
|
Ren Y, Yang J, Xie R, Gao L, Yang Y, Fan H, Qian K. Exosomal-like vesicles with immune-modulatory features are present in human plasma and can induce CD4+ T-cell apoptosis in vitro. Transfusion 2010; 51:1002-11. [PMID: 21044087 DOI: 10.1111/j.1537-2995.2010.02909.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Exosomes are small membrane vesicles that are secreted from many cell types into various body fluids. These vesicles are thought to play a role in cell-cell interactions. STUDY DESIGN AND METHODS Vesicles were isolated from human plasma of healthy donors by differential ultracentrifugation and ultrafiltration. The vesicles were identified by transmission electron microscopy, and their biochemical characteristics were analyzed by Western blot and flow cytometry. The immune-modulatory ability of exosomal-like vesicles was examined by incubating them with CD4+ T cells for CD4+ T-cell proliferation and apoptosis assays in vitro. RESULTS Vesicles purified from human plasma displayed shapes and sizes similar to those of previously described exosomes and contained exosomes marker proteins CD63 and CD81. They also expressed molecules such as MHC Class II molecules, CD80, CD86, and the cell signal transduction molecules Wnt3a, Wnt5a, and FasL. Furthermore, functional analysis showed that allogeneic plasma exosomes restrained the survival of CD4+ T cells. Plasma exosomes can induce dose-dependent suppression of proliferation of activated CD4+ T cells, with the strongest responses induced by 500 µg/mL exosomes in vitro. Antibodies against exosomes FasL can block the activity of exosomes on CD4+ T-cell apoptosis. Moreover, three different concentrations of CD4+ T cells were inhibited by plasma exosomes and the suppressive function was not dependent on interleukin-2. CONCLUSION Exosomes present in human plasma contain immunity-associated molecules and can induce CD4+ T-cell apoptosis in vitro. Plasma exosomes have the capacity to influence immune responses.
Collapse
Affiliation(s)
- Yana Ren
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Xie Y, Zhang H, Li W, Deng Y, Munegowda MA, Chibbar R, Qureshi M, Xiang J. Dendritic cells recruit T cell exosomes via exosomal LFA-1 leading to inhibition of CD8+ CTL responses through downregulation of peptide/MHC class I and Fas ligand-mediated cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2010; 185:5268-78. [PMID: 20881190 DOI: 10.4049/jimmunol.1000386] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Active T cells release bioactive exosomes (EXOs). However, its potential modulation in immune responses is elusive. In this study, we in vitro generated active OVA-specific CD8(+) T cells by cultivation of OVA-pulsed dendritic cells (DC(OVA)) with naive CD8(+) T cells derived from OVA-specific TCR transgenic OTI mice and purified EXOs from CD8(+) T cell culture supernatant by differential ultracentrifugation. We then investigated the suppressive effect of T cell EXOs on DC(OVA)-mediated CD8(+) CTL responses and antitumor immunity. We found that DC(OVA) uptake OTI T cell EXOs expressing OVA-specific TCRs and Fas ligand via peptide/MHC Ag I-TCR and CD54-LFA-1 interactions leading to downregulation of peptide/MHC Ag I expression and induction of apoptosis of DC(OVA) via Fas/Fas ligand pathway. We demonstrated that OVA-specific OTI T cell EXOs, but not lymphocytic choriomeningitis virus-specific TCR transgenic mouse CD8(+) T cell EXOs, can inhibit DC(OVA)-stimulated CD8(+) CTL responses and antitumor immunity against OVA-expressing B16 melanoma. In addition, these T cell EXOs can also inhibit DC(OVA)-mediated CD8(+) CTL-induced diabetes in transgenic rat insulin promoter-mOVA mice. Interestingly, the anti-LFA-1 Ab treatment significantly reduces T cell EXO-induced inhibition of CD8(+) CTL responses in both antitumor immunity and autoimmunity. EXOs released from T cell hybridoma RF3370 cells expressing OTI CD8(+) TCRs have a similar inhibitory effect as T cell EXOs in DC(OVA)-stimulated CTL responses and antitumor immunity. Therefore, our data indicate that Ag-specific CD8(+) T cells can modulate immune responses via T cell-released EXOs, and T cell EXOs may be useful for treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yufeng Xie
- Division of Health Research, Saskatchewan Cancer Agency, Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Brown K, Fidanboylu M, Wong W. Intercellular exchange of surface molecules and its physiological relevance. Arch Immunol Ther Exp (Warsz) 2010; 58:263-72. [PMID: 20508995 DOI: 10.1007/s00005-010-0085-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 02/11/2010] [Indexed: 12/31/2022]
Abstract
For many decades, cellular immunologists have relied on the expression of various cell surface molecules to divide cells into different types and subtypes to study their function. However, in recent years, a large and fast-expanding body of work has described the transfer of surface molecules, including MHC class I and II molecules, between cells, both in vitro and in vivo. The function of this process is still largely unknown, but it is likely to have a significant role in the control of the immune system. It is also likely that this process takes place in a regulated rather than stochastic manner, thus providing another way for the immune system to orchestrate its function. In this review we will summarize the key findings so far, examining the mechanisms of transfer, the consequences of this transfer as shown by in vitro experiments, and possible consequences for the wider immune response.
