1
|
Whitaker R, Sung S, Tylek T, Risser GE, O'Brien EM, Chua PE, Li T, Petrie RJ, Han L, Binder-Markey BI, Spiller KL. Effects of injury size on local and systemic immune cell dynamics in volumetric muscle loss. NPJ Regen Med 2025; 10:9. [PMID: 39939310 PMCID: PMC11822203 DOI: 10.1038/s41536-025-00397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 01/30/2025] [Indexed: 02/14/2025] Open
Abstract
We took a systems approach to the analysis of macrophage phenotype in regenerative and fibrotic volumetric muscle loss outcomes in mice together with analysis of systemic inflammation and of other leukocytes in the muscle, spleen, and bone marrow. Differences in expression of macrophage phenotype markers occurred as early as day 1, persisted to at least day 28, and were associated with increased numbers of leukocytes in the muscle and bone marrow, increased pro-inflammatory marker expression in splenic macrophages, and changes in the levels of pro-inflammatory cytokines in the blood. The most prominent differences were in muscle neutrophils, which were much more abundant in fibrotic outcomes compared to regenerative outcomes at day 1 after injury. However, neutrophil depletion had little to no effect on macrophage phenotype or on muscle repair outcomes. Together, these results suggest that the entire system of immune cell interactions must be considered to improve muscle repair outcomes.
Collapse
Affiliation(s)
- Ricardo Whitaker
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Samuel Sung
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Tina Tylek
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Gregory E Risser
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Erin M O'Brien
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Phoebe Ellin Chua
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Thomas Li
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Ryan J Petrie
- Department of Biology, College of Arts & Sciences, Drexel University, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Benjamin I Binder-Markey
- Department of Physical Therapy & Rehabilitation Sciences, College of Nursing and Health Professions, Drexel University, Philadelphia, PA, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Long Q, Ma T, Wang Y, Chen S, Tang S, Wang T, Zhou Y, Xu K, Wan P, Cao Y. Orientin alleviates the inflammatory response in psoriasis like dermatitis in BALB/c mice by inhibiting the MAPK signaling pathway. Int Immunopharmacol 2024; 134:112261. [PMID: 38761783 DOI: 10.1016/j.intimp.2024.112261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Psoriasis, a chronic inflammatory condition of the skin, is characterized by an atypical proliferation of epidermal keratinocytes and immune cell infiltration. Orientin is a flavonoid monomer with potent anti-inflammatory activities. However, the therapeutic effects of orientin on psoriasis and the underlying mechanisms have not been elucidated. OBJECTIVE To investigate the therapeutic effect of orientin on psoriasis and the underlying mechanisms using network pharmacology and experimental studies. METHODS A psoriasis-like mouse model was established using imiquimod (IMQ). Lipopolysaccharide (LPS) was used to stimulate the RAW264.7 and HaCaT cells in vitro. The therapeutic effects of orientin and the underlying mechanism were analyzed using histopathological, immunohistochemical, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, flow cytometry, and western blotting analyses. RESULTS Orientin ameliorated skin lesions and suppressed keratinocyte proliferation and immune cell infiltration in the IMQ-induced psoriasis-like mouse model. Additionally, orientin inhibited the secretion of the pro-inflammatory factors interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, IL-8, IL-17, and IL-23 in the psoriasis-like mouse model and LPS-induced RAW264.7 and HaCaT cells. Furthermore, orientin mitigated the LPS-induced upregulation of reactive oxygen species and downregulation of IL-10 and glutathione levels. Orientin alleviated inflammation by downregulating the MAPK signaling pathway. CONCLUSION Orientin alleviated psoriasis-like dermatitis by suppressing the MAPK signaling pathway, suggesting that orientin is a potential therapeutic for psoriasis.
Collapse
Affiliation(s)
- Qiu Long
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China; Molecular Biology Laboratory, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Ting Ma
- Department of Dermatology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Ye Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Shaojie Chen
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China; Department of Hepatobiliary Surgery, Guizhou Medical University Hospital, Guiyang, Guizhou 550000, China
| | - Shanshan Tang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Tao Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Yi Zhou
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Kexin Xu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Pengjie Wan
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Dermatology, Guizhou Branch of Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Guiyang, Guizhou 550000, China.
| | - Yu Cao
- Department of Dermatology, Guizhou Medical University Hospital, Guiyang, Guizhou 550000, China.
| |
Collapse
|
3
|
Takeda Y, Kato T, Sabrina S, Naito S, Ito H, Emi N, Kuboki Y, Takai Y, Fukuhara H, Ushijima M, Narisawa T, Yagi M, Kanno H, Sakurai T, Nishida H, Araki A, Shimotai Y, Nagashima M, Nouchi Y, Saitoh S, Nara H, Tsuchiya N, Asao H. Intracellular Major Histocompatibility Complex Class II and C-X-C Motif Chemokine Ligand 10-Expressing Neutrophils Indicate the State of Anti-Tumor Activity Induced by Bacillus Calmette-Guérin. Biomedicines 2023; 11:3062. [PMID: 38002062 PMCID: PMC10669614 DOI: 10.3390/biomedicines11113062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Inflammatory responses induce the formation of both anti-tumor and pro-tumor neutrophils known as myeloid-derived suppressor cells (MDSCs). Intermittent intravesical infusion of Bacillus Calmette-Guérin (BCG) is an established cancer immunotherapy for non-muscle-invasive bladder cancer (NMIBC). However, the types of neutrophils induced via the inflammatory response to both tumor-bearing and BCG remain unclear. (2) Methods: We therefore analyzed neutrophil dynamics in the peripheral blood and urine of patients with NMIBC who received BCG therapy. Further, we analyzed the effects of BCG in a mouse intraperitoneal tumor model. (3) Results: BCG therapy induced the formation of CXCL10 and MHC class II-positive neutrophils in the urine of patients with NMIBC but did not induce MDSC formation. CXCL10- and MHC class II-expressing neutrophils were detected in peritoneal exudate cells formed after BCG administration. Partial neutrophil depletion using an anti-Ly6G antibody suppressed the upregulation of CXCL10 and MHC class II in neutrophils and reversed the anti-tumor activity of BCG in mouse models. (4) Conclusions: These results indicated that intracellular MHC class II- and CXCL10-expressing neutrophils indicate the state of anti-tumor activity induced via BCG. The status of neutrophils in mixed inflammation of immunosuppressive and anti-tumor responses may therefore be useful for evaluating immunological systemic conditions.
