1
|
Meade RK, Adefisayo OO, Gontijo MTP, Harris SJ, Pyle CJ, Wilburn KM, Ecker AMV, Hughes EJ, Garcia PD, Ivie J, McHenry ML, Benchek PH, Mayanja-Kizza H, Neff JL, Ko DC, Stout JE, Stein CM, Hawn TR, Tobin DM, Smith CM. Cathepsin Z is a conserved susceptibility factor underlying tuberculosis severity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.644622. [PMID: 40236047 PMCID: PMC11996505 DOI: 10.1101/2025.04.01.644622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Tuberculosis (TB) outcomes vary widely, from asymptomatic infection to mortality, yet most animal models do not recapitulate human phenotypic and genotypic variation. The genetically diverse Collaborative Cross mouse panel models distinct facets of TB disease that occur in humans and allows identification of genomic loci underlying clinical outcomes. We previously mapped a TB susceptibility locus on mouse chromosome 2. Here, we identify cathepsin Z ( Ctsz ) as a lead candidate underlying this TB susceptibility and show that Ctsz ablation leads to increased bacterial burden, CXCL1 overproduction, and decreased survival in mice. Ctsz disturbance within murine macrophages enhances production of CXCL1, a known biomarker of TB severity. From a Ugandan household contact study, we identify significant associations between CTSZ variants and TB disease severity. Finally, we examine patient-derived TB granulomas and report CTSZ localization within granuloma-associated macrophages, placing human CTSZ at the host-pathogen interface. These findings implicate a conserved CTSZ-CXCL1 axis in humans and genetically diverse mice that mediates TB disease severity.
Collapse
|
2
|
Xu B, Anderson BM, Mintern JD, Edgington-Mitchell LE. TLR9-dependent dendritic cell maturation promotes IL-6-mediated upregulation of cathepsin X. Immunol Cell Biol 2024; 102:787-800. [PMID: 38979698 DOI: 10.1111/imcb.12806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Cysteine cathepsins are lysosomal proteases subject to dynamic regulation within antigen-presenting cells during the immune response and associated diseases. To investigate the regulation of cathepsin X, a carboxy-mono-exopeptidase, during maturation of dendritic cells (DCs), we exposed immortalized mouse DCs to various Toll-like receptor agonists. Using a cathepsin X-selective activity-based probe, sCy5-Nle-SY, we observed a significant increase in cathepsin X activation upon TLR-9 agonism with CpG, and to a lesser extent with Pam3 (TLR1/2), FSL-1 (TLR2/6) and LPS (TLR4). Despite clear maturation of DCs in response to Poly I:C (TLR3), cathepsin X activity was only slightly increased by this agonist, suggesting differential regulation of cathepsin X downstream of TLR activation. We demonstrated that cathepsin X was upregulated at the transcriptional level in response to CpG. This occurred at late time points and was not dampened by NF-κB inhibition. Factors secreted from CpG-treated cells were able to provoke cathepsin X upregulation when applied to naïve cells. Among these factors was IL-6, which on its own was sufficient to induce transcriptional upregulation and activation of cathepsin X. IL-6 is highly secreted by DCs in response to CpG but much less so in response to poly I:C, and inhibition of the IL-6 receptor subunit glycoprotein 130 prevented CpG-mediated cathepsin X upregulation. Collectively, these results demonstrate that cathepsin X is differentially transcribed during DC maturation in response to diverse stimuli, and that secreted IL-6 is critical for its dynamic regulation.
Collapse
Affiliation(s)
- Bangyan Xu
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Bethany M Anderson
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Justine D Mintern
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Xu B, Anderson BM, Mountford SJ, Thompson PE, Mintern JD, Edgington-Mitchell LE. Cathepsin X deficiency alters the processing and localisation of cathepsin L and impairs cleavage of a nuclear cathepsin L substrate. Biol Chem 2024; 405:351-365. [PMID: 38410910 DOI: 10.1515/hsz-2023-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Proteases function within sophisticated networks. Altering the activity of one protease can have sweeping effects on other proteases, leading to changes in their activity, structure, specificity, localisation, stability, and expression. Using a suite of chemical tools, we investigated the impact of cathepsin X, a lysosomal cysteine protease, on the activity and expression of other cysteine proteases and their inhibitors in dendritic cells. Among all proteases examined, cathepsin X gene deletion specifically altered cathepsin L levels; pro-cathepsin L and its single chain accumulated while the two-chain form was unchanged. This effect was recapitulated by chemical inhibition of cathepsin X, suggesting a dependence on its catalytic activity. We demonstrated that accumulation of pro- and single chain cathepsin L was not due to a lack of direct cleavage by cathepsin X or altered glycosylation, secretion, or mRNA expression but may result from changes in lysosomal oxidative stress or pH. In the absence of active cathepsin X, nuclear cathepsin L and cleavage of the known nuclear cathepsin L substrate, Lamin B1, were diminished. Thus, cathepsin X activity selectively regulates cathepsin L, which has the potential to impact the degree of cathepsin L proteolysis, the nature of substrates that it cleaves, and the location of cleavage.
Collapse
Affiliation(s)
- Bangyan Xu
- Department of Biochemistry & Pharmacology, 2281 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Parkville, VIC 3052, Australia
| | - Bethany M Anderson
- Department of Biochemistry & Pharmacology, 2281 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Parkville, VIC 3052, Australia
| | - Simon J Mountford
- Medicinal Chemistry, 2541 Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| | - Philip E Thompson
- Medicinal Chemistry, 2541 Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| | - Justine D Mintern
- Department of Biochemistry & Pharmacology, 2281 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Parkville, VIC 3052, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry & Pharmacology, 2281 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Parkville, VIC 3052, Australia
| |
Collapse
|
4
|
Ossendorp F, Ho NI, Van Montfoort N. How B cells drive T-cell responses: A key role for cross-presentation of antibody-targeted antigens. Adv Immunol 2023; 160:37-57. [PMID: 38042585 DOI: 10.1016/bs.ai.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
In this review we discuss an underexposed mechanism in the adaptive immune system where B cell and T cell immunity collaborate. The main function of B cell immunity is the generation of antibodies which are well known for their high affinity and antigen-specificity. Antibodies can bind antigens in soluble form making so-called immune complexes (ICs) or can opsonize antigen-exposing cells or particles for degradation. This leads to well-known effector mechanisms complement activation, antibody-dependent cytotoxicity and phagocytosis. What is less realized is that antibodies can play an important role in the targeting of antigen to dendritic cells (DCs) and thereby can drive T cell immunity. Here we summarize the studies that described this highly efficient process of antibody-mediated antigen uptake in DCs in vitro and in vivo. Only very low doses of antigen can be captured by circulating antibodies and subsequently trapped by DCs in vivo. We studied the handling of these ICs by DCs in subcellular detail. Upon immune complex engulfment DCs can sustain MHC class I and II antigen presentation for many days. Cell biological analysis showed that this function is causally related to intracellular antigen-storage compartments which are functional endolysosomal organelles present in DCs. We speculate that this function is immunologically very important as DCs require time to migrate from the site of infection to the draining lymph nodes to activate T cells. The implications of these findings and the consequences for the immune system, immunotherapy with tumor-specific antibodies and novel vaccination strategies are discussed.
