1
|
Abstract
Cells can die as a consequence of being phagocytosed by other cells - a form of cell death that has been called phagotrophy, cell cannibalism, programmed cell removal and primary phagocytosis. However, these are all different manifestations of cell death by phagocytosis (termed 'phagoptosis' for short). The engulfed cells die as a result of cytotoxic oxidants, peptides and degradative enzymes within acidic phagolysosomes. Cell death by phagocytosis was discovered by Metchnikov in the 1880s, but was neglected until recently. It is now known to contribute to developmental cell death in nematodes, Drosophila and mammals, and is central to innate and adaptive immunity against pathogens. Cell death by phagocytosis mediates physiological turnover of erythrocytes and other leucocytes, making it the most abundant form of cell death in the mammalian body. Immunity against cancer is also partly mediated by macrophage phagocytosis of cancer cells, but cancer cells can also phagocytose host cells and other cancer cells in order to survive. Recent evidence indicates neurodegeneration and other neuropathologies can be mediated by microglial phagocytosis of stressed neurons. Thus, despite cell death by phagocytosis being poorly recognized, it is one of the oldest, commonest and most important forms of cell death.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Zohar-Fux M, Ben-Hamo-Arad A, Arad T, Volin M, Shklyar B, Hakim-Mishnaevski K, Porat-Kuperstein L, Kurant E, Toledano H. The phagocytic cyst cells in Drosophila testis eliminate germ cell progenitors via phagoptosis. SCIENCE ADVANCES 2022; 8:eabm4937. [PMID: 35714186 PMCID: PMC9205596 DOI: 10.1126/sciadv.abm4937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Phagoptosis is a frequently occurring nonautonomous cell death pathway in which phagocytes eliminate viable cells. While it is thought that phosphatidylserine (PS) "eat-me" signals on target cells initiate the process, the precise sequence of events is largely unknown. Here, we show that in Drosophila testes, progenitor germ cells are spontaneously removed by neighboring cyst cells through phagoptosis. Using live imaging with multiple markers, we demonstrate that cyst cell-derived early/late endosomes and lysosomes fused around live progenitors to acidify them, before DNA fragmentation and substantial PS exposure on the germ cell surface. Furthermore, the phagocytic receptor Draper is expressed on cyst cell membranes and is necessary for phagoptosis. Significantly, germ cell death is blocked by knockdown of either the endosomal component Rab5 or the lysosomal associated protein Lamp1, within the cyst cells. These data ascribe an active role for phagocytic cyst cells in removal of live germ cell progenitors.
Collapse
Affiliation(s)
- Maayan Zohar-Fux
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Aya Ben-Hamo-Arad
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Tal Arad
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Marina Volin
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Boris Shklyar
- Bioimaging Unit, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Ketty Hakim-Mishnaevski
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Lilach Porat-Kuperstein
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Estee Kurant
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Hila Toledano
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Hushi Avenue, Mount Carmel, Haifa 3498838, Israel
| |
Collapse
|
3
|
Coxiella burnetii Virulent Phase I and avirulent Phase II Variants Differentially Manipulate Autophagy pathway in Neutrophils. Infect Immun 2022; 90:e0053421. [PMID: 35100012 DOI: 10.1128/iai.00534-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular gram-negative bacterium that causes Q fever in humans. Virulent C. burnetii Nine Mile Phase I (NMI) strain causes disease in animal models, while avirulent NM phase II (NMII) strain does not. In this study, we found that NMI infection induces severe splenomegaly and bacterial burden in the spleen in BALB/c mice, while NMII infection does not. Compared to NMII-infected mice, a significantly higher number of CD11b+Ly6g+ neutrophils accumulated in the liver, lung and spleen of NMI-infected mice. Thus, neutrophil accumulation correlates with NMI and NMII infection induced inflammatory response. In vitro studies also demonstrated that although NMII exhibited a higher infection rate than NMI in mouse bone-marrow neutrophils (BMNs), NMI-infected BMNs survive longer than NMII-infected BMNs. These results suggest that the differential interactions of NMI and NMII with neutrophils may be related to their ability to cause disease in animals. To understand the molecular mechanism underlying the differential interactions of NMI and NMII with neutrophils, the global transcriptomic gene expressions were compared between NMI- and NMII-infected-BMNs by RNA-seq analysis. Interestingly, several genes involved in autophagy related pathways, particularly the membrane-trafficking and lipid metabolism are upregulated in NMII-infected BMNs but downregulated in NMI-infected BMNs. Immunofluorescence and immunoblot analysis indicate that compared to NMI-infected BMNs, vacuoles in NMII-infected-BMNs exhibit increased autophagic flux along with phosphatidylserine translocation in cell membrane. Similar to neutrophils, NMII activated LC3-mediated autophagy in human macrophage. These findings suggest that NMI and NMII's differential manipulation of autophagy may relate to their pathogenesis.
