1
|
Denaro F, Benedetti F, Worthington MD, Scapagnini G, Krauss CC, Williams S, Bryant J, Davis H, Latinovic OS, Zella D. The HIV-1 Transgenic Rat: Relevance for HIV Noninfectious Comorbidity Research. Microorganisms 2020; 8:microorganisms8111643. [PMID: 33114165 PMCID: PMC7690772 DOI: 10.3390/microorganisms8111643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
HIV noninfectious comorbidities (NICMs) are a current healthcare challenge. The situation is further complicated as there are very few effective models that can be used for NICM research. Previous research has supported the use of the HIV-1 transgenic rat (HIV-1TGR) as a model for the study of HIV/AIDS. However, additional studies are needed to confirm whether this model has features that would support NICM research. A demonstration of the utility of the HIV-1TGR model would be to show that the HIV-1TGR has cellular receptors able to bind HIV proteins, as this would be relevant for the study of cell-specific tissue pathology. In fact, an increased frequency of HIV receptors on a specific cell type may increase tissue vulnerability since binding to HIV proteins would eventually result in cell dysfunction and death. Evidence suggests that observations of selective cellular vulnerability in this model are consistent with some specific tissue vulnerabilities seen in NICMs. We identified CXCR4-expressing cells in the brain, while specific markers for neuronal degeneration demonstrated that the same neural types were dying. We also confirm the presence of gp120 and Tat by immunocytochemistry in the spleen, as previously reported. However, we observed very rare positive cells in the brain. This underscores the point that gp120, which has been reported as detected in the sera and CSF, is a likely source to which these CXCR4-positive cells are exposed. This alternative appears more probable than the local production of gp120. Further studies may indicate some level of local production, but that will not eliminate the role of receptor-mediated pathology. The binding of gp120 to the CXCR4 receptor on neurons and other neural cell types in the HIV-1TGR can thus explain the phenomena of selective cell death. Selective cellular vulnerability may be a contributing factor to the development of NICMs. Our data indicate that the HIV-1TGR can be an effective model for the studies of HIV NICMs because of the difference in the regional expression of CXCR4 in rat tissues, thus leading to specific organ pathology. This also suggests that the model can be used in the development of therapeutic options.
Collapse
Affiliation(s)
- Frank Denaro
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (F.D.); (M.D.W.); (C.C.K.); (S.W.)
| | - Francesca Benedetti
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (F.B.); (J.B.); (H.D.); (O.S.L.)
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD 21201, USA
| | - Myla D. Worthington
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (F.D.); (M.D.W.); (C.C.K.); (S.W.)
| | - Giovanni Scapagnini
- Department of Medicine and Health Science, University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy;
| | - Christopher C. Krauss
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (F.D.); (M.D.W.); (C.C.K.); (S.W.)
| | - Sumiko Williams
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (F.D.); (M.D.W.); (C.C.K.); (S.W.)
- Institute of Human Virology-Animal Core Division, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Joseph Bryant
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (F.B.); (J.B.); (H.D.); (O.S.L.)
- Institute of Human Virology-Animal Core Division, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Harry Davis
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (F.B.); (J.B.); (H.D.); (O.S.L.)
- Institute of Human Virology-Animal Core Division, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Olga S. Latinovic
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (F.B.); (J.B.); (H.D.); (O.S.L.)
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | - Davide Zella
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (F.B.); (J.B.); (H.D.); (O.S.L.)
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
2
|
Infection of pulmonary epithelial cells by clinical strains of M. tuberculosis induces alternate splicing events. Gene 2020; 750:144755. [PMID: 32380040 DOI: 10.1016/j.gene.2020.144755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/21/2022]
|
3
|
Borrajo A, Ranazzi A, Pollicita M, Bellocchi MC, Salpini R, Mauro MV, Ceccherini-Silberstein F, Perno CF, Svicher V, Aquaro S. Different Patterns of HIV-1 Replication in MACROPHAGES is Led by Co-Receptor Usage. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E297. [PMID: 31234437 PMCID: PMC6630780 DOI: 10.3390/medicina55060297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Background and objectives: To enter the target cell, HIV-1 binds not only CD4 but also a co-receptor β-chemokine receptor 5 (CCR5) or α chemokine receptor 4 (CXCR4). Limited information is available on the impact of co-receptor usage on HIV-1 replication in monocyte-derived macrophages (MDM) and on the homeostasis of this important cellular reservoir. Materials and Methods: Replication (measured by p24 production) of the CCR5-tropic 81A strain increased up to 10 days post-infection and then reached a plateau. Conversely, the replication of the CXCR4-tropic NL4.3 strain (after an initial increase up to day 7) underwent a drastic decrease becoming almost undetectable after 10 days post-infection. The ability of CCR5-tropic and CXCR4-tropic strains to induce cell death in MDM was then evaluated. While for CCR5-tropic 81A the rate of apoptosis in MDM was comparable to uninfected MDM, the infection of CXCR4-tropic NL4.3 in MDM was associated with a rate of 14.3% of apoptotic cells at day 6 reaching a peak of 43.5% at day 10 post-infection. Results: This suggests that the decrease in CXCR4-tropic strain replication in MDM can be due to their ability to induce cell death in MDM. The increase in apoptosis was paralleled with a 2-fold increase in the phosphorylated form of p38 compared to WT. Furthermore, microarray analysis showed modulation of proapoptotic and cancer-related genes induced by CXCR4-tropic strains starting from 24 h after infection, whereas CCR5 viruses modulated the expression of genes not correlated with apoptotic-pathways. Conclusions: In conclusion, CXCR4-tropic strains can induce a remarkable depletion of MDM. Conversely, MDM can represent an important cellular reservoir for CCR5-tropic strains supporting the role of CCR5-usage in HIV-1 pathogenesis and as a pharmacological target to contribute to an HIV-1 cure.
Collapse
Affiliation(s)
- Ana Borrajo
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
- Group of Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur)-Complexo Hospitalario Universitario de Vigo, SERGAS-UVigo, 36312 Vigo, Spain.
| | - Alessandro Ranazzi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Michela Pollicita
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Maria Concetta Bellocchi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Romina Salpini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Maria Vittoria Mauro
- Department of Microbiology and Virology, Complex Operative Unit (UOC), Hospital of Cosenza, 87100 Cosenza, Italy.
| | | | - Carlo Federico Perno
- Department of Microbiology and Clinic Microbiology, University of Milan, 20162 Milan, Italy.
| | - Valentina Svicher
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
4
|
Abstract
The oral epithelium is the site of first exposure of HIV-1 to host tissues during oral sex with an infected partner or through breast-feeding by an infected mother. Although the oral epithelium is distinguishable by its apparent resistance, the mucosal surfaces represent a primary target of HIV-1. After oral exposure and swallowing, infection is detected prominently in the gastrointestinal tract, which becomes depleted of CD4+ T-cells. The oral cavity and palatine tonsils appear to resist infection and transfer to susceptible lymphoid cells in the lamina propria by local anti-HIV-1 mechanisms. In some cases, expression of these antiviral mechanisms increases after exposure to HIV-1. During primary exposure and before seroconversion, based on limited in vitro and primate data, a window of opportunity for capture of HIV-1 by the oral epithelium may exist. After seroconversion, the risk of infectious HIV-1 appearing in saliva is negligible. This report considers evidence that oral epithelium has the potential both to enable and to resist infection by HIV-1.
Collapse
Affiliation(s)
- M C Herzberg
- Department of Diagnostic and Biological Sciences and the Mucosal and Vaccine Research Center, University of Minnesota, 17-164 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
5
|
Shi J, Ren C, Liu H, Wang L, Zhu B, Huang W, Liu W, Liu J, Liu Y, Xia X, Xu R, Jiang X. An ESRG-interacting protein, COXII, is involved in pro-apoptosis of human embryonic stem cells. Biochem Biophys Res Commun 2015; 460:130-5. [PMID: 25748575 DOI: 10.1016/j.bbrc.2015.02.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 02/22/2015] [Indexed: 12/14/2022]
Abstract
Human embryonic stem cells(hESC) posses very promising application perspective in clinical transplant therapies for their characteristics of self-renewal and pluripotency. So efforts focusing on the mechanisms of the two characteristics are extremely important. ESRG, first identified by our group, is a candidate stemness gene of hESC for its much higher expression level in hESC comparing to that in 7-day embryoid bodies(EBs). Here, the proteins interacted with ESRG and its functions in hESC were explored. Yeast two-hybrid (Y2H) screening system was adopted to explore the interacting proteins of ESRG. Then Co-IP was performed to confirm the interactions between candidate proteins and ESRG. At last, the functions of validated interacting protein were explored by RNA interference(RNAi) and Western blot(WB). There were no autonomous activation and toxicity in the Y2H system, which verified its availability. Four candidate proteins, AAMP, DDT, GNB2L1 and COXII, were discovered, and the interaction between ESRG and COXII was ultimately confirmed. The expression of COXII in hESC was suppressed by siRNA, and the inhibited mitochondrial apoptosis was observed in hESC with downregulated COXII expression. Our work first validated the interaction between ESRG and COXII, and demonstrated that COXII serves as a pro-apoptotic protein in hESC. The results implied that ESRG may play an important role in regulating the apoptosis of hESC by interacting with COXII, and thus contribute a lot to the maintenance of hESC characteristics.
