1
|
Ahmed CM, Johnson HM, Lewin AS. Corneal application of SOCS1/3 peptides for the treatment of eye diseases mediated by inflammation and oxidative stress. Front Immunol 2024; 15:1416181. [PMID: 39104531 PMCID: PMC11298391 DOI: 10.3389/fimmu.2024.1416181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Several blinding diseases affecting the retina and optic nerve are exacerbated by or caused by dysregulated inflammation and oxidative stress. These diseases include uveitis, age related macular degeneration, diabetic retinopathy and glaucoma. Consequently, despite their divergent symptoms, treatments that reduce oxidative stress and suppress inflammation may be therapeutic. The production of inflammatory cytokines and their activities are regulated by a class of proteins termed Suppressors of Cytokine Signaling (SOCS). SOCS1 and SOCS3 are known to dampen signaling via pathways employing Janus kinases and signal transducer and activator of transcription proteins (JAK/STAT), Toll-like Receptors (TLR), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen activated kinase (MAPK) and NLR family pyrin domain containing 3 (NLRP3). We have developed cell-penetrating peptides from the kinase inhibitory region of the SOCS1 and SOCS3 (denoted as R9-SOCS1-KIR and R9-SOCS3-KIR) and tested them in retinal pigment epithelium (RPE) cells and in macrophage cell lines. SOCS-KIR peptides exhibited anti-inflammatory, anti-oxidant and anti-angiogenic properties. In cell culture, both Th1 and Th17 cells were suppressed together with the inhibition of other inflammatory markers. We also observed a decrease in oxidants and a simultaneous rise in neuroprotective and anti-oxidant effectors. In addition, treatment prevented the loss of gap junction proteins and the ensuing drop in transepithelial electrical resistance in RPE cells. When tested in mouse models by eye drop instillation, they showed protection against autoimmune uveitis, as a prophylactic as well as a therapeutic. Mice with endotoxin-induced uveitis were protected by eye drop administration as well. R9-SOCS3-KIR was particularly effective against the pathways acting through STAT3, e.g. IL-6 and VEGF-A mediated responses that lead to macular degeneration. Eye drop administration of R9-SOCS3-KIR stimulated production of antioxidant effectors and reduced clinical symptoms in mouse model of oxidative stress that replicates the RPE injury occurring in AMD. Because these peptides suppress multiple pathogenic stimuli and because they can be delivered topically to the cornea, they are attractive candidates for therapeutics for uveitis, macular degeneration, diabetic retinopathy and glaucoma.
Collapse
Affiliation(s)
- Chulbul M. Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Howard M. Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Alfred S. Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Mattke J, Darden CM, Lawrence MC, Kuncha J, Shah YA, Kane RR, Naziruddin B. Toll-like receptor 4 in pancreatic damage and immune infiltration in acute pancreatitis. Front Immunol 2024; 15:1362727. [PMID: 38585277 PMCID: PMC10995222 DOI: 10.3389/fimmu.2024.1362727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Acute pancreatitis is a complex inflammatory disease resulting in extreme pain and can result in significant morbidity and mortality. It can be caused by several factors ranging from genetics, alcohol use, gall stones, and ductal obstruction caused by calcification or neutrophil extracellular traps. Acute pancreatitis is also characterized by immune cell infiltration of neutrophils and M1 macrophages. Toll-like receptor 4 (TLR4) is a pattern recognition receptor that has been noted to respond to endogenous ligands such as high mobility group box 1 (HMGB1) protein and or exogenous ligands such as lipopolysaccharide both of which can be present during the progression of acute pancreatitis. This receptor can be found on a variety of cell types from endothelial cells to resident and infiltrating immune cells leading to production of pro-inflammatory cytokines as well as immune cell activation and maturation resulting in the furthering of pancreatic damage during acute pancreatitis. In this review we will address the various mechanisms mediated by TLR4 in the advancement of acute pancreatitis and how targeting this receptor could lead to improved outcomes for patients suffering from this condition.