Collapse
Affiliation(s)
- Yuji Takeda
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Tomoyuki Kato
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Saima Sabrina
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Sei Naito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hiromi Ito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Naoto Emi
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Yuya Kuboki
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Yuki Takai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hiroki Fukuhara
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Masaki Ushijima
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Takafumi Narisawa
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Mayu Yagi
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hidenori Kanno
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Toshihiko Sakurai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hayato Nishida
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Akemi Araki
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan;
| | - Mikako Nagashima
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Yusuke Nouchi
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Shinichi Saitoh
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Hidetoshi Nara
- Department of Biological Sciences, Faculty of Science and Engineering, Ishinomaki Senshu University, Miyagi 986-8580, Japan;
| | - Norihiko Tsuchiya
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| |
Collapse
|
4
|
Hernandez Pichardo A, Wilm B, Liptrott NJ, Murray P. Intravenous Administration of Human Umbilical Cord Mesenchymal Stromal Cells Leads to an Inflammatory Response in the Lung. Stem Cells Int 2023; 2023:7397819. [PMID: 37705699 PMCID: PMC10497368 DOI: 10.1155/2023/7397819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/25/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) administered intravenously (IV) have shown efficacy in preclinical models of various diseases. This is despite the cells not reaching the site of injury due to entrapment in the lungs. The immunomodulatory properties of MSCs are thought to underlie their therapeutic effects, irrespective of whether they are sourced from bone marrow, adipose tissue, or umbilical cord. To better understand how MSCs affect innate immune cell populations in the lung, we evaluated the distribution and phenotype of neutrophils, monocytes, and macrophages by flow cytometry and histological analyses after delivering human umbilical cord-derived MSCs (hUC-MSCs) IV into immunocompetent mice. After 2 hr, we observed a significant increase in neutrophils, and proinflammatory monocytes and macrophages. Moreover, these immune cells localized in close proximity to the MSCs, suggesting an active role in their clearance. By 24 hr, we detected an increase in anti-inflammatory monocytes and macrophages. These results suggest that the IV injection of hUC-MSCs leads to an initial inflammatory phase in the lung shortly after injection, followed by a resolution phase 24 hr later.
Collapse
Affiliation(s)
- Alejandra Hernandez Pichardo
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-Clinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-Clinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Neill J. Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-Clinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
da Rocha EMT, Bracht L, Gonçalves OH, Leimann FV, Ames FQ, Schneider LCL, Duda JV, Cardia GFE, Bonetti CI, Cuman RKN, Bersani-Amado CA. Development and characterization of trans-anethole-containing solid lipid microparticles: antiinflammatory and gastroprotective effects in experimental inflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:469-484. [PMID: 36385686 DOI: 10.1007/s00210-022-02323-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
The present study prepared, optimized, and characterized solid lipid microparticles that contained trans-anethole (SLMAN), evaluated their antiinflammatory activity in acute and chronic inflammation models, and investigated their effects on the gastric mucosa in arthritic rats. The microparticles were obtained by a hot homogenization process and characterized by physicochemical analyses. The acute inflammatory response was induced by an intradermal injection of 0.1 ml of carrageenan solution (200 μg) in the hind paw. The rats were treated orally with a single dose of SLMAN 1 h before induction of the inflammatory response. The chronic inflammatory response was induced by the subcutaneous application of 0.1 ml of complete Freund's adjuvant suspension (500 µg) in the hind paw. SLMAN was orally administered, starting on the day of arthritis induction, and continued for 21 days. The results showed that SLMAN was obtained with good encapsulation efficiency. Treatment with SLMAN at doses of 25 and 50 mg/kg was as effective as trans-anethole (AN) at a dose of 250 mg/kg on acute and chronic inflammatory responses. Histological analyses showed that treatment with SLMAN did not aggravate lesions in the gastric mucosa in arthritic rats. These results indicated that treatment with SLMAN at a dose that was 5-10 times lower than non-encapsulated AN exerted an inhibitory effect on acute and chronic inflammatory responses, suggesting the better bioavailability and efficacy of microencapsulated AN without aggravating lesions in the gastric mucosa in arthritic rats.
Collapse
Affiliation(s)
- Edvalkia Magna Teobaldo da Rocha
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil
| | - Lívia Bracht
- Department of Biochemistry, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020-900, Brazil
| | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), BR 369, Km 0.5, POBox 271, Campo Mourão, PR, 87301-006, Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), BR 369, Km 0.5, POBox 271, Campo Mourão, PR, 87301-006, Brazil
| | - Franciele Queiroz Ames
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil
| | - Larissa Carla Lauer Schneider
- Department of Morphological Sciences, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020-900, Brazil
| | - João Victor Duda
- Department of Morphological Sciences, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020-900, Brazil
| | - Gabriel Fernando Esteves Cardia
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil
| | - Carla Indianara Bonetti
- Department of Biochemistry, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020-900, Brazil
| | - Roberto Kenji Nakamura Cuman
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil.
| | - Ciomar Aparecida Bersani-Amado
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil
| |
Collapse
|
6
|
Alrashdi B, Dawod B, Tacke S, Kuerten S, Côté PD, Marshall JS. Mice Heterozygous for the Sodium Channel Scn8a (Nav1.6) Have Reduced Inflammatory Responses During EAE and Following LPS Challenge. Front Immunol 2021; 12:533423. [PMID: 33815353 PMCID: PMC8017164 DOI: 10.3389/fimmu.2021.533423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Voltage gated sodium (Nav) channels contribute to axonal damage following demyelination in experimental autoimmune encephalomyelitis (EAE), a rodent model of multiple sclerosis (MS). The Nav1.6 isoform has been implicated as a primary contributor in this process. However, the role of Nav1.6 in immune processes, critical to the pathology of both MS and EAE, has not been extensively studied. EAE was induced with myelin oligodendrocyte (MOG35-55) peptide in Scn8admu/+ mice, which have reduced Nav1.6 levels. Scn8admu/+ mice demonstrated improved motor capacity during the recovery and early chronic phases of EAE relative to wild-type animals. In the optic nerve, myeloid cell infiltration and the effects of EAE on the axonal ultrastructure were also significantly reduced in Scn8admu/+ mice. Analysis of innate immune parameters revealed reduced plasma IL-6 levels and decreased percentages of Gr-1high/CD11b+ and Gr-1int/CD11b+ myeloid cells in the blood during the chronic phase of EAE in Scn8admu/+ mice. Elevated levels of the anti-inflammatory cytokines IL-10, IL-13, and TGF-β1 were also observed in the brains of untreated Scn8admu/+ mice. A lipopolysaccharide (LPS) model was used to further evaluate inflammatory responses. Scn8admu/+ mice displayed reduced inflammation in response to LPS challenge. To further evaluate if this was an immune cell-intrinsic difference or the result of changes in the immune or hormonal environment, mast cells were derived from the bone marrow of Scn8admu/+ mice. These mast cells also produced lower levels of IL-6, in response to LPS, compared with those from wild type mice. Our results demonstrate that in addition to its recognized impact on axonal damage, Nav1.6 impacts multiple aspects of the innate inflammatory response.
