1
|
Barthels DA, House RV, Gelhaus HC. The immune response to Francisella tularensis. Front Microbiol 2025; 16:1549343. [PMID: 40351308 PMCID: PMC12062900 DOI: 10.3389/fmicb.2025.1549343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
Francisella tularensis (Ft) is a Gram negative intracellular bacterial pathogen, commonly transmitted via arthropod bites, but is most lethal when contracted via inhalation. The nature of a Gram-negative intracellular pathogen presents unique challenges to the mammalian immune response, unlike more common viral pathogens and extracellular bacterial pathogens. The current literature on Ft involves numerous variables, including the use of differing research strains and variation in animal models. This review aims to consolidate much of the recent literature on Ft to suggest promising research to better understand the complex immune response to this bacterium.
Collapse
Affiliation(s)
- Derek A. Barthels
- Department of Biology, Life Sciences Research Center, United States Air Force Academy, Colorado Springs, CO, United States
- National Research Council Research Associateships Program, Washington, DC, United States
| | - Robert V. House
- Dr. RV House LLC, Harpers Ferry, WV, United States
- Appili Therapeutics, Halifax, NS, Canada
| | | |
Collapse
|
2
|
Hanford HE, Price CTD, Uriarte S, Abu Kwaik Y. Inhibition and evasion of neutrophil microbicidal responses by Legionella longbeachae. mBio 2025; 16:e0327424. [PMID: 39679679 PMCID: PMC11796426 DOI: 10.1128/mbio.03274-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Legionella species evade degradation and proliferate within alveolar macrophages as an essential step for the manifestation of disease. However, most intracellular bacterial pathogens are restricted in neutrophils, which are the first line of innate immune defense against invading pathogens. Bacterial degradation within neutrophils is mediated by the fusion of microbicidal granules to pathogen-containing phagosomes and the generation of reactive oxygen species (ROS) by the phagocyte NADPH oxidase complex. Here, we show that human neutrophils fail to trigger microbicidal processes and, consequently, fail to restrict L. longbeachae. In addition, neutrophils infected with L. longbeachae fail to undergo a robust pro-inflammatory response, such as degranulation and IL-8 production. Here, we identify three strategies employed by L. longbeachae for evading restriction by neutrophils and inhibiting the neutrophil microbicidal response to other bacteria co-inhabiting in the same cell. First, L. longbeachae excludes the cytosolic and membrane-bound subunits of the phagocyte NADPH oxidase complex from its phagosomal membrane independent of the type 4 secretion system (T4SS). Consequently, infected neutrophils fail to generate robust ROS in response to L. longbeachae. Second, L. longbeachae impedes the fusion of azurophilic granules to its phagosome and the phagosomes of bacteria co-inhabiting the same cell through T4SS-independent mechanisms. Third, L. longbeachae protects phagosomes of co-inhabiting bacteria from degradation by ROS through a trans-acting T4SS-dependent mechanism. Collectively, we conclude that L. longbeachae evades restriction by human neutrophils via T4SS-independent mechanisms and utilizes trans-acting T4SS-dependent mechanisms for inhibition of neutrophil ROS generation throughout the cell cytosol. IMPORTANCE Legionella longbeachae is commonly found in soil environments where it interacts with a wide variety of protist hosts and microbial competitors. Upon transmission to humans, L. longbeachae invades and replicates within alveolar macrophages, leading to the manifestation of pneumonia. In addition to alveolar macrophages, neutrophils are abundant immune cells acting as the first line of defense against invading pathogens. While most intracellular bacterial species are killed and degraded by neutrophils, we show that L. longbeachae evades degradation. The pathogen impairs the major neutrophils' microbicidal processes, including the fusion of microbicidal granules to the pathogen-containing vacuole. By inhibiting of assembly of the phagocyte NADPH oxidase complex, the pathogen blocks neutrophils from generating microbicide reactive oxygen species. Overall, L. longbeachae employs unique virulence strategies to evade the major microbicidal processes of neutrophils.
Collapse
Affiliation(s)
- Hannah E. Hanford
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Christopher T. D. Price
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Silvia Uriarte
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
3
|
Santelices J, Schultz A, Walker A, Adams N, Tirado D, Barker H, Eshraghi A, Czyż DM, Ferraro MJ. Targeting deubiquitinating enzymes (DUBs) and ubiquitin pathway modulators to enhance host defense against bacterial infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635188. [PMID: 39975367 PMCID: PMC11838268 DOI: 10.1101/2025.01.27.635188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The rise of antibiotic-resistant bacterial pathogens poses a critical global health challenge, necessitating innovative therapeutic approaches. This study explores host-targeted therapies (HTTs) by focusing on deubiquitinating enzymes (DUBs), essential modulators of the ubiquitin-proteasome system (UPS) that regulate host-pathogen interactions during many bacterial infections. Using Salmonella-infected macrophages as a model, we identified UPS modulators that enhance bacterial clearance and observed significant changes in DUB expression, particularly USP25, USP46, and Otud7b. The small-molecule DUB inhibitor AZ-1 significantly reduced intracellular bacterial loads in vitro and mitigated early disease severity in a murine model by decreasing fecal bacterial loads and preserving host weight. However, AZ-1 alone did not achieve complete clearance of Salmonella and required combination with extracellular-targeting antibiotics for optimal efficacy. Notably, AZ-1 demonstrated broad-spectrum activity against multidrug-resistant pathogens, including Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. Transcriptomic analyses revealed infection-induced DUB regulation and highlighted pathways modulating immune responses, including TNF-α secretion. These findings highlight the potential of targeting the UPS as a host-directed antimicrobial strategy and provide a foundation for developing innovative therapies to combat antimicrobial resistance.
Collapse
Affiliation(s)
- John Santelices
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Alexander Schultz
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Alyssa Walker
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Nicole Adams
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Deyaneira Tirado
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Hailey Barker
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Aria Eshraghi
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Daniel M. Czyż
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Mariola J. Ferraro
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Sharma R, Patil RD, Singh B, Chakraborty S, Chandran D, Dhama K, Gopinath D, Jairath G, Rialch A, Mal G, Singh P, Chaicumpa W, Saikumar G. Tularemia - a re-emerging disease with growing concern. Vet Q 2023; 43:1-16. [PMID: 37916743 PMCID: PMC10732219 DOI: 10.1080/01652176.2023.2277753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
Tularemia caused by Gram-negative, coccobacillus bacterium, Francisella tularensis, is a highly infectious zoonotic disease. Human cases have been reported mainly from the United States, Nordic countries like Sweden and Finland, and some European and Asian countries. Naturally, the disease occurs in several vertebrates, particularly lagomorphs. Type A (subspecies tularensis) is more virulent and causes disease mainly in North America; type B (subspecies holarctica) is widespread, while subspecies mediasiatica is present in central Asia. F. tularensis is a possible bioweapon due to its lethality, low infectious dosage, and aerosol transmission. Small mammals like rabbits, hares, and muskrats are primary sources of human infections, but true reservoir of F. tularensis is unknown. Vector-borne tularemia primarily involves ticks and mosquitoes. The bacterial subspecies involved and mode of transmission determine the clinical picture. Early signs are flu-like illnesses that may evolve into different clinical forms of tularemia that may or may not include lymphadenopathy. Ulcero-glandular and glandular forms are acquired by arthropod bite or handling of infected animals, oculo-glandular form as a result of conjunctival infection, and oro-pharyngeal form by intake of contaminated food or water. Pulmonary form appears after inhalation of bacteria. Typhoidal form may occur after infection via different routes. Human-to-human transmission has not been known. Diagnosis can be achieved by serology, bacterial culture, and molecular methods. Treatment for tularemia typically entails use of quinolones, tetracyclines, or aminoglycosides. Preventive measures are necessary to avoid infection although difficult to implement. Research is underway for the development of effective live attenuated and subunit vaccines.
Collapse
Affiliation(s)
- Rinku Sharma
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Rajendra Damu Patil
- Department of Veterinary Pathology, DGCN College of Veterinary and Animal Sciences, CSK HPKV, Palampur, Himachal Pradesh, India
| | - Birbal Singh
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura, India
| | | | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Devi Gopinath
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Gauri Jairath
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Ajayta Rialch
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Gorakh Mal
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Putan Singh
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - G. Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
5
|
Taya T, Teruyama F, Gojo S. Host-directed therapy for bacterial infections -Modulation of the phagolysosome pathway. Front Immunol 2023; 14:1227467. [PMID: 37841276 PMCID: PMC10570837 DOI: 10.3389/fimmu.2023.1227467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Bacterial infections still impose a significant burden on humanity, even though antimicrobial agents have long since been developed. In addition to individual severe infections, the f fatality rate of sepsis remains high, and the threat of antimicrobial-resistant bacteria grows with time, putting us at inferiority. Although tremendous resources have been devoted to the development of antimicrobial agents, we have yet to recover from the lost ground we have been driven into. Looking back at the evolution of treatment for cancer, which, like infectious diseases, has the similarity that host immunity eliminates the lesion, the development of drugs to eliminate the tumor itself has shifted from a single-minded focus on drug development to the establishment of a treatment strategy in which the de-suppression of host immunity is another pillar of treatment. In infectious diseases, on the other hand, the development of therapies that strengthen and support the immune system has only just begun. Among innate immunity, the first line of defense that bacteria encounter after invading the host, the molecular mechanisms of the phagolysosome pathway, which begins with phagocytosis to fusion with lysosome, have been elucidated in detail. Bacteria have a large number of strategies to escape and survive the pathway. Although the full picture is still unfathomable, the molecular mechanisms have been elucidated for some of them, providing sufficient clues for intervention. In this article, we review the host defense mechanisms and bacterial evasion mechanisms and discuss the possibility of host-directed therapy for bacterial infection by intervening in the phagolysosome pathway.
Collapse
Affiliation(s)
- Toshihiko Taya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumiya Teruyama
- Pharmacology Research Department, Tokyo New Drug Research Laboratories, Kowa Company, Ltd., Tokyo, Japan
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
6
|
Abstract
Neutrophils or polymorphonuclear neutrophils (PMNs) are an important component of innate host defense. These phagocytic leukocytes are recruited to infected tissues and kill invading microbes. There are several general characteristics of neutrophils that make them highly effective as antimicrobial cells. First, there is tremendous daily production and turnover of granulocytes in healthy adults-typically 1011 per day. The vast majority (~95%) of these cells are neutrophils. In addition, neutrophils are mobilized rapidly in response to chemotactic factors and are among the first leukocytes recruited to infected tissues. Most notably, neutrophils contain and/or produce an abundance of antimicrobial molecules. Many of these antimicrobial molecules are toxic to host cells and can destroy host tissues. Thus, neutrophil activation and turnover are highly regulated processes. To that end, aged neutrophils undergo apoptosis constitutively, a process that contains antimicrobial function and proinflammatory capacity. Importantly, apoptosis facilitates nonphlogistic turnover of neutrophils and removal by macrophages. This homeostatic process is altered by interaction with microbes and their products, as well as host proinflammatory molecules. Microbial pathogens can delay neutrophil apoptosis, accelerate apoptosis following phagocytosis, or cause neutrophil cytolysis. Here, we review these processes and provide perspective on recent studies that have potential to impact this paradigm.