Collapse
|
4
|
Keshavan S, Gupta G, Martin S, Fadeel B. Multi-walled carbon nanotubes trigger lysosome-dependent cell death (pyroptosis) in macrophages but not in neutrophils. Nanotoxicology 2021; 15:1125-1150. [PMID: 34657549 DOI: 10.1080/17435390.2021.1988171] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Carbon nanotubes (CNTs) have been extensively investigated, and several studies have shown that multi-walled CNTs can trigger inflammation and fibrosis in animal models. However, while neutrophils are involved in inflammation, most in vitro studies have addressed macrophages. Here we explored the impact of three MWCNTs with varying morphology (i.e. long and rigid versus short and/or tangled) on primary human macrophages and macrophage-differentiated THP-1 cells versus primary human neutrophils and neutrophil-differentiated HL-60 cells. We found that long and rigid MWCNTs triggered caspase-dependent cell death in macrophages, accompanied by NLRP3 inflammasome activation and gasdermin D (GSDMD)-mediated release of pro-inflammatory IL-1β. The release of IL-1β was suppressed by disulfiram, an FDA-approved drug known to act as an inhibitor of membrane pore formation by GSDMD. Evidence of autophagic cell death was noted in macrophages exposed to higher concentrations of the long and rigid MWCNTs. Furthermore, lysosomal damage with cytosolic release of cathepsin B was observed in macrophages exposed to the latter MWCNTs. On the other hand, there was little evidence of uptake of MWCNTs in neutrophils and the cells failed to undergo MWCNT-triggered cell death. Our studies have demonstrated that long and rigid MWCNTs trigger pyroptosis in human macrophages.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Govind Gupta
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastin Martin
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Cockram TOJ, Dundee JM, Popescu AS, Brown GC. The Phagocytic Code Regulating Phagocytosis of Mammalian Cells. Front Immunol 2021; 12:629979. [PMID: 34177884 PMCID: PMC8220072 DOI: 10.3389/fimmu.2021.629979] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Mammalian phagocytes can phagocytose (i.e. eat) other mammalian cells in the body if they display certain signals, and this phagocytosis plays fundamental roles in development, cell turnover, tissue homeostasis and disease prevention. To phagocytose the correct cells, phagocytes must discriminate which cells to eat using a 'phagocytic code' - a set of over 50 known phagocytic signals determining whether a cell is eaten or not - comprising find-me signals, eat-me signals, don't-eat-me signals and opsonins. Most opsonins require binding to eat-me signals - for example, the opsonins galectin-3, calreticulin and C1q bind asialoglycan eat-me signals on target cells - to induce phagocytosis. Some proteins act as 'self-opsonins', while others are 'negative opsonins' or 'phagocyte suppressants', inhibiting phagocytosis. We review known phagocytic signals here, both established and novel, and how they integrate to regulate phagocytosis of several mammalian targets - including excess cells in development, senescent and aged cells, infected cells, cancer cells, dead or dying cells, cell debris and neuronal synapses. Understanding the phagocytic code, and how it goes wrong, may enable novel therapies for multiple pathologies with too much or too little phagocytosis, such as: infectious disease, cancer, neurodegeneration, psychiatric disease, cardiovascular disease, ageing and auto-immune disease.
Collapse
Affiliation(s)
| | | | | | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Richardson IM, Calo CJ, Hind LE. Microphysiological Systems for Studying Cellular Crosstalk During the Neutrophil Response to Infection. Front Immunol 2021; 12:661537. [PMID: 33986752 PMCID: PMC8111168 DOI: 10.3389/fimmu.2021.661537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the primary responders to infection, rapidly migrating to sites of inflammation and clearing pathogens through a variety of antimicrobial functions. This response is controlled by a complex network of signals produced by vascular cells, tissue resident cells, other immune cells, and the pathogen itself. Despite significant efforts to understand how these signals are integrated into the neutrophil response, we still do not have a complete picture of the mechanisms regulating this process. This is in part due to the inherent disadvantages of the most-used experimental systems: in vitro systems lack the complexity of the tissue microenvironment and animal models do not accurately capture the human immune response. Advanced microfluidic devices incorporating relevant tissue architectures, cell-cell interactions, and live pathogen sources have been developed to overcome these challenges. In this review, we will discuss the in vitro models currently being used to study the neutrophil response to infection, specifically in the context of cell-cell interactions, and provide an overview of their findings. We will also provide recommendations for the future direction of the field and what important aspects of the infectious microenvironment are missing from the current models.
Collapse
Affiliation(s)
| | | | - Laurel E. Hind
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO, United States
| |
Collapse
|
7
|
I'm Infected, Eat Me! Innate Immunity Mediated by Live, Infected Cells Signaling To Be Phagocytosed. Infect Immun 2021; 89:IAI.00476-20. [PMID: 33558325 DOI: 10.1128/iai.00476-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Innate immunity against pathogens is known to be mediated by barriers to pathogen invasion, activation of complement, recruitment of immune cells, immune cell phagocytosis of pathogens, death of infected cells, and activation of the adaptive immunity via antigen presentation. Here, we propose and review evidence for a novel mode of innate immunity whereby live, infected host cells induce phagocytes to phagocytose the infected cell, thereby potentially reducing infection. We discuss evidence that host cells, infected by virus, bacteria, or other intracellular pathogens (i) release nucleotides and chemokines as find-me signals, (ii) expose on their surface phosphatidylserine and calreticulin as eat-me signals, (iii) release and bind opsonins to induce phagocytosis, and (iv) downregulate don't-eat-me signals CD47, major histocompatibility complex class I (MHC1), and sialic acid. As long as the pathogens of the host cell are destroyed within the phagocyte, then infection can be curtailed; if antigens from the pathogens are cross-presented by the phagocyte, then an adaptive response would also be induced. Phagocytosis of live infected cells may thereby mediate innate immunity.
Collapse
|
8
|
Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E, Maldonado-Bernal C. Neutrophils: Many Ways to Die. Front Immunol 2021; 12:631821. [PMID: 33746968 PMCID: PMC7969520 DOI: 10.3389/fimmu.2021.631821] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils or polymorphonuclear leukocytes (PMN) are key participants in the innate immune response for their ability to execute different effector functions. These cells express a vast array of membrane receptors that allow them to recognize and eliminate infectious agents effectively and respond appropriately to microenvironmental stimuli that regulate neutrophil functions, such as activation, migration, generation of reactive oxygen species, formation of neutrophil extracellular traps, and mediator secretion, among others. Currently, it has been realized that activated neutrophils can accomplish their effector functions and simultaneously activate mechanisms of cell death in response to different intracellular or extracellular factors. Although several studies have revealed similarities between the mechanisms of cell death of neutrophils and other cell types, neutrophils have distinctive properties, such as a high production of reactive oxygen species (ROS) and nitrogen species (RNS), that are important for their effector function in infections and pathologies such as cancer, autoimmune diseases, and immunodeficiencies, influencing their cell death mechanisms. The present work offers a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis, NETosis, and necrosis. This information allows to understand the duality encountered by PMNs upon activation. The effector functions are carried out to eliminate invading pathogens, but in several instances, these functions involve activation of signaling cascades that culminate in the death of the neutrophil. This process guarantees the correct elimination of pathogenic agents, damaged or senescent cells, and the timely resolution of the inflammation that is essential for the maintenance of homeostasis in the organism. In addition, they alert the organism when the immunological system is being deregulated, promoting the activation of other cells of the immune system, such as B and T lymphocytes, which produce cytokines that potentiate the microbicide functions.