Collapse
Affiliation(s)
- Barakat Alrashdi
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Bassel Dawod
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Sabine Tacke
- Department of Anatomy and Cell Biology, Institute of Anatomy, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Stefanie Kuerten
- Department of Anatomy and Cell Biology, Institute of Anatomy, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Patrice D. Côté
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Jean S. Marshall
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Chandrasekharan P, Fung KB, Zhou XY, Cui W, Colson C, Mai D, Jeffris K, Huynh Q, Saayujya C, Kabuli L, Fellows B, Lu Y, Yu E, Tay ZW, Zheng B, Fong L, Conolly SM. Non-radioactive and sensitive tracking of neutrophils towards inflammation using antibody functionalized magnetic particle imaging tracers. Nanotheranostics 2021; 5:240-255. [PMID: 33614400 PMCID: PMC7893534 DOI: 10.7150/ntno.50721] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
White blood cells (WBCs) are a key component of the mammalian immune system and play an essential role in surveillance, defense, and adaptation against foreign pathogens. Apart from their roles in the active combat of infection and the development of adaptive immunity, immune cells are also involved in tumor development and metastasis. Antibody-based therapeutics have been developed to regulate (i.e. selectively activate or inhibit immune function) and harness immune cells to fight malignancy. Alternatively, non-invasive tracking of WBC distribution can diagnose inflammation, infection, fevers of unknown origin (FUOs), and cancer. Magnetic Particle Imaging (MPI) is a non-invasive, non-radioactive, and sensitive medical imaging technique that uses safe superparamagnetic iron oxide nanoparticles (SPIOs) as tracers. MPI has previously been shown to track therapeutic stem cells for over 87 days with a ~200 cell detection limit. In the current work, we utilized antibody-conjugated SPIOs specific to neutrophils for in situ labeling, and non-invasive and radiation-free tracking of these inflammatory cells to sites of infection and inflammation in an in vivo murine model of lipopolysaccharide-induced myositis. MPI showed sensitive detection of inflammation with a contrast-to-noise ratio of ~8-13.
Collapse
Affiliation(s)
- Prashant Chandrasekharan
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - K.L. Barry Fung
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - Xinyi Y. Zhou
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - Weiwen Cui
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Caylin Colson
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - David Mai
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Kenneth Jeffris
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Leyla Kabuli
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Benjamin Fellows
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Yao Lu
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Elaine Yu
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Zhi Wei Tay
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Bo Zheng
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Lawrence Fong
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143, United States
| | - Steven M. Conolly
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Chandrasekharan P, Tay ZW, Zhou XY, Yu EY, Fung BK, Colson C, Fellows BD, Lu Y, Huynh Q, Saayujya C, Keselman P, Hensley D, Lu K, Orendorff R, Konkle J, Saritas EU, Zheng B, Goodwill P, Conolly S. Magnetic Particle Imaging for Vascular, Cellular and Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Joseph A, Chu CJ, Feng G, Dholakia K, Schallek J. Label-free imaging of immune cell dynamics in the living retina using adaptive optics. eLife 2020; 9:e60547. [PMID: 33052099 PMCID: PMC7556865 DOI: 10.7554/elife.60547] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/15/2020] [Indexed: 11/25/2022] Open
Abstract
Our recent work characterized the movement of single blood cells within the retinal vasculature (Joseph et al. 2019) using adaptive optics ophthalmoscopy. Here, we apply this technique to the context of acute inflammation and discover both infiltrating and tissue-resident immune cells to be visible without any labeling in the living mouse retina using near-infrared light alone. Intravital imaging of immune cells can be negatively impacted by surgical manipulation, exogenous dyes, transgenic manipulation and phototoxicity. These confounds are now overcome, using phase contrast and time-lapse videography to reveal the dynamic behavior of myeloid cells as they interact, extravasate and survey the mouse retina. Cellular motility and differential vascular responses were measured noninvasively and in vivo across hours to months at the same retinal location, from initiation to the resolution of inflammation. As comparable systems are already available for clinical research, this approach could be readily translated to human application.
Collapse
Affiliation(s)
- Aby Joseph
- The Institute of Optics, University of RochesterRochesterUnited States
| | - Colin J Chu
- Translational Health Sciences, University of BristolBristolUnited Kingdom
| | - Guanping Feng
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Kosha Dholakia
- Flaum Eye Institute, University of RochesterRochesterUnited States
| | - Jesse Schallek
- Flaum Eye Institute, University of RochesterRochesterUnited States
- Department of Neuroscience and the Del Monte Institute for Neuroscience, University of RochesterRochesterUnited States
- Center for Visual Science, University of RochesterRochesterUnited States
| |
Collapse
|
10
|
Mert T, Sahin E, Yaman S, Sahin M. Effects of immune cell-targeted treatments result from the suppression of neuronal oxidative stress and inflammation in experimental diabetic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1293-1302. [PMID: 32361779 DOI: 10.1007/s00210-020-01871-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/08/2020] [Indexed: 01/17/2023]
Abstract
In this study, we hypothesized that reduction of immune cell activation as well as their oxidant or inflammatory mediators with minocycline (MCN), liposome-encapsulated clodronate (LEC), or anti-Ly6G treatments can be neuroprotective approaches in diabetic neuropathy. MCN (40 mg/kg) for reduction of microglial activation, LEC (25 mg/kg) for of macrophage inhibition, or anti-Ly6G (150 μg/kg) for neutrophil suppression injected to streptozotocin (STZ)-induced diabetic rats twice, 3 days, and 1 week (half dose) after STZ. Animal mass and blood glucose levels were measured; thermal and mechanical sensitivities were tested for in pain sensations. The levels of chemokine C-X-C motif ligand 1 (CXCL1), CXCL8, and C-C motif ligand 2 (CCL2), CCL3, and total oxidant status (TOS) and total antioxidant status (TAS) were measured in the spinal cord and sciatic nerve tissues of rats. LEC significantly reduced the glucose level of diabetic rats compared with drug control. However, MCN or anti-LY6G did not change the glucose level. While diabetic rats showed a marked decrease in both thermal and mechanical sensations, all treatments alleviated these abnormal sensations. The levels of chemokines and oxidative stress parameters increased in diabetic rats. All drug treatments significantly decreased the CCL2, CXCL1, and CXCL8 levels of spinal cord tissues and ameliorated the neuronal oxidative stress compared with control treatments. Present findings suggest that the neuroprotective actions of MCN, LEC, or anti-Ly6G treatments may be due to the modulation of neuronal oxidative stress and/or inflammatory mediators of immune cells in diabetic rats with neuropathy.