Collapse
Affiliation(s)
- Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Mark T Quinn
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
7
|
Hampton MB, Dickerhof N. Inside the phagosome: A bacterial perspective. Immunol Rev 2023; 314:197-209. [PMID: 36625601 DOI: 10.1111/imr.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The neutrophil phagosome is one of the most hostile environments that bacteria must face and overcome if they are to succeed as pathogens. Targeting bacterial defense mechanisms should lead to new therapies that assist neutrophils to kill pathogens, but this has not yet come to fruition. One of the limiting factors in this effort has been our incomplete knowledge of the complex biochemistry that occurs within the rapidly changing environment of the phagosome. The same compartmentalization that protects host tissue also limits our ability to measure events within the phagosome. In this review, we highlight the limitations in our knowledge, and how the contribution of bacteria to the phagosomal environment is often ignored. There appears to be significant heterogeneity among phagosomes, and it is important to determine whether survivors have more efficient defenses or whether they are ingested into less threatening environments than other bacteria. As part of these efforts, we discuss how monitoring or recovering bacteria from phagosomes can provide insight into the conditions they have faced. We also encourage the use of unbiased screening approaches to identify bacterial genes that are essential for survival inside neutrophil phagosomes.
Collapse
Affiliation(s)
- Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
8
|
Prichard A, Khuu L, Whitmore LC, Irimia D, Allen LAH. Helicobacter pylori-infected human neutrophils exhibit impaired chemotaxis and a uropod retraction defect. Front Immunol 2022; 13:1038349. [PMID: 36341418 PMCID: PMC9630475 DOI: 10.3389/fimmu.2022.1038349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori is a major human pathogen that colonizes the gastric mucosa and plays a causative role in development of peptic ulcers and gastric cancer. Neutrophils are heavily infected with this organism in vivo and play a prominent role in tissue destruction and disease. Recently, we demonstrated that H. pylori exploits neutrophil plasticity as part of its virulence strategy eliciting N1-like subtype differentiation that is notable for profound nuclear hypersegmentation. We undertook this study to test the hypothesis that hypersegmentation may enhance neutrophil migratory capacity. However, EZ-TAXIScan™ video imaging revealed a previously unappreciated and progressive chemotaxis defect that was apparent prior to hypersegmentation onset. Cell speed and directionality were significantly impaired to fMLF as well as C5a and IL-8. Infected cells oriented normally in chemotactic gradients, but speed and direction were impaired because of a uropod retraction defect that led to cell elongation, nuclear lobe trapping in the contracted rear and progressive narrowing of the leading edge. In contrast, chemotactic receptor abundance, adhesion, phagocytosis and other aspects of cell function were unchanged. At the molecular level, H. pylori phenocopied the effects of Blebbistatin as indicated by aberrant accumulation of F-actin and actin spikes at the uropod together with enhanced ROCKII-mediated phosphorylation of myosin IIA regulatory light chains at S19. At the same time, RhoA and ROCKII disappeared from the cell rear and accumulated at the leading edge whereas myosin IIA was enriched at both cell poles. These data suggest that H. pylori inhibits the dynamic changes in myosin IIA contractility and front-to-back polarity that are essential for chemotaxis. Taken together, our data advance understanding of PMN plasticity and H. pylori pathogenesis.
Collapse
Affiliation(s)
- Allan Prichard
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Lisa Khuu
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Laura C. Whitmore
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lee-Ann H. Allen
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
- Iowa City VA Healthcare System, Iowa City, IA, United States
- Harry S. Truman Memorial VA Hospital, Columbia, MO, United States
- *Correspondence: Lee-Ann H. Allen,
| |
Collapse
|
9
|
Kinkead LC, Krysa SJ, Allen LAH. Neutrophil Survival Signaling During Francisella tularensis Infection. Front Cell Infect Microbiol 2022; 12:889290. [PMID: 35873156 PMCID: PMC9299441 DOI: 10.3389/fcimb.2022.889290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/07/2022] [Indexed: 12/18/2022] Open
Abstract
Neutrophils are the most abundant and shortest-lived leukocytes in humans and tight regulation of neutrophil turnover via constitutive apoptosis is essential for control of infection and resolution of inflammation. Accordingly, aberrant neutrophil turnover is hallmark of many disease states. We have shown in previous work that the intracellular bacterial pathogen Francisella tularensis markedly prolongs human neutrophil lifespan. This is achieved, in part, by changes in neutrophil gene expression. Still unknown is the contribution of major neutrophil pro-survival signaling cascades to this process. The objective of this study was to interrogate the contributions of ERK and p38 MAP kinase, Class I phosphoinositide 3-kinases (PI3K), AKT, and NF-κB to neutrophil survival in our system. We demonstrate that both ERK2 and p38α were activated in F. tularensis-infected neutrophils, but only p38α MAPK was required for delayed apoptosis and the rate of cell death in the absence of infection was unchanged. Apoptosis of both infected and uninfected neutrophils was markedly accelerated by the pan-PI3K inhibitor LY2094002, but AKT phosphorylation was not induced, and neutrophil death was not enhanced by AKT inhibitors. In addition, isoform specific and selective inhibitors revealed a unique role for PI3Kα in neutrophil survival after infection, whereas only simultaneous inhibition of PI3Kα and PI3kδ accelerated death of the uninfected controls. Finally, we show that inhibition of NF-κB triggered rapid death of neutrophil after infection. Thus, we defined roles for p38α, PI3Kα and NF-κB delayed apoptosis of F. tularensis-infected cells and advanced understanding of Class IA PI3K isoform activity in human neutrophil survival.
Collapse
Affiliation(s)
- Lauren C. Kinkead
- Inflammation Program, University of Iowa, Iowa City, IA, United States
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, IA, United States
| | - Samantha J. Krysa
- Inflammation Program, University of Iowa, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, IA, United States
- Molecular Medicine Training Program, University of Iowa, Iowa City, IA, United States
| | - Lee-Ann H. Allen
- Inflammation Program, University of Iowa, Iowa City, IA, United States
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, IA, United States
- Molecular Medicine Training Program, University of Iowa, Iowa City, IA, United States
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
- Harry S. Truman Memorial VA Hospital, Columbia, MO, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
10
|
Wang X, Liu Y. Offense and Defense in Granulomatous Inflammation Disease. Front Cell Infect Microbiol 2022; 12:797749. [PMID: 35846773 PMCID: PMC9277142 DOI: 10.3389/fcimb.2022.797749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Granulomatous inflammation (GI) diseases are a group of chronic inflammation disorders characterized by focal collections of multinucleated giant cells, epithelioid cells and macrophages, with or without necrosis. GI diseases are closely related to microbes, especially virulent intracellular bacterial infections are important factors in the progression of these diseases. They employ a range of strategies to survive the stresses imposed upon them and persist in host cells, becoming the initiator of the fighting. Microbe-host communication is essential to maintain functions of a healthy host, so defense capacity of hosts is another influence factor, which is thought to combine to determine the result of the fighting. With the development of gene research technology, many human genetic loci were identified to be involved in GI diseases susceptibility, providing more insights into and knowledge about GI diseases. The current review aims to provide an update on the most recent progress in the identification and characterization of bacteria in GI diseases in a variety of organ systems and clinical conditions, and examine the invasion and escape mechanisms of pathogens that have been demonstrated in previous studies, we also review the existing data on the predictive factors of the host, mainly on genetic findings. These strategies may improve our understanding of the mechanisms underlying GI diseases, and open new avenues for the study of the associated conditions in the future.
Collapse
Affiliation(s)
- Xinwen Wang
- Shaanxi Clinical Research Center for Oral Diseases, National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yuan Liu
- Shaanxi International Joint Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
11
|
Krysa SJ, Allen LAH. Metabolic Reprogramming Mediates Delayed Apoptosis of Human Neutrophils Infected With Francisella tularensis. Front Immunol 2022; 13:836754. [PMID: 35693822 PMCID: PMC9174434 DOI: 10.3389/fimmu.2022.836754] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/28/2022] [Indexed: 01/15/2023] Open
Abstract
Neutrophils (polymorphonuclear leukocytes, PMNs) have a distinctively short lifespan, and tight regulation of cell survival and death is imperative for their normal function. We demonstrated previously that Francisella tularensis extends human neutrophil lifespan, which elicits an impaired immune response characterized by neutrophil dysfunction. Herein, we extended these studies, including our transcriptional profiling data, and employed Seahorse extracellular flux analysis, gas chromatography-mass spectrometry metabolite analysis, flow cytometry and several other biochemical approaches to demonstrate that the delayed apoptosis observed in F. tularensis-infected neutrophils is mediated, in part, by metabolic reprogramming. Specifically, we show that F. tularensis-infected neutrophils exhibited a unique metabolic signature characterized by increased glycolysis, glycolytic flux and glucose uptake, downregulation of the pentose phosphate pathway, and complex glycogen dynamics. Glucose uptake and glycolysis were essential for cell longevity, although glucose-6-phosphate translocation into the endoplasmic reticulum was not, and we identify depletion of glycogen as a potential trigger of apoptosis onset. In keeping with this, we also demonstrate that ablation of apoptosis with the pan-caspase inhibitor Q-VD-OPh was sufficient to profoundly increase glycolysis and glycogen stores in the absence of infection. Taken together, our data significantly advance understanding of neutrophil immunometabolism and its capacity to regulate cell lifespan.