Collapse
Affiliation(s)
- Jia Shi
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Caiping Ren
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China.
| | - Hui Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Lei Wang
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Bin Zhu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Wei Huang
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Weidong Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Jie Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Yanyu Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Xiaomeng Xia
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, PR China
| | - Rong Xu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Xiangya Road 110, 410078 Changsha, Hunan, PR China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.
| |
Collapse
|
6
|
Identification of molecular sub-networks associated with cell survival in a chronically SIVmac-infected human CD4+ T cell line. Virol J 2014; 11:152. [PMID: 25163480 PMCID: PMC4163169 DOI: 10.1186/1743-422x-11-152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 08/15/2014] [Indexed: 12/31/2022] Open
Abstract
Background The deciphering of cellular networks to determine susceptibility to infection by HIV or the related simian immunodeficiency virus (SIV) is a major challenge in infection biology. Results Here, we have compared gene expression profiles of a human CD4+ T cell line at 24 h after infection with a cell line of the same origin permanently releasing SIVmac. A new knowledge-based-network approach (Inter-Chain-Finder, ICF) has been used to identify sub-networks associated with cell survival of a chronically SIV-infected T cell line. Notably, the method can identify not only differentially expressed key hub genes but also non-differentially expressed, critical, ‘hidden’ regulators. Six out of the 13 predicted major hidden key regulators were among the landscape of proteins known to interact with HIV. Several sub-networks were dysregulated upon chronic infection with SIV. Most prominently, factors reported to be engaged in early stages of acute viral infection were affected, e.g. entry, integration and provirus transcription and other cellular responses such as apoptosis and proliferation were modulated. For experimental validation of the gene expression analyses and computational predictions, individual pathways/sub-networks and significantly altered key regulators were investigated further. We showed that the expression of caveolin-1 (Cav-1), the top hub in the affected protein-protein interaction network, was significantly upregulated in chronically SIV-infected CD4+ T cells. Cav-1 is the main determinant of caveolae and a central component of several signal transduction pathways. Furthermore, CD4 downregulation and modulation of the expression of alternate and co-receptors as well as pathways associated with viral integration into the genome were also observed in these cells. Putatively, these modifications interfere with re-infection and the early replication cycle and inhibit cell death provoked by syncytia formation and bystander apoptosis. Conclusions Thus, by using the novel approach for network analysis, ICF, we predict that in the T cell line chronically infected with SIV, cellular processes that are known to be crucial for early phases of HIV/SIV replication are altered and cellular responses that result in cell death are modulated. These modifications presumably contribute to cell survival despite chronic infection. Electronic supplementary material The online version of this article (doi:10.1186/1743-422X-11-152) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Mesquita M, Fintelman-Rodrigues N, Sacramento CQ, Abrantes JL, Costa E, Temerozo JR, Siqueira MM, Bou-Habib DC, Souza TML. HIV-1 and its gp120 inhibits the influenza A(H1N1)pdm09 life cycle in an IFITM3-dependent fashion. PLoS One 2014; 9:e101056. [PMID: 24978204 PMCID: PMC4076258 DOI: 10.1371/journal.pone.0101056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 06/03/2014] [Indexed: 01/22/2023] Open
Abstract
HIV-1-infected patients co-infected with A(H1N1)pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1)pdm09 life cycle in vitro. We show here that exposure of A(H1N1)pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1)pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs) to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1)pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA) gene from in vitro experiments and from samples of HIV-1/A(H1N1)pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1)pdm09 co-infected patients during the recent influenza form 2009/2010.
Collapse
Affiliation(s)
- Milene Mesquita
- Respiratory Viruses Laboratory, WHO/NIC, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | - Carolina Q. Sacramento
- Respiratory Viruses Laboratory, WHO/NIC, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Juliana L. Abrantes
- Respiratory Viruses Laboratory, WHO/NIC, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Eduardo Costa
- Respiratory Viruses Laboratory, WHO/NIC, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Marilda M. Siqueira
- Respiratory Viruses Laboratory, WHO/NIC, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | - Thiago Moreno L. Souza
- Respiratory Viruses Laboratory, WHO/NIC, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
8
|
Cornall A, Mak J, Greenway A, Tachedjian G. HIV-1 infection of T cells and macrophages are differentially modulated by virion-associated Hck: a Nef-dependent phenomenon. Viruses 2013; 5:2235-52. [PMID: 24051604 PMCID: PMC3798898 DOI: 10.3390/v5092235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/01/2013] [Accepted: 09/12/2013] [Indexed: 12/18/2022] Open
Abstract
The proline repeat motif (PxxP) of Nef is required for interaction with the SH3 domains of macrophage-specific Src kinase Hck. However, the implication of this interaction for viral replication and infectivity in macrophages and T lymphocytes remains unclear. Experiments in HIV-1 infected macrophages confirmed the presence of a Nef:Hck complex which was dependent on the Nef proline repeat motif. The proline repeat motif of Nef also enhanced both HIV-1 infection and replication in macrophages, and was required for incorporation of Hck into viral particles. Unexpectedly, wild-type Hck inhibited infection of macrophages, but Hck was shown to enhance infection of primary T lymphocytes. These results indicate that the interaction between Nef and Hck is important for Nef-dependent modulation of viral infectivity. Hck-dependent enhancement of HIV-1 infection of T cells suggests that Nef-Hck interaction may contribute to the spread of HIV-1 infection from macrophages to T cells by modulating events in the producer cell, virion and target cell.
Collapse
Affiliation(s)
- Alyssa Cornall
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne 3004, Victoria, Australia; E-Mails: (A.C.); (A.G.)
- Regional HPV Labnet Reference Laboratory, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville 3052, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville 3052, Victoria, Australia
| | - Johnson Mak
- School of Medicine, Faculty of Health, Deakin University, Geelong 3220, Victoria, Australia; E-Mail:
- Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, Australian Animal Health Laboratory, Geelong 3220, Victoria, Australia
| | - Alison Greenway
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne 3004, Victoria, Australia; E-Mails: (A.C.); (A.G.)
| | - Gilda Tachedjian
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne 3004, Victoria, Australia; E-Mails: (A.C.); (A.G.)
- Department of Microbiology, Monash University, Clayton 3168, Victoria, Australia
- Department of Infectious Diseases, Monash University, Melbourne 3004, Victoria, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-3-9282-2256; Fax: +61-3-9282-2100
| |
Collapse
|
9
|
Wie SH, Du P, Luong TQ, Rought SE, Beliakova-Bethell N, Lozach J, Corbeil J, Kornbluth RS, Richman DD, Woelk CH. HIV downregulates interferon-stimulated genes in primary macrophages. J Interferon Cytokine Res 2012; 33:90-5. [PMID: 23276142 DOI: 10.1089/jir.2012.0052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HIV is able to outpace the innate immune response, including that mediated by interferon (IFN), to establish a productive infection. Primary macrophages, however, may be protected from HIV infection by treatment with type I IFN before virus exposure. The ability of HIV to modulate the type I IFN-mediated innate immune response when it encounters a cell that has already been exposed to IFN remains poorly defined. The optimal pretreatment time (12 h) and the most potent HIV-inhibitors (e.g., IFN-α2 and -ω) were identified to investigate the ability of HIV to modulate an established type I IFN response. Gene expression at the level of the entire transcriptome was then compared between primary macrophages treated with type I IFNs, as opposed to treated with IFNs and then infected with HIV. Although HIV was not able to establish a robust infection, the virus was able to downregulate a number of IFN-stimulated genes (ISGs) with a fold change greater than 1.5 (i.e., AXL, IFI27, IFI44, IFI44L, ISG15, OAS1, OAS3, and XAF1). The downregulation of OAS1 by the presence of HIV was confirmed by real-time quantitative polymerase chain reaction. In conclusion, even though HIV replication is significantly inhibited by IFN pretreatment, the virus is able to downregulate the transcription of known antiviral ISGs (e.g., IFI44, ISG15, and OAS1).
Collapse
Affiliation(s)
- Seong-Heon Wie
- Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Renga B, Francisci D, D'Amore C, Schiaroli E, Mencarelli A, Cipriani S, Baldelli F, Fiorucci S. The HIV matrix protein p17 subverts nuclear receptors expression and induces a STAT1-dependent proinflammatory phenotype in monocytes. PLoS One 2012; 7:e35924. [PMID: 22558273 PMCID: PMC3340403 DOI: 10.1371/journal.pone.0035924] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/23/2012] [Indexed: 01/22/2023] Open
Abstract
Background Long-term remission of HIV-1 disease can be readily achieved by combinations of highly effective antiretroviral therapy (HAART). However, a residual persistent immune activation caused by circulating non infectious particles or viral proteins is observed under HAART and might contribute to an higher risk of non-AIDS pathologies and death in HIV infected persons. A sustained immune activation supports lipid dysmetabolism and increased risk for development of accelerated atehrosclerosis and ischemic complication in virologically suppressed HIV-infected persons receiving HAART. Aim While several HIV proteins have been identified and characterized for their ability to maintain immune activation, the role of HIV-p17, a matrix protein involved in the viral replication, is still undefined. Results Here, we report that exposure of macrophages to recombinant human p17 induces the expression of proinflammatory and proatherogenic genes (MCP-1, ICAM-1, CD40, CD86 and CD36) while downregulating the expression of nuclear receptors (FXR and PPARγ) that counter-regulate the proinflammatory response and modulate lipid metabolism in these cells. Exposure of macrophage cell lines to p17 activates a signaling pathway mediated by Rack-1/Jak-1/STAT-1 and causes a promoter-dependent regulation of STAT-1 target genes. These effects are abrogated by sera obtained from HIV-infected persons vaccinated with a p17 peptide. Ligands for FXR and PPARγ counteract the effects of p17. Conclusions The results of this study show that HIV p17 highjacks a Rack-1/Jak-1/STAT-1 pathway in macrophages, and that the activation of this pathway leads to a simultaneous dysregulation of immune and metabolic functions. The binding of STAT-1 to specific responsive elements in the promoter of PPARγ and FXR and MCP-1 shifts macrophages toward a pro-atherogenetic phenotype characterized by high levels of expression of the scavenger receptor CD36. The present work identifies p17 as a novel target in HIV therapy and grounds the development of anti-p17 small molecules or vaccines.