Collapse
Affiliation(s)
- Ferry Ossendorp
- Leiden University Medical Center, department of Immunology, Leiden, The Netherlands.
| | - Nataschja I Ho
- Leiden University Medical Center, department of Immunology, Leiden, The Netherlands
| | - Nadine Van Montfoort
- Leiden University Medical Center, department of Gastroenterology and Hepatology, Leiden, The Netherlands.
| |
Collapse
|
5
|
Senjor E, Kos J, Nanut MP. Cysteine Cathepsins as Therapeutic Targets in Immune Regulation and Immune Disorders. Biomedicines 2023; 11:biomedicines11020476. [PMID: 36831012 PMCID: PMC9953096 DOI: 10.3390/biomedicines11020476] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Cysteine cathepsins, as the most abundant proteases found in the lysosomes, play a vital role in several processes-such as protein degradation, changes in cell signaling, cell morphology, migration and proliferation, and energy metabolism. In addition to their lysosomal function, they are also secreted and may remain functional in the extracellular space. Upregulation of cathepsin expression is associated with several pathological conditions including cancer, neurodegeneration, and immune-system dysregulation. In this review, we present an overview of cysteine-cathepsin involvement and possible targeting options for mitigation of aberrant function in immune disorders such as inflammation, autoimmune diseases, and immune response in cancer.
Collapse
Affiliation(s)
- Emanuela Senjor
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
6
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Smith CM, Baker RE, Proulx MK, Mishra BB, Long JE, Park SW, Lee HN, Kiritsy MC, Bellerose MM, Olive AJ, Murphy KC, Papavinasasundaram K, Boehm FJ, Reames CJ, Meade RK, Hampton BK, Linnertz CL, Shaw GD, Hock P, Bell TA, Ehrt S, Schnappinger D, Pardo-Manuel de Villena F, Ferris MT, Ioerger TR, Sassetti CM. Host-pathogen genetic interactions underlie tuberculosis susceptibility in genetically diverse mice. eLife 2022; 11:74419. [PMID: 35112666 PMCID: PMC8846590 DOI: 10.7554/elife.74419] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
The outcome of an encounter with Mycobacterium tuberculosis (Mtb) depends on the pathogen’s ability to adapt to the variable immune pressures exerted by the host. Understanding this interplay has proven difficult, largely because experimentally tractable animal models do not recapitulate the heterogeneity of tuberculosis disease. We leveraged the genetically diverse Collaborative Cross (CC) mouse panel in conjunction with a library of Mtb mutants to create a resource for associating bacterial genetic requirements with host genetics and immunity. We report that CC strains vary dramatically in their susceptibility to infection and produce qualitatively distinct immune states. Global analysis of Mtb transposon mutant fitness (TnSeq) across the CC panel revealed that many virulence pathways are only required in specific host microenvironments, identifying a large fraction of the pathogen’s genome that has been maintained to ensure fitness in a diverse population. Both immunological and bacterial traits can be associated with genetic variants distributed across the mouse genome, making the CC a unique population for identifying specific host-pathogen genetic interactions that influence pathogenesis.
Collapse
Affiliation(s)
- Clare M Smith
- Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Megan K Proulx
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Bibhuti B Mishra
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Jarukit E Long
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, United States
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, United States
| | - Michael C Kiritsy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Michelle M Bellerose
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Andrew J Olive
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
| | - Kenan C Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Frederick J Boehm
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Charlotte J Reames
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Rachel K Meade
- Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
| | - Brea K Hampton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Colton L Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Morrisville, United States
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Timothy A Bell
- Department of Genetics,, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, United States
| | | | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Thomas R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, United States
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
8
|
de Seny D, Baiwir D, Bianchi E, Cobraiville G, Deroyer C, Poulet C, Malaise O, Paulissen G, Kaiser MJ, Hauzeur JP, Mazzucchelli G, Delvenne P, Malaise M. New Proteins Contributing to Immune Cell Infiltration and Pannus Formation of Synovial Membrane from Arthritis Diseases. Int J Mol Sci 2021; 23:ijms23010434. [PMID: 35008858 PMCID: PMC8745719 DOI: 10.3390/ijms23010434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/15/2023] Open
Abstract
An inflamed synovial membrane plays a major role in joint destruction and is characterized by immune cells infiltration and fibroblast proliferation. This proteomic study considers the inflammatory process at the molecular level by analyzing synovial biopsies presenting a histological inflammatory continuum throughout different arthritis joint diseases. Knee synovial biopsies were obtained from osteoarthritis (OA; n = 9), chronic pyrophosphate arthropathy (CPPA; n = 7) or rheumatoid arthritis (RA; n = 8) patients. The histological inflammatory score was determined using a semi-quantitative scale based on synovial hyperplasia, lymphocytes, plasmocytes, neutrophils and macrophages infiltration. Proteomic analysis was performed by liquid chromatography-mass spectrometry (LC-MS/MS). Differentially expressed proteins were confirmed by immunohistochemistry. Out of the 1871 proteins identified and quantified by LC-MS/MS, 10 proteins (LAP3, MANF, LCP1, CTSZ, PTPRC, DNAJB11, EML4, SCARA5, EIF3K, C1orf123) were differentially expressed in the synovial membrane of at least one of the three disease groups (RA, OA and CPPA). Significant increased expression of the seven first proteins was detected in RA and correlated to the histological inflammatory score. Proteomics is therefore a powerful tool that provides a molecular pattern to the classical histology usually applied for synovitis characterization. Except for LCP1, CTSZ and PTPRC, all proteins have never been described in human synovitis.
Collapse
Affiliation(s)
- Dominique de Seny
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
- Correspondence: ; Tel.: +32-366-24-74
| | - Dominique Baiwir
- GIGA Proteomics Facility, University of Liège, 4000 Liège, Belgium; (D.B.); (P.D.)
| | - Elettra Bianchi
- Department of Pathology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium;
| | - Gaël Cobraiville
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Céline Deroyer
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Christophe Poulet
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Olivier Malaise
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Geneviève Paulissen
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Marie-Joëlle Kaiser
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Jean-Philippe Hauzeur
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium;
| | - Philippe Delvenne
- GIGA Proteomics Facility, University of Liège, 4000 Liège, Belgium; (D.B.); (P.D.)
| | - Michel Malaise
- Laboratory and Service of Rheumatology, GIGA Research, Centre Hospitalier Universitaire de Liège, University of Liège, 4000 Liège, Belgium; (G.C.); (C.D.); (C.P.); (O.M.); (G.P.); (M.-J.K.); (J.-P.H.); (M.M.)
| |
Collapse
|
9
|
Cathepsin X Activity Does Not Affect NK-Target Cell Synapse but Is Rather Distributed to Cytotoxic Granules. Int J Mol Sci 2021; 22:ijms222413495. [PMID: 34948293 PMCID: PMC8707301 DOI: 10.3390/ijms222413495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Cathepsin X is a lysosomal peptidase that is involved in tumour progression and represents a potential target for therapeutic interventions. In addition, it regulates important functions of immune cells and is implicated in the modulation of tumour cell–immune cell crosstalk. Selective cathepsin X inhibitors have been proposed as prospective antitumour agents to prevent cancer progression; however, their impact on the antitumour immune response has been overlooked. Previous studies indicate that the migration and adhesion of T cells and dendritic cells are affected by diminished cathepsin X activity. Meanwhile, the influence of cathepsin X inhibition on natural killer (NK) cell function has not yet been explored. Here, we examined the localization patterns of cathepsin X and the role of its inhibitors on the cytotoxicity of cell line NK-92, which is used for adoptive cellular immunotherapy in cancer patients. NK-92 cells depend on lymphocyte function-associated antigen 1 (LFA-1) to form stable immunoconjugates with target cells, providing, in this way, optimal cytotoxicity. Since LFA-1 is a substrate for cathepsin X activity in other types of cells, we hypothesized that cathepsin X could disturb the formation of NK-92 immunoconjugates. Thus, we employed cathepsin X reversible and irreversible inhibitors and evaluated their effects on the NK-92 cell interactions with target cells and on the NK-92 cell cytotoxicity. We show that cathepsin X inhibition does not impair stable conjugate formation or the lytic activity of NK-92 cells. Similarly, the conjugate formation between Jurkat T cells and target cells was not affected by cathepsin X activity. Unlike in previous migration and adhesion studies on T cells, in NK-92 cells cathepsin X was not co-localized with LFA-1 at the plasma membrane but was, rather, redistributed to the cytotoxic granules and secreted during degranulation.