Collapse
Affiliation(s)
- Samantha J. Krysa
- Inflammation Program, University of Iowa, Iowa City, IA, United States,Molecular Medicine Program, University of Iowa, Iowa City, IA, United States,Iowa City VA Health Care System, Iowa City, IA, United States
| | - Lee-Ann H. Allen
- Inflammation Program, University of Iowa, Iowa City, IA, United States,Molecular Medicine Program, University of Iowa, Iowa City, IA, United States,Iowa City VA Health Care System, Iowa City, IA, United States,Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States,Harry S. Truman Memorial VA Hospital, Columbia, MO, United States,Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, United States,*Correspondence: Lee-Ann H. Allen,
| |
Collapse
|
12
|
Nicchi S, Giusti F, Carello S, Utrio Lanfaloni S, Tavarini S, Frigimelica E, Ferlenghi I, Rossi Paccani S, Merola M, Delany I, Scarlato V, Maione D, Brettoni C. Moraxella catarrhalis evades neutrophil oxidative stress responses providing a safer niche for nontypeable Haemophilus influenzae. iScience 2022; 25:103931. [PMID: 35265810 PMCID: PMC8899411 DOI: 10.1016/j.isci.2022.103931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Moraxella catarrhalis and nontypeable Haemophilus influenzae (NTHi) are pathogenic bacteria frequently associated with exacerbation of chronic obstructive pulmonary disease (COPD), whose hallmark is inflammatory oxidative stress. Neutrophils produce reactive oxygen species (ROS) which can boost antimicrobial response by promoting neutrophil extracellular traps (NET) and autophagy. Here, we showed that M. catarrhalis induces less ROS and NET production in differentiated HL-60 cells compared to NTHi. It is also able to actively interfere with these responses in chemically activated cells in a phagocytosis and opsonin-independent and contact-dependent manner, possibly by engaging host immunosuppressive receptors. M. catarrhalis subverts the autophagic pathway of the phagocytic cells and survives intracellularly. It also promotes the survival of NTHi which is otherwise susceptible to the host antimicrobial arsenal. In-depth understanding of the immune evasion strategies exploited by these two human pathogens could suggest medical interventions to tackle COPD and potentially other diseases in which they co-exist. Mcat induces ROS and NET production to a lesser extent than NTHi in dHL-60 cells Mcat interferes with ROS-related responses in chemically-activated cells Mcat subverts the autophagic pathway surviving intracellularly while NTHi does not Intracellular survival of NTHi is enhanced by the co-infecting bacterium Mcat
Collapse
Affiliation(s)
- Sonia Nicchi
- GSK, Siena, 53100, Italy.,University of Bologna, Bologna, 40141, Italy
| | | | - Stefano Carello
- GSK, Siena, 53100, Italy.,University of Turin, Turin, 10100, Italy
| | | | | | | | | | | | - Marcello Merola
- GSK, Siena, 53100, Italy.,University of Naples Federico II, Naples, 80133, Italy
| | | | | | | | | |
Collapse
|
13
|
Markley RL, Restori KH, Katkere B, Sumner SE, Nicol MJ, Tyryshkina A, Nettleford SK, Williamson DR, Place DE, Dewan KK, Shay AE, Carlson BA, Girirajan S, Prabhu KS, Kirimanjeswara GS. Macrophage Selenoproteins Restrict Intracellular Replication of Francisella tularensis and Are Essential for Host Immunity. Front Immunol 2021; 12:701341. [PMID: 34777335 PMCID: PMC8586653 DOI: 10.3389/fimmu.2021.701341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
The essential micronutrient Selenium (Se) is co-translationally incorporated as selenocysteine into proteins. Selenoproteins contain one or more selenocysteines and are vital for optimum immunity. Interestingly, many pathogenic bacteria utilize Se for various biological processes suggesting that Se may play a role in bacterial pathogenesis. A previous study had speculated that Francisella tularensis, a facultative intracellular bacterium and the causative agent of tularemia, sequesters Se by upregulating Se-metabolism genes in type II alveolar epithelial cells. Therefore, we investigated the contribution of host vs. pathogen-associated selenoproteins in bacterial disease using F. tularensis as a model organism. We found that F. tularensis was devoid of any Se utilization traits, neither incorporated elemental Se, nor exhibited Se-dependent growth. However, 100% of Se-deficient mice (0.01 ppm Se), which express low levels of selenoproteins, succumbed to F. tularensis-live vaccine strain pulmonary challenge, whereas 50% of mice on Se-supplemented (0.4 ppm Se) and 25% of mice on Se-adequate (0.1 ppm Se) diet succumbed to infection. Median survival time for Se-deficient mice was 8 days post-infection while Se-supplemented and -adequate mice was 11.5 and >14 days post-infection, respectively. Se-deficient macrophages permitted significantly higher intracellular bacterial replication than Se-supplemented macrophages ex vivo, corroborating in vivo observations. Since Francisella replicates in alveolar macrophages during the acute phase of pneumonic infection, we hypothesized that macrophage-specific host selenoproteins may restrict replication and systemic spread of bacteria. F. tularensis infection led to an increased expression of several macrophage selenoproteins, suggesting their key role in limiting bacterial replication. Upon challenge with F. tularensis, mice lacking selenoproteins in macrophages (TrspM) displayed lower survival and increased bacterial burden in the lung and systemic tissues in comparison to WT littermate controls. Furthermore, macrophages from TrspM mice were unable to restrict bacterial replication ex vivo in comparison to macrophages from littermate controls. We herein describe a novel function of host macrophage-specific selenoproteins in restriction of intracellular bacterial replication. These data suggest that host selenoproteins may be considered as novel targets for modulating immune response to control a bacterial infection.
Collapse
Affiliation(s)
- Rachel L. Markley
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Katherine H. Restori
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Bhuvana Katkere
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Sarah E. Sumner
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - McKayla J. Nicol
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Anastasia Tyryshkina
- Neuroscience Graduate Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Shaneice K. Nettleford
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - David R. Williamson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - David E. Place
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Kalyan K. Dewan
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Infectious Diseases, The University of Georgia, Athens, GA, United States
| | - Ashley E. Shay
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bradley A. Carlson
- Office of Research Support, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - K. Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States
| | - Girish S. Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States,*Correspondence: Girish S. Kirimanjeswara,
| |
Collapse
|
14
|
Pulavendran S, Prasanthi M, Ramachandran A, Grant R, Snider TA, Chow VTK, Malayer JR, Teluguakula N. Production of Neutrophil Extracellular Traps Contributes to the Pathogenesis of Francisella tularemia. Front Immunol 2020; 11:679. [PMID: 32391009 PMCID: PMC7193117 DOI: 10.3389/fimmu.2020.00679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/26/2020] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis(Ft) is a highly virulent, intracellular Gram-negative bacterial pathogen. Acute Ft infection by aerosol route causes pneumonic tularemia, characterized by nodular hemorrhagic lesions, neutrophil-predominant influx, necrotic debris, fibrin deposition, and severe alveolitis. Ft suppresses activity of neutrophils by impairing their respiratory burst and phagocytic activity. However, the fate of the massive numbers of neutrophils recruited to the infection site is unclear. Here, we show that Ft infection resulted in prominent induction of neutrophil extracellular traps (NETs) within damaged lungs of mice infected with the live attenuated vaccine strain of Ft(Ft-LVS), as well as in the lungs of domestic cats and rabbits naturally infected with Ft. Further, Ft-LVS infection increased lung myeloperoxidase (MPO) activity, which mediates histone protein degradation during NETosis and anchors chromatin scaffolds in NETs. In addition, Ft infection also induced expression of peptidylarginine deiminase 4, an enzyme that causes citrullination of histones during formation of NETs. The released NETs were found largely attached to the alveolar epithelium, and disrupted the thin alveolar epithelial barrier. Furthermore, Ft infection induced a concentration-dependent release of NETs from neutrophils in vitro. Pharmacological blocking of MPO reduced Ft-induced NETs release, whereas addition of H2O2 (a substrate of MPO) significantly augmented NETs release, thus indicating a critical role of MPO in Ft-induced NETs. Although immunofluorescence and electron microscopy revealed that NETs could efficiently trap Ft bacteria, NETs failed to exert bactericidal effects. Taken together, these findings suggest that NETs exacerbate tissue damage in pulmonary Ft infection, and that targeting NETosis may offer novel therapeutic interventions in alleviating Ft-induced tissue damage.
Collapse
Affiliation(s)
- Sivasami Pulavendran
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, OK, United States
| | - Maram Prasanthi
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, OK, United States
| | - Akhilesh Ramachandran
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, OK, United States
| | - Rezabek Grant
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, OK, United States
| | - Timothy A. Snider
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, OK, United States
| | - Vincent T. K. Chow
- Department of Microbiology and Immunology, School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Jerry R. Malayer
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, OK, United States
| | - Narasaraju Teluguakula
- College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, OK, United States
| |
Collapse
|
15
|
Srivastava S, Battu MB, Khan MZ, Nandicoori VK, Mukhopadhyay S. Mycobacterium tuberculosis PPE2 Protein Interacts with p67phox and Inhibits Reactive Oxygen Species Production. THE JOURNAL OF IMMUNOLOGY 2019; 203:1218-1229. [DOI: 10.4049/jimmunol.1801143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 07/04/2019] [Indexed: 01/09/2023]
|
16
|
Allen LAH, Criss AK. Cell intrinsic functions of neutrophils and their manipulation by pathogens. Curr Opin Immunol 2019; 60:124-129. [PMID: 31302568 DOI: 10.1016/j.coi.2019.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 05/11/2019] [Indexed: 12/13/2022]
Abstract
Neutrophils are a crucial first line of defense against infection, migrating rapidly into tissues where they deploy granule components and toxic oxidants for efficient phagocytosis and microbe killing. Subsequent apoptosis and clearance of dying neutrophils are essential for control of infection and resolution of the inflammatory response. A subset of microbial pathogens survive exposure to neutrophils by manipulating phagocytosis, phagosome-granule fusion, oxidant production, and lifespan. Elucidating how they accomplish this unusual feat provides new insights into normal neutrophil function. In this review, we highlight recent discoveries about the ways in which neutrophils use cell-intrinsic mechanisms to control infection, and how these defenses are subverted by pathogens.
Collapse
Affiliation(s)
- Lee-Ann H Allen
- Department of Microbiology and Immunology and Department of Medicine, University of Iowa, Iowa City, IA 52242, United States; The Iowa City VA Health Care System, Iowa City, IA 52246, United States
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908-0734, United States.
| |
Collapse
|
17
|
Kubelkova K, Macela A. Innate Immune Recognition: An Issue More Complex Than Expected. Front Cell Infect Microbiol 2019; 9:241. [PMID: 31334134 PMCID: PMC6616152 DOI: 10.3389/fcimb.2019.00241] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022] Open
Abstract
Primary interaction of an intracellular bacterium with its host cell is initiated by activation of multiple signaling pathways in response to bacterium recognition itself or as cellular responses to stress induced by the bacterium. The leading molecules in these processes are cell surface membrane receptors as well as cytosolic pattern recognition receptors recognizing pathogen-associated molecular patterns or damage-associated molecular patterns induced by the invading bacterium. In this review, we demonstrate possible sequences of events leading to recognition of Francisella tularensis, present findings on known mechanisms for manipulating cell responses to protect Francisella from being killed, and discuss newly published data from the perspective of early stages of host-pathogen interaction.
Collapse
Affiliation(s)
- Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | | |
Collapse
|
18
|
Casulli J, Fife ME, Houston SA, Rossi S, Dow J, Williamson ED, Clark GC, Hussell T, D'Elia RV, Travis MA. CD200R deletion promotes a neutrophil niche for Francisella tularensis and increases infectious burden and mortality. Nat Commun 2019; 10:2121. [PMID: 31073183 PMCID: PMC6509168 DOI: 10.1038/s41467-019-10156-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 04/13/2019] [Indexed: 01/08/2023] Open
Abstract
Pulmonary immune control is crucial for protection against pathogens. Here we identify a pathway that promotes host responses during pulmonary bacterial infection; the expression of CD200 receptor (CD200R), which is known to dampen pulmonary immune responses, promotes effective clearance of the lethal intracellular bacterium Francisella tularensis. We show that depletion of CD200R in mice increases in vitro and in vivo infectious burden. In vivo, CD200R deficiency leads to enhanced bacterial burden in neutrophils, suggesting CD200R normally limits the neutrophil niche for infection. Indeed, depletion of this neutrophil niche in CD200R−/− mice restores F. tularensis infection to levels seen in wild-type mice. Mechanistically, CD200R-deficient neutrophils display significantly reduced reactive oxygen species production (ROS), suggesting that CD200R-mediated ROS production in neutrophils is necessary for limiting F. tularensis colonisation and proliferation. Overall, our data show that CD200R promotes the antimicrobial properties of neutrophils and may represent a novel antibacterial therapeutic target. The authors show that the CD200 receptor (CD200R) promotes effective clearance of pulmonary Francisella tularensis infection in knock out mice. This result is unexpected as CD200R is known to dampen pulmonary immune responses, and these data suggest that the beneficial effect against F. tularensis is due to depletion of a neutrophil niche for the bacterium.