Collapse
Affiliation(s)
- Barbara Renga
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Perugia, Italy
| | - Daniela Francisci
- Dipartimento di Medicina Clinica e Scienze Biochimiche, University of Perugia, Perugia, Italy
| | - Claudio D'Amore
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Perugia, Italy
| | - Elisabetta Schiaroli
- Dipartimento di Medicina Clinica e Scienze Biochimiche, University of Perugia, Perugia, Italy
| | - Andrea Mencarelli
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Perugia, Italy
| | - Sabrina Cipriani
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Perugia, Italy
| | - Franco Baldelli
- Dipartimento di Medicina Clinica e Scienze Biochimiche, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Perugia, Italy
- * E-mail:
| |
Collapse
|
11
|
Vázquez N, Schmeisser H, Dolan MA, Bekisz J, Zoon KC, Wahl SM. Structural variants of IFNα preferentially promote antiviral functions. Blood 2011; 118:2567-77. [PMID: 21757613 PMCID: PMC3167361 DOI: 10.1182/blood-2010-12-325027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 06/25/2011] [Indexed: 12/22/2022] Open
Abstract
IFNα, a cytokine with multiple functions in innate and adaptive immunity and a potent inhibitor of HIV, exerts antiviral activity, in part, by enhancing apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3 (APOBEC3) family members. Although IFNα therapy is associated with reduced viral burden, this cytokine also mediates immune dysfunction and toxicities. Through detailed mapping of IFNα receptor binding sites, we generated IFNα hybrids and mutants and determined that structural changes in the C-helix alter the ability of IFN to limit retroviral activity. Selective IFNα constructs differentially block HIV replication and their directional magnitude of inhibition correlates with APOBEC3 levels. Importantly, certain mutants exhibited reduced toxicity as reflected by induced indoleamine 2,3-dioxygenase (IDO), suggesting discreet and shared intracellular signaling pathways. Defining IFN structure and function relative to APOBEC and other antiviral genes may enable design of novel IFN-related molecules preserving beneficial antiviral roles while minimizing negative effects.
Collapse
Affiliation(s)
- Nancy Vázquez
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Pang L, Qiu T, Cao X, Wan M. Apoptotic role of TGF-β mediated by Smad4 mitochondria translocation and cytochrome c oxidase subunit II interaction. Exp Cell Res 2011; 317:1608-20. [PMID: 21324314 DOI: 10.1016/j.yexcr.2011.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/29/2022]
Abstract
Smad4, originally isolated from the human chromosome 18q21, is a key factor in transducing the signals of the TGF-β superfamily of growth hormones and plays a pivotal role in mediating antimitogenic and proapoptotic effects of TGF-β, but the mechanisms by which Smad4 induces apoptosis are elusive. Here we report that Smad4 directly translocates to the mitochondria of apoptotic cells. Smad4 gene silencing by siRNA inhibits TGF-β-induced apoptosis in Hep3B cells and UV-induced apoptosis in PANC-1 cells. Cell fractionation assays demonstrated that a fraction of Smad4 translocates to mitochondria after long time TGF-β treatment or UV exposure, during which the cells were under apoptosis. Smad4 mitochondria translocation during apoptosis was also confirmed by fluorescence observation of Smad4 colocalization with MitoTracker Red. We searched for mitochondria proteins that have physical interactions with Smad4 using yeast two-hybrid screening approach. DNA sequence analysis identified 34 positive clones, five of which encoded subunits in mitochondria complex IV, i.e., one clone encoded cytochrome c oxidase COXII, three clones encoded COXIII and one clone encoded COXVb. Strong interaction between Smad4 with COXII, an important apoptosis regulator, was verified in yeast by β-gal activity assays and in mammalian cells by immunoprecipitation assays. Further, mitochondrial portion of cells was isolated and the interaction between COXII and Smad4 in mitochondria upon TGF-β treatment or UV exposure was confirmed. Importantly, targeting Smad4 to mitochondria using import leader fusions enhanced TGF-β-induced apoptosis. Collectively, the results suggest that Smad4 promote apoptosis of the cells through its mitochondrial translocation and association with mitochondria protein COXII.
Collapse
Affiliation(s)
- Lijuan Pang
- The Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
13
|
Smith PD, Smythies LE, Shen R, Greenwell-Wild T, Gliozzi M, Wahl SM. Intestinal macrophages and response to microbial encroachment. Mucosal Immunol 2011; 4:31-42. [PMID: 20962772 PMCID: PMC3821935 DOI: 10.1038/mi.2010.66] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages in the gastrointestinal mucosa represent the largest pool of tissue macrophages in the body. In order to maintain mucosal homeostasis, resident intestinal macrophages uniquely do not express the lipopolysaccharide (LPS) co-receptor CD14 or the IgA (CD89) and IgG (CD16, 32, and 64) receptors, yet prominently display Toll-like receptors (TLRs) 3-9. Remarkably, intestinal macrophages also do not produce proinflammatory cytokines in response to TLR ligands, likely because of extracellular matrix (stromal) transforming growth factor-β (TGF-β) dysregulation of nuclear factor (NF)-κB signal proteins and, via Smad signaling, expression of IκBα, thereby inhibiting NF-κB-mediated activities. Thus, in noninflamed mucosa, resident macrophages are inflammation anergic but retain avid scavenger and host defense function, an ideal profile for macrophages in close proximity to gut microbiota. In the event of impaired epithelial integrity during intestinal infection or inflammation, however, blood monocytes also accumulate in the lamina propria and actively pursue invading microorganisms through uptake and degradation of the organism and release of inflammatory mediators. Consequently, resident intestinal macrophages are inflammation adverse, but when the need arises, they receive assistance from newly recruited circulating monocytes.
Collapse
Affiliation(s)
- PD Smith
- Department of Medicine (Gastroenterology) University of Alabama at Birmingham Birmingham, Alabama 35294-2182, USA
| | - LE Smythies
- Department of Medicine (Gastroenterology) University of Alabama at Birmingham Birmingham, Alabama 35294-2182, USA
| | - R Shen
- Department of Medicine (Gastroenterology) University of Alabama at Birmingham Birmingham, Alabama 35294-2182, USA
| | - T Greenwell-Wild
- Oral Infection and Immunity Branch National Institute of Dental and Craniofacial Research National Institutes of Health Bethesda, MD 20892-4352, USA
| | - M Gliozzi
- Oral Infection and Immunity Branch National Institute of Dental and Craniofacial Research National Institutes of Health Bethesda, MD 20892-4352, USA
| | - SM Wahl
- Oral Infection and Immunity Branch National Institute of Dental and Craniofacial Research National Institutes of Health Bethesda, MD 20892-4352, USA
| |
Collapse
|
14
|
Fiorentini S, Giagulli C, Caccuri F, Magiera AK, Caruso A. HIV-1 matrix protein p17: a candidate antigen for therapeutic vaccines against AIDS. Pharmacol Ther 2010; 128:433-44. [PMID: 20816696 DOI: 10.1016/j.pharmthera.2010.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 11/26/2022]
Abstract
The success in the development of anti-retroviral therapies (HAART) that contain human immunodeficiency virus type 1 (HIV-1) infection is challenged by the cost of this lifelong therapy and by its toxicity. Immune-based therapeutic strategies that boost the immune response against HIV-1 proteins or protein subunits have been recently proposed to control virus replication in order to provide protection from disease development, reduce virus transmission, and help limit the use of anti-retroviral treatments. HIV-1 matrix protein p17 is a structural protein that is critically involved in most stages of the life cycle of the retrovirus. Besides its well established role in the virus life cycle, increasing evidence suggests that p17 may also be active extracellularly in deregulating biological activities of many different immune cells that are directly or indirectly involved in AIDS pathogenesis. Thus, p17 might represent a promising target for developing a therapeutic vaccine as a contribution to combating AIDS. In this article we review the biological characteristics of HIV-1 matrix protein p17 and we describe why a synthetic peptide representative of the p17 functional epitope may work as a vaccine molecule capable of inducing anti-p17 neutralizing response against p17 derived from divergent HIV-1 strains.
Collapse
Affiliation(s)
- Simona Fiorentini
- Section of Microbiology, Department of Experimental and Applied Medicine, University of Brescia, 25123 Brescia, Italy
| | | | | | | | | |
Collapse
|
15
|
González OA, Ebersole JL, Huang CB. Supernatants from oral epithelial cells and gingival fibroblasts modulate human immunodeficiency virus type 1 promoter activation induced by periodontopathogens in monocytes/macrophages. Mol Oral Microbiol 2010; 25:136-49. [PMID: 20331801 DOI: 10.1111/j.2041-1014.2009.00552.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacterial and host cell products during coinfections of Human Immunodeficiency Virus type 1-positive (HIV-1(+)) patients regulate HIV-1 recrudescence in latently infected cells (e.g. T cells, monocytes/macrophages), impacting highly active antiretroviral therapy (HAART) failure and progression of acquired immunodeficiency syndrome. A high frequency of oral opportunistic infections (e.g. periodontitis) in HIV-1(+) patients has been demonstrated; however, their potential to impact HIV-1 exacerbation is unclear. We sought to determine the ability of supernatants derived from oral epithelial cells (OKF4) and human gingival fibroblasts (Gin-4) challenged with periodontal pathogens, to modulate the HIV-1 promoter activation in monocytes/macrophages. BF24 monocytes/macrophages transfected with the HIV-1 promoter driving the expression of chloramphenicol acetyltransferase (CAT) were stimulated with Porphyromonas gingivalis, Fusobacterium nucleatum, or Treponema denticola in the presence of supernatants from OKF4 or Gin4 cells either unstimulated or previously pulsed with bacteria. CAT levels were determined by enzyme-linked immunosorbent assay and cytokine production was evaluated by Luminex beadlyte assays. OKF4 and Gin4 supernatants enhanced HIV-1 promoter activation particularly related to F. nucleatum challenge. An additive effect was observed in HIV-1 promoter activation when monocytes/macrophages were simultaneously stimulated with gingival cell supernatants and bacterial extracts. OKF4 cells produced higher levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukins -6 and -8 in response to F. nucleatum and P. gingivalis. Preincubation of OKF4 supernatants with anti-GM-CSF reduced the additive effect in periodontopathogen-induced HIV-1 promoter activation. These results suggest that soluble mediators produced by gingival resident cells in response to periodontopathogens could contribute to HIV-1 promoter activation in monocytes/macrophages, albeit this effect is most notable following direct stimulation of the cells with oral gram-negative bacteria.