Collapse
|
10
|
Ho NI, Camps MG, Garcia-Vallejo JJ, Bos E, Koster AJ, Verdoes M, van Kooyk Y, Ossendorp F. Distinct antigen uptake receptors route to the same storage compartments for cross-presentation in dendritic cells. Immunology 2021; 164:494-506. [PMID: 34110622 PMCID: PMC8517591 DOI: 10.1111/imm.13382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 12/01/2022] Open
Abstract
An exclusive feature of dendritic cells (DCs) is their capacity to present exogenous antigens by MHC class I molecules, called cross‐presentation. Here, we show that protein antigen can be conserved in mature murine DCs for several days in a lysosome‐like storage compartment, distinct from MHC class II and early endosomal compartments, as an internal source for the supply of MHC class I ligands. Using two different uptake routes via Fcγ receptors and C‐type lectin receptors, we could show that antigens were routed towards the same endolysosomal compartments after 48 h. The antigen‐containing compartments lacked co‐expression of molecules involved in MHC class I processing and presentation including TAP and proteasome subunits as shown by single‐cell imaging flow cytometry. Moreover, we observed the absence of cathepsin S but selective co‐localization of active cathepsin X with protein antigen in the storage compartments. This indicates cathepsin S‐independent antigen degradation and a novel but yet undefined role for cathepsin X in antigen processing and cross‐presentation by DCs. In summary, our data suggest that these antigen‐containing compartments in DCs can conserve protein antigens from different uptake routes and contribute to long‐lasting antigen cross‐presentation.
Collapse
Affiliation(s)
- Nataschja I Ho
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel G Camps
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Erik Bos
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, Leiden, The Netherlands
| | - Abraham J Koster
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Dolenc I, Štefe I, Turk D, Taler-Verčič A, Turk B, Turk V, Stoka V. Human cathepsin X/Z is a biologically active homodimer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140567. [PMID: 33227497 DOI: 10.1016/j.bbapap.2020.140567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Human cathepsin X belongs to the cathepsin family of 11 lysosomal cysteine proteases. We expressed recombinant procathepsin X in Pichia pastoris in vitro and cleaved it into its active mature form using aspartic cathepsin E. We found, using size exclusion chromatography, X-ray crystallography, and small-angle X-ray scattering, that cathepsin X is a biologically active homodimer with a molecular weight of ~53 kDa. The novel finding that cathepsin X is a dimeric protein opens new horizons in the understanding of its function and the underlying pathophysiological mechanisms of various diseases including neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- Iztok Dolenc
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Ivica Štefe
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Ajda Taler-Verčič
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
12
|
Mountford SJ, Anderson BM, Xu B, Tay ESV, Szabo M, Hoang ML, Diao J, Aurelio L, Campden RI, Lindström E, Sloan EK, Yates RM, Bunnett NW, Thompson PE, Edgington-Mitchell LE. Application of a Sulfoxonium Ylide Electrophile to Generate Cathepsin X-Selective Activity-Based Probes. ACS Chem Biol 2020; 15:718-727. [PMID: 32022538 DOI: 10.1021/acschembio.9b00961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cathepsin X/Z/P is cysteine cathepsin with unique carboxypeptidase activity. Its expression is associated with cancer and neurodegenerative diseases, although its roles during normal physiology are still poorly understood. Advances in our understanding of its function have been hindered by a lack of available tools that can specifically measure the proteolytic activity of cathepsin X. We present a series of activity-based probes that incorporate a sulfoxonium ylide warhead, which exhibit improved specificity for cathepsin X compared to previously reported probes. We apply these probes to detect cathepsin X activity in cell and tissue lysates, in live cells and in vivo, and to localize active cathepsin X in mouse tissues by microscopy. Finally, we utilize an improved method to generate chloromethylketones, necessary intermediates for synthesis of acyloxymethylketones probes, by way of sulfoxonium ylide intermediates. In conclusion, the probes presented in this study will be valuable for investigating cathepsin X pathophysiology.
Collapse
Affiliation(s)
- Simon J. Mountford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bethany M. Anderson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bangyan Xu
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Elean S. V. Tay
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Monika Szabo
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - My-Linh Hoang
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jiayin Diao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Luigi Aurelio
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Rhiannon I. Campden
- Snyder Institute for Chronic Disease and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | - Erica K. Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robin M. Yates
- Snyder Institute for Chronic Disease and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Nigel W. Bunnett
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department of Craniofacial Biology, New York University College of Dentistry, New York, New York 10010, United States
- Department of Pharmacology and Experimental Therapeutics, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Philip E. Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Laura E. Edgington-Mitchell
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York 10010, United States
| |
Collapse
|
13
|
Zhang X, Luo S, Wang M, Shi GP. Cysteinyl cathepsins in cardiovascular diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140360. [PMID: 31926332 DOI: 10.1016/j.bbapap.2020.140360] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/24/2022]
Abstract
Cysteinyl cathepsins are lysosomal/endosomal proteases that mediate bulk protein degradation in these intracellular acidic compartments. Yet, studies indicate that these proteases also appear in the nucleus, nuclear membrane, cytosol, plasma membrane, and extracellular space. Patients with cardiovascular diseases (CVD) show increased levels of cathepsins in the heart, aorta, and plasma. Plasma cathepsins often serve as biomarkers or risk factors of CVD. In aortic diseases, such as atherosclerosis and abdominal aneurysms, cathepsins play pathogenic roles, but many of the same cathepsins are cardioprotective in hypertensive, hypertrophic, and infarcted hearts. During the development of CVD, cathepsins are regulated by inflammatory cytokines, growth factors, hypertensive stimuli, oxidative stress, and many others. Cathepsin activities in inflammatory molecule activation, immunity, cell migration, cholesterol metabolism, neovascularization, cell death, cell signaling, and tissue fibrosis all contribute to CVD and are reviewed in this article in memory of Dr. Nobuhiko Katunuma for his contribution to the field.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Songyuan Luo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Minjie Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115.
| |
Collapse
|
14
|
Jakoš T, Pišlar A, Jewett A, Kos J. Cysteine Cathepsins in Tumor-Associated Immune Cells. Front Immunol 2019; 10:2037. [PMID: 31555270 PMCID: PMC6724555 DOI: 10.3389/fimmu.2019.02037] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Cysteine cathepsins are key regulators of the innate and adaptive arms of the immune system. Their expression, activity, and subcellular localization are associated with the distinct development and differentiation stages of immune cells. They promote the activation of innate myeloid immune cells since they contribute to toll-like receptor signaling and to cytokine secretion. Furthermore, they control lysosomal biogenesis and autophagic flux, thus affecting innate immune cell survival and polarization. They also regulate bidirectional communication between the cell exterior and the cytoskeleton, thus influencing cell interactions, morphology, and motility. Importantly, cysteine cathepsins contribute to the priming of adaptive immune cells by controlling antigen presentation and are involved in cytotoxic granule mediated killing in cytotoxic T lymphocytes and natural killer cells. Cathepins'aberrant activity can be prevented by their endogenous inhibitors, cystatins. However, dysregulated proteolysis contributes significantly to tumor progression also by modulation of the antitumor immune response. Especially tumor-associated myeloid cells, such as tumor-associated macrophages and myeloid-derived suppressor cells, which are known for their tumor promoting and immunosuppressive functions, constitute the major source of excessive cysteine cathepsin activity in cancer. Since they are enriched in the tumor microenvironment, cysteine cathepsins represent exciting targets for development of new diagnostic and therapeutic moieties.