Collapse
Affiliation(s)
- J Casulli
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research (MCCIR), Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - M E Fife
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research (MCCIR), Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - S A Houston
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research (MCCIR), Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - S Rossi
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research (MCCIR), Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - J Dow
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research (MCCIR), Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - E D Williamson
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, UK
| | - G C Clark
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, UK
| | - T Hussell
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research (MCCIR), Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - R V D'Elia
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, UK
| | - M A Travis
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK. .,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK. .,Manchester Collaborative Centre for Inflammation Research (MCCIR), Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
19
|
Solbakken MH, Jentoft S, Reitan T, Mikkelsen H, Gregers TF, Bakke O, Jakobsen KS, Seppola M. Disentangling the immune response and host-pathogen interactions in Francisella noatunensis infected Atlantic cod. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:333-346. [PMID: 31054474 DOI: 10.1016/j.cbd.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/08/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
Abstract
The genetic repertoire underlying teleost immunity has been shown to be highly variable. A rare example is Atlantic cod and its relatives Gadiformes that lacks a hallmark of vertebrate immunity: Major Histocompatibility Complex class II. No immunological studies so far have fully unraveled the functionality of this particular immune system. Through global transcriptomic profiling, we investigate the immune response and host-pathogen interaction of Atlantic cod infected with the facultative intracellular bacterium Francisella noatunensis. We find that Atlantic cod displays an overall classic innate immune response with inflammation, acute-phase proteins and cell recruitment through up-regulation of e.g. IL1B, fibrinogen, cathelicidin, hepcidin and several chemotactic cytokines such as the neutrophil attractants CXCL1 and CXCL8. In terms of adaptive immunity, we observe up-regulation of interferon gamma followed by up-regulation of several MHCI transcripts and genes related to antigen transport and loading. Finally, we find up-regulation of immunoglobulins and down-regulation of T-cell and NK-like cell markers. Our analyses also uncover some contradictory transcriptional findings such as up-regulation of anti-inflammatory IL10 as well as down-regulation of the NADPH oxidase complex and myeloperoxidase. This we interpret as the result of host-pathogen interactions where F. noatunensis modulates the immune response. In summary, our results suggest that Atlantic cod mounts a classic innate immune response as well as a neutrophil-driven response. In terms of adaptive immunity, both endogenous and exogenous antigens are being presented on MHCI and antibody production is likely enabled through direct B-cell stimulation with possible neutrophil help. Collectively, we have obtained novel insight in the orchestration of the Atlantic cod immune system and determined likely targets of F. noatunensis host-pathogen interactions.
Collapse
Affiliation(s)
- Monica Hongrø Solbakken
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway.
| | - Trond Reitan
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | | | - Tone F Gregers
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Marit Seppola
- Department of Medical Biology, The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
20
|
Dąbrowska D, Jabłońska E, Iwaniuk A, Garley M. Many Ways-One Destination: Different Types of Neutrophils Death. Int Rev Immunol 2018; 38:18-32. [PMID: 30516403 DOI: 10.1080/08830185.2018.1540616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neutrophils constitute the most numerous populations of peripheral blood leukocytes, fulfilling the fundamental role in the development of the innate immune response. As the cells of the first line of defense, they guard the organism against the spread of pathogenic microorganisms. Neutrophils, similar to the other cells of the immune system, enter the path of death after fulfilling their biological function. Depending on the conditions that they are found in, they may undergo different types of cell death which requires the involvement of numerous signaling pathways. In this review article, we summarize the current state of knowledge regarding the different forms of neutrophil death, such as apoptosis, necrosis, necroptosis, autophagy, NETosis and pyroptosis.
Collapse
Affiliation(s)
- Dorota Dąbrowska
- a Department of Immunology , Medical University of Bialystok , Bialystok , Poland
| | - Ewa Jabłońska
- a Department of Immunology , Medical University of Bialystok , Bialystok , Poland
| | - Agnieszka Iwaniuk
- a Department of Immunology , Medical University of Bialystok , Bialystok , Poland
| | - Marzena Garley
- a Department of Immunology , Medical University of Bialystok , Bialystok , Poland
| |
Collapse
|
21
|
Kobayashi SD, Malachowa N, DeLeo FR. Neutrophils and Bacterial Immune Evasion. J Innate Immun 2018; 10:432-441. [PMID: 29642066 DOI: 10.1159/000487756] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are an important component of the innate immune system and provide a front line of defense against bacterial infection. Although most bacteria are killed readily by neutrophils, some bacterial pathogens have the capacity to circumvent destruction by these host leukocytes. The ability of bacterial pathogens to avoid killing by neutrophils often involves multiple attributes or characteristics, including the production of virulence molecules. These molecules are diverse in composition and function, and collectively have the potential to alter or inhibit neutrophil recruitment, phagocytosis, bactericidal activity, and/or apoptosis. Here, we review the ability of bacteria to target these processes.
Collapse
|
22
|
Fletcher JR, Crane DD, Wehrly TD, Martens CA, Bosio CM, Jones BD. The Ability to Acquire Iron Is Inversely Related to Virulence and the Protective Efficacy of Francisella tularensis Live Vaccine Strain. Front Microbiol 2018; 9:607. [PMID: 29670588 PMCID: PMC5893802 DOI: 10.3389/fmicb.2018.00607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/15/2018] [Indexed: 02/02/2023] Open
Abstract
Francisella tularensis is a highly infectious bacterial pathogen that causes the potentially fatal disease tularemia. The Live Vaccine Strain (LVS) of F. tularensis subsp. holarctica, while no longer licensed as a vaccine, is used as a model organism for identifying correlates of immunity and bacterial factors that mediate a productive immune response against F. tularensis. Recently, it was reported that two biovars of LVS differed in their virulence and vaccine efficacy. Genetic analysis showed that they differ in ferrous iron homeostasis; lower Fe2+ levels contributed to increased resistance to hydrogen peroxide in the vaccine efficacious LVS biovar. This also correlated with resistance to the bactericidal activity of interferon γ-stimulated murine bone marrow-derived macrophages. We have extended these findings further by showing that a mutant lacking bacterioferritin stimulates poor protection against Schu S4 challenge in a mouse model of tularemia. Together these results suggest that the efficacious biovar of LVS stimulates productive immunity by a mechanism that is dependent on its ability to limit the toxic effects of oxidative stress by maintaining optimally low levels of intracellular Fe2+.
Collapse
Affiliation(s)
- Joshua R. Fletcher
- Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States
| | - Deborah D. Crane
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Hamilton, MT, United States
| | - Tara D. Wehrly
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Hamilton, MT, United States
| | - Craig A. Martens
- Genomics Core, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Hamilton, MT, United States
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Hamilton, MT, United States
| | - Bradley D. Jones
- Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States
- Department of Microbiology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
23
|
Pseudomonas aeruginosa Effector ExoS Inhibits ROS Production in Human Neutrophils. Cell Host Microbe 2017; 21:611-618.e5. [PMID: 28494242 DOI: 10.1016/j.chom.2017.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/10/2017] [Accepted: 04/11/2017] [Indexed: 12/31/2022]
Abstract
Neutrophils are the first line of defense against bacterial infections, and the generation of reactive oxygen species is a key part of their arsenal. Pathogens use detoxification systems to avoid the bactericidal effects of reactive oxygen species. Here we demonstrate that the Gram-negative pathogen Pseudomonas aeruginosa is susceptible to reactive oxygen species but actively blocks the reactive oxygen species burst using two type III secreted effector proteins, ExoS and ExoT. ExoS ADP-ribosylates Ras and prevents it from interacting with and activating phosphoinositol-3-kinase (PI3K), which is required to stimulate the phagocytic NADPH-oxidase that generates reactive oxygen species. ExoT also affects PI3K signaling via its ADP-ribosyltransferase activity but does not act directly on Ras. A non-ribosylatable version of Ras restores reactive oxygen species production and results in increased bacterial killing. These findings demonstrate that subversion of the host innate immune response requires ExoS-mediated ADP-ribosylation of Ras in neutrophils.
Collapse
|
24
|
Kinkead LC, Whitmore LC, McCracken JM, Fletcher JR, Ketelsen BB, Kaufman JW, Jones BD, Weiss DS, Barker JH, Allen LAH. Bacterial lipoproteins and other factors released by Francisella tularensis modulate human neutrophil lifespan: Effects of a TLR1 SNP on apoptosis inhibition. Cell Microbiol 2017; 20. [PMID: 29063667 PMCID: PMC5764820 DOI: 10.1111/cmi.12795] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/10/2017] [Accepted: 10/15/2017] [Indexed: 12/21/2022]
Abstract
Francisella tularensis infects several cell types including neutrophils, and aberrant neutrophil accumulation contributes to tissue destruction during tularaemia. We demonstrated previously that F. tularensis strains Schu S4 and live vaccine strain markedly delay human neutrophil apoptosis and thereby prolong cell lifespan, but the bacterial factors that mediate this aspect of virulence are undefined. Herein, we demonstrate that bacterial conditioned medium (CM) can delay apoptosis in the absence of direct infection. Biochemical analyses show that CM contained F. tularensis surface factors as well as outer membrane components. Our previous studies excluded roles for lipopolysaccharide and capsule in apoptosis inhibition, and current studies of [14C] acetate‐labelled bacteria argue against a role for other bacterial lipids in this process. At the same time, studies of isogenic mutants indicate that TolC and virulence factors whose expression requires FevR or MglA were also dispensable, demonstrating that apoptosis inhibition does not require Type I or Type VI secretion. Instead, we identified bacterial lipoproteins (BLPs) as active factors in CM. Additional studies of isolated BLPs demonstrated dose‐dependent neutrophil apoptosis inhibition via a TLR2‐dependent mechanism that is significantly influenced by a common polymorphism, rs5743618, in human TLR1. These data provide fundamental new insight into pathogen manipulation of neutrophil lifespan and BLP function.