Collapse
Affiliation(s)
- O A González
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536-0305, USA
| | | | | |
Collapse
|
16
|
HIV-1 reactivation induced by the periodontal pathogens Fusobacterium nucleatum and Porphyromonas gingivalis involves Toll-like receptor 2 [corrected] and 9 activation in monocytes/macrophages. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1417-27. [PMID: 20610663 DOI: 10.1128/cvi.00009-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although oral coinfections (e.g., periodontal disease) are highly prevalent in human immunodeficiency virus type 1-positive (HIV-1(+)) patients and appear to positively correlate with viral load levels, the potential for oral bacteria to induce HIV-1 reactivation in latently infected cells has received little attention. We showed that HIV-1 long terminal repeat (LTR) promoter activation can be induced by periodontopathogens in monocytes/macrophages; nevertheless, the mechanisms involved in this response remain undetermined. Since Toll-like receptor 2 (TLR2), TLR4, and TLR9 activation have been involved in HIV-1 recrudescence, we sought to determine the role of these TLRs in HIV-1 reactivation induced by the periodontal pathogens Fusobacterium nucleatum and Porphyromonas gingivalis using BF24 monocytes/macrophages stably transfected with the HIV-1 promoter driving chloramphenicol acetyltransferase (CAT) expression and THP89GFP cells, a model of HIV-1 latency. We demonstrated that TLR9 activation by F. nucleatum and TLR2 activation by both bacteria appear to be involved in HIV-1 reactivation; however, TLR4 activation had no effect. Moreover, the autocrine activity of tumor necrosis factor alpha (TNF-alpha) but not interleukin-1beta (IL-1beta) produced in response to bacteria could impact viral reactivation. The transcription factors NF-kappaB and Sp1 appear to be positively regulating HIV-1 reactivation induced by these oral pathogens. These results suggest that oral Gram-negative bacteria (F. nucleatum and P. gingivalis) associated with oral and systemic chronic inflammatory disorders enhance HIV-1 reactivation in monocytes/macrophages through TLR2 and TLR9 activation in a mechanism that appears to be transcriptionally regulated. Increased bacterial growth and emergence of these bacteria or their products accompanying chronic oral inflammatory diseases could be risk modifiers for viral replication, systemic immune activation, and AIDS progression in HIV-1(+) patients.
Collapse
|
17
|
Abstract
Current antiretroviral therapy regimens can effectively suppress HIV in patients for prolonged periods of time, but do not constitute a cure, since they are incapable of eradicating viral reservoirs. It is, therefore, necessary for us to refocus on the partially understood pathogenesis of HIV, on the issue of viral persistence, and on the development of strategies for a temporally contained therapy capable of purging HIV from the body. Macrophages play a pivotal role in all three of these scenarios. This review summarizes important aspects of macrophage biology as they relate to HIV and discusses conceptual challenges for virus suppression and eradication in this cell type. We highlight a number of significant recent advances in understanding differences in HIV replication and pharmacotherapy between macrophages and CD4 T cells, as well as the role of macrophages in various aspects of the disease process and in different anatomical compartments. Finally, the importance of infected macrophages in the persistence of HIV, regarding both pathogenesis and advancement of eradication strategies, is discussed.
Collapse
Affiliation(s)
- Stephanie Venzke
- Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | | |
Collapse
|
18
|
Tripathy MK, Mitra D. Differential modulation of mitochondrial OXPHOS system during HIV-1 induced T-cell apoptosis: up regulation of Complex-IV subunit COX-II and its possible implications. Apoptosis 2010; 15:28-40. [PMID: 19771519 DOI: 10.1007/s10495-009-0408-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human Immunodeficiency Virus-1 (HIV-1) infection leads to CD4+ T cell depletion primarily by apoptosis employing both intrinsic and extrinsic pathways. Although extensive literature exists about the role of mitochondrial proteins in HIV induced T cell apoptosis, there is little understanding about the role of different components of mitochondrial oxidative phosphorylation (OXPHOS) system in apoptosis. The OXPHOS system comprises of five enzyme complexes (Complex I, II, III, IV, V), subunits of which have been implicated in various functions in addition to their primary role in energy generating process. Here using differential gene expression analysis, we report that Cytochrome Oxidase-II (COX-II), a subunit of Complex-IV is induced in HIV infected apoptotic T-cells. We also observe a temporal up regulation of this subunit across different T-cell lines and in human PBMCs. Further analysis indicates increase in expression of majority of Complex-IV subunits with concomitant increase in Complex-IV activity in HIV infected T cells. Silencing of COX-II expression leads to reduced apoptosis in infected T-cells, indicating its importance in apoptosis. Furthermore, our results also show that the activities of enzyme complexes I, II and III are decreased while those of Complex IV and V are increased at the time of acute infection and apoptosis. This differential regulation in activities of OXPHOS system complexes indicate a complex modulation of host cell energy generating system during HIV infection that ultimately leads to T cell apoptosis.
Collapse
|
19
|
Zhang L, Jia X, Zhang X, Sun J, Peng X, Qi T, Ma F, Yin L, Yao Y, Qiu C, Lu H. Proteomic analysis of PBMCs: characterization of potential HIV-associated proteins. Proteome Sci 2010; 8:12. [PMID: 20222986 PMCID: PMC2850332 DOI: 10.1186/1477-5956-8-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 03/12/2010] [Indexed: 12/11/2022] Open
Abstract
Background The human immunodeficiency virus type 1 (HIV-1) pandemic has continued unabated for nearly 30 years. To better understand the influence of virus on host cells, we performed the differential proteome research of peripheral blood mononuclear cells (PBMCs) from HIV-positive patients and healthy controls. Results 26 protein spots with more than 1.5-fold difference were detected in two dimensional electrophoresis (2DE) gels. 12 unique up-regulated and one down-regulated proteins were identified in HIV-positive patients compared with healthy donors. The mRNA expression of 10 genes was analyzed by real time RT-PCR. It shows that the mRNA expression of talin-1, vinculin and coronin-1C were up-regulated in HIV positive patients and consistent with protein expression. Western blotting analysis confirmed the induction of fragments of vinculin, talin-1 and filamin-A in pooled and most part of individual HIV-positive clinical samples. Bioinformatic analysis showed that a wide host protein network was disrupted in HIV-positive patients. Conclusions Together, this work provided useful information to facilitate further investigation of the underlying mechanism of HIV and host cell protein interactions, and discovered novel potential biomarkers such as fragment of vinculin, filamin-A and talin-1 for anti-HIV research.
Collapse
Affiliation(s)
- Lijun Zhang
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai, 201508, PR China
| | - Xiaofang Jia
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai, 201508, PR China
| | - Xiaojun Zhang
- Neurosurgery, Fuzhou General Hospital, Fuzhou 350025, PR China
| | - Jianjun Sun
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai, 201508, PR China
| | - Xia Peng
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai, 201508, PR China
| | - Tangkai Qi
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai, 201508, PR China
| | - Fang Ma
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai, 201508, PR China
| | - Lin Yin
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai, 201508, PR China
| | - Yamin Yao
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai, 201508, PR China
| | - Chao Qiu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai, 201508, PR China
| |
Collapse
|
20
|
Huang CB, Emerson KA, Gonzalez OA, Ebersole JL. Oral bacteria induce a differential activation of human immunodeficiency virus-1 promoter in T cells, macrophages and dendritic cells. ACTA ACUST UNITED AC 2009; 24:401-7. [PMID: 19702954 DOI: 10.1111/j.1399-302x.2009.00533.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The human immunodeficiency virus (HIV) can integrate into T cells, macrophages and dendritic cells resulting in a latent infection. Reports have also demonstrated that various microbial and host cell factors can trigger HIV reactivation leading to HIV recrudescence, potentially undermining highly active antiretroviral therapies. METHODS This study evaluated the capacity of oral bacteria associated with chronic periodontal infections to stimulate HIV promoter activation in various cell models of HIV latency. RESULTS T cells (1G5) challenged with oral bacteria demonstrated a dose-response of HIV promoter activation with a subset of the bacteria, as well as kinetics that were generally similar irrespective of the stimuli. Direct bacterial challenge of the T cells resulted in increased activation of approximately 1.5- to 7-fold over controls. Challenge of macrophages (BF24) indicated different kinetics for individual bacteria and resulted in consistent increases in promoter activation of five fold to six fold over basal levels for all bacteria except Streptococcus mutans. Dendritic cells showed increases in HIV reactivation of 7- to 34-fold specific for individual species of bacteria. CONCLUSION These results suggested that oral bacteria have the capability to reactivate HIV from latently infected cells, showing a relationship of mature dendritic cells > immature dendritic cells > macrophages > or = T cells. Expression of various pattern recognition receptors on these various cell types may provide insight into the primary receptors/signaling pathways used for reactivation by the bacteria.
Collapse
Affiliation(s)
- C B Huang
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
21
|
Ryan FP. An alternative approach to medical genetics based on modern evolutionary biology. Part 2: retroviral symbiosis. J R Soc Med 2009; 102:324-31. [PMID: 19679734 DOI: 10.1258/jrsm.2009.090183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Frank P Ryan
- Sheffield Primary Care Trust and Department of Animal and Plant Sciences, Sheffield University, Sheffield, UK.
| |
Collapse
|
22
|
Kaner RJ, Santiago F, Rahaghi F, Michaels E, Moore JP, Crystal RG. Adenovirus vectors block human immunodeficiency virus-1 replication in human alveolar macrophages by inhibition of the long terminal repeat. Am J Respir Cell Mol Biol 2009; 43:234-42. [PMID: 19805482 DOI: 10.1165/rcmb.2008-0063oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Heterologous viruses may transactivate or suppress human immunodeficiency virus (HIV)-1 replication. An adenovirus type 5 gene transfer vector (Ad5) HIV-1 vaccine was recently evaluated in a clinical trial, without efficacy. In this context, it is relevant to ask what effect Ad vectors have on HIV-1 replication, particularly in cells that are part of the innate immune system. Infection of HIV-1-infected human alveolar macrophages (AMs) obtained from HIV-1(+) individuals with an Ad vector containing no transgene (AdNull) resulted in dose-responsive inhibition of endogenous HIV-1 replication. HIV-1 replication in normal AMs infected with HIV-1 in vitro was inhibited by AdNull with a similar dose response. Ad reduced AM HIV-1 replication up to 14 days after HIV-1 infection. Fully HIV-1-infected AMs were treated with 3'-azido-3'-deoxythymidine, after which Ad infection still inhibited HIV-1 replication, suggesting a postentry step was affected. Substantial HIV-1 DNA was still produced after Ad infection, as quantified by TaqMan real-time PCR, suggesting that the replication block occurred after reverse transcription. AdNull blocked HIV-1 long terminal repeat (LTR) transcription, as assessed by an vesicular stomatitis virus G protein pseudotyped HIV-1 LTR luciferase construct. The formation of HIV-1 DNA integrated into the host chromosome was not inhibited by Ad, as quantified by a two-step TaqMan real-time PCR assay, implying a postintegration block to HIV-1 replication. These data indicate that Ad vectors are inhibitory to HIV-1 replication in human AMs based, in part, on their ability to inhibit LTR-driven transcription.