Collapse
Affiliation(s)
- Jordan Mattke
- Baylor University, Institute of Biomedical Studies, Waco, TX, United States
| | - Carly M. Darden
- Baylor University Medical Center, Annette C. and Harold C. Simmons Transplant Institute, Dallas, TX, United States
| | - Michael C. Lawrence
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Jayachandra Kuncha
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Yumna Ali Shah
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Robert R. Kane
- Baylor University, Institute of Biomedical Studies, Waco, TX, United States
| | - Bashoo Naziruddin
- Baylor University Medical Center, Annette C. and Harold C. Simmons Transplant Institute, Dallas, TX, United States
| |
Collapse
|
3
|
Li C, Schneider JM, Schneider EM. Disulfiram Inhibits Opsonin-Independent Phagocytosis and Migration of Human Long-Lived In Vitro Cultured Phagocytes from Multiple Inflammatory Diseases. Cells 2024; 13:535. [PMID: 38534379 PMCID: PMC10968875 DOI: 10.3390/cells13060535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Disulfiram (DSF), an anti-alcoholism medicine, exerts treatment effects in patients suffering from persistent Borreliosis and also exhibits anti-cancer effects through its copper chelating derivatives and induction of oxidative stress in mitochondria. Since chronic/persistent borreliosis is characterized by increased amounts of pro-inflammatory macrophages, this study investigated opsonin-independent phagocytosis, migration, and surface marker expression of in vivo activated and in vitro cultured human monocyte-derived phagocytes (macrophages and dendritic cells) with and without DSF treatment. Phagocytosis of non-opsonized Dynabeads® M-450 and migration of macrophages and dendritic cells were monitored using live cell analyzer Juli™ Br for 24 h, imaging every 3.5 min. To simultaneously monitor phagocyte function, results were analyzed by a newly developed software based on the differential phase contrast images of cells before and after ingestion of Dynabeads. DSF decreased the phagocytic capacities exhibited by in vitro enriched and long-lived phagocytes. Although no chemotactic gradient was applied to the test system, vigorous spontaneous migration was observed. We therefore set up an algorithm to monitor and quantify both phagocytosis and migration simultaneously. DSF not only reduced phagocytosis in a majority of these long-lived phagocytes but also impaired their migration. Despite these selective effects by DSF, we found that DSF reduced the expression densities of surface antigens CD45 and CD14 in all of our long-lived phagocytes. In cells with a high metabolic activity and high mitochondrial contents, DSF led to cell death corresponding to mitochondrial oxidative stress, whereas metabolically inactive phagocytes survived our DSF treatment protocol. In conclusion, DSF affects the viability of metabolically active phagocytes by inducing mitochondrial stress and secondly attenuates phagocytosis and migration in some long-lived phagocytes.
Collapse
Affiliation(s)
| | | | - E. Marion Schneider
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.L.)
| |
Collapse
|
4
|
Mutua F, Su RC, Mesa C, Lopez C, Ball TB, Kiazyk S. Type I interferons and Mycobacterium tuberculosis whole cell lysate induce distinct transcriptional responses in M. tuberculosis infection. Tuberculosis (Edinb) 2023; 143:102409. [PMID: 37729851 DOI: 10.1016/j.tube.2023.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Type I interferon (IFN)-induced genes have the potential for distinguishing active tuberculosis (ATB) from latent TB infection (LTBI) and healthy controls (HC), monitoring treatment, and detection of individuals at risk of progression to active disease. We examined the differential effects of IFN-α, IFN-β and Mycobacterium tuberculosis whole cell lysate (Mtb WCL) stimulation on the expression of selected IFN-stimulated genes in peripheral blood mononuclear cells from individuals with either LTBI, ATB, and healthy controls. Stimulation with IFN-α and IFN-β induced a higher expression of the interrogated genes while Mtb WCL stimulation induced expression similar to that observed at baseline, with the exception of IL-1A and IL-1B genes that were downregulated. The expression of IFN-α-induced FCGR1A gene, IFN-β-induced FCGR1A, FCGR1B, and SOCS3 genes, and Mtb WCL-induced IFI44, IFI44L, IFIT1, and IFITM3 genes differed significantly between LTBI and ATB. These findings suggest stimulation-driven gene expression patterns could potentially discriminate LTBI and ATB. Mechanistic studies are necessary to define the processes through which distinct type I IFNs and downstream ISGs determine infection outcomes and identify potential host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Florence Mutua
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Canada; Department of Medical Microbiology and Immunology, Kenyatta National Hospital Campus, University of Nairobi, Kenya
| | - Ruey-Chyi Su
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Canada; JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Christine Mesa
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Carmen Lopez
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Canada; JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - T Blake Ball
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Canada; JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Sandra Kiazyk
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Canada; JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Canada.