Collapse
Affiliation(s)
- Lauren C Kinkead
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Laura C Whitmore
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jenna M McCracken
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Joshua R Fletcher
- Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Brandi B Ketelsen
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Health Care System, Iowa City, Iowa, USA
| | - Justin W Kaufman
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Bradley D Jones
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.,Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - David S Weiss
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Jason H Barker
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Lee-Ann H Allen
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Health Care System, Iowa City, Iowa, USA
| |
Collapse
|
25
|
Köster S, Upadhyay S, Chandra P, Papavinasasundaram K, Yang G, Hassan A, Grigsby SJ, Mittal E, Park HS, Jones V, Hsu FF, Jackson M, Sassetti CM, Philips JA. Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA. Proc Natl Acad Sci U S A 2017; 114:E8711-E8720. [PMID: 28973896 PMCID: PMC5642705 DOI: 10.1073/pnas.1707792114] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis' success as a pathogen comes from its ability to evade degradation by macrophages. Normally macrophages clear microorganisms that activate pathogen-recognition receptors (PRRs) through a lysosomal-trafficking pathway called "LC3-associated phagocytosis" (LAP). Although Mtuberculosis activates numerous PRRs, for reasons that are poorly understood LAP does not substantially contribute to Mtuberculosis control. LAP depends upon reactive oxygen species (ROS) generated by NADPH oxidase, but Mtuberculosis fails to generate a robust oxidative response. Here, we show that CpsA, a LytR-CpsA-Psr (LCP) domain-containing protein, is required for Mtuberculosis to evade killing by NADPH oxidase and LAP. Unlike phagosomes containing wild-type bacilli, phagosomes containing the ΔcpsA mutant recruited NADPH oxidase, produced ROS, associated with LC3, and matured into antibacterial lysosomes. Moreover, CpsA was sufficient to impair NADPH oxidase recruitment to fungal particles that are normally cleared by LAP. Intracellular survival of the ΔcpsA mutant was largely restored in macrophages missing LAP components (Nox2, Rubicon, Beclin, Atg5, Atg7, or Atg16L1) but not in macrophages defective in a related, canonical autophagy pathway (Atg14, Ulk1, or cGAS). The ΔcpsA mutant was highly impaired in vivo, and its growth was partially restored in mice deficient in NADPH oxidase, Atg5, or Atg7, demonstrating that CpsA makes a significant contribution to the resistance of Mtuberculosis to NADPH oxidase and LC3 trafficking in vivo. Overall, our findings reveal an essential role of CpsA in innate immune evasion and suggest that LCP proteins have functions beyond their previously known role in cell-wall metabolism.
Collapse
Affiliation(s)
- Stefan Köster
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Sandeep Upadhyay
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Guozhe Yang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Amir Hassan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven J Grigsby
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ekansh Mittal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Heidi S Park
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Victoria Jones
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
26
|
Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front Cell Infect Microbiol 2017; 7:373. [PMID: 28890882 PMCID: PMC5574878 DOI: 10.3389/fcimb.2017.00373] [Citation(s) in RCA: 498] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs), toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs). Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation. Nonetheless, these pathogens often rely on repair and detoxifying proteins in addition to these secreted effectors and toxins in order to resist mammalian sources of ROS. This suggests that pathogens have both intrinsic and extrinsic mechanisms to avoid restriction by PMN-derived ROS. Here, we review mechanisms of oxidative burst in PMNs in response to bacterial infections, as well as the mechanisms by which bacterial pathogens thwart restriction by ROS to survive under conditions of oxidative stress.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States
| | - Erin R Green
- Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States.,Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| |
Collapse
|
27
|
Increased Resistance to Intradermal Francisella tularensis LVS Infection by Inactivation of the Sts Phosphatases. Infect Immun 2017. [PMID: 28630061 DOI: 10.1128/iai.00406-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Suppressor of TCR signaling proteins (Sts-1 and Sts-2) are two homologous phosphatases that negatively regulate signaling pathways in a number of hematopoietic lineages, including T lymphocytes. Mice lacking Sts expression are characterized by enhanced T cell responses. Additionally, a recent study demonstrated that Sts-/- mice are profoundly resistant to systemic infection by Candida albicans, with resistance characterized by enhanced survival, more rapid fungal clearance in key peripheral organs, and an altered inflammatory response. To investigate the role of Sts in the primary host response to infection by a bacterial pathogen, we evaluated the response of Sts-/- mice to infection by a Gram-negative bacterial pathogen. Francisella tularensis is a facultative bacterial pathogen that replicates intracellularly within a variety of cell types and is the causative agent of tularemia. Francisella infections are characterized by a delayed immune response, followed by an intense inflammatory reaction that causes widespread tissue damage and septic shock. Herein, we demonstrate that mice lacking Sts expression are significantly resistant to infection by the live vaccine strain (LVS) of F. tularensis Resistance is characterized by reduced lethality following high-dose intradermal infection, an altered cytokine response in the spleen, and enhanced bacterial clearance in multiple peripheral organs. Sts-/- bone marrow-derived monocytes and neutrophils, infected with F. tularensis LVS ex vivo, display enhanced restriction of intracellular bacteria. These observations suggest the Sts proteins play an important regulatory role in the host response to bacterial infection, and they underscore a role for Sts in regulating functionally relevant immune response pathways.
Collapse
|
28
|
Holland KM, Rosa SJ, Kristjansdottir K, Wolfgeher D, Franz BJ, Zarrella TM, Kumar S, Sunagar R, Singh A, Bakshi CS, Namjoshi P, Barry EM, Sellati TJ, Kron SJ, Gosselin EJ, Reed DS, Hazlett KRO. Differential Growth of Francisella tularensis, Which Alters Expression of Virulence Factors, Dominant Antigens, and Surface-Carbohydrate Synthases, Governs the Apparent Virulence of Ft SchuS4 to Immunized Animals. Front Microbiol 2017; 8:1158. [PMID: 28690600 PMCID: PMC5479911 DOI: 10.3389/fmicb.2017.01158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/07/2017] [Indexed: 12/29/2022] Open
Abstract
The gram-negative bacterium Francisella tularensis (Ft) is both a potential biological weapon and a naturally occurring microbe that survives in arthropods, fresh water amoeba, and mammals with distinct phenotypes in various environments. Previously, we used a number of measurements to characterize Ft grown in Brain-Heart Infusion (BHI) broth as (1) more similar to infection-derived bacteria, and (2) slightly more virulent in naïve animals, compared to Ft grown in Mueller Hinton Broth (MHB). In these studies we observed that the free amino acids in MHB repress expression of select Ft virulence factors by an unknown mechanism. Here, we tested the hypotheses that Ft grown in BHI (BHI-Ft) accurately displays a full protein composition more similar to that reported for infection-derived Ft and that this similarity would make BHI-Ft more susceptible to pre-existing, vaccine-induced immunity than MHB-Ft. We performed comprehensive proteomic analysis of Ft grown in MHB, BHI, and BHI supplemented with casamino acids (BCA) and compared our findings to published “omics” data derived from Ft grown in vivo. Based on the abundance of ~1,000 proteins, the fingerprint of BHI-Ft is one of nutrient-deprived bacteria that—through induction of a stringent-starvation-like response—have induced the FevR regulon for expression of the bacterium's virulence factors, immuno-dominant antigens, and surface-carbohydrate synthases. To test the notion that increased abundance of dominant antigens expressed by BHI-Ft would render these bacteria more susceptible to pre-existing, vaccine-induced immunity, we employed a battery of LVS-vaccination and S4-challenge protocols using MHB- and BHI-grown Ft S4. Contrary to our hypothesis, these experiments reveal that LVS-immunization provides a barrier to infection that is significantly more effective against an MHB-S4 challenge than a BHI-S4 challenge. The differences in apparent virulence to immunized mice are profoundly greater than those observed with primary infection of naïve mice. Our findings suggest that tularemia vaccination studies should be critically evaluated in regard to the growth conditions of the challenge agent.
Collapse
Affiliation(s)
- Kristen M Holland
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| | - Sarah J Rosa
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| | | | - Donald Wolfgeher
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicago, IL, United States
| | - Brian J Franz
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| | - Tiffany M Zarrella
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| | - Raju Sunagar
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| | - Anju Singh
- Trudeau InstituteSaranac Lake, NY, United States
| | - Chandra S Bakshi
- Department of Microbiology and Immunology, New York Medical CollegeValhalla, NY, United States
| | - Prachi Namjoshi
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| | - Eileen M Barry
- School of Medicine, University of MarylandBaltimore, MD, United States
| | | | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicago, IL, United States
| | - Edmund J Gosselin
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| | - Douglas S Reed
- Center for Vaccine Research, University of PittsburghPittsburgh, PA, United States
| | - Karsten R O Hazlett
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| |
Collapse
|
29
|
Kinkead LC, Fayram DC, Allen LAH. Francisella novicida inhibits spontaneous apoptosis and extends human neutrophil lifespan. J Leukoc Biol 2017; 102:815-828. [PMID: 28550119 DOI: 10.1189/jlb.4ma0117-014r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/09/2023] Open
Abstract
Francisella novicida is a Gram-negative bacterium that is closely related to the highly virulent facultative intracellular pathogen, Francisella tularensis Data published by us and others demonstrate that F. tularensis virulence correlates directly with its ability to impair constitutive apoptosis and extend human neutrophil lifespan. In contrast, F. novicida is attenuated in humans, and the mechanisms that account for this are incompletely defined. Our published data demonstrate that F. novicida binds natural IgG that is present in normal human serum, which in turn, elicits NADPH oxidase activation that does not occur in response to F. tularensis As it is established that phagocytosis and oxidant production markedly accelerate neutrophil death, we predicted that F. novicida may influence the neutrophil lifespan in an opsonin-dependent manner. To test this hypothesis, we quantified bacterial uptake, phosphatidylserine (PS) externalization, and changes in nuclear morphology, as well as the kinetics of procaspase-3, -8, and -9 processing and activation. To our surprise, we discovered that F. novicida not only failed to accelerate neutrophil death but also diminished and delayed apoptosis in a dose-dependent, but opsonin-independent, manner. In keeping with this, studies of conditioned media (CM) showed that neutrophil longevity could be uncoupled from phagocytosis and that F. novicida stimulated neutrophil secretion of CXCL8. Taken together, the results of this study reveal shared and unique aspects of the mechanisms used by Francisella species to manipulate neutrophil lifespan and as such, advance understanding of cell death regulation during infection.
Collapse
Affiliation(s)
- Lauren C Kinkead
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology, University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Medical Center, Iowa City, Iowa, USA
| | - Drew C Fayram
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Microbiology, University of Iowa, Iowa City, Iowa, USA
| | - Lee-Ann H Allen
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA; .,Department of Microbiology, University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Medical Center, Iowa City, Iowa, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA; and
| |
Collapse
|
30
|
Kobayashi SD, Malachowa N, DeLeo FR. Influence of Microbes on Neutrophil Life and Death. Front Cell Infect Microbiol 2017; 7:159. [PMID: 28507953 PMCID: PMC5410578 DOI: 10.3389/fcimb.2017.00159] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/12/2017] [Indexed: 01/10/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in humans and they are among the first white cells recruited to infected tissues. These leukocytes are essential for the innate immune response to bacteria and fungi. Inasmuch as neutrophils produce or contain potent microbicides that can be toxic to the host, neutrophil turnover and homeostasis is a highly regulated process that prevents unintended host tissue damage. Indeed, constitutive neutrophil apoptosis and subsequent removal of these cells by mononuclear phagocytes is a primary means by which neutrophil homeostasis is maintained in healthy individuals. Processes that alter normal neutrophil turnover and removal of effete cells can lead to host tissue damage and disease. The interaction of neutrophils with microbes and molecules produced by microbes often alters neutrophil turnover. The ability of microbes to alter the fate of neutrophils is highly varied, can be microbe-specific, and ranges from prolonging the neutrophil lifespan to causing rapid neutrophil lysis after phagocytosis. Here we provide a brief overview of these processes and their associated impact on innate host defense.