Collapse
Affiliation(s)
- Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
23
|
Greenwell-Wild T, Vázquez N, Jin W, Rangel Z, Munson PJ, Wahl SM. Interleukin-27 inhibition of HIV-1 involves an intermediate induction of type I interferon. Blood 2009; 114:1864-74. [PMID: 19556424 PMCID: PMC2738572 DOI: 10.1182/blood-2009-03-211540] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 06/01/2009] [Indexed: 12/22/2022] Open
Abstract
Infection of CD4(+) chemokine coreceptor(+) targets by HIV is aided and abetted by the proficiency of HIV in eliminating or neutralizing host cell-derived defensive molecules. Among these innate protective molecules, a family of intracellular apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases, is constitutively expressed but inactivated by HIV viral infectivity factor. The ability of interferon-alpha (IFN-alpha) to augment cytidine deaminases offered the possibility that the balance between virus and target cell might be altered in favor of the host. Further characterization of transcriptional profiles induced by IFN-alpha using microarrays, with the intention to identify and dissociate retroviral countermaneuvers from associated toxicities, revealed multiple molecules with suspected antiviral activity, including IL-27. To establish whether IFN-alpha toxicity might be sidestepped through the use of downstream IL-27 against HIV, we examined whether IL-27 directly regulated cytidine deaminases. Although IL-27 induces APOBECs, it does so in a delayed fashion. Dissecting the underlying regulatory events uncovered an initial IL-27-dependent induction of IFN-alpha and/or IFN-beta, which in turn, induces APOBEC3, inhibited by IFN-alpha/beta receptor blockade. In addition to macrophages, the IL-27-IFN-alpha connection is operative in CD4(+) T cells, consistent with an IFN-alpha-dependent pathway underlying host cell defense to HIV.
Collapse
Affiliation(s)
- Teresa Greenwell-Wild
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4352, USA
| | | | | | | | | | | |
Collapse
|
24
|
Cassol E, Cassetta L, Rizzi C, Alfano M, Poli G. M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms. THE JOURNAL OF IMMUNOLOGY 2009; 182:6237-46. [PMID: 19414777 DOI: 10.4049/jimmunol.0803447] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines and other extracellular stimuli. In this study, we demonstrate that cytokine-induced polarization of human monocyte-derived macrophage (MDM) into either classical (M1) or alternatively activated (M2a) MDM is associated with a reduced capacity to support productive CCR5-dependent (R5) HIV-1 infection. M1 polarization was associated with a significant down-regulation of CD4 receptors, increased secretion of CCR5-binding chemokines (CCL3, CCL4, and CCL5), and a >90% decrease in HIV-1 DNA levels 48-h postinfection, suggesting that the inhibition occurred at an early preintegration step in the viral life cycle. In contrast, M2a polarization had no effect on either HIV-1 DNA or protein expression levels, indicating that inhibition occurred at a late/postintegration level in the viral life cycle. M2a inhibition was sustained for up to 72-h postinfection, whereas M1-effects were more short-lived. Most phenotypic and functional changes were fully reversible 7 days after removal of the polarizing stimulus, and a reciprocal down-regulation of M1-related chemokines and cytokines was observed in M2a MDM and vice versa. Since reversion to a nonpolarized MDM state was associated with a renewed capacity to support HIV replication to control levels, M1/M2a polarization may represent a mechanism that allows macrophages to cycle between latent and productive HIV-1 infection.
Collapse
Affiliation(s)
- Edana Cassol
- AIDS Immunopathogenesis Unit, Division of Immunology, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | |
Collapse
|
25
|
PPAR and liver injury in HIV-infected patients. PPAR Res 2009; 2009:906167. [PMID: 19390649 PMCID: PMC2669659 DOI: 10.1155/2009/906167] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 01/31/2009] [Indexed: 01/14/2023] Open
Abstract
Due to the introduction of active HIV antiretroviral treatment, AIDS-related morbidity and mortality have markedly decreased and liver diseases are now a major cause of morbidity and mortality in HIV-infected patients. Chronic liver injury encompasses a wide spectrum of diseases due to HCV and HBV coinfection, drug-related toxicity, and NASH. HIV-infected patients who are receiving treatment present with a high prevalence of metabolic complications and lipodystrophy. Those patients are at high risk of nonalcoholic fatty liver disease, the liver feature of the metabolic syndrome. This review will focus on (1) the liver injuries in HIV-infected patients; (2) both the current experimental and human data regarding PPAR and liver diseases; (3) the interactions between HIV and PPAR; (4) the potential use of PPAR agonists for the management of HIV-related liver diseases.
Collapse
|
26
|
González OA, Ebersole JL, Huang CB. Oral infectious diseases: a potential risk factor for HIV virus recrudescence? Oral Dis 2009; 15:313-27. [PMID: 19364391 DOI: 10.1111/j.1601-0825.2009.01533.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
As the highly active antiretroviral therapy (HAART) has transitioned human immunodeficiency virus (HIV) infection into a 'chronic disease' management strategy, there is growing evidence that infection with non-HIV pathogens in HIV+ patients may have important public health implications in undermining HAART success and acquired immunodeficiency syndrome progression. Several bacterial and host cell products during infections with non-HIV pathogens have shown the capacity to regulate HIV replication in latently infected cells. A high prevalence of oral infections caused by bacteria, viruses and fungi has been described in HIV+ patients, including periodontal disease. The oral cavity appears to be a site of HIV pathogenesis and potential reservoir for the disease as HIV RNA and DNA forms are present in saliva as well as in gingival crevicular fluid, and oral epithelial cells are susceptible to either cell free or cell-associated HIV infection. The clinical and biological bases of potential associations between chronic oral inflammatory disorders, such as periodontal disease, and exacerbation of HIV viraemia have received little attention. This review attempts to evaluate the current understanding of HIV reactivation as a result of co-infection and/or inflammation induced by non-HIV pathogens in HIV-infected patients, and presents a hypothetic model about the potential role of periodontitis as a global oral infection that potentially contributes to HIV recrudescence.
Collapse
Affiliation(s)
- O A González
- Center for Oral Health Research, College of Dentistry,University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
27
|
Toro-Nieves DM, Rodriguez Y, Plaud M, Ciborowski P, Duan F, Pérez Laspiur J, Wojna V, Meléndez LM. Proteomic analyses of monocyte-derived macrophages infected with human immunodeficiency virus type 1 primary isolates from Hispanic women with and without cognitive impairment. J Neurovirol 2009; 15:36-50. [PMID: 19115125 PMCID: PMC2947716 DOI: 10.1080/13550280802385505] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The signature for human immunodeficiency virus type 1 (HIV-1) neurovirulence remains a subject of intense debate. Macrophage viral tropism is one prerequisite but others, including virus-induced alterations in innate and adaptive immunity, remain under investigation. HIV-1-infected mononuclear phagocytes (MPs; perivascular macrophages and microglia) secrete toxins that affect neurons. The authors hypothesize that neurovirulent HIV-1 variants affect the MP proteome by inducing a signature of neurotoxic proteins and thus affect cognitive function. To test this hypothesis, HIV-1 isolates obtained from peripheral blood of women with normal cognition (NC) were compared to isolates obtained from women with cognitive impairment (CI) and to the laboratory adapted SF162, a spinal fluid R5 isolate from a patient with HIV-1-associated dementia. HIV-1 isolates were used to infect monocyte-derived macrophages (MDMs) and infection monitored by secreted HIV-1 p24 by enzyme-linked immunosorbent assay (ELISA). Cell lysates of uninfected and HIV-1-infected MDMs at 14 days post infection were fractionated by cationic exchange chromatography and analyzed by surface enhanced laser desorption ionization time of flight (SELDI-TOF) using generalized estimating equations statistics. Proteins were separated by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1D SDS-PAGE) and identified by tandem mass spectrometry. Levels of viral replication were similar amongst the HIV-1 isolates, although higher levels were obtained from one viral strain obtained from a patient with CI. Significant differences were found in protein profiles between virus-infected MDMs with NC, CI, and SF162 isolates (adjusted P value after multiple testing corrections, or q value <.10). The authors identified 6 unique proteins in NC, 7 in SF162, and 20 in CI. Three proteins were common to SF162 and CI strains. The MDM proteins linked to infection with CI strains were related to apoptosis, chemotaxis, inflammation, and redox metabolism. These findings support the hypothesis that the macrophage proteome differ when infected with viral isolates of women with and without CI.
Collapse
Affiliation(s)
- D M Toro-Nieves
- Department of Microbiology and Medical Zoology, Specialized Neurosciences Research Program, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
HIV infection of macrophages is a critically important component of viral pathogenesis and progression to AIDS. Although the virus follows the same life cycle in macrophages and T lymphocytes, several aspects of the virus-host relationship are unique to macrophage infection. Examples of these are the long-term persistence of productive infection, sustained by the absence of cell death, and the ability of progeny virus to bud into and accumulate in endocytic compartments designated multivesicular bodies (MVBs). Recently, the hypothesis that viral exploitation of the macrophage endocytic machinery is responsible for perpetuating the chronic state of infection unique to this cell type has been challenged in several independent studies employing a variety of experimental strategies. This review examines the evidence supporting and refuting the canonical hypothesis and highlights recently identified cellular factors that may contribute to the unique aspects of the HIV-macrophage interaction.