Collapse
Affiliation(s)
- Tanja Jakoš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Pišlar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anahid Jewett
- UCLA School of Dentistry and Medicine, Los Angeles, CA, United States
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
15
|
Peláez R, Pariente A, Pérez-Sala Á, Larrayoz IM. Integrins: Moonlighting Proteins in Invadosome Formation. Cancers (Basel) 2019; 11:cancers11050615. [PMID: 31052560 PMCID: PMC6562994 DOI: 10.3390/cancers11050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/24/2022] Open
Abstract
Invadopodia are actin-rich protrusions developed by transformed cells in 2D/3D environments that are implicated in extracellular matrix (ECM) remodeling and degradation. These structures have an undoubted association with cancer invasion and metastasis because invadopodium formation in vivo is a key step for intra/extravasation of tumor cells. Invadopodia are closely related to other actin-rich structures known as podosomes, which are typical structures of normal cells necessary for different physiological processes during development and organogenesis. Invadopodia and podosomes are included in the general term 'invadosomes,' as they both appear as actin puncta on plasma membranes next to extracellular matrix metalloproteinases, although organization, regulation, and function are slightly different. Integrins are transmembrane proteins implicated in cell-cell and cell-matrix interactions and other important processes such as molecular signaling, mechano-transduction, and cell functions, e.g., adhesion, migration, or invasion. It is noteworthy that integrin expression is altered in many tumors, and other pathologies such as cardiovascular or immune dysfunctions. Over the last few years, growing evidence has suggested a role of integrins in the formation of invadopodia. However, their implication in invadopodia formation and adhesion to the ECM is still not well known. This review focuses on the role of integrins in invadopodium formation and provides a general overview of the involvement of these proteins in the mechanisms of metastasis, taking into account classic research through to the latest and most advanced work in the field.
Collapse
Affiliation(s)
- Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ana Pariente
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Álvaro Pérez-Sala
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| |
Collapse
|
16
|
Vidak E, Javoršek U, Vizovišek M, Turk B. Cysteine Cathepsins and their Extracellular Roles: Shaping the Microenvironment. Cells 2019; 8:cells8030264. [PMID: 30897858 PMCID: PMC6468544 DOI: 10.3390/cells8030264] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
For a long time, cysteine cathepsins were considered primarily as proteases crucial for nonspecific bulk proteolysis in the endolysosomal system. However, this view has dramatically changed, and cathepsins are now considered key players in many important physiological processes, including in diseases like cancer, rheumatoid arthritis, and various inflammatory diseases. Cathepsins are emerging as important players in the extracellular space, and the paradigm is shifting from the degrading enzymes to the enzymes that can also specifically modify extracellular proteins. In pathological conditions, the activity of cathepsins is often dysregulated, resulting in their overexpression and secretion into the extracellular space. This is typically observed in cancer and inflammation, and cathepsins are therefore considered valuable diagnostic and therapeutic targets. In particular, the investigation of limited proteolysis by cathepsins in the extracellular space is opening numerous possibilities for future break-through discoveries. In this review, we highlight the most important findings that establish cysteine cathepsins as important players in the extracellular space and discuss their roles that reach beyond processing and degradation of extracellular matrix (ECM) components. In addition, we discuss the recent developments in cathepsin research and the new possibilities that are opening in translational medicine.
Collapse
Affiliation(s)
- Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- International Postgraduate School Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- International Postgraduate School Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Matej Vizovišek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
17
|
Kos J, Nanut MP, Prunk M, Sabotič J, Dautović E, Jewett A. Cystatin F as a regulator of immune cell cytotoxicity. Cancer Immunol Immunother 2018; 67:1931-1938. [PMID: 29748898 PMCID: PMC11028163 DOI: 10.1007/s00262-018-2165-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/30/2018] [Indexed: 01/08/2023]
Abstract
Cysteine cathepsins are lysosomal peptidases involved in the regulation of innate and adaptive immune responses. Among the diverse processes, regulation of granule-dependent cytotoxicity of cytotoxic T-lymphocytes (CTLs) and natural killer (NK) cells during cancer progression has recently gained significant attention. The function of cysteine cathepsins is regulated by endogenous cysteine protease inhibitors-cystatins. Whereas other cystatins are generally cytosolic or extracellular proteins, cystatin F is present in endosomes and lysosomes and is thus able to regulate the activity of its target directly. It is delivered to endosomal/lysosomal vesicles as an inactive, disulphide-linked dimer. Proteolytic cleavage of its N-terminal part leads to the monomer, the only form that is a potent inhibitor of cathepsins C, H and L, involved in the activation of granzymes and perforin. In NK cells and CTLs the levels of active cathepsin C and of granzyme B are dependent on the concentration of monomeric, active cystatin F. In tumour microenvironment, inactive dimeric cystatin F can be secreted from tumour cells or immune cells and further taken up by the cytotoxic cells. Subsequent monomerization and inhibition of cysteine cathepsins within the endosomal/lysosomal vesicles impairs granzyme and perforin activation, and provokes cell anergy. Further, the glycosylation pattern has been shown to be important in controlling secretion of cystatin F from target cells, as well as internalization by cytotoxic cells and trafficking to endosomal/lysosomal vesicles. Cystatin F is therefore an important mediator used by bystander cells to reduce NK and T-cell cytotoxicity.
Collapse
Affiliation(s)
- Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | | | - Mateja Prunk
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Anahid Jewett
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California-Los Angeles, Los Angeles, USA
| |
Collapse
|
18
|
Bhagwat SR, Hajela K, Kumar A. Proteolysis to Identify Protease Substrates: Cleave to Decipher. Proteomics 2018; 18:e1800011. [DOI: 10.1002/pmic.201800011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Sonali R. Bhagwat
- Discipline of Biosciences and Biomedical Engineering; Indian Institute of Technology; Indore 453552 Simrol India
| | - Krishnan Hajela
- School of Life Sciences; Devi Ahilya Vishwavidyalaya; Indore 452001 India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering; Indian Institute of Technology; Indore 453552 Simrol India
| |
Collapse
|
19
|
Liu CL, Guo J, Zhang X, Sukhova GK, Libby P, Shi GP. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nat Rev Cardiol 2018; 15:351-370. [DOI: 10.1038/s41569-018-0002-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Zavašnik-Bergant T, Vidmar R, Sekirnik A, Fonović M, Salát J, Grunclová L, Kopáček P, Turk B. Salivary Tick Cystatin OmC2 Targets Lysosomal Cathepsins S and C in Human Dendritic Cells. Front Cell Infect Microbiol 2017; 7:288. [PMID: 28713775 PMCID: PMC5492865 DOI: 10.3389/fcimb.2017.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/14/2017] [Indexed: 11/14/2022] Open
Abstract
To ensure successful feeding tick saliva contains a number of inhibitory proteins that interfere with the host immune response and help to create a permissive environment for pathogen transmission. Among the potential targets of the salivary cystatins are two host cysteine proteases, cathepsin S, which is essential for antigen- and invariant chain-processing, and cathepsin C (dipeptidyl peptidase 1, DPP1), which plays a critical role in processing and activation of the granule serine proteases. Here, the effect of salivary cystatin OmC2 from Ornithodoros moubata was studied using differentiated MUTZ-3 cells as a model of immature dendritic cells of the host skin. Following internalization, cystatin OmC2 was initially found to inhibit the activity of several cysteine cathepsins, as indicated by the decreased rates of degradation of fluorogenic peptide substrates. To identify targets, affinity chromatography was used to isolate His-tagged cystatin OmC2 together with the bound proteins from MUTZ-3 cells. Cathepsins S and C were identified in these complexes by mass spectrometry and confirmed by immunoblotting. Furthermore, reduced increase in the surface expression of MHC II and CD86, which are associated with the maturation of dendritic cells, was observed. In contrast, human inhibitor cystatin C, which is normally expressed and secreted by dendritic cells, did not affect the expression of CD86. It is proposed that internalization of salivary cystatin OmC2 by the host dendritic cells targets cathepsins S and C, thereby affecting their maturation.