Collapse
Affiliation(s)
- Erandi Pérez-Figueroa
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Pablo Álvarez-Carrasco
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Enrique Ortega
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Carmen Maldonado-Bernal
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
9
|
Zhang Y, Li H, Li X, Wu J, Xue T, Wu J, Shen H, Li X, Shen M, Chen G. TMEM16F Aggravates Neuronal Loss by Mediating Microglial Phagocytosis of Neurons in a Rat Experimental Cerebral Ischemia and Reperfusion Model. Front Immunol 2020; 11:1144. [PMID: 32733436 PMCID: PMC7359929 DOI: 10.3389/fimmu.2020.01144] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Cerebral ischemia is a severe, acute condition, normally caused by cerebrovascular disease, and results in high rates of disability, and death. Phagoptosis is a newly recognized form of cell death caused by phagocytosis of viable cells, and has been reported to contribute to neuronal loss in brain tissue after ischemic stroke. Previous data indicated that exposure of phosphatidylserine to viable neurons could induce microglial phagocytosis of such neurons. Phosphatidylserine can be reversibly exposed to viable cells as a result of a calcium-activated phospholipid scramblase named TMEM16F. TMEM16F-mediated phospholipid scrambling on platelet membranes is critical for hemostasis and thrombosis, which plays an important role in Scott syndrome and has been confirmed by much research. However, few studies have investigated the association between TMEM16F and phagocytosis in ischemic stroke. In this study, a middle-cerebral-artery occlusion/reperfusion (MCAO/R) model was used in adult male Sprague-Dawley rats in vivo, and cultured neurons were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate cerebral ischemia-reperfusion (I/R) injury in vitro. We found that the protein level of TMEM16F was significantly increased at 12 h after I-R injury both in vivo and in vitro, and reversible phosphatidylserine exposure was confirmed in neurons undergoing I/R injury in vitro. Additionally, we constructed a LV-TMEM16F-RNAi transfection system to suppress the expression of TMEM16F during and after cerebral ischemia. As a result, TMEM16F knockdown alleviated motor function injury and decreased the microglial phagocytosis of viable neurons in the penumbra through inhibiting the “eat-me” signal phosphatidylserine. Our data indicate that reducing neuronal phosphatidylserine-exposure via deficiency of TMEM16F blocks phagocytosis of neurons and rescues stressed-but-still-viable neurons in the penumbra, which may contribute to reducing infarct volume and improving functional recovering.
Collapse
Affiliation(s)
- Yijie Zhang
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Wu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Xue
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang Wu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meifen Shen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Frostegård J, Su J, Sing S, Hua X, Vikström M, Leander K, Gigante B, de Faire U, Frostegård AG. IgM antibodies to oxidized phosphatidylserine as protection markers in cardiovascular disease among 60-year olds. PLoS One 2017; 12:e0171195. [PMID: 28430795 PMCID: PMC5400230 DOI: 10.1371/journal.pone.0171195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 01/18/2017] [Indexed: 12/25/2022] Open
Abstract
Objective Phosphatidylserine is exposed on apoptotic cells and is prone to oxidation (OxPS). Here we analyze the association of IgM antibodies against OxPS (anti-OxPS) with the risk of cardiovascular disease (CVD). Methods Among sixty-year olds from Stockholm County in Sweden, previously screened for cardiovascular risk factors (2039 men, 2193 women), there were 210 incident CVD-cases identified during a 5-year follow-up. Using a nested case-control design, 622 age- and sex-matched controls were selected. Odds ratios (OR) with 95% intervals (CI) were calculated by conditional logistic regression. IgM anti-OxPS was measured by ELISA. Phagocytosis of apoptotic Jurkat-cells by macrophages was studied by flow cytometry. Results Anti-OxPS levels were lower among cases (median (interquartile range): 80.7 (60.9–101.0 vs. 84.6 (65.8–109.6); p = 0.047); among men (76.6 (55.8–99.2) vs. 82.0 (63.1–105.1); p = 0.022) and among women 89.6 (72.3–110.1) vs. 89.8 (69.9–114.4); p = 0.79). After adjustment for smoking, BMI, diabetes mellitus type II, hypercholesterolaemia and hypertension, and dividing into quartiles, using the highest quartile (quartile 4) as reference, quartile 3 was associated with a OR of 1.74 (CI 1.08–2.81). Quartiles 2 and 1 had similar associations, the later reaching statistical significance. Among men associations were stronger whereas no significant associations were observed in women. The OR of MI/angina comparing quartile 3 with quartile 4 was 2.31 (CI 1.30–4.11). The OR for quartile 2 and 1, respectively, were similar as for quartile 3. Total IgM increased uptake of apoptotic cells, which was reversed if incubated with OxPS. Conclusions IgM anti-OxPS is a novel potential protection marker for CVD, in particular in men. Increased phagocytosis of dying/dead cells could be one potential underlying mechanism.