Collapse
Affiliation(s)
- Carol A Carter
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
29
|
HIV-1 infection and the PPARγ-dependent control of adipose tissue physiology. PPAR Res 2008; 2009:607902. [PMID: 19081837 PMCID: PMC2593159 DOI: 10.1155/2009/607902] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 07/23/2008] [Indexed: 01/03/2023] Open
Abstract
PPARγ is a ligand-dependent master transcription factor controlling adipocyte differentiation as well as multiple biological processes taking place in other cells present in adipose tissue depots such as macrophages. Recent research indicates that HIV-1 infection-related events may alter adipose tissue biology through several mechanisms involving PPARγ, ranging from direct effects of HIV-1-encoded proteins on adipocytes to the promotion of a proinflammatory environment that interferes with PPARγ actions. This effect of HIV-1 on adipose tissue cells can occur even in the absence of direct infection of adipocytes, as soluble HIV-1-encoded proteins such as Vpr may enter cells and inhibit PPARγ action. Moreover, repression of PPARγ actions may relieve inhibitory pathways of HIV-1 gene transcription, thus enhancing HIV-1 effects in infected cells. HIV-1 infection-mediated interference of PPARγ-dependent pathways in adipocytes and other cells inside adipose depots such as macrophages is likely to create an altered local environment that, after antiretroviral treatment, leads to lipodystrophy in HIV-1-infected and HAART-treated patients.
Collapse
|
30
|
Olivares I, Ballester A, Lombardia L, Dominguez O, López-Galíndez C. Human immunodeficiency virus type 1 chronic infection is associated with different gene expression in MT-4, H9 and U937 cell lines. Virus Res 2008; 139:22-31. [PMID: 19000723 DOI: 10.1016/j.virusres.2008.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 12/23/2022]
Abstract
To investigate cellular factors involved in HIV-1 chronic infection, three cell lines chronically infected with the same HIV-1 viral isolate (s61) were studied by cDNA microarray analysis. Two T cell lines, H61 and M61, showed the characteristics of a persistent infection whereas U61 cell line displayed a latent infection pattern. Analysis of genes with altered expression in the three cell lines revealed evidence of apoptosis control by up-regulation of anti-apoptotic genes and down-regulation of pro-apoptotic genes. In addition, cell cycle control was affected in the two persistent T cell lines particularly through the down-regulation of cyclin-dependent kinase inhibitor 1A (CDKN1A/p21). Moreover, each cell line showed specific characteristics, like in M61 cells, genes related with cellular activation and with cell migration and motility. In U61 cells, genes associated with immune response were activated. Genes with altered expression in our experiments, and not previously related with HIV such as ANXA 1 or CFLAR were detected and validated. This work revealed that different cell mechanism such as control of apoptosis and cell cycle are important for "in vitro" HIV-1 chronic infections, and discovered new genes previously not related with HIV-1 replication.
Collapse
Affiliation(s)
- Isabel Olivares
- Servicio de Virología Molecular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Pozuelo Km 2, Majadahonda, 28220 Madrid, Spain
| | | | | | | | | |
Collapse
|
31
|
Cell adhesion through alphaV-containing integrins is required for efficient HIV-1 infection in macrophages. Blood 2008; 113:1278-86. [PMID: 18840709 DOI: 10.1182/blood-2008-06-161869] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Monocytes and macrophages are an important reservoir of human immunodeficiency virus (HIV) and may represent the largest reservoir of this virus in tissues. Differentiation of monocytes into macrophages leads to cell attachment and susceptibility to infection and replication of HIV. Among other cell-surface molecules, integrins are overexpressed during monocyte-macrophage differentiation and may play a role in the replication cycle of envelope viruses including HIV. Here, we show that inhibition of alphaV integrin in monocyte-derived macrophages, by RNA interference or their inhibition by a selective small heterocyclic RGD-mimetic nonpeptide compound, inhibited the replication of HIV in the absence of cytotoxicity. Interference or inhibition of alphaV integrins triggered a signal transduction pathway, leading to down-regulation of nuclear factor-kappaB-dependent HIV-1 transcription. Such inhibition was mediated by a MAP-kinase signaling cascade, probably involving ERK1/2, p38-mitogen-activated protein kinases, and HSP27. In conclusion, our results reveal a significant role of integrin alphaV-mediated adhesion in HIV-1 infection of macrophages.
Collapse
|
32
|
Barreto-de-Souza V, Xavier Medeiros T, Machado Motta MC, Bou-Habib DC, Saraiva EM. HIV-1 infection and HIV-1 Tat protein permit the survival and replication of a non-pathogenic trypanosomatid in macrophages through TGF-beta1 production. Microbes Infect 2008; 10:642-9. [PMID: 18457978 DOI: 10.1016/j.micinf.2008.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/23/2008] [Accepted: 02/28/2008] [Indexed: 01/19/2023]
Abstract
Monoxenic trypanosomatids, which usually are non-pathogenic in humans, have been detected in AIDS patients, but the mechanisms underlying the establishment of these protozoa in HIV-1-infected individuals are poorly understood. Here we addressed the role of HIV-1 and the HIV-1 Tat protein in the replication of the monoxenic trypanosomatid Blastocrithidia culicis in HIV-1-infected primary human macrophages. We found that HIV-1 and B. culicis replication augmented almost three times in co-infected macrophages, and that Tat antiserum significantly reduced the exacerbated protozoan growth. Exposure of B. culicis only infected macrophages to Tat protein also resulted in enhanced protozoan proliferation, reaching a twofold increase at 100 ng/mL. Electron microscopy analysis revealed that B. culicis and HIV-1 co-habit the same cells, and showed protozoan dividing forms inside macrophages. Protozoan replication diminished when B. culicis only infected macrophages were treated with Tat protein in the presence of anti-TGF-beta1 antibodies, suggesting a participation of this cytokine in the augmentation of protozoan multiplication. In fact, exogenous TGF-beta1 promoted the trypanosomatid replication in macrophages. Overall, our results suggest that HIV-1 infection deactivates the macrophage microbicidal activity, permitting the survival and multiplication of an otherwise non-pathogenic protozoan in these cells, a process partially mediated by Tat protein, via TGF-beta1 secretion.
Collapse
|
33
|
Marini E, Tiberio L, Caracciolo S, Tosti G, Guzman CA, Schiaffonati L, Fiorentini S, Caruso A. HIV-1 matrix protein p17 binds to monocytes and selectively stimulates MCP-1 secretion: role of transcriptional factor AP-1. Cell Microbiol 2007; 10:655-66. [PMID: 18042260 PMCID: PMC7162350 DOI: 10.1111/j.1462-5822.2007.01073.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HIV‐1 matrix protein p17 activates a variety of cell responses which play a critical role in viral replication and infection. Its activity depends on the expression of p17 receptors (p17R) on the surface of target cells. Whether p17 also plays a role in stimulating human monocytes, a major HIV‐1 reservoir, is not known. Here we show that human monocytes constitutively express p17Rs and that p17 selectively triggers these cells to produce MCP‐1. The effect of p17 on MCP‐1 expression was observed at the transcriptional level and was primarily dependent on the activation of the transcription factor AP‐1. p17 increased the binding activity of AP‐1 complexes in a time‐ and dose‐dependent manner. Deletion of the AP‐1 binding sites in the MCP‐1 promoter resulted in the lack of p17‐induced MCP‐1 transcription. In particular, the P3 binding site located between −69 and −63 position seems to be essential to MCP‐1 mRNA induction in p17‐treated monocytes. An ever increasing amount of evidences shows a tight link between biologically dysregulated monocytes, AP‐1 activation, MCP‐1 release and HIV‐1 pathogenesis. Overall our results suggest that p17 may play a critical role in the monocyte‐mediated inflammatory processes, which are suspected to be major precipitating events in AIDS‐defining diseases.
Collapse
Affiliation(s)
- Elena Marini
- Department of Applied and Experimental Medicine, Section of Microbiology, University of Brescia, Brescia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Alpagot T, Remien J, Bhattacharyya M, Konopka K, Lundergan W, Duzguneş N. Longitudinal evaluation of prostaglandin E2 (PGE2) and periodontal status in HIV+ patients. Arch Oral Biol 2007; 52:1102-8. [PMID: 17586460 PMCID: PMC2083300 DOI: 10.1016/j.archoralbio.2007.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/06/2007] [Accepted: 04/27/2007] [Indexed: 12/21/2022]
Abstract
The study aim was to determine whether prostaglandin E(2) (PGE(2)) in gingival crevicular fluid (GCF) could serve as a risk factor for periodontitis in human immunodeficiency virus-positive (HIV(+)) patients. Clinical measurements, including gingival index (GI), plaque index, bleeding index, probing depth (PD), attachment loss (AL) and GCF samples were taken from two healthy sites (including sites with gingival recession, GI=0; PD< or =3 mm; AL< or =2 mm), three gingivitis sites (GI>0; PD< or =3 mm; AL=0) and three periodontitis sites (GI>0; PD> or =5 mm; AL> or =3 mm) of each of the 30 patients at baseline and 6-month visits. GCF samples were also taken by means of paper strips. GCF PGE(2) levels were determined by a sandwich ELISA. The progressing site was defined as a site which had 2 mm or more attachment loss during the 6-month study period. The mean amounts of PGE(2) were significantly higher in gingivitis and periodontitis sites than in healthy sites (p<0.0001). GCF levels of PGE(2) were significantly correlated with probing depth, attachment loss, CD4(+) cells, viral load, age and smoking pack-years at baseline and 6-month visits (0.0001
Collapse
Affiliation(s)
- Tamer Alpagot
- Department of Periodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, 2155 Webster St., San Francisco, CA 94115, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) has been intensely investigated since its discovery in 1983 as the cause of acquired immune deficiency syndrome (AIDS). With relatively few proteins made by the virus, it is able to accomplish many tasks, with each protein serving multiple functions. The Envelope glycoprotein, composed of the two noncovalently linked subunits, SU (surface glycoprotein) and TM (transmembrane glycoprotein) is largely responsible for host cell recognition and entry respectively. While the roles of the N-terminal residues of TM is well established as a fusion pore and anchor for Env into cell membranes, the role of the C-terminus of the protein is not well understood and is fiercely debated. This review gathers information on TM in an attempt to shed some light on the functional regions of this protein.