Collapse
Affiliation(s)
- Tina Zavašnik-Bergant
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan InstituteLjubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan InstituteLjubljana, Slovenia
| | - Andreja Sekirnik
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan InstituteLjubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan InstituteLjubljana, Slovenia
| | - Jiří Salát
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czechia
| | - Lenka Grunclová
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czechia
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czechia
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan InstituteLjubljana, Slovenia.,Centre of Excellence for Integrated Approaches in Chemistry and Biology of ProteinsLjubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of LjubljanaLjubljana, Slovenia
| |
Collapse
|
21
|
Zavašnik-Bergant T, Bergant Marušič M. Exogenous Thyropin from p41 Invariant Chain Diminishes Cysteine Protease Activity and Affects IL-12 Secretion during Maturation of Human Dendritic Cells. PLoS One 2016; 11:e0150815. [PMID: 26960148 PMCID: PMC4784741 DOI: 10.1371/journal.pone.0150815] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 02/19/2016] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DC) play a pivotal role as antigen presenting cells (APC) and their maturation is crucial for effectively eliciting an antigen-specific immune response. The p41 splice variant of MHC class II-associated chaperone, called invariant chain p41 Ii, contains an amino acid sequence, the p41 fragment, which is a thyropin-type inhibitor of proteolytic enzymes. The effects of exogenous p41 fragment and related thyropin inhibitors acting on human immune cells have not been reported yet. In this study we demonstrate that exogenous p41 fragment can enter the endocytic pathway of targeted human immature DC. Internalized p41 fragment has contributed to the total amount of the immunogold labelled p41 Ii-specific epitope, as quantified by transmission electron microscopy, in particular in late endocytic compartments with multivesicular morphology where antigen processing and binding to MHC II take place. In cell lysates of treated immature DC, diminished enzymatic activity of cysteine proteases has been confirmed. Internalized exogenous p41 fragment did not affect the perinuclear clustering of acidic cathepsin S-positive vesicles typical of mature DC. p41 fragment is shown to interfere with the nuclear translocation of NF-κB p65 subunit in LPS-stimulated DC. p41 fragment is also shown to reduce the secretion of interleukin-12 (IL-12/p70) during the subsequent maturation of treated DC. The inhibition of proteolytic activity of lysosomal cysteine proteases in immature DC and the diminished capability of DC to produce IL-12 upon their subsequent maturation support the immunomodulatory potential of the examined thyropin from p41 Ii.
Collapse
Affiliation(s)
- Tina Zavašnik-Bergant
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- * E-mail:
| | | |
Collapse
|
22
|
Sauter A, Mc Duffie Y, Boehm H, Martinez A, Spatz JP, Appel S. Surface-mediated priming during in vitro generation of monocyte-derived dendritic cells. Scand J Immunol 2015; 81:56-65. [PMID: 25376441 DOI: 10.1111/sji.12246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/16/2014] [Accepted: 10/21/2014] [Indexed: 11/28/2022]
Abstract
Ex vivo-generated human dendritic cells (DC) are most commonly generated from monocytes using standard cell culture dishes. To elucidate the effect of the plastic surface during the differentiation process, we compared a standard adhesive plastic dish with four different mainly non-adherent surfaces. Untouched monocytes were cultured for 3 days in the presence of IL-4 and GM-CSF. Time-lapse videos were recorded, and the phenotype of the cells was analysed by flow cytometry. The cytokine profiles were analysed using a 25-plex cytokine assay. The use of non-adherent surfaces led to a significant reduction in expression of CD14 and CD38, and a significant increase in expression of CD86 compared to standard culture dishes. Expression levels of DC-SIGN and PD-L2 were reduced significantly on cells cultured on non-adherent surfaces. The cytokine production was independent on the surface used. The surface-mediated priming should therefore be considered when aiming to induce specific immune responses. This is especially important with regard to DC-based immunotherapy, where an adjustment of the surface during the DC generation process might have highly beneficial effects.
Collapse
Affiliation(s)
- A Sauter
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | |
Collapse
|
23
|
Intracellular signaling by cathepsin X: Molecular mechanisms and diagnostic and therapeutic opportunities in cancer. Semin Cancer Biol 2015; 31:76-83. [DOI: 10.1016/j.semcancer.2014.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/27/2014] [Accepted: 05/05/2014] [Indexed: 01/27/2023]
|
24
|
Perišić Nanut M, Sabotič J, Jewett A, Kos J. Cysteine cathepsins as regulators of the cytotoxicity of NK and T cells. Front Immunol 2014; 5:616. [PMID: 25520721 PMCID: PMC4251435 DOI: 10.3389/fimmu.2014.00616] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/18/2014] [Indexed: 11/13/2022] Open
Abstract
Cysteine cathepsins are lysosomal peptidases involved at different levels in the processes of the innate and adaptive immune responses. Some, such as cathepsins B, L, and H are expressed constitutively in most immune cells. In cells of innate immunity they play a role in cell adhesion and phagocytosis. Other cysteine cathepsins are expressed more specifically. Cathepsin X promotes dendritic cell maturation, adhesion of macrophages, and migration of T cells. Cathepsin S is implicated in major histocompatibility complex class II antigen presentation, whereas cathepsin C, expressed in cytotoxic T lymphocytes and natural killer (NK) cells, is involved in processing pro-granzymes into proteolytically active forms, which trigger cell death in their target cells. The activity of cysteine cathepsins is controlled by endogenous cystatins, cysteine protease inhibitors. Of these, cystatin F is the only cystatin that is localized in endosomal/lysosomal vesicles. After proteolytic removal of its N-terminal peptide, cystatin F becomes a potent inhibitor of cathepsin C with the potential to regulate pro-granzyme processing and cell cytotoxicity. This review is focused on the role of cysteine cathepsins and their inhibitors in the molecular mechanisms leading to the cytotoxic activity of T lymphocytes and NK cells in order to address new possibilities for regulation of their function in pathological processes.
Collapse
Affiliation(s)
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute , Ljubljana , Slovenia
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, University of California Los Angeles , Los Angeles, CA , USA
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute , Ljubljana , Slovenia ; Faculty of Pharmacy, University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
25
|
Akkari L, Gocheva V, Kester JC, Hunter KE, Quick ML, Sevenich L, Wang HW, Peters C, Tang LH, Klimstra DS, Reinheckel T, Joyce JA. Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix. Genes Dev 2014; 28:2134-50. [PMID: 25274726 PMCID: PMC4180975 DOI: 10.1101/gad.249599.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During the process of tumor progression, cancer cells can produce the requisite growth- and invasion-promoting factors and can also rely on noncancerous cells in the tumor microenvironment as an alternative, cell-extrinsic source. However, whether the cellular source influences the function of such tumor-promoting factors remains an open question. Here, we examined the roles of the cathepsin Z (CtsZ) protease, which is provided by both cancer cells and macrophages in pancreatic neuroendocrine tumors in humans and mice. We found that tumor proliferation was exclusively regulated by cancer cell-intrinsic functions of CtsZ, whereas tumor invasion required contributions from both macrophages and cancer cells. Interestingly, several of the tumor-promoting functions of CtsZ were not dependent on its described catalytic activity but instead were mediated via the Arg-Gly-Asp (RGD) motif in the enzyme prodomain, which regulated interactions with integrins and the extracellular matrix. Together, these results underscore the complexity of interactions within the tumor microenvironment and indicate that cellular source can indeed impact molecular function.