Collapse
Affiliation(s)
- Tufan Mert
- Department of Biophysics, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkey.
| | - Emel Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Selma Yaman
- Department of Biophysics, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mehmet Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
11
|
Mert T, Metin TO, Sahin M, Yaman S. Antiinflammatory properties of antiLy6G antibody disappear during magnetic field exposure in rats with carrageenan induced acute paw inflammation. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2107-2115. [PMID: 32592030 DOI: 10.1007/s00210-020-01925-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/17/2020] [Indexed: 12/01/2022]
Abstract
Antiinflammatory properties of pulsed magnetic field (PMF) treatments or administration of antiLy6G antibody have been previously reported. In this study, we hypothesized that, the combination of PMF treatments and antiLy6G administration may synergistically potentiate their antiinflammatory actions. The effects of the combination of PMF treatments and antiLy6G administration were investigated by examining the inflammatory signs, histopathological properties of the inflamed site, and measuring the macrophage inflammatory protein-1 alpha (MIP-1α/CCL3) and myeloperoxidase (MPO) levels of inflamed paw tissues in rats with carrageenan-induced acute paw inflammation. In this present study, PMF treatments alone or administration of antiLy6G alone ameliorated the acute inflammation. However, their combination exacerbated the inflammatory signs, hyperalgesia, allodynia, edema and fever, and aggravated the inflammatory conditions by excessive infiltration of inflammatory cells to the inflamed site. These opposing effects of the combined treatments may correlate with enhanced levels of MIP-1α and MPO in inflamed paws. Present results indicated that the combination of the PMF treatments and antiLy6G administration may not provide additional benefits and may actually cause an aggravation of the acute inflammatory process. Findings may also suggest that during neutrophil or immune cell-targeted treatments for inflammatory states, magnetic field exposure may cause unexpected negative consequences.
Collapse
Affiliation(s)
- Tufan Mert
- Department of Biophysics, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkey.
| | - Tuba Ozcan Metin
- Department of Histology and Embryology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mehmet Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Selma Yaman
- Department of Biophysics, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
12
|
Kim AR, Kim JH, Choi YH, Jeon YE, Cha JH, Bak EJ, Yoo YJ. The presence of neutrophils causes RANKL expression in periodontal tissue, giving rise to osteoclast formation. J Periodontal Res 2020; 55:868-876. [PMID: 32583887 DOI: 10.1111/jre.12779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/18/2020] [Accepted: 05/30/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUNDS AND OBJECTIVE Increased neutrophil infiltration and osteoclast formation are key characteristics of periodontitis. The effect of these neutrophils on osteoclast formation in periodontitis remains unclear. Therefore, we investigated the effects of neutrophils on osteoclast formation in a neutrophil-deficient mouse model of periodontitis. METHODS Anti-Ly6G antibody (Ab) was used for neutrophil depletion in two mouse models: periodontitis and air pouch. In the periodontitis experiments, mice were divided into PBS-administered control (C), control Ab-administered periodontitis (P), and anti-Ly6G Ab-administered periodontitis (P + Ly6G) groups. Periodontitis was induced by ligature of mandibular first molars. In the air pouch experiments, mice were divided into PBS-administered (C), LPS and control Ab-administered (LPS), and LPS and anti-Ly6G Ab-administered (LPS + Ly6G) groups. Neutrophil migration into air pouches was induced by LPS injection. Flow cytometry was used to examine CD11b+ Ly6G+ neutrophils in the blood of periodontitis mice and CD11b+ Ly6G+ RANKL+ neutrophils in exudates of air pouch mice. In periodontal tissue, Ly6G+ neutrophil and RANKL+ cell numbers in periodontal ligament and alveolar bone areas were estimated using immunohistochemistry, osteoclast numbers were measured using TRAP assay, and alveolar bone loss was determined by H&E staining. RESULTS In blood, CD11b+ Ly6G+ neutrophils were found in greater percentage in the P group than in the C group on days 3 and 7. However, the percentage of neutrophils was lower in the P + Ly6G group than in the C and P groups. In periodontal tissue, the numbers of Ly6G+ neutrophils and RANKL+ cells were lower in the P + Ly6G group than in the P group on day 3. Ly6G+ neutrophil numbers decreased more in the P + Ly6G group than in the P group on day 7, but RANKL+ cell numbers did not decrease in the P + Ly6G group. In exudates, the number of CD11b+ Ly6G+ RANKL+ neutrophils was greater in the LPS group than in the C and LPS + Ly6G groups. On days 3 and 7, the numbers of osteoclasts and alveolar bone loss were greater in periodontal tissue in the P and P + Ly6G groups than in the C group. Interestingly, there were fewer osteoclasts in the P + Ly6G group than in the P group on day 3. CONCLUSION Neutrophil deficiency caused a reduction in numbers of both RANKL+ cells and osteoclasts in periodontitis-induced tissues only on day 3. Furthermore, in the LPS-injected air pouch model, neutrophil deficiency reduced the influx of RANKL+ neutrophils. These findings suggest that the presence of neutrophils induces RANKL expression and could induce osteoclast formation in the early stages of periodontitis.
Collapse
Affiliation(s)
- Ae Ri Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Ji-Hye Kim
- Department of Dental Hygiene, Baekseok University, Cheonan, South Korea
| | - Yun Hui Choi
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yeong-Eui Jeon
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jeong-Heon Cha
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eun-Jung Bak
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yun-Jung Yoo
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
13
|
Stackowicz J, Jönsson F, Reber LL. Mouse Models and Tools for the in vivo Study of Neutrophils. Front Immunol 2020; 10:3130. [PMID: 32038641 PMCID: PMC6985372 DOI: 10.3389/fimmu.2019.03130] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human blood and critical actors of the immune system. Many neutrophil functions and facets of their activity in vivo were revealed by studying genetically modified mice or by tracking fluorescent neutrophils in animals using imaging approaches. Assessing the roles of neutrophils can be challenging, especially when exact molecular pathways are questioned or disease states are interrogated that alter normal neutrophil homeostasis. This review discusses the main in vivo models for the study of neutrophils, their advantages and limitations. The side-by-side comparison underlines the necessity to carefully choose the right model(s) to answer a given scientific question, and exhibit caveats that need to be taken into account when designing experimental procedures. Collectively, this review suggests that at least two models should be employed to legitimately conclude on neutrophil functions.