Collapse
Affiliation(s)
- Joshua M Costin
- Biotechnology Research Group, Department of Biology, Florida Gulf Coast University, 10501 FGCU Blvd, S., Fort Myers, Fl 33965, USA.
| |
Collapse
|
36
|
Molepo J, Pillay A, Weber B, Morse SA, Hoosen AA. Molecular typing of Treponema pallidum strains from patients with neurosyphilis in Pretoria, South Africa. Sex Transm Infect 2007; 83:189-92. [PMID: 17244664 PMCID: PMC2659089 DOI: 10.1136/sti.2006.023895] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2007] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To evaluate the molecular typing system for Treponema pallidum using cerebrospinal fluid (CSF) specimens obtained from patients with neurosyphilis in Pretoria, South Africa. METHODS CSF specimens were collected from 32 men and 18 women with suspected late neurosyphilis. Typing of T pallidum involved PCR amplification and restriction analysis of the tprE, G and J genes and determination of the number of 60 base pair tandem repeats within the arp gene by PCR amplification. RESULTS Of 13 typeable specimens, 4 strain types were identified: 2i, 3e, 14a and 17e. Subtype 14a was identified in 7 specimens (53.8%), subtype 3e in 4 specimens (30.7%) and subtypes 17e and 2i in 1 specimen (7.6%) each. CONCLUSIONS This study shows that the typing system can be applied to specimens which may contain low numbers of spirochaetes such as CSF.
Collapse
Affiliation(s)
- J Molepo
- Department of Microbiological Pathology, Medunsa Campus, University of Limpopo, Pretoria, South Africa
| | | | | | | | | |
Collapse
|
37
|
Abstract
RNA interference (RNAi) is a potent method of gene silencing that has developed rapidly over the past few years as a result of its extensive importance in the study of genetics, molecular biology and physiology. RNAi technology has also recently yielded significant insight into the innate and adaptive immune systems by helping to elucidate numerous mechanisms that regulate the development, activation and function of cells that mediate immunity. In addition, because of its ability to suppress gene expression effectively, this technique may be used to regulate the immune response for clinical purposes. Nonetheless, before RNAi can be successfully administered into human patients as a medical treatment, it is necessary to overcome several major limitations of this technology, such as inefficient in vivo delivery, incomplete silencing of target genes, non-specific immune responses, and off-target effects. As novel developments and discoveries in molecular biology swiftly continue to unfold, it is likely that RNAi may soon translate into a potent form of in vivo gene silencing with profound applications to vaccination and immunotherapy. In the present review, we examine the current progress of immunological studies employing RNAi and discuss the prospects for the implementation of this technique in the clinical arena.
Collapse
Affiliation(s)
- Chih-Ping Mao
- Department of Pathology, The Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Yen-Yu Lin
- Department of Pathology, The Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Chien-Fu Hung
- Department of Pathology, The Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - T-C Wu
- Department of Pathology, The Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Obstetrics and Gynecology, The Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
38
|
Giri MS, Nebozhyn M, Showe L, Montaner LJ. Microarray data on gene modulation by HIV-1 in immune cells: 2000-2006. J Leukoc Biol 2006; 80:1031-43. [PMID: 16940334 DOI: 10.1189/jlb.0306157] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Here, we review 34 HIV microarray studies in human immune cells over the period of 2000-March 2006 with emphasis on analytical approaches used and conceptual advances on HIV modulation of target cells (CD4 T cell, macrophage) and nontargets such as NK cell, B cell, and dendritic cell subsets. Results to date address advances on gene modulation associated with immune dysregulation, susceptibility to apoptosis, virus replication, and viral persistence following in vitro or in vivo infection/exposure to HIV-1 virus or HIV-1 accessory proteins. In addition to gene modulation associated with known functional correlates of HIV infection and replication (e.g., T cell apoptosis), microarray data have yielded novel, potential mechanisms of HIV-mediated pathogenesis such as modulation of cholesterol biosynthetic genes in CD4 T cells (relevant to virus replication and infectivity) and modulation of proteasomes and histone deacetylases in chronically infected cell lines (relevant to virus latency). Intrinsic challenges in summarizing gene modulation studies remain in development of sound approaches for comparing data obtained using different platforms and analytical tools, deriving unifying concepts to distil the large volumes of data collected, and the necessity to impose a focus for validation on a small fraction of genes. Notwithstanding these challenges, the field overall continues to demonstrate progress in expanding the pool of target genes validated to date in in vitro and in vivo datasets and understanding the functional correlates of gene modulation to HIV-1 pathogenesis in vivo.
Collapse
Affiliation(s)
- Malavika S Giri
- HIV Immunopathogenesis Laboratory, Wistar Institute, 3601 Spruce St., Room 480, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
39
|
Wahl SM, Greenwell-Wild T, Vázquez N. HIV accomplices and adversaries in macrophage infection. J Leukoc Biol 2006; 80:973-83. [PMID: 16908514 DOI: 10.1189/jlb.0306130] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell surface and intracellular proteins in macrophages influence various steps in the life cycle of lentiviruses. Characterization of these restriction and/or cofactors is essential to understanding how macrophages become unwitting HIV hosts and in fact, can coexist with a heavy viral burden. Although many of the cellular pathways co-opted by HIV in macrophages mimic those seen in CD4+ T cells, emerging evidence reveals cellular constituents of the macrophage, which may be uniquely usurped by HIV. For example, in addition to CD4 and CCR5, membrane annexin II facilitates early steps in infection of macrophages, but not in T cells. Blockade of this pathway effectively diminishes macrophage infection. Viral binding engages a macrophage-centric signaling pathway and a transcriptional profile, including genes such as p21, which benefit the virus. Once inside the cell, multiple host cell molecules are engaged to facilitate virus replication and assembly. Although the macrophage is an enabler, it also possesses innate antiviral mechanisms, including apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3) family DNA-editing enzymes to inhibit replication of HIV. Differential expression of these enzymes, which are largely neutralized by HIV to protect its rebirth, is associated with resistance or susceptibility to the virus. Higher levels of the cytidine deaminases endow potential HIV targets with a viral shield, and IFN-alpha, a natural inducer of macrophage APOBEC expression, renders macrophages tougher combatants to HIV infection. These and other manipulatable pathways may give the macrophage a fighting chance in its battle against the virus.
Collapse
Affiliation(s)
- Sharon M Wahl
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Rm. 320, 30 Convent Dr., MSC 4352, Bethesda, MD 20892-4352, USA.
| | | | | |
Collapse
|
40
|
Lima RG, Moreira L, Paes-Leme J, Barreto-de-Souza V, Castro-Faria-Neto HC, Bozza PT, Bou-Habib DC. Interaction of macrophages with apoptotic cells enhances HIV Type 1 replication through PGE2, PAF, and vitronectin receptor. AIDS Res Hum Retroviruses 2006; 22:763-9. [PMID: 16910832 DOI: 10.1089/aid.2006.22.763] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Phagocytosis of apoptotic cells by macrophages increases secretion of soluble mediators and generates an antiinflammatory environment. We previously reported that phagocytosis of apoptotic cells by HIV-1-infected macrophages enhances viral replication, with the participation of the cytokine transforming growth factor- beta1 and an integrin receptor. Now, we describe the role of prostaglandin E2 (PGE2), platelet-activating factor (PAF), and the integrin alphaVbeta3 (vitronectin receptor, VnR) in this phenomenon. Exacerbation of HIV-1 growth induced by phagocytosis of apoptotic cells was inhibited when HIV-1-infected macrophages were treated with a cyclooxygenase 2 inhibitor, or with a PAF receptor antagonist (BN 52021) immediately after macrophage interaction with apoptotic cells. Treatment of HIV-1-infected macrophages with BN 52021 decreased viral replication, whereas addition of PGE2 or PAF to these cells enhanced viral replication. Monoclonal antibodies (MAbs) to VnR reduced the macrophage uptake of apoptotic cells, prevented the enhancement of HIV-1 growth upon the engulfment of apoptotic cells, and potently augmented viral replication in HIV-1-infected macrophages in the absence of apoptotic cells. In conclusion, PGE2 and PAF, and ligation of VnR as well, contribute to amplify viral growth in HIV-1-infected macrophages upon uptake of apoptotic cells.
Collapse
Affiliation(s)
- Rosangela G Lima
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brazil
| | | | | | | | | | | | | |
Collapse
|
41
|
Peng G, Lei KJ, Jin W, Greenwell-Wild T, Wahl SM. Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti-HIV-1 activity. ACTA ACUST UNITED AC 2006; 203:41-6. [PMID: 16418394 PMCID: PMC2118075 DOI: 10.1084/jem.20051512] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G), a cytidine deaminase, is a recently recognized innate intracellular protein with lethal activity against human immunodeficiency virus (HIV). Packaged into progeny virions, APOBEC3G enzymatic activity leads to HIV DNA degradation. As a counterattack, HIV virion infectivity factor (Vif) targets APOBEC3G for proteasomal proteolysis to exclude it from budding virions. Based on the ability of APOBEC3G to antagonize HIV infection, considerable interest hinges on elucidating its mechanism(s) of regulation. In this study, we provide the first evidence that an innate, endogenous host defense factor has the potential to promote APOBEC3G and rebuke the virus-mediated attempt to control its cellular host. We identify interferon (IFN)-α as a potent inducer of APOBEC3G to override HIV Vif neutralization of APOBEC3 proteins that pose a threat to efficient macrophage HIV replication. Our data provide a new dimension by which IFN-α mediates its antiviral activity and suggest a means to render the host nonpermissive for viral replication.