Collapse
Affiliation(s)
- Leila Akkari
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA
| | - Vasilena Gocheva
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA
| | - Jemila C Kester
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA
| | - Karen E Hunter
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA
| | - Marsha L Quick
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA
| | - Lisa Sevenich
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA
| | - Hao-Wei Wang
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA
| | - Christoph Peters
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs University, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, D-79104 Freiburg, Germany; German Cancer Consortium (DKTK), D-79104 Freiburg, Germany
| | - Laura H Tang
- Pathology Department, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - David S Klimstra
- Pathology Department, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs University, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, D-79104 Freiburg, Germany; German Cancer Consortium (DKTK), D-79104 Freiburg, Germany
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA;
| |
Collapse
|
26
|
Kopitar AN, Skvarc M, Tepes B, Kos J, Ihan A. Helicobacter pylori susceptible/resistant to antibiotic eradication therapy differ in the maturation and activation of dendritic cells. Helicobacter 2013; 18:444-53. [PMID: 23859622 DOI: 10.1111/hel.12068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The natural course of Helicobacter pylori infection, as well as the success of antibiotic eradication is determined by the immune response to bacteria. The aim of the study is to investigate how different Helicobacter pylori isolates influence the dendritic cells maturation and antigen-presenting function in order to elucidate the differences between Helicobacter pylori strains, isolated from the patients with successful antibiotic eradication therapy or repeated eradication failure. MATERIALS AND METHODS Dendritic cells maturation and antigen presentation were monitored by flow cytometry analysis of the major histocompatibility complex class II (MHC-II), Toll-like receptor (TLR) and costimulatory molecules expression, and by determining cytokine secretion. RESULTS Dendritic cells stimulated with Helicobacter pylori isolated from patients with repeated antibiotic eradication failure expressed less human leukocyte antigen (HLA-DR), CD86, TLR-2, and interleukin-8 (IL-8) compared to Helicobacter pylori strains susceptible to antibiotic therapy; the latter expressed lower production of IL-10. Polymyxin B inhibition of lipopolysaccharide reduces IL-8 secretion in the group of Helicobacter pylori strains susceptible to antibiotic therapy. The differences in IL-8 secretion between both groups are lipopolysaccharide dependent, while the differences in secretion of IL-10 remain unchanged after lipopolysaccharide inhibition. Inhibitor of cathepsin X Mab 2F12 reduced the secretion of IL-6, and the secretion was significantly lower in the group of Helicobacter pylori strains isolated from patients with repeated antibiotic eradication failure. CONCLUSION Helicobacter pylori strains, susceptible/resistant to antibiotic eradication therapy, differ in their capability to induce DCs maturation and antigen-presenting function.
Collapse
Affiliation(s)
- Andreja N Kopitar
- Medical Faculty Ljubljana, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
27
|
O'Grada CM, Morine MJ, Morris C, Ryan M, Dillon ET, Walsh M, Gibney ER, Brennan L, Gibney MJ, Roche HM. PBMCs reflect the immune component of the WAT transcriptome--implications as biomarkers of metabolic health in the postprandial state. Mol Nutr Food Res 2013; 58:808-20. [PMID: 24170299 DOI: 10.1002/mnfr.201300182] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 12/23/2022]
Abstract
SCOPE Food and nutrition studies often require accessing metabolically active tissues, including adipose tissue. This can involve invasive biopsy procedures that can be a limiting factor in study design. In contrast, peripheral blood mononuclear cells (PBMCs) are a population of circulating immune cells that are easily accessible through venipuncture. As transcriptomics is of growing importance in food and metabolism research, understanding the transcriptomic relationship between these tissue types can provide insight into the utility of PBMCs in this field. METHODS AND RESULTS We examine this relationship within eight subjects, in two postprandial states (following oral lipid tolerance test and oral glucose tolerance test). Multivariate analysis techniques were used to examine variation between tissues, samples, and subjects in order to define which genes havecommon/disparate expression profiles associated with highly defined metabolic phenotypes. We demonstrate global similarities in gene expression between PBMCs and white adipose tissue, irrespective of the metabolic challenge type. Closer examination of individual genes revealed this similarity to be strongest in pathways related to immune response/inflammation. Notably, the expression of metabolism-related nuclear receptors, including PPARs, LXR, etc. was discordant between tissues CONCLUSION The PBMC transcriptome may therefore provide a unique insight into the inflammatory component of metabolic health, as opposed to directly reflecting the metabolic component of the adipose tissue transcriptome.
Collapse
Affiliation(s)
- Colm M O'Grada
- Nutrigenomics Research Group, UCD Conway Institute of Biomolecular and Biomedical Research, School of Public Health and Population Science, University College Dublin, Belfield, Dublin, Ireland; Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Inhibition of cathepsin X enzyme influences the immune response of THP-1 cells and dendritic cells infected with Helicobacter pylori. Radiol Oncol 2013; 47:258-65. [PMID: 24133391 PMCID: PMC3794882 DOI: 10.2478/raon-2013-0043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/11/2013] [Indexed: 12/30/2022] Open
Abstract
Background The immune response to Helicobacter pylori importantly determines the outcome of infection as well as the success of eradication therapy. We demonstrate the role of a cysteine protease cathepsin X in the immune response to H. pylori infection. Materials and methods We analysed how the inhibition of cathepsin X influenced the immune response in experiments when THP-1 cells or dendritic cells isolated from patients were stimulated with 48 strains of H. pylori isolated from gastric biopsy samples of patients which had problems with the eradication of bacteria. Results The experiments, performed with the help of a flow cytometer, showed that the expression of Toll-like receptors (TLRs), especially TLR-4 molecules, on the membranes of THP-1 cells or dendritic cells was higher when we stimulated cells with H. pylori together with inhibitor of cathepsin X 2F12 compared to THP-1 cells or dendritic cells stimulated with H. pylori only, and also in comparison with negative control samples. We also demonstrated that when we inhibited the action of cathepsin X in THP-1 cells, the concentrations of pro-inflammatory cytokines were lower than when THP-1 cell were stimulated with H. pylori only. Conclusions We demonstrated that inhibition of cathepsin X influences the internalization of TLR-2 and TLR-4. TLR-2 and TLR-4 redistribution to intra-cytoplasmic compartments is hampered if cathepsin X is blocked. The beginning of a successful immune response against H. pylori in the case of inhibition of cathepsin X is delayed.