Collapse
Affiliation(s)
- Julien Stackowicz
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, UMR INSERM 1222, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, UMR INSERM 1222, Paris, France
| | - Laurent L Reber
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, UMR INSERM 1222, Paris, France.,Center for Pathophysiology Toulouse-Purpan (CPTP), UMR 1043, University of Toulouse, INSERM, CNRS, Toulouse, France
| |
Collapse
|
14
|
Akk A, Springer LE, Yang L, Hamilton-Burdess S, Lambris JD, Yan H, Hu Y, Wu X, Hourcade DE, Miller MJ, Pham CTN. Complement activation on neutrophils initiates endothelial adhesion and extravasation. Mol Immunol 2019; 114:629-642. [PMID: 31542608 PMCID: PMC6815348 DOI: 10.1016/j.molimm.2019.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/08/2019] [Accepted: 09/08/2019] [Indexed: 01/07/2023]
Abstract
Neutrophils are essential to the pathogenesis of many inflammatory diseases. In the autoantibody-mediated K/BxN model of inflammatory arthritis, the alternative pathway (AP) of complement and Fc gamma receptors (FcγRs) are required for disease development while the classical pathway is dispensable. The reason for this differential requirement is unknown. We show that within minutes of K/BxN serum injection complement activation (CA) is detected on circulating neutrophils, as evidenced by cell surface C3 fragment deposition. CA requires the AP factor B and FcγRs but not C4, implying that engagement of FcγRs by autoantibody or immune complexes directly triggers AP C3 convertase assembly. The absence of C5 does not prevent CA on neutrophils but diminishes the upregulation of adhesion molecules. In vivo two-photon microscopy reveals that CA on neutrophils is critical for neutrophil extravasation and generation of C5a at the site of inflammation. C5a stimulates the release of neutrophil proteases, which contribute to the degradation of VE-cadherin, an adherens junction protein that regulates endothelial barrier integrity. C5a receptor antagonism blocks the extracellular release of neutrophil proteases, suppressing VE-cadherin degradation and neutrophil transendothelial migration in vivo. These results elucidate the AP-dependent intravascular neutrophil-endothelial interactions that initiate the inflammatory cascade in this disease model but may be generalizable to neutrophil extravasation in other inflammatory processes.
Collapse
Affiliation(s)
- Antonina Akk
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Luke E Springer
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lihua Yang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Samantha Hamilton-Burdess
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Huimin Yan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ying Hu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Dennis E Hourcade
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mark J Miller
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Christine T N Pham
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA; John Cochran VA Medical Center, Saint Louis, MO, USA.
| |
Collapse
|
15
|
Lee HH, Moon Y, Shin JS, Lee JH, Kim TW, Jang C, Park C, Lee J, Kim Y, Kim Y, Werz O, Park BY, Lee JY, Lee KT. A novel mPGES-1 inhibitor alleviates inflammatory responses by downregulating PGE2 in experimental models. Prostaglandins Other Lipid Mediat 2019; 144:106347. [DOI: 10.1016/j.prostaglandins.2019.106347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
|
16
|
Yang Z, Wang L, Yu H, Wang R, Gou Y, Zhang M, Kang C, Liu T, Lan Y, Wang X, Liu J, Cooper MA, Li X, Yue K, Yu Y, Wang L, Kim BY, Jiang W, Sun W. Membrane TLR9 Positive Neutrophil Mediated MPLA Protects Against Fatal Bacterial Sepsis. Am J Cancer Res 2019; 9:6269-6283. [PMID: 31534550 PMCID: PMC6735515 DOI: 10.7150/thno.37139] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Sepsis is a major cause of patient mortality and morbidity from bacterial infections. Although neutrophils are known to be important in the development of sepsis, how distinctive neutrophil subtypes regulate inflammatory processes involved in septicemia remains unclear. Preconditioning protects organisms against subsequent higher-dose exposures to the same, or even different, stimuli. Several studies have reported various effects of preconditioning on immune cells. However, the detailed mechanisms underlying neutrophil-mediated protection through preconditioning in sepsis remain unknown. Methods: Flow cytometry was conducted to sort the mice peritoneal lavage cells and the blood samples from patients with sepsis. Western blotting and ELISA were carried out to elucidate the expression of TLR9 signal transduction pathway proteins. Histological analysis was used to assess the effect of InP on intestine and liver structure in tlr9-/- and cav-1-/- mice. Fluorescence microscopy, Co-IP, and FRET were carried out to determine the association of TLR9 with Cav-1. Results: We show that membrane toll-like receptor-9 positive (mTLR9+) neutrophils exert a protective effect against fatal bacterial infections through the process of inflammatory preconditioning (InP). InP, which occurs in the setting of a low-dose bacterial challenge, active ingredient is Monophosphoryl lipid A (MPLA), triggers the membrane translocation of TLR9 from the neutrophil cytosol, where it binds to Cav-1. Our findings showed that InP enables TLR9 to facilitate MyD88-mediated TRAF3 and IRF3 signal transduction. Depletion of either TLR9 or Cav-1 largely eliminates the neutrophil-mediated InP effect in sepsis models in vitro and in vivo. Further, examination of clinical samples from patients with sepsis showed that clinical outcomes and likelihood of recovery are closely correlated with mTLR9 and Cav-1 expression in circulating neutrophils. Conclusion: These results demonstrate that the TLR9-Cav-1 axis is a critical signaling pathway involved in the regulation of neutrophil-dependent MPLA mediated InP, and the presence of mTLR9+ neutrophils could be an attractive indicator of clinical outcomes in bacterial sepsis that could be further explored as a potential therapeutic target.