Collapse
Affiliation(s)
- Johan Frostegård
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Emergency Medicine, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| | - Jun Su
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sudhir Sing
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiang Hua
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Max Vikström
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bruna Gigante
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiovascular Clinical Science, Danderyds Hospital, Stockholm Sweden
| | - Ulf de Faire
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Solna, Sweden
| | - Anna G. Frostegård
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Klöditz K, Chen YZ, Xue D, Fadeel B. Programmed cell clearance: From nematodes to humans. Biochem Biophys Res Commun 2016; 482:491-497. [PMID: 27919685 DOI: 10.1016/j.bbrc.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 11/30/2022]
Abstract
Programmed cell clearance is a highly regulated physiological process of elimination of dying cells that occurs rapidly and efficiently in healthy organisms. It thus ensures proper development as well as homeostasis. Recent studies have disclosed a considerable degree of conservation of cell clearance pathways between nematodes and higher organisms. The externalization of the anionic phospholipid phosphatidylserine (PS) has emerged as an important "eat-me" signal for phagocytes and its exposition on apoptotic cells is controlled by phospholipid translocases and scramblases. However, there is mounting evidence that PS exposure occurs not only in apoptosis, but may also be actively expressed on the surface of cells undergoing other forms of cell death including necrosis; PS is also expressed on the surface of engulfing cells. Additionally, PS may act as a "save-me" signal during axonal regeneration. Here we discuss mechanisms of PS exposure and its recognition by phagocytes as well as the consequences of PS signaling in nematodes and in mammals.
Collapse
Affiliation(s)
- Katharina Klöditz
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Yu-Zen Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Ding Xue
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
12
|
Fang J, Chen X, Wang S, Xie T, Du X, Liu H, Wang S, Li X, Chen J, Zhang B, Liang H, Yang Y, Zhang W. The expression of P2X₇ receptors in EPCs and their potential role in the targeting of EPCs to brain gliomas. Cancer Biol Ther 2015; 16:498-510. [PMID: 25839324 DOI: 10.1080/15384047.2015.1016663] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In order to use endothelial progenitor cells (EPCs) as a therapeutic and imaging probe to overcome antiangiogenic resistance for gliomas, how to enhance proliferation and targeting ability of transplanted EPCs is a high priority. Here, we confirmed, for the first time, the expression of P2X7 receptors in rat spleen-derived EPCs. Activation of P2X7 receptors in EPCs by BzATP promoted cells proliferation and migration, rather than apoptosis. In vivo, the homing of transplanted EPCs after long-term suppression of P2X7 receptors by persistent BBG stimulation was evaluated by MRI, immunohistochemistry and flow cytometry. Compared to the group without BBG treatment, less transplanted EPCs homed to gliomas in the group with BBG treatment, especially integrated into the vessels containing tumor-derived endothelial cells in gliomas. Moreover, western blot showed that CXCL1 expression was downregulated in gliomas with BBG treatment, which meant P2X7 receptors suppression inhibited the homing of EPCs to gliomas through down-regulation of CXCLl expression. Further, effects of P2X7 receptors on C6 glioma cells or gliomas were evaluated at the same dose of BzATP or BBG used in EPCs experiments in vitro and in vivo. MTT assay and MRI revealed that P2X7 receptors exerted no significant promoting effect on C6 glioma cells proliferation, gliomas growth and angiogenesis. Taken together, our findings imply the possibility of promoting proliferation and targeting ability of transplanted EPCs to brain gliomas in vivo through P2X7 receptors, which may provide new perspectives on application of EPCs as a therapeutic and imaging probe to overcome antiangiogenic resistance for gliomas.
Collapse
Affiliation(s)
- Jingqin Fang
- a Department of Radiology; Institute of Surgery Research; Daping Hospital; Third Military Medical University ; Chongqing , China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Frostegård AG, Su J, Hua X, Vikström M, de Faire U, Frostegård J. Antibodies against native and oxidized cardiolipin and phosphatidylserine and phosphorylcholine in atherosclerosis development. PLoS One 2014; 9:e111764. [PMID: 25473948 PMCID: PMC4256296 DOI: 10.1371/journal.pone.0111764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/01/2014] [Indexed: 12/15/2022] Open
Abstract
Background Antibodies against cardiolipin and phosphatidylserine (anti-CL and anti-PS) are associated with thrombosis. In contrast, we determined that IgM antibodies against oxidized CL and PS (OxCL and OxPS) and phosphorylcholine (anti-PC) could be protection markers for cardiovascular disease (CVD). Methods 226 individuals with established hypertension (diastolic pressure>95 mmHg) from the European Lacidipine Study on Atherosclerosis. Antibodies were tested by ELISA. As a surrogate measure of atherosclerosis, the mean of the maximum intima-media thicknesses (IMT) in the far walls of common carotids and bifurcations was determined by ultrasonography at the time of inclusion and 4 years following inclusion. Results Increases in IMT measures at follow-up were significantly less common in subjects which at baseline had high IgM anti-OxPS and anti-PC at above 75th percentile: OR 0,45, CI (0,23–0,86) and OR 0.37, CI (0,19–0,71), p = 0.0137 respectively and above 90th percentile: OR 0.32, CI (0,12–0,84) and OR 0.39, CI (0,15–1.00), p = 0.050 and OR 0,22, CI (0,08–0,59) p = 0,0029. IgM anti-OxCL was negatively associated with IMT increases (OR, 0.32, CI (0,12–0,84), p = 0231). There were no associations for IgM anti-PS or anti-CL. Anti-PC, as determined herein by a commercial ELISA, was strongly associated with data from our previously published in house ELISA (R = 0,87; p<0,0001).) Anti-PC was also a risk marker at low levels (below 25th percentile; OR = 2,37 (1,16–4,82), p = 0,0177). Conclusions High levels of IgM anti-OxPS and anti-OxCL, but not traditional anti-phospholipid antibodies (anti-PS and anti-CL), are associated with protection against atherosclerosis development. In addition, low IgM anti-PC was a risk marker but high a protection marker.