Collapse
|
29
|
Jevnikar Z, Mirković B, Fonović UP, Zidar N, Švajger U, Kos J. Three-dimensional invasion of macrophages is mediated by cysteine cathepsins in protrusive podosomes. Eur J Immunol 2012; 42:3429-41. [DOI: 10.1002/eji.201242610] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 08/08/2012] [Accepted: 09/24/2012] [Indexed: 01/13/2023]
Affiliation(s)
- Zala Jevnikar
- Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7, SI-1000 Ljubljana Slovenia
| | - Bojana Mirković
- Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7, SI-1000 Ljubljana Slovenia
| | - Urša Pečar Fonović
- Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7, SI-1000 Ljubljana Slovenia
| | - Nace Zidar
- Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7, SI-1000 Ljubljana Slovenia
| | - Urban Švajger
- Blood Transfusion Center of Slovenia; Ljubljana Slovenia
| | - Janko Kos
- Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7, SI-1000 Ljubljana Slovenia
- Department of Biotechnology; Jožef Stefan Institute; Jamova 39, SI-1000 Ljubljana Slovenia
| |
Collapse
|
30
|
Regulation of cathepsins S and L by cystatin F during maturation of dendritic cells. Eur J Cell Biol 2012; 91:391-401. [DOI: 10.1016/j.ejcb.2012.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/20/2011] [Accepted: 01/01/2012] [Indexed: 11/18/2022] Open
|
31
|
Harada Y, Okada-Nakanishi Y, Ueda Y, Tsujitani S, Saito S, Fuji-Ogawa T, Iida A, Hasegawa M, Ichikawa T, Yonemitsu Y. Cytokine-based high log-scale expansion of functional human dendritic cells from cord-blood CD34-positive cells. Sci Rep 2011; 1:174. [PMID: 22355689 PMCID: PMC3240956 DOI: 10.1038/srep00174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/14/2011] [Indexed: 11/09/2022] Open
Abstract
Dendritic cells (DCs) play a crucial role in maintaining the immune system. Though DC-based cancer immunotherapy has been suggested as a potential treatment for various kinds of malignancies, its clinical efficacies are still insufficient in many human trials. Issues that limit the clinical efficacy of DC-based immunotherapy, as well as the difficulty of the industrial production of DCs, are largely due to the limited number of autologous DCs available from each patient. We here established a possible breakthrough, a simple cytokine-based culture method to expand the log-scale order of functional human DCs. Floating cultivation of cord-blood CD34(+) cells under an optimized cytokine cocktail led these progenitor cells to stable log-scale proliferation and to DC differentiation. The expanded DCs had typical features of conventional myeloid DCs in vitro. Therefore, the concept of DC expansion should contribute significantly to the progress of DC immunotherapy.
Collapse
Affiliation(s)
- Yui Harada
- Department of Urology, Chiba University Graduate School ofMedicine, Chiba 260-8670, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cathepsin H indirectly regulates morphogenetic protein-4 (BMP-4) in various human cell lines. Radiol Oncol 2011; 45:259-66. [PMID: 22933963 PMCID: PMC3423750 DOI: 10.2478/v10019-011-0034-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/13/2011] [Indexed: 11/23/2022] Open
Abstract
Background Cathepsin H is a cysteine protease considered to play a major role in tumor progression, however, its precise function in tumorigenesis is unclear. Cathepsin H was recently proposed to be involved in processing of bone morphogenetic protein 4 (BMP-4) in mice. In order to clarify whether cathepsin H also regulates BMP-4 in humans, its impact on BMP-4 expression, processing and degradation was investigated in prostate cancer (PC-3), osteosarcoma (HOS) and pro-monocytic (U937) human cell lines. Materials and methods BMP-4 expression was founded to be regulated by cathepsin H using PCR array technology and confirmed by real time PCR. Immunoassays including Western blot and confocal microscopy were used to evaluate the influence of cathepsin H on BMP-4 processing. Results In contrast to HOS, the expression of BMP-4 mRNA in U937 and PC3 cells was significantly decreased by cathepsin H. The different regulation of BMP-4 synthesis could be associated with the absence of the mature 28 kDa cathepsin H form in HOS cells, where only the intermediate 30 kDa form was observed. No co-localization of BMP-4 and cathepsin H was observed in human cell lines and the multistep processing of BMP-4 was not altered in the presence of specific cathepsin H inhibitor. Isolated cathepsin H does not cleave mature recombinant BMP-4, neither with its amino- nor its endopeptidase activity. Conclusions Our results exclude direct proteolytic processing of BMP-4 by cathepsin H, however, they provide support for its involvement in the regulation of BMP-4 expression.
Collapse
|
33
|
Jevnikar Z, Obermajer N, Kos J. LFA-1 fine-tuning by cathepsin X. IUBMB Life 2011; 63:686-93. [PMID: 21796748 DOI: 10.1002/iub.505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/20/2011] [Indexed: 01/14/2023]
Abstract
The adhesion molecule lymphocyte function-associated antigen (LFA)-1 plays a key role in immune surveillance and response. Its conformation is spatially and temporally regulated, enabling adhesion and deadhesion during T-cell migration. LFA-1 adhesion to its major ligand intercellular adhesion molecule 1 is controlled by adaptor proteins which bind the cytoplasmic tail of the β (2) subunit. Cathepsin X, a cysteine carboxypeptidase, promotes T-cell migration and morphological changes by cleaving the β (2) cytoplasmic tail of LFA-1. In this way, it modulates the affinity of LFA-1 for structural adaptors talin-1 and α-actinin-1 and enables the stepwise transition between intermediate and high-affinity conformations of LFA-1, an event that is necessary for effective T-cell function. Cathepsin X regulation that would allow precise modulation of LFA-1 affinity has a great potential for anti-LFA-1 therapy.
Collapse
Affiliation(s)
- Zala Jevnikar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.
| | | | | |
Collapse
|
34
|
Svajger U, Jeras M. Optimal dendritic cell differentiation in rpmi media requires the absence of HEPES buffer. Immunol Invest 2011; 40:413-26. [PMID: 21314286 DOI: 10.3109/08820139.2011.556172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Monocyte-derived dendritic cells (DCs) are considered an indispensible and one of primary tools for in vitro DC-based studies. For majority of in vitro DC-based studies the medium of choice is supplemented RPMI, with certain variable ingredients such as HEPES buffer or Phenol Red (PHR). In effort to identify potential obstruction of DC differentiation process due to presence of mentioned additives, we differentiated DCs using RPMI either with or without HEPES or PHR. Although PHR caused a certain down-regulation of immature DCs (iDCs) differentiation markers and lower expression of co-stimulatory molecules on mature DCs, these changes were not significant. In contrast, use of RPMI also containing HEPES resulted in significantly lower CD1a and DC-SIGN expression on iDCs and extensively lowered co-stimulatory molecule expression after DC activation (HEPES-DCs). Furthermore, DCs differentiated in HEPES-free RPMI possessed more genuine immature/mature DC characteristics in context of Th1 polarization. Additionally, during classical differentiation procedure, fewer DCs remained adherent and possessed better overall morphology in HEPES-free medium. In summary our study clarifies a seemingly minor, but a very important issue, that will most likely facilitate lab work for many scientists dealing with monocyte-derived DCs.
Collapse
Affiliation(s)
- Urban Svajger
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, Ljubljana, Slovenia.
| | | |
Collapse
|
35
|
Jevnikar Z, Obermajer N, Kos J. Cysteine protease-mediated cytoskeleton interactions with LFA-1 promote T-cell morphological changes. ACTA ACUST UNITED AC 2010; 66:1030-40. [PMID: 19670215 DOI: 10.1002/cm.20413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T cells migrate through restrictive barriers in a protease-independent, amoeboid fashion that is characterized by morphological cell polarization. The interaction of cysteine-dependent carboxypeptidase cathepsin X with beta(2) integrin LFA-1 (lymphocyte function associated antigen 1) induces T-cell morphological changes, displaying into a 3D extracellular matrix a cytoplasmic projection termed a uropod. In the present study we show that inhibition of cathepsin X and a cysteine-dependent endopeptidase, cathepsin L, markedly inhibits T-cell actin polymerization, shape polarization, and chemotaxis. We propose that cathepsin L promotes T-cell migration associated processes by activating procathepsin X in the endolysosomal vesicles near the cell membrane and at the peak of the uropod, where both proteases were colocalized. We show that active cathepsin X modifies the beta(2) cytoplasmic tail of LFA-1 in the uropod, promoting its high affinity conformation. We suggest that LFA-1 cleavage contributes to the conformational change in the cytoplasmic tail, promoting the binding of the cytoskeletal protein talin. This interaction is restricted to the uropod and results in the stabilization of this region, promoting LFA-1-mediated cell uropod elongation.