Collapse
|
17
|
Interleukin-18 exacerbates skin inflammation and affects microabscesses and scale formation in a mouse model of imiquimod-induced psoriasis. Chin Med J (Engl) 2019; 132:690-698. [PMID: 30741833 PMCID: PMC6416030 DOI: 10.1097/cm9.0000000000000140] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: As a potent pro-inflammatory cytokine of the interleukin (IL)-1 family, IL-18 was elevated in early active and progressive plaque-type psoriatic lesions and that serum or plasma levels of IL-18 correlated with the Psoriasis Area and Severity Index (PASI). Although results from previous studies have established that IL-18 may aggravate psoriatic inflammation, the mechanisms of this process remain unknown. In this study, IL-18 knock out (KO) mice and wild-type (WT) mice were used to investigate the effects of IL-18 within a mouse model of psoriasis. Methods: WT and IL-18 KO mice were divided into four groups, including imiquimod (IMQ)-treated IL-18 KO group (n = 11) and WT group (n = 13) as well as their respectively gene-matched control mice (receiving vaseline; n = 12). PASI scores were used to evaluate psoriatic lesions in IMQ-treated mice. Pathological features and dermal cellular infiltration were investigated by hematoxylin and eosin staining. The levels of psoriasis-related cytokines including IL-23, IL-17, IL-12, IL-1β, IFNγ, IL-15, IL-27, and IL-4 were tested by real-time polymerase chain reaction (PCR). The protein level of IL-1β, IL-27, CXCL1, and Ly6 g were investigated by immunohistochemistry (IHC). Results: Acanthosis (98.46 ± 14.12 vs. 222.68 ± 71.10 μm, P < 0.01) and dermal cell infiltration (572.25 ± 47.45 vs. 762.47 ± 59.59 cells/field, P < 0.01) were significantly milder in IMQ-induced IL-18 KO mice compared with that in WT mice. IMQ-induced IL-18 KO mice manifested larger areas of Munro microabscesses (11,467.83 ± 5112.09 vs. 4093.19 ± 2591.88 μm2, P < 0.01) and scales (100,935.24 ± 41,167.77 vs. 41,604.41 ± 14,184.10 μm2, P < 0.01) as compared with WT mice. In skin lesions of IL-18 KO mice, the expressions of IL-1β, IL-4, and IL-27 were all significantly upregulated but IL-17 was decreased. Histologically, strong positive signals of Ly6g were observed within the epidermis of IL-18 KO mice but expressions of CXCL1 were decreased. Conclusions: IL-18 may exacerbate prominent inflammation and influence pathological features in IMQ-induced mouse model of psoriasis. IL-18 may upregulate pro-inflammatory cytokines and reduce protective cytokines, thus aggravating psoriatic inflammation. In addition, IL-18 may be involved in the formation of Munro microabscesses and scales.
Collapse
|
18
|
Anti-inflammatory properties of Liposome-encapsulated clodronate or Anti-Ly6G can be modulated by peripheral or central inflammatory markers in carrageenan-induced inflammation model. Inflammopharmacology 2019; 27:603-612. [DOI: 10.1007/s10787-019-00563-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/03/2019] [Indexed: 01/13/2023]
|
19
|
In vivo imaging of the pathophysiological changes and neutrophil dynamics in influenza virus-infected mouse lungs. Proc Natl Acad Sci U S A 2018; 115:E6622-E6629. [PMID: 29941581 DOI: 10.1073/pnas.1806265115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The pathophysiological changes that occur in lungs infected with influenza viruses are poorly understood. Here we established an in vivo imaging system that combines two-photon excitation microscopy and fluorescent influenza viruses of different pathogenicity. This approach allowed us to monitor and correlate several parameters and physiological changes including the spread of infection, pulmonary permeability, pulmonary perfusion speed, number of recruited neutrophils in infected lungs, and neutrophil motion in the lungs of live mice. Several physiological changes were larger and occurred earlier in mice infected with a highly pathogenic H5N1 influenza virus compared with those infected with a mouse-adapted human strain. These findings demonstrate the potential of our in vivo imaging system to provide novel information about the pathophysiological consequences of virus infections.
Collapse
|
20
|
Aspergillus fumigatus Infection-Induced Neutrophil Recruitment and Location in the Conducting Airway of Immunocompetent, Neutropenic, and Immunosuppressed Mice. J Immunol Res 2018; 2018:5379085. [PMID: 29577051 PMCID: PMC5822902 DOI: 10.1155/2018/5379085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/05/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022] Open
Abstract
Susceptibility to fungal infection is commonly associated with impaired neutrophil responses. To study the mechanisms underlying this association, we investigated neutrophil recruitment to the conducting airway wall after Aspergillus fumigatus conidium inhalation in mouse models of drug-induced immunosuppression and antibody-mediated neutrophil depletion (neutropenia) by performing three-dimensional confocal laser-scanning microscopy of whole-mount primary bronchus specimens. Actin staining enabled visualization of the epithelial and smooth muscle layers that mark the airway wall. Gr-1+ or Ly6G+ neutrophils located between the epithelium and smooth muscles were considered airway wall neutrophils. The number of airway wall neutrophils for immunocompetent, immunosuppressed, and neutropenic mice before and 6 h after A. fumigatus infection were analyzed and compared. Our results show that the number of conducting airway wall neutrophils in immunocompetent mice significantly increased upon inflammation, while a dramatic reduction in this number was observed following immunosuppression and neutropenia. Interestingly, a slight increase in the infiltration of neutrophils into the airway wall was detected as a result of infection, even in immunosuppressed and neutropenic mice. Taken together, these data indicate that neutrophils are present in intact conducting airway walls and the number elevates upon A. fumigatus infection. Conducting airway wall neutrophils are affected by both neutropenia and immunosuppression.