Collapse
Affiliation(s)
- Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamilton, MT, USA
| | - Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamilton, MT, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamilton, MT, USA
| |
Collapse
|
31
|
Saha SS, Hashino M, Suzuki J, Uda A, Watanabe K, Shimizu T, Watarai M. Contribution of methionine sulfoxide reductase B (MsrB) to Francisella tularensis infection in mice. FEMS Microbiol Lett 2016; 364:fnw260. [PMID: 28108583 DOI: 10.1093/femsle/fnw260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/05/2016] [Accepted: 11/10/2016] [Indexed: 12/12/2022] Open
Abstract
The essential mechanisms and virulence factors enabling Francisella species to replicate inside host macrophages are not fully understood. Methionine sulfoxide reductase (Msr) is an antioxidant enzyme that converts oxidized methionine into methionine. Francisella tularensis carries msrA and msrB in different parts of its chromosome. In this study, single and double mutants of msrA and msrB were constructed, and the characteristics of these mutants were investigated. The msrB mutant exhibited decreased in vitro growth, exogenous oxidative stress resistance and intracellular growth in macrophages, whereas the msrA mutant displayed little difference with wild-type strain. The double mutant exhibited the same characteristics as the msrB mutant. The bacterial count of the msrB mutant was significantly lower than that of the wild-type strain in the liver and spleen of mice. The bacterial count of the msrA mutant was lower than that of the wild-type strain in the liver, but not in the spleen, of mice. These results suggest that MsrB has an important role in the intracellular replication of F. tularensis in macrophages and infection in mice.
Collapse
Affiliation(s)
- Shib Shankar Saha
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1. Yoshida, Yamaguchi 753-8515, Japan.,Department of Pathology and Parasitology, Patuakhali Science and Technology, Babugonj, Barisal-8210, Bangladesh
| | - Masanori Hashino
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1. Yoshida, Yamaguchi 753-8515, Japan
| | - Jin Suzuki
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1. Yoshida, Yamaguchi 753-8515, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1. Yoshida, Yamaguchi 753-8515, Japan
| | - Takashi Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1. Yoshida, Yamaguchi 753-8515, Japan
| | - Masahisa Watarai
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1. Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
32
|
Chou WK, Brynildsen MP. A biochemical engineering view of the quest for immune-potentiating anti-infectives. Curr Opin Chem Eng 2016. [DOI: 10.1016/j.coche.2016.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Kinkead LC, Allen LAH. Multifaceted effects of Francisella tularensis on human neutrophil function and lifespan. Immunol Rev 2016; 273:266-81. [PMID: 27558340 PMCID: PMC5000853 DOI: 10.1111/imr.12445] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Francisella tularensis in an intracellular bacterial pathogen that causes a potentially lethal disease called tularemia. Studies performed nearly 100 years ago revealed that neutrophil accumulation in infected tissues correlates directly with the extent of necrotic damage during F. tularensis infection. However, the dynamics and details of bacteria-neutrophil interactions have only recently been studied in detail. Herein, we review current understanding regarding the mechanisms that recruit neutrophils to F. tularensis-infected lungs, opsonization and phagocytosis, evasion and inhibition of neutrophil defense mechanisms, as well as the ability of F. tularensis to prolong neutrophil lifespan. In addition, we discuss distinctive features of the bacterium, including its ability to act at a distance to alter overall neutrophil responsiveness to exogenous stimuli, and the evidence which suggests that macrophages and neutrophils play distinct roles in tularemia pathogenesis, such that macrophages are major vehicles for intracellular growth and dissemination, whereas neutrophils drive tissue destruction by dysregulation of the inflammatory response.
Collapse
Affiliation(s)
- Lauren C. Kinkead
- Inflammation Program, University of Iowa Iowa City, IA 52242
- Department of Microbiology, University of Iowa Iowa City, IA 52242
| | - Lee-Ann H. Allen
- Inflammation Program, University of Iowa Iowa City, IA 52242
- Department of Microbiology, University of Iowa Iowa City, IA 52242
- Department of Internal Medicine, University of Iowa Iowa City, IA 52242
- VA Medical Center, Iowa City, IA 52242
| |
Collapse
|
34
|
Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia. Semin Cell Dev Biol 2016; 60:155-167. [PMID: 27448494 PMCID: PMC7082150 DOI: 10.1016/j.semcdb.2016.07.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 01/07/2023]
Abstract
Bacterial pathogens display an impressive arsenal of molecular mechanisms that allow survival in diverse host niches. Subversion of plasma membrane and cytoskeletal functions are common themes associated to infection by both extracellular and intracellular pathogens. Moreover, intracellular pathogens modify the structure/stability of their membrane-bound compartments and escape degradation from phagocytic or autophagic pathways. Here, we review the manipulation of host membranes by Listeria monocytogenes, Francisella tularensis, Shigella flexneri and Yersinia spp. These four bacterial model pathogens exemplify generalized strategies as well as specific features observed during bacterial infection processes.
Collapse
|
35
|
McCracken JM, Kinkead LC, McCaffrey RL, Allen LAH. Francisella tularensis Modulates a Distinct Subset of Regulatory Factors and Sustains Mitochondrial Integrity to Impair Human Neutrophil Apoptosis. J Innate Immun 2016; 8:299-313. [PMID: 26906922 DOI: 10.1159/000443882] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/09/2016] [Indexed: 12/13/2022] Open
Abstract
Tularemia is a disease characterized by profound neutrophil accumulation and tissue destruction. The causative organism, Francisella tularensis, is a facultative intracellular bacterium that replicates in neutrophil cytosol, inhibits caspase activation and profoundly prolongs cell lifespan. Here, we identify unique features of this infection and provide fundamental insight into the mechanisms of apoptosis inhibition. Mitochondria are critical regulators of neutrophil apoptosis. We demonstrate that F. tularensis significantly inhibits Bax translocation and Bid processing during 24-48 h of infection, and in this manner sustains mitochondrial integrity. Downstream of mitochondria, X-linked inhibitor of apoptosis protein (XIAP) and proliferating cell nuclear antigen (PCNA) inhibit caspase-9 and caspase-3 by direct binding. Notably, we find that PCNA disappeared rapidly and selectively from infected cells, thereby demonstrating that it is not essential for neutrophil survival, whereas upregulation of calpastatin correlated with diminished calpain activity and reduced XIAP degradation. In addition, R-roscovitine is a cyclin-dependent kinase inhibitor developed for the treatment of cancer; it also induces neutrophil apoptosis and can promote the resolution of several infectious and inflammatory disorders. We confirm the ability of R-roscovitine to induce neutrophil apoptosis, but also demonstrate that its efficacy is significantly impaired by F. tularensis. Collectively, our findings advance the understanding of neutrophil apoptosis and its capacity to be manipulated by pathogenic bacteria.
Collapse
Affiliation(s)
- Jenna M McCracken
- Inflammation Program, University of Iowa and VA Medical Center, Iowa City, Iowa, USA
| | | | | | | |
Collapse
|
36
|
Ren G, Champion MM, Huntley JF. Identification of disulfide bond isomerase substrates reveals bacterial virulence factors. Mol Microbiol 2014; 94:926-44. [PMID: 25257164 DOI: 10.1111/mmi.12808] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 01/22/2023]
Abstract
Bacterial pathogens are exposed to toxic molecules inside the host and require efficient systems to form and maintain correct disulfide bonds for protein stability and function. The intracellular pathogen Francisella tularensis encodes a disulfide bond formation protein ortholog, DsbA, which previously was reported to be required for infection of macrophages and mice. However, the molecular mechanisms by which F. tularensis DsbA contributes to virulence are unknown. Here, we demonstrate that F. tularensis DsbA is a bifunctional protein that oxidizes and, more importantly, isomerizes complex disulfide connectivity in substrates. A single amino acid in the conserved cis-proline loop of the DsbA thioredoxin domain was shown to modulate both isomerase activity and F. tularensis virulence. Trapping experiments in F. tularensis identified over 50 F. tularensis DsbA substrates, including outer membrane proteins, virulence factors, and many hypothetical proteins. Six of these hypothetical proteins were randomly selected and deleted, revealing two novel proteins, FTL_1548 and FTL_1709, which are required for F. tularensis virulence. We propose that the extreme virulence of F. tularensis is partially due to the bifunctional nature of DsbA, that many of the newly identified substrates are required for virulence, and that the development of future DsbA inhibitors could have broad anti-bacterial implications.
Collapse
Affiliation(s)
- Guoping Ren
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | | | | |
Collapse
|
37
|
Bandyopadhyay S, Long ME, Allen LAH. Differential expression of microRNAs in Francisella tularensis-infected human macrophages: miR-155-dependent downregulation of MyD88 inhibits the inflammatory response. PLoS One 2014; 9:e109525. [PMID: 25295729 PMCID: PMC4190180 DOI: 10.1371/journal.pone.0109525] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022] Open
Abstract
Francisella tularensis is a Gram-negative, facultative intracellular pathogen that replicates in the cytosol of macrophages and is the causative agent of the potentially fatal disease tularemia. A characteristic feature of F. tularensis is its limited proinflammatory capacity, but the mechanisms that underlie the diminished host response to this organism are only partially defined. Recently, microRNAs have emerged as important regulators of immunity and inflammation. In the present study we investigated the microRNA response of primary human monocyte-derived macrophages (MDMs) to F. tularensis and identified 10 microRNAs that were significantly differentially expressed after infection with the live vaccine strain (LVS), as judged by Taqman Low Density Array profiling. Among the microRNAs identified, miR-155 is of particular interest as its established direct targets include components of the Toll-like receptor (TLR) pathway, which is essential for innate defense and proinflammatory cytokine production. Additional studies demonstrated that miR-155 acted by translational repression to downregulate the TLR adapter protein MyD88 and the inositol 5′-phosphatase SHIP-1 in MDMs infected with F. tularensis LVS or the fully virulent strain Schu S4. Kinetic analyses indicated that miR-155 increased progressively 3-18 hours after infection with LVS or Schu S4, and target proteins disappeared after 12–18 hours. Dynamic modulation of MyD88 and SHIP-1 was confirmed using specific pre-miRs and anti-miRs to increase and decrease miR-155 levels, respectively. Of note, miR-155 did not contribute to the attenuated cytokine response triggered by F. tularensis phagocytosis. Instead, this microRNA was required for the ability of LVS-infected cells to inhibit endotoxin-stimulated TNFα secretion 18–24 hours after infection. Thus, our data are consistent with the ability of miR-155 to act as a global negative regulator of the inflammatory response in F. tularensis-infected human macrophages.