Collapse
Affiliation(s)
- Zala Jevnikar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
36
|
Jevnikar Z, Obermajer N, Pecar-Fonović U, Karaoglanovic-Carmona A, Kos J. Cathepsin X cleaves the beta2 cytoplasmic tail of LFA-1 inducing the intermediate affinity form of LFA-1 and alpha-actinin-1 binding. Eur J Immunol 2010; 39:3217-27. [PMID: 19750481 DOI: 10.1002/eji.200939562] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The motility of T cells depends on the dynamic spatial regulation of integrin-mediated adhesion and de-adhesion. Cathepsin X, a cysteine protease, has been shown to regulate T-cell migration by interaction with lymphocyte function associated antigen-1 (LFA-1). LFA-1 adhesion to the ICAM-1 is controlled by the association of actin-binding proteins with the cytoplasmic tail of the beta(2) chain of LFA-1. Cleavage by cathepsin X of the amino acid residues S(769), E(768) and A(767) from the C-terminal of the beta(2) cytoplasmic tail of LFA-1 is shown to promote binding of the actin-binding protein alpha-actinin-1. Furthermore, cathepsin X overexpression reduced LFA-1 clustering and induced an intermediate affinity LFA-1 conformation that is known to associate with alpha-actinin-1. Increased levels of intermediate affinity LFA-1 resulted in augmented cell spreading due to reduced attachment of T cells to the ICAM-1-coated surface. Gradual cleavage of LFA-1 by cathepsin X enables the transition between intermediate and high affinity LFA-1, an event that is crucial for effective T-cell migration.
Collapse
Affiliation(s)
- Zala Jevnikar
- Faculty of Pharmacy, University of Ljubljana, Askerceva, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
37
|
Colbert JD, Matthews SP, Miller G, Watts C. Diverse regulatory roles for lysosomal proteases in the immune response. Eur J Immunol 2010; 39:2955-65. [PMID: 19637232 DOI: 10.1002/eji.200939650] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The innate and adaptive immune system utilise endocytic protease activity to promote functional immune responses. Cysteine and aspartic proteases (cathepsins) constitute a subset of endocytic proteases, the immune function of which has been described extensively. Although historically these studies have focused on their role in processes such as antigen presentation and zymogen processing within the endocytic compartment, recent discoveries have demonstrated a critical role for these proteases in other intracellular compartments, and within the extracellular milieu. It has also become clear that their pattern of expression and substrate specificities are more diverse than was first envisaged. Here, we discuss recent advances addressing the role of lysosomal proteases in various aspects of the immune response. We pay attention to reports demonstrating cathepsin activity outside of its canonical endosome/lysosome microenvironment.
Collapse
Affiliation(s)
- Jeff D Colbert
- Division of Cell biology & Immunology, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | |
Collapse
|
38
|
Cathepsin X prevents an effective immune response against Helicobacter pylori infection. Eur J Cell Biol 2009; 88:461-71. [PMID: 19446361 DOI: 10.1016/j.ejcb.2009.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 03/16/2009] [Accepted: 03/31/2009] [Indexed: 01/24/2023] Open
Abstract
Cathepsin X, a cysteine protease, has been shown to regulate an immune response by activating beta-2 integrin receptors. In this study we demonstrate its role in regulating the immune response to infection with H. pylori. The level of cathepsin X was determined in THP-1 monocyte cells primed with H. pylori antigens isolated from subjects suffering from gastritis, who had either eradicated or not the disease after the antibiotic therapy. We show that the specific clinical outcome of H. pylori eradication therapy correlates strongly with the membrane expression of cathepsin X in stimulated THP-1 cells, being significantly higher after stimulation with H. pylori strains from those subjects who did not respond to antibiotic therapy. The same antigens elicit a more vigorous immune response, increased expression of MHC II, however trigger inadequate cytokine profile (IFN-gamma and IL-4) to eradicate the pathogen. We propose that cathepsin X mediated activation of beta-2 integrin receptor Mac-1 suppresses the stimulatory signal in the form of cytokines. Cathepsin X co-localizes on the membrane of THP-1 cells with Mac-1 integrin receptor and its inhibition increases homotypic aggregation and mononuclear cell proliferation, events that are associated with low Mac-1 activity. Our study highlights the diversity of the innate immune response to H. pylori antigens leading to either successful eradication of the infection or maintenance of chronic inflammation, revealing cathepsin X location and activity as a regulator of the effectiveness of H. pylori eradication.
Collapse
|
39
|
Kos J, Jevnikar Z, Obermajer N. The role of cathepsin X in cell signaling. Cell Adh Migr 2009; 3:164-6. [PMID: 19262176 PMCID: PMC2679876 DOI: 10.4161/cam.3.2.7403] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 11/13/2008] [Indexed: 01/05/2023] Open
Abstract
Cathepsin X is a lysosomal cysteine protease, found predominantly in cells of monocyte/macrophage lineage. It acts as a monocarboxypepidase and has a strict positional and narrower substrate specificity relative to the other human cathepsins. In our recent studies we identified-beta(2) subunit of integrin receptors and alpha and gamma enolase as possible substrates for cathepsin X carboxypeptidase activity. In both cases cathepsin X is capable to cleave regulatory motifs at C-terminus affecting the function of targeted molecules. We demonstrated that via activation of beta(2) integrin receptor Mac-1 (CD11b/CD18) active cathepsin X enhances adhesion of monocytes/macrophages to fibrinogen and regulates the phagocytosis. By activation of Mac-1 receptor cathepsin X may regulate also the maturation of dendritic cells, a process, which is crucial in the initiation of adaptive immunity. Cathepsin X activates also the other beta(2) integrin receptor, LFA-1 (CD11a/CD18) which is involved in the proliferation of T lymphocytes. By modulating the activity of LFA-1 cathepsin X causes cytoskeletal rearrangements and morphological changes of T lymphocytes enhancing ameboid-like migration in 2-D and 3-D barriers and increasing homotypic aggregation. The cleavage of C-terminal amino acids of alpha and gamma enolase by cathepsin X abolishes their neurotrophic activity affecting neuronal cell survival and neuritogenesis.
Collapse
|
40
|
Obermajer N, Doljak B, Jamnik P, Fonović UP, Kos J. Cathepsin X cleaves the C-terminal dipeptide of alpha- and gamma-enolase and impairs survival and neuritogenesis of neuronal cells. Int J Biochem Cell Biol 2009; 41:1685-96. [PMID: 19433310 DOI: 10.1016/j.biocel.2009.02.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 12/20/2022]
Abstract
The cysteine carboxypeptidase cathepsin X has been recognized as an important player in degenerative processes during normal aging and in pathological conditions. In this study we identify isozymes alpha- and gamma-enolases as targets for cathepsin X. Cathepsin X sequentially cleaves C-terminal amino acids of both isozymes, abolishing their neurotrophic activity. Neuronal cell survival and neuritogenesis are, in this way, regulated, as shown on pheochromocytoma cell line PC12. Inhibition of cathepsin X activity increases generation of plasmin, essential for neuronal differentiation and changes the length distribution of neurites, especially in the early phase of neurite outgrowth. Moreover, cathepsin X inhibition increases neuronal survival and reduces serum deprivation induced apoptosis, particularly in the absence of nerve growth factor. On the other hand, the proliferation of cells is decreased, indicating induction of differentiation. Our study reveals enolase isozymes as crucial neurotrophic factors that are regulated by the proteolytic activity of cathepsin X.
Collapse
Affiliation(s)
- Natasa Obermajer
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|