Collapse
Affiliation(s)
- Gang Peng
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
42
|
Lisi S, Sisto M, Acquafredda A, Spinelli R, Schiavone M, Mitolo V, Brandonisio O, Panaro M. Infection with Leishmania infantum Inhibits Actinomycin D-Induced Apoptosis of Human Monocytic Cell Line U-937. J Eukaryot Microbiol 2005; 52:211-7. [PMID: 15926996 DOI: 10.1111/j.1550-7408.2005.00026.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Modulation of host cell apoptosis has been observed in many bacterial, protozoal, and viral infections. The aim of this work was to investigate the effect of viscerotropic Leishmania (L.) infantum infection on actinomycin D-induced apoptosis of the human monocytic cell line U-937. Cells were infected with L. infantum promastigotes or treated with the surface molecule lipophosphoglycan (LPG) or with parasite-free supernatant of Leishmania culture medium and submitted to action of actinomycin D as the apoptosis-inducing agent. Actinomycin D-induced apoptosis in U-937 cells was inhibited in the presence of both viable L. infantum promastigotes and soluble factors contained in Leishmania culture medium or purified LPG. Leishmania infantum affected the survival of U-937 cells via a mechanism involving inhibition of caspase-3 activation. Furthermore, protein kinase C delta (PKC delta) cleavage was increased in actinomycin D-treated U-937 cells and was inhibited by the addition of LPG. Thus, inhibition of the PKC-mediated pathways by LPG can be implicated in the enhanced survival of the parasites. These results support the claim that promastigotes of L. infantum, as well as its surface molecule, LPG, which is in part released in the culture medium, inhibit macrophage apoptosis, thus allowing intracellular parasite survival and replication.
Collapse
Affiliation(s)
- Sabrina Lisi
- Department of Human Anatomy and Histology, University of Bari, I-70124 Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Vázquez N, Greenwell-Wild T, Marinos NJ, Swaim WD, Nares S, Ott DE, Schubert U, Henklein P, Orenstein JM, Sporn MB, Wahl SM. Human immunodeficiency virus type 1-induced macrophage gene expression includes the p21 gene, a target for viral regulation. J Virol 2005; 79:4479-91. [PMID: 15767448 PMCID: PMC1061522 DOI: 10.1128/jvi.79.7.4479-4491.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In contrast to CD4+ T cells, human immunodeficiency virus type 1 (HIV-1)-infected macrophages typically resist cell death, support viral replication, and consequently, may facilitate HIV-1 transmission. To elucidate how the virus commandeers the macrophage's intracellular machinery for its benefit, we analyzed HIV-1-infected human macrophages for virus-induced gene transcription by using multiple parameters, including cDNA expression arrays. HIV-1 infection induced the transcriptional regulation of genes associated with host defense, signal transduction, apoptosis, and the cell cycle, among which the cyclin-dependent kinase inhibitor 1A (CDKN1A/p21) gene was the most prominent. p21 mRNA and protein expression followed a bimodal pattern which was initially evident during the early stages of infection, and maximum levels occurred concomitant with active HIV-1 replication. Mechanistically, viral protein R (Vpr) independently regulates p21 expression, consistent with the reduced viral replication and lack of p21 upregulation by a Vpr-negative virus. Moreover, the treatment of macrophages with p21 antisense oligonucleotides or small interfering RNAs reduced HIV-1 infection. In addition, the synthetic triterpenoid and peroxisome proliferator-activated receptor gamma ligand, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), which is known to influence p21 expression, suppressed viral replication. These data implicate p21 as a pivotal macrophage facilitator of the viral life cycle. Moreover, regulators of p21, such as CDDO, may provide an interventional approach to modulate HIV-1 replication.
Collapse
Affiliation(s)
- Nancy Vázquez
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ma G, Greenwell-Wild T, Lei K, Jin W, Swisher J, Hardegen N, Wild CT, Wahl SM. Secretory leukocyte protease inhibitor binds to annexin II, a cofactor for macrophage HIV-1 infection. ACTA ACUST UNITED AC 2005; 200:1337-46. [PMID: 15545357 PMCID: PMC2211913 DOI: 10.1084/jem.20041115] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The distribution of secretory leukocyte protease inhibitor (SLPI) at entry portals indicates its involvement in defending the host from pathogens, consistent with the ability of SLPI to inhibit human immunodeficiency virus (HIV)-1 infection by an unknown mechanism. We now demonstrate that SLPI binds to the membrane of human macrophages through the phospholipid-binding protein, annexin II. Based on the recent identification of human cell membrane phosphatidylserine (PS) in the outer coat of HIV-1, we define a novel role for annexin II, a PS-binding moiety, as a cellular cofactor supporting macrophage HIV-1 infection. Moreover, this HIV-1 PS interaction with annexin II can be disrupted by SLPI or other annexin II–specific inhibitors. The PS–annexin II connection may represent a new target to prevent HIV-1 infection.
Collapse
Affiliation(s)
- Ge Ma
- Oral Infection and Immunity Branch, NIDCR, NIH, 30 Convent Dr., MSC4352, Building 30, Room 320, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
HIV-1, like the other lentiviruses, has evolved the ability to infect nondividing cells including macrophages. HIV-1 replication in monocytes/macrophages entails peculiar features and differs in many respects from that in CD4 T lymphocytes. HIV-1 exhibits different tropism for CD4 T cells and macrophages. The virus can enter macrophages via several routes. Mitosis is not required for nuclear import of viral DNA or for its integration into the host cell genome. Specific cellular factors are required for HIV-1 transcription in macrophages. The assembly and budding of viral particles in macrophages take place in late endosomal compartments. Viral particles can use the exosome pathway to exit cells. Given their functions in host defence against pathogens and the regulation of the immune response plus their permissivity to HIV-1 infection, monocytes/macrophages exert a dual role in HIV infection. They contribute to the establishment and persistence of HIV-1 infection, and may activate surrounding T cells favouring their infection. Furthermore, monocytes/macrophages act as a Trojan horse to transmit HIV-1 to the central nervous system. They also exhibit antiviral activity and express many molecules that inhibit HIV-1 replication. Activated microglia and macrophages may also exert a neurotrophic and neuroprotective effect on infected brain regulating glutamate metabolism or by secretion of neurotrophins. This review will discuss specific aspects of viral replication in monocytes/macrophages and the role of their interactions with the cellular environment in HIV-1 infection swinging between protection and pathogenesis.
Collapse
Affiliation(s)
- Alessia Verani
- Human Virology Unit, DIBIT, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
46
|
Coberley CR, Kohler JJ, Brown JN, Oshier JT, Baker HV, Popp MP, Sleasman JW, Goodenow MM. Impact on genetic networks in human macrophages by a CCR5 strain of human immunodeficiency virus type 1. J Virol 2004; 78:11477-86. [PMID: 15479790 PMCID: PMC523249 DOI: 10.1128/jvi.78.21.11477-11486.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) impacts multiple lineages of hematopoietic cells, including lymphocytes and macrophages, either by direct infection or indirectly by perturbations of cell networks, leading to generalized immune deficiency. We designed a study to discover, in primary human macrophages, sentinel genetic targets that are impacted during replication over the course of 7 days by a CCR5-using virus. Expression of mRNA and proteins in virus- or mock-treated macrophages from multiple donors was evaluated. Hierarchical agglomerative cluster analysis grouped into distinct temporal expression patterns >900 known human genes that were induced or repressed at least fourfold by virus. Expression of more than one-third of the genes was induced rapidly by day 2 of infection, while other genes were induced at intermediate (day 4) or late (day 7) time points. More than 200 genes were expressed exclusively in either virus- or mock-treated macrophage cultures, independent of the donor, providing an unequivocal basis to distinguish an effect by virus. HIV-1 altered levels of mRNA and/or protein for diverse cellular programs in macrophages, including multiple genes that can contribute to a transition in the cell cycle from G(1) to G(2)/M, in contrast to expression in mock-treated macrophages of genes that maintain G(0)/G(1). Virus treatment activated mediators of cell cycling, including PP2A, which is impacted by Vpr, as well as GADD45 and BRCA1, potentially novel targets for HIV-1. The results identify interrelated programs conducive to optimal HIV-1 replication and expression of genes that can contribute to macrophage dysfunction.
Collapse
Affiliation(s)
- Carter R Coberley
- Department of Pathology, Immunology, and Laboratory Medicine, Box 100275, University of Florida College of Medicine, 1600 S.W. Archer Rd., Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Collman RG, Perno CF, Crowe SM, Stevenson M, Montaner LJ. HIV and cells of macrophage/dendritic lineage and other non-T cell reservoirs: new answers yield new questions. J Leukoc Biol 2003; 74:631-4. [PMID: 12960251 DOI: 10.1189/jlb.0703357] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Defining how human immunodeficiency virus (HIV) interacts with macrophages, dendritic cells (DC), and other non-T cell reservoirs remains a critical area of research despite widespread use in the developed world of highly active antiretroviral therapy. In fact, as highlighted at the Fifth International Workshop on HIV and Cells of Macrophage/Dendritic Lineage and Other Reservoirs, as viral suppression in T cells becomes increasingly effective, these alternative reservoirs may take on even greater relative importance as sites for viral persistence and as a target for purging. These cells may be especially important reservoirs in several critical settings of clinical relevance, and there are major differences in the molecular mechanisms that regulate HIV replication in these cells compared with T cells. Dysfunction of these cells may also play a major role in particular aspects of pathogenesis. Three broad themes emerged from the workshop regarding areas of recent progress, which also serve to identify current research challenges of (i). determining the role played by macrophages, DC, and other non-T cell viral targets in transmission and dissemination and as viral reservoirs at various stages of disease and in different compartments in vivo; (ii). identifying the molecular mechanisms by which virus-cell interactions affect the inflammatory, immune, and other functions of these cells; and (iii). defining the unique pathways that regulate infection and replication in these cellular compartments. This issue of JLB contains several reviews and original reports resulting from the workshop that address recent progress and highlight the current research questions regarding these cell types.
Collapse
Affiliation(s)
- Ronald G Collman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|