Collapse
Affiliation(s)
- Sarmistha Bandyopadhyay
- Inflammation Program, University of Iowa, Coralville, Iowa, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Veteran's Administration Medical Center, Iowa City, Iowa, United States of America
| | - Matthew E. Long
- Inflammation Program, University of Iowa, Coralville, Iowa, United States of America
- Graduate Training Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Lee-Ann H. Allen
- Inflammation Program, University of Iowa, Coralville, Iowa, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Graduate Training Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
- Veteran's Administration Medical Center, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
38
|
Steiner DJ, Furuya Y, Metzger DW. Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect Drug Resist 2014; 7:239-51. [PMID: 25258544 PMCID: PMC4173753 DOI: 10.2147/idr.s53700] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Francisella tularensis is an intracellular Gram-negative bacterium that causes life-threatening tularemia. Although the prevalence of natural infection is low, F. tularensis remains a tier I priority pathogen due to its extreme virulence and ease of aerosol dissemination. F. tularensis can infect a host through multiple routes, including the intradermal and respiratory routes. Respiratory infection can result from a very small inoculum (ten organisms or fewer) and is the most lethal form of infection. Following infection, F. tularensis employs strategies for immune evasion that delay the immune response, permitting systemic distribution and induction of sepsis. In this review we summarize the current knowledge of F. tularensis in an immunological context, with emphasis on the host response and bacterial evasion of that response.
Collapse
Affiliation(s)
- Don J Steiner
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Yoichi Furuya
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Dennis W Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
39
|
Meireles DDA, Alegria TGP, Alves SV, Arantes CRR, Netto LES. A 14.7 kDa protein from Francisella tularensis subsp. novicida (named FTN_1133), involved in the response to oxidative stress induced by organic peroxides, is not endowed with thiol-dependent peroxidase activity. PLoS One 2014; 9:e99492. [PMID: 24959833 PMCID: PMC4069020 DOI: 10.1371/journal.pone.0099492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/15/2014] [Indexed: 01/12/2023] Open
Abstract
Francisella genus comprises Gram-negative facultative intracellular bacteria that are among the most infectious human pathogens. A protein of 14.7 KDa named as FTN_1133 was previously described as a novel hydroperoxide resistance protein in F. tularensis subsp. novicida, implicated in organic peroxide detoxification and virulence. Here, we describe a structural and biochemical characterization of FTN_1133. Contrary to previous assumptions, multiple amino acid sequence alignment analyses revealed that FTN_1133 does not share significant similarity with proteins of the Ohr/OsmC family or any other Cys-based, thiol dependent peroxidase, including conserved motifs around reactive cysteine residues. Circular dichroism analyses were consistent with the in silico prediction of an all-α-helix secondary structure. The pKa of its single cysteine residue, determined by a monobromobimane alkylation method, was shown to be 8.0±0.1, value that is elevated when compared with other Cys-based peroxidases, such as peroxiredoxins and Ohr/OsmC proteins. Attempts to determine a thiol peroxidase activity for FTN_1133 failed, using both dithiols (DTT, thioredoxin and lipoamide) and monothiols (glutathione or 2-mercaptoethanol) as reducing agents. Heterologous expression of FTN_1133 gene in ahpC and oxyR mutants of E. coli showed no complementation. Furthermore, analysis of FTN_1133 protein by non-reducing SDS-PAGE showed that an inter-molecular disulfide bond (not detected in Ohr proteins) can be generated under hydroperoxide treatment, but the observed rates were not comparable to those observed for other thiol-dependent peroxidases. All the biochemical and structural data taken together indicated that FTN_1133 displayed distinct characteristics from other thiol dependent peroxidases and, therefore, suggested that FTN_1133 is not directly involved in hydroperoxide detoxification.
Collapse
Affiliation(s)
- Diogo de Abreu Meireles
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago Geronimo Pires Alegria
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Simone Vidigal Alves
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Carla Rani Rocha Arantes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
40
|
McCracken JM, Allen LAH. Regulation of human neutrophil apoptosis and lifespan in health and disease. J Cell Death 2014; 7:15-23. [PMID: 25278783 PMCID: PMC4167320 DOI: 10.4137/jcd.s11038] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 12/31/2022] Open
Abstract
Neutrophils (also called polymorphonuclear leukocytes, PMNs) are the most abundant white blood cells in humans and play a central role in innate host defense. Another distinguishing feature of PMNs is their short lifespan. Specifically, these cells survive for less than 24 hours in the bloodstream and are inherently pre-programed to die by constitutive apoptosis. Recent data indicate that this process is regulated by intracellular signaling and changes in gene expression that define an “apoptosis differentiation program.” Infection typically accelerates neutrophil turnover, and as such, phagocytosis-induced cell death (PICD) and subsequent clearance of the corpses by macrophages are essential for control of infection and resolution of the inflammatory response. Herein we reprise recent advances in our understanding of the molecular mechanisms of neutrophil apoptosis with a focus on regulatory factors and pathway intermediates that are specific to this cell type. In addition, we summarize mechanisms whereby perturbation of PMN death contributes directly to the pathogenesis of many infectious and inflammatory disease states.
Collapse
Affiliation(s)
- Jenna M McCracken
- Inflammation Program, University of Iowa, Iowa City, IA, USA. ; Department of Microbiology, University of Iowa, Iowa City, IA, USA
| | - Lee-Ann H Allen
- Inflammation Program, University of Iowa, Iowa City, IA, USA. ; Department of Microbiology, University of Iowa, Iowa City, IA, USA. ; Department of Medicine, University of Iowa, Iowa City, IA, USA. ; Veteran's Administration Medical Center, Iowa City, IA, USA
| |
Collapse
|
41
|
TolC-dependent modulation of host cell death by the Francisella tularensis live vaccine strain. Infect Immun 2014; 82:2068-78. [PMID: 24614652 DOI: 10.1128/iai.00044-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Francisella tularensis is a facultative intracellular, Gram-negative pathogen and the causative agent of tularemia. We previously identified TolC as a virulence factor of the F. tularensis live vaccine strain (LVS) and demonstrated that a ΔtolC mutant exhibits increased cytotoxicity toward host cells and elicits increased proinflammatory responses compared to those of the wild-type (WT) strain. TolC is the outer membrane channel component used by the type I secretion pathway to export toxins and other bacterial virulence factors. Here, we show that the LVS delays activation of the intrinsic apoptotic pathway in a TolC-dependent manner, both during infection of primary macrophages and during organ colonization in mice. The TolC-dependent delay in host cell death is required for F. tularensis to preserve its intracellular replicative niche. We demonstrate that TolC-mediated inhibition of apoptosis is an active process and not due to defects in the structural integrity of the ΔtolC mutant. These findings support a model wherein the immunomodulatory capacity of F. tularensis relies, at least in part, on TolC-secreted effectors. Finally, mice vaccinated with the ΔtolC LVS are protected from lethal challenge and clear challenge doses faster than WT-vaccinated mice, demonstrating that the altered host responses to primary infection with the ΔtolC mutant led to altered adaptive immune responses. Taken together, our data demonstrate that TolC is required for temporal modulation of host cell death during infection by F. tularensis and highlight how shifts in the magnitude and timing of host innate immune responses may lead to dramatic changes in the outcome of infection.
Collapse
|
42
|
Gillette DD, Tridandapani S, Butchar JP. Monocyte/macrophage inflammatory response pathways to combat Francisella infection: possible therapeutic targets? Front Cell Infect Microbiol 2014; 4:18. [PMID: 24600590 PMCID: PMC3930869 DOI: 10.3389/fcimb.2014.00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/02/2014] [Indexed: 01/05/2023] Open
Abstract
Francisella tularensis can bypass and suppress host immune responses, even to the point of manipulating immune cell phenotypes and intercellular inflammatory networks. Strengthening these responses such that immune cells more readily identify and destroy the bacteria is likely to become a viable (and perhaps necessary) strategy for combating infections with Francisella, especially given the likelihood of antibiotic resistance in the foreseeable future. Monocytes and macrophages offer a niche wherein Francisella can invade and replicate, resulting in substantially higher bacterial load that can overcome the host. As such, understanding their responses to Francisella may uncover potential avenues of therapy that could promote a lowering of bacterial burden and clearance of infection. These response pathways include Toll-like Receptor 2 (TLR2), the caspase-1 inflammasome, Interferons, NADPH oxidase, Phosphatidylinositide 3-kinase (PI3K), and the Ras pathway. In this review we summarize the literature pertaining to the roles of these pathways during Francisella infection, with an emphasis on monocyte/macrophage responses. The therapeutic targeting of one or more such pathways may ultimately become a valuable tool for the treatment of tularemia, and several possibilities are discussed.
Collapse
Affiliation(s)
- Devyn D Gillette
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| | - Susheela Tridandapani
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| | - Jonathan P Butchar
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| |
Collapse
|
43
|
T-bet regulates immunity to Francisella tularensis live vaccine strain infection, particularly in lungs. Infect Immun 2014; 82:1477-90. [PMID: 24421047 DOI: 10.1128/iai.01545-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Upregulation of the transcription factor T-bet is correlated with the strength of protection against secondary challenge with the live vaccine strain (LVS) of Francisella tularensis. Thus, to determine if this mediator had direct consequences in immunity to LVS, we examined its role in infection. Despite substantial in vivo gamma interferon (IFN-γ) levels, T-bet-knockout (KO) mice infected intradermally (i.d.) or intranasally (i.n.) with LVS succumbed to infection with doses 2 log units less than those required for their wild-type (WT) counterparts, and exhibited significantly increased bacterial burdens in the lung and spleen. Lungs of LVS-infected T-bet-KO mice contained fewer lymphocytes and more neutrophils and interleukin-17 than WT mice. LVS-vaccinated T-bet-KO mice survived lethal LVS intraperitoneal secondary challenge but not high doses of LVS i.n. challenge, independently of the route of vaccination. Immune T lymphocytes from the spleens of i.d. LVS-vaccinated WT or KO mice controlled intracellular bacterial replication in an in vitro coculture system, but cultures with T-bet-KO splenocyte supernatants contained less IFN-γ and increased amounts of tumor necrosis factor alpha. In contrast, immune T-bet-KO lung lymphocytes were greatly impaired in controlling intramacrophage growth of LVS; this functional defect is the likely mechanism underpinning the lack of respiratory protection. Taken together, T-bet is important in host resistance to primary LVS infection and i.n. secondary challenge. Thus, T-bet represents a true, useful correlate for immunity to LVS.