Collapse
|
21
|
Bucher K, Schmitt F, Mothes B, Blumendeller C, Schäll D, Piekorz R, Hirsch E, Nürnberg B, Beer-Hammer S. Deficiency of PI3-Kinase catalytic isoforms p110γ and p110δ in mice enhances the IL-17/G-CSF axis and induces neutrophilia. Cell Commun Signal 2017; 15:28. [PMID: 28724384 PMCID: PMC5518148 DOI: 10.1186/s12964-017-0185-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 07/13/2017] [Indexed: 05/17/2023] Open
Abstract
Background Phosphoinositide 3-kinase γ (PI3Kγ) and PI3Kδ are second messenger-generating enzymes with key roles in proliferation, differentiation, survival, and function of leukocytes. Deficiency of the catalytic subunits p110γ and p110δ of PI3Kγ and PI3Kδ in p110γ/δ−/− mice leads to defective B- and T-cell homeostasis. Here we examined the role of p110γ and p110δ in the homeostasis of neutrophils by analyzing p110γ−/−, p110δ−/− and p110γ/δ−/− mice. Methods Neutrophils and T cells in leukocyte suspensions from the bone marrow (BM), blood, spleen and lung were analyzed by flow cytometry. Serum concentrations of IL-17, of the neutrophilic growth factor G-CSF, and of the neutrophil mobilizing CXC chemokines CXCL1/KC and CXCL2/MIP-2 were measured by Bio-Plex assay. Production of G-CSF and CXCL1/KC by IL-17-stimulated primary lung tissue cells were determined by ELISA, whereas IL-17-dependent signaling in lung tissue cells was analyzed by measuring Akt phosphorylation using immunoblot. Results We found that in contrast to single knock-out mice, p110γ/δ−/− mice exhibited significantly elevated neutrophil counts in blood, spleen, and lung. Increased granulocytic differentiation stages in the bone marrow of p110γ/δ−/− mice were paralleled by increased serum concentrations of G-CSF, CXCL1/KC, and CXCL2/MIP-2. As IL-17 induces neutrophilia via the induction of G-CSF and CXC chemokines, we measured IL-17 and IL-17-producing T cells. IL-17 serum concentrations and frequencies of IL-17+ splenic T cells were significantly increased in p110γ/δ−/− mice. Moreover, IFN-γ+, IL-4+, and IL-5+ T cell subsets were drastically increased in p110γ/δ−/− mice, suggesting that IL-17+ T cells were up-regulated in the context of a general percentage increase of other cytokine producing T cell subsets. Conclusions We found that p110γ/δ deficiency in mice induces complex immunological changes, which might in concert contribute to neutrophilia. These findings emphasize a crucial but indirect role of both p110γ and p110δ in the regulation of neutrophil homeostasis. Electronic supplementary material The online version of this article (doi:10.1186/s12964-017-0185-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kirsten Bucher
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology and ICePhA mouse clinic, University of Tübingen, D-72074, Tübingen, Germany
| | - Fee Schmitt
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology and ICePhA mouse clinic, University of Tübingen, D-72074, Tübingen, Germany
| | - Benedikt Mothes
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology and ICePhA mouse clinic, University of Tübingen, D-72074, Tübingen, Germany
| | - Carolin Blumendeller
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology and ICePhA mouse clinic, University of Tübingen, D-72074, Tübingen, Germany
| | - Daniel Schäll
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology and ICePhA mouse clinic, University of Tübingen, D-72074, Tübingen, Germany
| | - Roland Piekorz
- Institute of Biochemistry and Molecular Biology II, University of Düsseldorf, D-40225, Düsseldorf, Germany
| | - Emilio Hirsch
- Department of Genetics, Biology and Biochemistry, University of Torino, I-10126, Torino, Italy
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology and ICePhA mouse clinic, University of Tübingen, D-72074, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology and ICePhA mouse clinic, University of Tübingen, D-72074, Tübingen, Germany. .,Institute of Experimental and Clinical Pharmacology and Toxicology, University Tübingen, Wilhelmstraße 56, D-72074, Tübingen, Germany.
| |
Collapse
|
22
|
Casserly CS, Nantes JC, Whittaker Hawkins RF, Vallières L. Neutrophil perversion in demyelinating autoimmune diseases: Mechanisms to medicine. Autoimmun Rev 2017; 16:294-307. [PMID: 28161558 DOI: 10.1016/j.autrev.2017.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
|
23
|
Wang X, Yang X, Tsai Y, Yang L, Chuang KH, Keng PC, Lee SO, Chen Y. IL-6 Mediates Macrophage Infiltration after Irradiation via Up-regulation of CCL2/CCL5 in Non-small Cell Lung Cancer. Radiat Res 2017; 187:50-59. [PMID: 28054838 DOI: 10.1667/rr14503.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiotherapy is effective in reducing primary tumors, however, it may enhance macrophage infiltration to tumor sites, accelerating tumor progression in several ways. We investigated whether radiation can increase macrophage infiltration into non-small cell lung carcinoma (NSCLC) cells. Analysis of in vitro macrophage (differentiated THP-1 cells) migration to either nonirradiated or irradiated tumor cells showed increased migration to the irradiated tumor cells. Because the IL-6 levels in A549 and H157 cells were significantly increased after irradiation, we then investigated whether this increased IL-6 level contributes to radiation-induced macrophage migration. Radiation-induced macrophage infiltration was reduced when IL-6 was knocked down in tumor cells, indicating a positive IL-6 role in this process. To validate this in vitro result, an orthotopic mouse model was developed using a luciferase-tagged H157siIL-6/scramble control (sc) cell set. After tumors developed, the lungs were irradiated, and infiltration of endogenous macrophages and tail-vein injected fluorescent macrophages to tumor sites was investigated. In both groups, increased macrophage infiltration was observed in H157sc cell-derived xenografts compared to H157siIL-6 cell-derived xenografts, confirming the positive IL-6 role in the radiation-induced macrophage infiltration process. In mechanistic dissection studies, radiation-induced up-regulation of CCL2 and CCL5 by IL-6 was detected, and blocking the action of CCL2/CCL5 molecules significantly reduced the number of migrated macrophages to tumor cells after irradiation. These results demonstrate that targeting the IL-6 signaling or CCL2/CCL5 molecules in combination with conventional radiotherapy potentially blocks undesired radiation-induced macrophage infiltration.
Collapse
Affiliation(s)
- Xin Wang
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Xiaodong Yang
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Ying Tsai
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Li Yang
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Kuang-Hsiang Chuang
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Peter C Keng
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Soo Ok Lee
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
24
|
Chen Y, Maeda A, Bu J, DaCosta R. Femur Window Chamber Model for In Vivo Cell Tracking in the Murine Bone Marrow. J Vis Exp 2016. [PMID: 27500928 DOI: 10.3791/54205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bone marrow is a complex organ that contains various hematopoietic and non-hematopoietic cells. These cells are involved in many biological processes, including hematopoiesis, immune regulation and tumor regulation. Commonly used methods for understanding cellular actions in the bone marrow, such as histology and blood counts, provide static information rather than capturing the dynamic action of multiple cellular components in vivo. To complement the standard methods, a window chamber (WC)-based model was developed to enable serial in vivo imaging of cells and structures in the murine bone marrow. This protocol describes a surgical procedure for installing the WC in the femur, in order to facilitate long-term optical access to the femoral bone marrow. In particular, to demonstrate its experimental utility, this WC approach was used to image and track neutrophils within the vascular network of the femur, thereby providing a novel method to visualize and quantify immune cell trafficking and regulation in the bone marrow. This method can be applied to study various biological processes in the murine bone marrow, such as hematopoiesis, stem cell transplantation, and immune responses in pathological conditions, including cancer.