Collapse
Affiliation(s)
- Anna G. Frostegård
- Institute of Environmental Medicine, Unit of Immunology and Chronic Disease, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Jun Su
- Institute of Environmental Medicine, Unit of Immunology and Chronic Disease, Karolinska Institutet, Stockholm, Sweden
| | - Xiang Hua
- Institute of Environmental Medicine, Unit of Immunology and Chronic Disease, Karolinska Institutet, Stockholm, Sweden
| | - Max Vikström
- Institute of Environmental Medicine, Unit of Cardiovascular Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Ulf de Faire
- Institute of Environmental Medicine, Unit of Cardiovascular Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Frostegård
- Institute of Environmental Medicine, Unit of Immunology and Chronic Disease, Karolinska Institutet, Stockholm, Sweden
- Department of Acute Internal Medicine, Huddinge, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Heger M, van Golen RF, Broekgaarden M, van den Bos RR, Neumann HAM, van Gulik TM, van Gemert MJC. Endovascular laser–tissue interactions and biological responses in relation to endovenous laser therapy. Lasers Med Sci 2013; 29:405-22. [DOI: 10.1007/s10103-013-1490-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/03/2013] [Indexed: 01/11/2023]
|
15
|
Abstract
Delayed neuronal loss and brain atrophy after cerebral ischemia contribute to stroke and dementia pathology, but the mechanisms are poorly understood. Phagocytic removal of neurons is generally assumed to be beneficial and to occur only after neuronal death. However, we report herein that inhibition of phagocytosis can prevent delayed loss and death of functional neurons after transient brain ischemia. Two phagocytic proteins, Mer receptor tyrosine kinase (MerTK) and Milk fat globule EGF-like factor 8 (MFG-E8), were transiently up-regulated by macrophages/microglia after focal brain ischemia in vivo. Strikingly, deficiency in either protein completely prevented long-term functional motor deficits after cerebral ischemia and strongly reduced brain atrophy as a result of inhibiting phagocytosis of neurons. Correspondingly, in vitro glutamate-stressed neurons reversibly exposed the "eat-me" signal phosphatidylserine, leading to their phagocytosis by microglia; this neuronal loss was prevented in the absence of microglia and reduced if microglia were genetically deficient in MerTK or MFG-E8, both of which mediate phosphatidylserine-recognition. Thus, phagocytosis of viable neurons contributes to brain pathology and, surprisingly, blocking this process is strongly beneficial. Therefore, inhibition of specific phagocytic pathways may present therapeutic targets for preventing delayed neuronal loss after transient cerebral ischemia.
Collapse
|
16
|
Su J, Frostegård AG, Hua X, Gustafsson T, Jogestrand T, Hafström I, Frostegård J. Low Levels of Antibodies Against Oxidized but not Nonoxidized Cardiolipin and Phosphatidylserine Are Associated with Atherosclerotic Plaques in Systemic Lupus Erythematosus. J Rheumatol 2013; 40:1856-64. [DOI: 10.3899/jrheum.121173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objective.We have reported that the prevalence of atherosclerotic plaques and their echolucency was increased in systemic lupus erythematosus (SLE). We here study antibodies against oxidized cardiolipin (anti-OxCL) and phosphatidylserine (anti-OxPS) in SLE and in relation to atherosclerosis measures.Methods.Patients with SLE (n = 114) were compared with age- and sex-matched population-based controls (n = 122). Common carotid intima-media thickness and plaque occurrence were determined by B-mode ultrasonography. Plaques were graded according to echogenicity as 1–4, with 1 being echolucent. Antibodies were determined by ELISA.Results.In the SLE group, the prevalence of low IgM anti-OxPS and low total IgM levels (below 33rd percentile) was increased compared to controls (p = 0.045 and p = 0.0079, respectively). Among SLE patients with atherosclerotic plaques, the prevalence of low IgM anti-OxPS (p = 0.0019) and anti-OxCL (p = 0.031) was increased. Only IgM anti-OxPS remained significant (p = 0.019) after adjusting for other significant factors. Echolucent plaques (total, or left side) were more prevalent among SLE patients with low IgM anti-OxCL and anti-OxPS when controlled for other significant factors (p < 0.05). Low total IgM was independently associated with echolucent plaque on left side (p < 0.05), but not other atherosclerosis measures. IgM anticardiolipin antibodies (aCL) and antiphosphatidylserine antibodies (anti-PS) were higher among SLE patients with cardiopulmonary disease, including arterial, valvular, and venous disease (p < 0.05). There were no associations between antibodies and other disease manifestations or activity. Both anti-OxCL and anti-OxPS, in contrast to aCL, and anti-PS, were cofactor−β2-glycoprotein I (β2-GPI)-independent.Conclusion.The prevalence of low levels of IgM anti-OxCL and anti-OxPS (both cofactor-β2-GPI-independent) is associated with the presence of plaques and echolucent plaques in SLE.
Collapse
|
17
|
Kumar S, Acharya A. Chelerythrine induces reactive oxygen species-dependent mitochondrial apoptotic pathway in a murine T cell lymphoma. Tumour Biol 2013; 35:129-40. [PMID: 23900672 DOI: 10.1007/s13277-013-1016-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/11/2013] [Indexed: 01/01/2023] Open
Abstract
Chelerythrine is a well-known protein kinase C inhibitor and potential antiproliferative and antitumor pharmacological agent. Chelerythrine inhibits/suppresses the HSF1 phosphorylation by inhibiting PKC and blocks the nuclear migration and subsequent synthesis of hsp70 leading to reduced cell viability and activation of apoptotic machinery. Chelerythrine is also known to enhance the production of reactive oxygen intermediate that is strong activator of apoptosis in high concentration. Therefore, the present study intended to investigate the role of chelerythrine-induced reactive oxygen intermediate on the viability and apoptosis of Dalton's lymphoma cells. Enhanced production of reactive oxygen species in Dalton's lymphoma (DL) cells was observed upon treatment of chelerythrine only which was seen completely abolished on treatment of mitochondrial complex inhibitors rotenone and malonate, and anti-oxidant, N-acetyl-L-cysteine. Increased number of DL cells undergoing apoptosis, as observed by fluorescent microscopy and flow cytometry analysis, in chelerythrine only-treated group was seen that was significantly inhibited on treatment of mitochondrial complex inhibitors and anti-oxidants. Staurosporine, on the other hand, does not lead to enhanced production of reactive oxygen intermediate in DL cells.