Collapse
|
44
|
Abstract
Rapid recruitment of neutrophils to sites of infection and their ability to phagocytose and kill microbes is an important aspect of the innate immune response. Challenges associated with imaging of these cells include their short lifespan and small size and the fact that unstimulated cells are nonadherent. In addition, although cytoplasmic granules are plentiful, the abundance of many other organelles is diminished. Here we reprise methods for analysis of resting and activated cells using immunofluorescence and confocal microscopy, including kinetic analysis of phagosome maturation and degranulation, and detection of intraphagosomal superoxide accumulation. We describe approaches for rapid cell fixation and permeabilization that maximize antigen detection and discuss other variables that also affect data interpretation and image quality (such as cell spreading, degranulation, and phagocytosis). Finally, we show that these methods are also applicable to studies of neutrophil interactions with the extracellular matrix.
Collapse
Affiliation(s)
- Lee-Ann H Allen
- Inflammation Program and the Departments of Medicine and Microbiology, University of Iowa and the VA Medical Center, Iowa City, IA, USA
| |
Collapse
|
45
|
Ramond E, Gesbert G, Rigard M, Dairou J, Dupuis M, Dubail I, Meibom K, Henry T, Barel M, Charbit A. Glutamate utilization couples oxidative stress defense and the tricarboxylic acid cycle in Francisella phagosomal escape. PLoS Pathog 2014; 10:e1003893. [PMID: 24453979 PMCID: PMC3894225 DOI: 10.1371/journal.ppat.1003893] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/05/2013] [Indexed: 11/18/2022] Open
Abstract
Intracellular bacterial pathogens have developed a variety of strategies to avoid degradation by the host innate immune defense mechanisms triggered upon phagocytocis. Upon infection of mammalian host cells, the intracellular pathogen Francisella replicates exclusively in the cytosolic compartment. Hence, its ability to escape rapidly from the phagosomal compartment is critical for its pathogenicity. Here, we show for the first time that a glutamate transporter of Francisella (here designated GadC) is critical for oxidative stress defense in the phagosome, thus impairing intra-macrophage multiplication and virulence in the mouse model. The gadC mutant failed to efficiently neutralize the production of reactive oxygen species. Remarkably, virulence of the gadC mutant was partially restored in mice defective in NADPH oxidase activity. The data presented highlight links between glutamate uptake, oxidative stress defense, the tricarboxylic acid cycle and phagosomal escape. This is the first report establishing the role of an amino acid transporter in the early stage of the Francisella intracellular lifecycle.
Collapse
Affiliation(s)
- Elodie Ramond
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Gael Gesbert
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Mélanie Rigard
- Centre international de recherche en infectiologie, Université de Lyon, Lyon, France
- Bacterial Pathogenesis and Innate Immunity Laboratory, INSERM U851 “Immunity, Infection and Vaccination”, Lyon, France
| | - Julien Dairou
- Platform “Bioprofiler” Université Paris Diderot, Paris, France
| | - Marion Dupuis
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Iharilalao Dubail
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Karin Meibom
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Thomas Henry
- Centre international de recherche en infectiologie, Université de Lyon, Lyon, France
- Bacterial Pathogenesis and Innate Immunity Laboratory, INSERM U851 “Immunity, Infection and Vaccination”, Lyon, France
| | - Monique Barel
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Alain Charbit
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| |
Collapse
|
46
|
Allen LAH. Neutrophils: potential therapeutic targets in tularemia? Front Cell Infect Microbiol 2013; 3:109. [PMID: 24409419 PMCID: PMC3873502 DOI: 10.3389/fcimb.2013.00109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/14/2013] [Indexed: 01/18/2023] Open
Abstract
The central role of neutrophils in innate immunity and host defense has long been recognized, and the ability of these cells to efficiently engulf and kill invading bacteria has been extensively studied, as has the role of neutrophil apoptosis in resolution of the inflammatory response. In the past few years additional immunoregulatory properties of neutrophils were discovered, and it is now clear that these cells play a much greater role in control of the immune response than was previously appreciated. In this regard, it is noteworthy that Francisella tularensis is one of relatively few pathogens that can successfully parasitize neutrophils as well as macrophages, DC and epithelial cells. Herein we will review the mechanisms used by F. tularensis to evade elimination by neutrophils. We will also reprise effects of this pathogen on neutrophil migration and lifespan as compared with other infectious and inflammatory disease states. In addition, we will discuss the evidence which suggests that neutrophils contribute to disease progression rather than effective defense during tularemia, and consider whether manipulation of neutrophil migration or turnover may be suitable adjunctive therapeutic strategies.
Collapse
Affiliation(s)
- Lee-Ann H Allen
- Inflammation Program and the Departments of Internal Medicine and Microbiology, University of Iowa and the VA Medical Center Iowa City, IA, USA
| |
Collapse
|
47
|
Assembly of NADPH oxidase in human neutrophils is modulated by the opacity-associated protein expression State of Neisseria gonorrhoeae. Infect Immun 2013; 82:1036-44. [PMID: 24343654 DOI: 10.1128/iai.00881-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae (the gonococcus, Gc) triggers a potent inflammatory response and recruitment of neutrophils to the site of infection. Gc survives exposure to neutrophils despite these cells' antimicrobial products, such as reactive oxygen species (ROS). ROS production in neutrophils is initiated by NADPH oxidase, which converts oxygen into superoxide. The subunits of NADPH oxidase are spatially separated between granules (gp91(phox)/p22(phox)) and the cytoplasm (p47(phox), p67(phox), and p40(phox)). Activation of neutrophils promotes the coassembly of NADPH oxidase subunits at phagosome and/or plasma membranes. While Gc-expressing opacity-associated (Opa) proteins can induce neutrophils to produce ROS, Opa-negative (Opa-) Gc does not stimulate neutrophil ROS production. Using constitutively Opa- and OpaD-positive (OpaD+) Gc bacteria in strain FA1090, we now show that the difference in ROS production levels in primary human neutrophils between these backgrounds can be attributed to differential assembly of NADPH oxidase. Neutrophils infected with Opa- Gc showed limited translocation of NADPH oxidase cytoplasmic subunits to cellular membranes, including the bacterial phagosome. In contrast, these subunits rapidly translocated to neutrophil membranes following infection with OpaD+ Gc. gp91(phox) and p22(phox) were recruited to Gc phagosomes regardless of bacterial Opa expression. These results suggest that Opa- Gc interferes with the recruitment of neutrophil NADPH oxidase cytoplasmic subunits to membranes, in particular, the p47(phox) "organizing" subunit, to prevent assembly of the holoenzyme, resulting in an absence of the oxidative burst.
Collapse
|
48
|
Feng Y, Napier BA, Manandhar M, Henke SK, Weiss DS, Cronan JE. A Francisella virulence factor catalyses an essential reaction of biotin synthesis. Mol Microbiol 2013; 91:300-14. [PMID: 24313380 DOI: 10.1111/mmi.12460] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2013] [Indexed: 01/09/2023]
Abstract
We recently identified a gene (FTN_0818) required for Francisella virulence that seemed likely involved in biotin metabolism. However, the molecular function of this virulence determinant was unclear. Here we show that this protein named BioJ is the enzyme of the biotin biosynthesis pathway that determines the chain length of the biotin valeryl side-chain. Expression of bioJ allows growth of an Escherichia coli bioH strain on biotin-free medium, indicating functional equivalence of BioJ to the paradigm pimeloyl-ACP methyl ester carboxyl-esterase, BioH. BioJ was purified to homogeneity, shown to be monomeric and capable of hydrolysis of its physiological substrate methyl pimeloyl-ACP to pimeloyl-ACP, the precursor required to begin formation of the fused heterocyclic rings of biotin. Phylogenetic analyses confirmed that distinct from BioH, BioJ represents a novel subclade of the α/β-hydrolase family. Structure-guided mapping combined with site-directed mutagenesis revealed that the BioJ catalytic triad consists of Ser151, Asp248 and His278, all of which are essential for activity and virulence. The biotin synthesis pathway was reconstituted reaction in vitro and the physiological role of BioJ directly assayed. To the best of our knowledge, these data represent further evidence linking biotin synthesis to bacterial virulence.
Collapse
Affiliation(s)
- Youjun Feng
- Department of Microbiology, University of Illinois at Urbana-Champaign, IL, 61801, USA; Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
49
|
Francisella tularensis intracellular survival: to eat or to die. Microbes Infect 2013; 15:989-997. [PMID: 24513705 DOI: 10.1016/j.micinf.2013.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 12/15/2022]
Abstract
Francisella tularensis is a highly infectious facultative intracellular bacterium causing the zoonotic disease tularemia. Numerous attributes required for F. tularensis intracellular multiplication have been identified recently. However, the mechanisms by which the majority of them interfere with the infected host are still poorly understood. The following review summarizes our current knowledge on the different steps of Francisella intramacrophagic life cycle and expands on the importance of nutrient acquisition.
Collapse
|
50
|
Dieppedale J, Gesbert G, Ramond E, Chhuon C, Dubail I, Dupuis M, Guerrera IC, Charbit A. Possible links between stress defense and the tricarboxylic acid (TCA) cycle in Francisella pathogenesis. Mol Cell Proteomics 2013; 12:2278-92. [PMID: 23669032 PMCID: PMC3734585 DOI: 10.1074/mcp.m112.024794] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 05/01/2013] [Indexed: 12/16/2022] Open
Abstract
Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. In vivo, this facultative intracellular bacterium survives and replicates mainly in the cytoplasm of infected cells. We have recently identified a genetic locus, designated moxR that is important for stress resistance and intramacrophage survival of F. tularensis. In the present work, we used tandem affinity purification coupled to mass spectrometry to identify in vivo interacting partners of three proteins encoded by this locus: the MoxR-like ATPase (FTL_0200), and two proteins containing motifs predicted to be involved in protein-protein interactions, bearing von Willebrand A (FTL_0201) and tetratricopeptide (FTL_0205) motifs. The three proteins were designated here for simplification, MoxR, VWA1, and TPR1, respectively. MoxR interacted with 31 proteins, including various enzymes. VWA1 interacted with fewer proteins, but these included the E2 component of 2-oxoglutarate dehydrogenase and TPR1. The protein TPR1 interacted with one hundred proteins, including the E1 and E2 subunits of both oxoglutarate and pyruvate dehydrogenase enzyme complexes, and their common E3 subunit. Remarkably, chromosomal deletion of either moxR or tpr1 impaired pyruvate dehydrogenase and oxoglutarate dehydrogenase activities, supporting the hypothesis of a functional role for the interaction of MoxR and TPR1 with these complexes. Altogether, this work highlights possible links between stress resistance and metabolism in F. tularensis virulence.
Collapse
Affiliation(s)
- Jennifer Dieppedale
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Gael Gesbert
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Elodie Ramond
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Cerina Chhuon
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- ¶Plateau Protéome Necker, PPN, IFR94, Université Paris-Descartes, Faculté de Médecine René Descartes, Paris 75015 France
| | - Iharilalao Dubail
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Marion Dupuis
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Ida Chiara Guerrera
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- ¶Plateau Protéome Necker, PPN, IFR94, Université Paris-Descartes, Faculté de Médecine René Descartes, Paris 75015 France
| | - Alain Charbit
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| |
Collapse
|