Collapse
Affiliation(s)
| | - Azusa Maeda
- Princess Margaret Cancer Centre; Department of Medical Biophysics, University of Toronto
| | | | - Ralph DaCosta
- Princess Margaret Cancer Centre; Department of Medical Biophysics, University of Toronto; Techna Institute, University Health Network;
| |
Collapse
|
25
|
p110γ/δ Double-Deficiency Induces Eosinophilia and IgE Production but Protects from OVA-Induced Airway Inflammation. PLoS One 2016; 11:e0159310. [PMID: 27442134 PMCID: PMC4956235 DOI: 10.1371/journal.pone.0159310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023] Open
Abstract
The catalytical isoforms p110γ and p110δ of phosphatidylinositide 3-kinase γ (PI3Kγ) and PI3Kδ play an important role in the pathogenesis of asthma. Two key elements in allergic asthma are increased levels of eosinophils and IgE. Dual pharmacological inhibition of p110γ and p110δ reduces asthma-associated eosinophilic lung infiltration and ameliorates disease symptoms, whereas the absence of enzymatic activity in p110γKOδD910A mice increases IgE and basal eosinophil counts. This suggests that long-term inhibition of p110γ and p110δ might exacerbate asthma. Here, we analysed mice genetically deficient for both catalytical subunits (p110γ/δ-/-) and determined basal IgE and eosinophil levels and the immune response to ovalbumin-induced asthma. Serum concentrations of IgE, IL-5 and eosinophil numbers were significantly increased in p110γ/δ-/- mice compared to single knock-out and wildtype mice. However, p110γ/δ-/- mice were protected against OVA-induced infiltration of eosinophils, neutrophils, T and B cells into lung tissue and bronchoalveolar space. Moreover, p110γ/δ-/- mice, but not single knock-out mice, showed a reduced bronchial hyperresponsiveness. We conclude that increased levels of eosinophils and IgE in p110γ/δ-/- mice do not abolish the protective effect of p110γ/δ-deficiency against OVA-induced allergic airway inflammation.
Collapse
|
26
|
Moses K, Klein JC, Männ L, Klingberg A, Gunzer M, Brandau S. Survival of residual neutrophils and accelerated myelopoiesis limit the efficacy of antibody-mediated depletion of Ly-6G+ cells in tumor-bearing mice. J Leukoc Biol 2016; 99:811-23. [PMID: 26819319 DOI: 10.1189/jlb.1hi0715-289r] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/04/2016] [Indexed: 01/03/2023] Open
Abstract
Expansion of Ly-6G(+) myeloid cells has been reported in most murine cancer models. However, divergent findings exist regarding the role and effect of these cells on host immunity and tumor progression. Antibody-mediated depletion of Ly-6G(+) cells is a common technique to assess the in vivo relevance of these cells. Interpretation of results crucially depends on the efficacy and course of depletion. We established murine head and neck cancer models and analyzed the efficacy of antibody-mediated depletion by flow cytometry, conventional histology, and intravital imaging with a novel Ly-6G-transgenic mouse model. The first phase of depletion was characterized by effective elimination of Ly-6G(+) cells from the peripheral blood. Nevertheless, viable, resistant cells were found to reside in the tumor tissue and spleen. This peripheral depletion phase was associated with high systemic levels of granulocyte colony-stimulating factor and KC and enhanced splenic production of Ly-6G(+) cells. Even under sustained treatment with either αGr-1 or αLy-6G antibodies, peripheral blood depletion ended after approximately 1 wk and was followed by reappearance of immature Ly-6G(+) cells with an immunoregulatory phenotype. Reappearance of these depletion-resistant immature cells was enhanced in tumor-bearing, compared with naïve, control mice. Collectively, our data suggest that depletion of Ly-6G(+) myeloid cells in tumor-bearing mice is counteracted by the persistence of intratumoral cells, enhanced extramedullary granulopoiesis, and accelerated reappearance of immature cells. Hence, extensive monitoring of in vivo kinetics and tissue distribution of Ly-6G(+) cells is required in depletion studies.
Collapse
Affiliation(s)
- Katrin Moses
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany; and
| | - Johanna C Klein
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany; and
| | - Linda Männ
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anika Klingberg
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany; and
| |
Collapse
|
27
|
McCabe A, MacNamara KC. Macrophages: Key regulators of steady-state and demand-adapted hematopoiesis. Exp Hematol 2016; 44:213-22. [PMID: 26806720 DOI: 10.1016/j.exphem.2016.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cell (HSC) function is required for balanced blood production throughout life; it is thus essential to understand the mechanisms regulating this highly dynamic process. Bone marrow-resident macrophages (Mϕs) have recently emerged as an important component of the HSC niche, where they contribute to regulating HSC and progenitor cell (HSPC) mobilization and function. Here we review the role of macrophages (Mϕs) on immune cell production, HSPC pool size, and mobilization at steady state and under inflammatory conditions. Inflammation induces marked changes in hematopoiesis to restrict or promote generation of specific cell lineages, and this often has a negative impact on HSC function. Cytokines and growth factors induced during inflammation influence hematopoiesis by acting directly on HSPCs and/or by modulating niche cell function. We focus particular attention on the opposing effects of two key inflammatory proteins, interferon-γ and granulocyte-colony stimulating factor, in regulating bone marrow-resident macrophages (Mϕs) and HSPCs. Macrophages (Mϕs) are essential for tissue homeostasis, and here we highlight their emerging role as a central regulator of both steady-state and demand-adapted hematopoiesis.
Collapse
Affiliation(s)
- Amanda McCabe
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY
| | | |
Collapse
|
28
|
Bruhn KW, Dekitani K, Nielsen TB, Pantapalangkoor P, Spellberg B. Ly6G-mediated depletion of neutrophils is dependent on macrophages. RESULTS IN IMMUNOLOGY 2015; 6:5-7. [PMID: 26870635 PMCID: PMC4711394 DOI: 10.1016/j.rinim.2015.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/10/2015] [Accepted: 12/17/2015] [Indexed: 02/08/2023]
Abstract
Antibody-mediated depletion of neutrophils is commonly used to study neutropenia. However, the mechanisms by which antibodies deplete neutrophils have not been well defined. We noticed that mice deficient in complement and macrophages had blunted neutrophil depletion in response to anti-Ly6G monoclonal antibody (MAb) treatment. In vitro, exposure of murine neutrophils to anti-Ly6G MAb in the presence of plasma did not result in significant depletion of cells, either in the presence or absence of complement. In vivo, anti-Ly6G-mediated neutrophil depletion was abrogated following macrophage depletion, but not complement depletion, indicating a requirement for macrophages to induce neutropenia by this method. These results inform the use and limitations of anti-Ly6G antibody as an experimental tool for depleting neutrophils in various immunological settings. In vivo depletion of mouse neutrophils by anti-Ly6G antibody requires macrophages. Plasma is not sufficient for anti-Ly6G-mediated neutrophil depletion in vitro. Anti-Ly6G depletes neutrophils in mice without active complement.
Collapse
Affiliation(s)
- Kevin W Bruhn
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA
| | - Ken Dekitani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA
| | - Travis B Nielsen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA
| | - Paul Pantapalangkoor
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, CA, USA
| | - Brad Spellberg
- Division of Infectious Diseases, Keck School of Medicine at USC, Los Angeles, CA, USA
| |
Collapse
|