Collapse
Affiliation(s)
- Sanjay Kumar
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi, 221-005, UP, India
| | | |
Collapse
|
18
|
ó Hartaigh B, Bosch JA, Thomas GN, Lord JM, Pilz S, Loerbroks A, Kleber ME, Grammer TB, Fischer JE, Boehm BO, März W. Which leukocyte subsets predict cardiovascular mortality? From the LUdwigshafen RIsk and Cardiovascular Health (LURIC) Study. Atherosclerosis 2012; 224:161-9. [DOI: 10.1016/j.atherosclerosis.2012.04.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 01/13/2023]
|
19
|
Fricker M, Oliva-Martín MJ, Brown GC. Primary phagocytosis of viable neurons by microglia activated with LPS or Aβ is dependent on calreticulin/LRP phagocytic signalling. J Neuroinflammation 2012; 9:196. [PMID: 22889139 PMCID: PMC3481398 DOI: 10.1186/1742-2094-9-196] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/11/2012] [Indexed: 01/07/2023] Open
Abstract
Background Microglia are resident brain macrophages that can phagocytose dead, dying or viable neurons, which may be beneficial or detrimental in inflammatory, ischaemic and neurodegenerative brain pathologies. Cell death caused by phagocytosis of an otherwise viable cell is called ‘primary phagocytosis’ or ‘phagoptosis’. Calreticulin (CRT) exposure on the surface of cancer cells can promote their phagocytosis via LRP (low-density lipoprotein receptor-related protein) on macrophages, but it is not known whether this occurs with neurons and microglia. Methods We used primary cultures of cerebellar neurons, astrocytes and microglia to investigate the potential role of CRT/LRP phagocytic signalling in the phagocytosis of viable neurons by microglia stimulated with lipopolysaccharide (LPS) or nanomolar concentrations of amyloid-β peptide1-42 (Aβ). Exposure of CRT on the neuronal surface was investigated using surface biotinylation and western blotting. A phagocytosis assay was also developed using BV2 and PC12 cell lines to investigate CRT/LRP signalling in microglial phagocytosis of apoptotic cells. Results We found that BV2 microglia readily phagocytosed apoptotic PC12 cells, but this was inhibited by a CRT-blocking antibody or LRP-blocking protein (receptor-associated protein: RAP). Activation of primary rat microglia with LPS or Aβ resulted in loss of co-cultured cerebellar granule neurons, and this was blocked by RAP or antibodies against CRT or against LRP, preventing all neuronal loss and death. CRT was present on the surface of viable neurons, and this exposure did not change in inflammatory conditions. CRT antibodies prevented microglia-induced neuronal loss when added to neurons, while LRP antibodies prevented neuronal loss when added to the microglia. Pre-binding of CRT to neurons promoted neuronal loss if activated microglia were added, but pre-binding of CRT to microglia or both cell types prevented microglia-induced neuronal loss. Conclusions CRT exposure on the surface of viable or apoptotic neurons appears to be required for their phagocytosis via LRP receptors on activated microglia, but free CRT can block microglial phagocytosis of neurons by acting on microglia. Phagocytosis of CRT-exposing neurons by microglia can be a direct cause of neuronal death during inflammation, and might therefore contribute to neurodegeneration and be prevented by blocking the CRT/LRP pathway.
Collapse
Affiliation(s)
- Michael Fricker
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | | | | |
Collapse
|
20
|
Brown GC, Neher JJ. Eaten alive! Cell death by primary phagocytosis: 'phagoptosis'. Trends Biochem Sci 2012; 37:325-32. [PMID: 22682109 DOI: 10.1016/j.tibs.2012.05.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/06/2012] [Accepted: 05/10/2012] [Indexed: 12/21/2022]
Abstract
Phagoptosis, also called primary phagocytosis, is a recently recognised form of cell death caused by phagocytosis of viable cells, resulting in their destruction. It is provoked by exposure of 'eat-me' signals and/or loss of 'don't-eat-me' signals by viable cells, causing their phagocytosis by phagocytes. Phagoptosis mediates turnover of erythrocytes, neutrophils and other cells, and thus is quantitatively one of the main forms of cell death in the body. It defends against pathogens and regulates inflammation and immunity. However, recent results indicate that inflamed microglia eat viable brain neurons in models of neurodegeneration, and cancer cells can evade phagocytosis by expressing a 'don't-eat-me' signal, suggesting that too much or too little phagoptosis can contribute to pathology. This review provides an overview of the molecular signals that regulate phagoptosis and the physiological and pathological circumstances in which it has been observed.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | | |
Collapse
|
21
|
Neher JJ, Neniskyte U, Brown GC. Primary phagocytosis of neurons by inflamed microglia: potential roles in neurodegeneration. Front Pharmacol 2012; 3:27. [PMID: 22403545 PMCID: PMC3288722 DOI: 10.3389/fphar.2012.00027] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/12/2012] [Indexed: 12/19/2022] Open
Abstract
Microglial phagocytosis of dead or dying neurons can be beneficial by preventing the release of damaging and/or pro-inflammatory intracellular components. However, there is now evidence that under certain conditions, such as inflammation, microglia can also phagocytose viable neurons, thus executing their death. Such phagocytic cell death may result from exposure of phosphatidylserine (PS) or other eat-me signals on otherwise viable neurons as a result of physiological activation or sub-toxic insult, and neuronal phagocytosis by activated microglia. In this review, we discuss the mechanisms of phagocytic cell death and its potential roles in Alzheimer’s Disease, Parkinson’s Disease, and Frontotemporal Dementia.