Collapse
Affiliation(s)
- Kathryn Brown
- MRC Centre for Transplantation, King's College London, School of Medicine at Guy's, King's and St. Thomas' Hospitals, London, UK
| | | | | |
Collapse
|
47
|
Abstract
In a multicellular system, cellular communication is a must for orchestration and coordination of cellular events. Advent of the latest analytical and imaging tools has allowed us to enhance our understanding of the intercellular communication. An intercellular exchange of proteins or intact membrane patches is a ubiquitous phenomenon, and has been the subject of renewed interest, particularly in the context of immune cells. Recent evidence implicates that intercellular protein transfers, including trogocytosis is an important mechanism of the immune system to modulate immune responses and transferred proteins can also contribute to pathology. It has been demonstrated that intercellular protein transfer can be through the internalization/pathway, dissociation-associated pathway, uptake of exosomes and membrane nanotube formations. Exchange of membrane molecules/antigens between immune cells has been observed for a long time, but the mechanisms and functional consequences of these transfers remain unclear. In this review, we will discuss the important findings concerning intercellular protein transfers, possible mechanisms and highlight their physiological relevance to the immune system, with special reference to T cells such as the stimulatory or suppressive immune responses derived from T cells with acquired dendritic cell membrane molecules.
Collapse
Affiliation(s)
- Khawaja Ashfaque Ahmed
- Research Unit, Saskatchewan Cancer Agency, Departments of Oncology, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
48
|
Abstract
Exosomes are nanovesicles harboring proteins important for antigen presentation. We compared the potency of differently loaded exosomes, directly loaded with OVA(323-339) peptide (Pep-Exo) or exosomes from OVA-pulsed DCs (OVA-Exo), for their ability to induce specific T-cell proliferation in vitro and in vivo. Both Pep-Exo and OVA-Exo elicited specific transgenic T-cell proliferation in vitro, with the Pep-Exo being more efficient. In contrast, only OVA-Exo induced specific T-cell responses in vivo highlighting the importance of indirect loading strategies in clinical applications. Coadministration of whole OVA overcame the unresponsiveness with Pep-Exo but still elicited a lower response compared with OVA-Exo. In parallel, we found that OVA-Exo not only augmented the specific T-cell response but also gave a Th1-type shift and an antibody response even in the absence of whole OVA. We detected IgG2a and interferon-gamma production from splenocytes showing the capability of exosomes to provide antigen for B-cell activation. Furthermore, we found that B cells are needed for exosomal T-cell stimulation because Bruton tyrosine kinase-deficient mice showed abrogated B- and T-cell responses after OVA-Exo immunization. These findings reveal that exosomes are potent immune regulators and are relevant for the design of vaccine adjuvants and therapeutic intervention strategies to modulate immune responses.
Collapse
|
49
|
Zhang X, Kedl RM, Xiang J. CD40 ligation converts TGF-beta-secreting tolerogenic CD4-8- dendritic cells into IL-12-secreting immunogenic ones. Biochem Biophys Res Commun 2009; 379:954-8. [PMID: 19135981 DOI: 10.1016/j.bbrc.2008.12.179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 12/24/2008] [Indexed: 12/14/2022]
Abstract
CD40L, the ligand for CD40 on dendritic cells (DCs), plays an important role in maturation and activation of DCs leading to induction of immune responses. Our previous studies showed that the mouse splenic CD4(-)8(-) DCs are tolerogenic and capable of stimulating suppressive type 1 CD4(+) regulatory T (Tr1) cell responses via TGF-beta secretion. In this study, we investigated whether CD40 ligation is able to convert tolerogenic CD4(-)8(-) DCs into immunogenic ones by in vitro treatment of DCs with anti-CD40 antibody. Our data showed that in vitro CD40 ligation with anti-CD40 antibody converted TGF-beta-secreting tolerogenic CD4(-)8(-) DCs into IL-12-secreting immunogenic ones capable of stimulating type 1 CD4(+) helper T (Th1) and CD8(+) cytotoxic T lymphocyte (CTL) responses leading to induction of antitumor immunity. In addition, in vivo CD40 ligation by intratumoral injection of adenoviral vector AdVCD40L expressing CD40 ligand also induced tumor growth inhibition and regression of established P815 tumors with infiltration of tolerogenic CD4(-)8(-) DCs. Therefore, our data provide new information for and may thus have useful impacts in CD40 ligation-based immunotherapy of cancer.
Collapse
Affiliation(s)
- Xueshu Zhang
- Cancer Research Unit, Saskatchewan Cancer Agency and Departments of Oncology and Immunology, Pathology, University of Saskatchewan, 20 Campus Drive, Saskatoon, Saskatchewan S7N 0W0, Canada
| | | | | |
Collapse
|