Collapse
Affiliation(s)
- Jonas J Neher
- Department of Biochemistry, University of Cambridge Cambridge, UK
| | | | | |
Collapse
|
22
|
Fricker M, Neher JJ, Zhao JW, Théry C, Tolkovsky AM, Brown GC. MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J Neurosci 2012; 32:2657-66. [PMID: 22357850 PMCID: PMC3312099 DOI: 10.1523/jneurosci.4837-11.2012] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/21/2011] [Accepted: 01/05/2012] [Indexed: 12/20/2022] Open
Abstract
Milk-fat globule EGF factor-8 (MFG-E8, SED1, lactadherin) is known to mediate the phagocytic removal of apoptotic cells by bridging phosphatidylserine (PS)-exposing cells and the vitronectin receptor (VR) on phagocytes. However, we show here that MFG-E8 can mediate phagocytosis of viable neurons during neuroinflammation induced by lipopolysaccharide (LPS), thereby causing neuronal death. In vitro, inflammatory neuronal loss is independent of apoptotic pathways, and is inhibited by blocking the PS/MFG-E8/VR pathway (by adding PS blocking antibodies, annexin V, mutant MFG-E8 unable to bind VR, or VR antagonist). Neuronal loss is absent in Mfge8 knock-out cultures, but restored by adding recombinant MFG-E8, without affecting inflammation. In vivo, LPS-induced neuronal loss is reduced in the striatum of Mfge8 knock-out mice or by coinjection of an MFG-E8 receptor (VR) inhibitor into the rat striatum. Our data show that blocking MFG-E8-dependent phagocytosis preserves live neurons, implying that phagocytosis actively contributes to neuronal death during brain inflammation.
Collapse
Affiliation(s)
- Michael Fricker
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Jonas J. Neher
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Jing-Wei Zhao
- Cambridge Centre for Brain Repair, University of Cambridge, Cambridge CB2 OPY, United Kingdom, and
| | | | - Aviva M. Tolkovsky
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Cambridge Centre for Brain Repair, University of Cambridge, Cambridge CB2 OPY, United Kingdom, and
| | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
23
|
Dalli J, Jones CP, Cavalcanti DM, Farsky SH, Perretti M, Rankin SM. Annexin A1 regulates neutrophil clearance by macrophages in the mouse bone marrow. FASEB J 2011; 26:387-96. [PMID: 21957127 PMCID: PMC3250241 DOI: 10.1096/fj.11-182089] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Under homeostatic conditions, a proportion of senescent CXCR4(hi) neutrophils home from the circulation back to the bone marrow, where they are phagocytosed by bone marrow macrophages. In this study, we have identified an unexpected role for the anti-inflammatory molecule annexin A1 (AnxA1) as a critical regulator of this process. We first observed that AnxA1(-/-) mice have significantly increased neutrophil numbers in their bone marrow while having normal levels of GM and G colony-forming units, monocytes, and macrophages. Although AnxA1(-/-) mice have more neutrophils in the bone marrow, a greater proportion of these cells are senescent, as determined by their higher levels of CXCR4 expression and annexin V binding. Consequently, bone marrow neutrophils from AnxA1(-/-) mice exhibit a reduced migratory capacity in vitro. Studies conducted in vitro also show that expression of AnxA1 is required for bone marrow macrophages, but not peritoneal macrophages, to phagocytose apoptotic neutrophils. Moreover, in vivo experiments indicate a defect in clearance of wild-type neutrophils in the bone marrow of AnxA1(-/-) mice. Thus, we conclude that expression of AnxA1 by resident macrophages is a critical determinant for neutrophil clearance in the bone marrow.
Collapse
Affiliation(s)
- Jesmond Dalli
- The William Harvey Research Institute, Barts and The London School of Medicine, London, UK
| | | | | | | | | | | |
Collapse
|
24
|
Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C, Grant AV, Marchal CC, Hubeau M, Chapgier A, de Beaucoudrey L, Puel A, Feinberg J, Valinetz E, Jannière L, Besse C, Boland A, Brisseau JM, Blanche S, Lortholary O, Fieschi C, Emile JF, Boisson-Dupuis S, Al-Muhsen S, Woda B, Newburger PE, Condino-Neto A, Dinauer MC, Abel L, Casanova JL. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol 2011; 12:213-21. [PMID: 21278736 PMCID: PMC3097900 DOI: 10.1038/ni.1992] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 12/31/2010] [Indexed: 12/31/2022]
Abstract
Germline mutations in CYBB, the human gene encoding the gp91(phox) subunit of the phagocyte NADPH oxidase, impair the respiratory burst of all types of phagocytes and result in X-linked chronic granulomatous disease (CGD). We report here two kindreds in which otherwise healthy male adults developed X-linked recessive Mendelian susceptibility to mycobacterial disease (MSMD) syndromes. These patients had previously unknown mutations in CYBB that resulted in an impaired respiratory burst in monocyte-derived macrophages but not in monocytes or granulocytes. The macrophage-specific functional consequences of the germline mutation resulted from cell-specific impairment in the assembly of the NADPH oxidase. This 'experiment of nature' indicates that CYBB is associated with MSMD and demonstrates that the respiratory burst in human macrophages is a crucial mechanism for protective immunity to tuberculous mycobacteria.
Collapse
Affiliation(s)
- Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, U980, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Oxygenated heme proteins are known to react rapidly with nitric oxide (NO) to produce peroxynitrite (PN) at the heme site. This process could lead either to attenuation of the effects of NO or to nitrosative protein damage. PN is a powerful nitrating and oxidizing agent that has been implicated in a variety of cell injuries. Accordingly, it is important to delineate the nature and variety of reaction mechanisms of PN interactions with heme proteins. In this Forum, we survey the range of reactions of PN with heme proteins, with particular attention to myoglobin and cytochrome c. While these two proteins are textbook paradigms for oxygen binding and electron transfer, respectively, both have recently been shown to have other important functions that involve NO and PN. We have recently described direct evidence that ferrylmyolgobin (ferrylMb) and nitrogen dioxide (NO(2)) are both produced during the reaction of PN and metmyolgobin (metMb) (Su, J.; Groves, J. T. J. Am. Chem. Soc. 2009, 131, 12979-12988). Kinetic evidence indicates that these products evolve from the initial formation of a caged radical intermediate [Fe(IV) horizontal lineO.NO(2)]. This caged pair reacts mainly via internal return with a rate constant k(r) to form metMb and nitrate in an oxygen-rebound scenario. Detectable amounts of ferrylMb are observed by stopped-flow spectrophotometry, appearing at a rate consistent with the rate, k(obs), of heme-mediated PN decomposition. Freely diffusing NO(2), which is liberated concomitantly from the radical pair (k(e)), preferentially nitrates myoglobin Tyr103 and added fluorescein. For cytochrome c, Raman spectroscopy has revealed that a substantial fraction of cytochrome c converts to a beta-sheet structure, at the expense of turns and helices at low pH (Balakrishnan, G.; Hu, Y.; Oyerinde, O. F.; Su, J.; Groves, J. T.; Spiro, T. G. J. Am. Chem. Soc., 2007, 129, 504-505). It is proposed that a short beta-sheet segment, comprising residues 37-39 and 58-61, extends itself into the large 37-61 loop when the latter is destabilized by protonation of H26, which forms an anchoring hydrogen bond to loop residue P44. This conformation change ruptures the Met80-Fe bond, as revealed by changes in ligation-sensitive Raman bands. It also induces peroxidase activity with the same temperature profile. This process is suggested to model the apoptotic peroxidation of cardiolipin by cytochrome c.
Collapse
Affiliation(s)
- Jia Su
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
26
|
Fadeel B, Xue D, Kagan V. Programmed cell clearance: molecular regulation of the elimination of apoptotic cell corpses and its role in the resolution of inflammation. Biochem Biophys Res Commun 2010; 396:7-10. [PMID: 20494102 PMCID: PMC2876096 DOI: 10.1016/j.bbrc.2010.02.106] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 02/13/2010] [Indexed: 12/18/2022]
Abstract
Programmed cell clearance is a physiological process of elimination of apoptotic cell corpses. Recent studies have disclosed several ligand-receptor interactions that dictate the recognition or non-recognition of cells by macrophages and other phagocytes. The externalization of the anionic phospholipid, phosphatidylserine is effectively recognized by specific receptors on professional phagocytes and facilitates the clearance of apoptotic cells. Macrophage disposal of cells at sites of inflammation is believed to play an important role in the resolution of the inflammatory process, and recent studies have suggested a role for the NADPH oxidase in the process of macrophage elimination of activated neutrophils. The present review will focus on the molecular regulation of programmed cell clearance, and discuss the role of cell elimination in the resolution of inflammation.
Collapse
Affiliation(s)
- Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
27
|
Afa/Dr-expressing, diffusely adhering Escherichia coli strain C1845 triggers F1845 fimbria-dependent phosphatidylserine externalization on neutrophil-like differentiated PLB-985 cells through an apoptosis-independent mechanism. Infect Immun 2010; 78:2974-83. [PMID: 20404079 DOI: 10.1128/iai.01354-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The enterovirulent Escherichia coli strains potentially involved in inflammatory bowel diseases include diffusely adherent strains expressing Afa/Dr fimbriae (Afa/Dr DAEC). We have previously observed type 1 pilus-mediated interleukin-8 (IL-8) hyperproduction in infected neutrophils. As pathogen induction of host cell death programs and clearance of apoptotic infected cells are crucial for innate immune system homeostasis and host integrity, we examined modulation of neutrophil cell death by Afa/Dr DAEC. Using the human PLB-985 cell line differentiated into fully mature neutrophils, we found that the wild-type enterovirulent E. coli strain C1845 and the recombinant strain DH5alpha/pF1845 (expressing the fimbrial adhesin F1845) similarly induced time-dependent phosphatidylserine (PS) externalization, suggesting a major specific role of this virulence factor. Using small interfering RNA (siRNA) decay-accelerating factor (DAF)-transfected PLB-985 cells, we then showed that this PS externalization was triggered in part by glycosylphosphatidylinositol (GPI)-anchored DAF receptor engagement (leading to tyrosine kinase and protein kinase C activation) and that it required cytoskeleton and lipid raft architectural integrity. PS externalization under these conditions was not dependent on caspases, mitochondria, lysosomes, or reactive oxygen or nitrogen species. F1845-mediated PS externalization was sufficient to enable macrophage engulfment of infected differentiated PLB-985 cells. These findings provide new insights into the neutrophil response to Afa/Dr DAEC infection and highlight a new role for F1845 fimbriae. Interestingly, although apoptosis pathways were not engaged, C1845-infected PLB-985 cells displayed enhanced removal by macrophages, a process that may participate in the resolution of Afa/Dr DAEC infection and related inflammation.
Collapse
|
28
|
Fadeel B, Xue D. The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit Rev Biochem Mol Biol 2009; 44:264-77. [PMID: 19780638 DOI: 10.1080/10409230903193307] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A common feature of all eukaryotic membranes is the non-random distribution of different lipid species in the lipid bilayer (lipid asymmetry). Lipid asymmetry provides the two sides of the plasma membrane with different biophysical properties and influences numerous cellular functions. Alteration of lipid asymmetry plays a prominent role during cell fusion, activation of the coagulation cascade, and recognition and removal of apoptotic cell corpses by macrophages (programmed cell clearance). Here we discuss the origin and maintenance of phospholipid asymmetry, based on recent studies in mammalian systems as well as in Caenhorhabditis elegans and other model organisms, along with emerging evidence for a conserved role of mitochondria in the loss of lipid asymmetry during apoptosis. The functional significance of lipid asymmetry and its disruption during health and disease is also discussed.
Collapse
Affiliation(s)
- Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|