| |
Collapse
|
5
|
Zhang L, Yang W, Yang J, Sun F. GPRC5A regulates proliferation and oxidative stress by inhibiting the STAT3/Socs3/c-MYC pathway in hepatocellular carcinoma. J Clin Biochem Nutr 2023; 73:43-51. [PMID: 37534091 PMCID: PMC10390809 DOI: 10.3164/jcbn.22-125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/10/2022] [Indexed: 08/04/2023] Open
Abstract
The G protein-coupled receptor, class C, group 5, member A (GPRC5A) plays a key role in various diseases, but its effect on hepatocellular carcinoma (HCC) and the potential underlying mechanisms remains unclear. In the present study, we explored the effect of GPRC5A on the progression of HCC and further explored its mechanism of action. The results revealed that the expression of GPRC5A was lower in HCC tissues and cells. Overexpression of GPRC5A suppressed the proliferation and epithelial-mesenchymal transition (EMT) of HCC cells. In addition, overexpression of GPRC5A induced oxidative stress and apoptosis. Further study showed that overexpression of GPRC5A inhibited the expression of STAT3/Socs3/c-MYC related-protein and the NLRP3 inflammasome. Moreover, the STAT3/Socs3/c-MYC and NLRP3 inflammasome was involved in the effect of GPRC5A on HCC cells. These results suggest that GPRC5A suppresses proliferation and EMT, induces oxidative stress and leads to apoptosis of HCC cells, potentially by regulating STAT3/Socs3/c-MYC signalling and the NLRP3 inflammasome. These findings suggest that GPRC5A has an anti-tumor effect in the formation of HCC, and the molecular therapy of GPRC5A provides a theoretical basis for treating HCC.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277, Yanta West Road, Xi’an, Shaanxi 710061, China
- Department of Oncology, Xi’an Daxing Hospital, Xi’an, Shaanxi 710016, China
| | - Weibing Yang
- Department of Ultrasound, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277, Yanta West Road, Xi’an, Shaanxi 710061, China
| | - Jin Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277, Yanta West Road, Xi’an, Shaanxi 710061, China
| | - Fu Sun
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Medical University, Xi’an, Shaanxi 710000, China
| |
Collapse
|
6
|
Li X, Yang Z, Chen B, Gu L, Tian G, Sui X. SOCS3 as a potential driver of lung metastasis in colon cancer patients. Front Immunol 2023; 14:1088542. [PMID: 37025997 PMCID: PMC10070831 DOI: 10.3389/fimmu.2023.1088542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
Background The suppressor of cytokine signaling 3 (SOCS3) is the negative feedback regulator of the JAK-STAT signaling pathway. The purpose of our study was to investigate the SOCS3 status in colon primary tumor and lung metastasis and its relationship with macrophages. Methods The SOCS3 expression pattern and its relationship with the immune response in pan-cancer was investigated using multiple methods. Samples and corresponding clinical information of 32 colon cancer patients with lung metastasis were collected, and the CD68, CD163, and SOCS3 status were conducted using immunohistochemistry (IHC). The relationship between SOCS3 status and macrophage markers was analyzed. Besides, we explored the molecular mechanisms of SOCS3 in lung metastasis via the TCGA database. Results High SOCS3 expression was more inclined to poor prognosis and was positively correlated with main immune cell infiltration in almost each cancer type, especially in colon cancer. Compared with the colon primary tumor, lung metastasis harbored higher CD163 and SOCS3 expression, and high SOCS3 expression was more likely to be associated with high CD163 expression in lung metastasis. Besides, the exceptional differentially expressed genes in lung metastasis significantly enriched in immune responses and regulations. Conclusions SOCS3 possessed value as a prognostic marker and target for immunotherapeutic intervention in different tumors and might be a potential target of tumor progression and tumor immunotherapy in colon cancer.
Collapse
Affiliation(s)
- Xuejie Li
- Department of Pathology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Zuyi Yang
- Department of Hematology and Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Bi Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Lei Gu
- Department of Hematology and Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Guoyan Tian
- Department of Hematology and Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
7
|
Li L, Chen X, Lv M, Cheng Z, Liu F, Wang Y, Zhou A, Liu J, Zhao X. Effect of Platycodon grandiflorus Polysaccharide on M1 Polarization Induced by Autophagy Degradation of SOCS1/2 Proteins in 3D4/21 Cells. Front Immunol 2022; 13:934084. [PMID: 35844489 PMCID: PMC9279577 DOI: 10.3389/fimmu.2022.934084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
M1-polarized macrophages can improve the body's immune function. This study aimed to explore the mechanism of Platycodon grandiflorus polysaccharide (PGPSt) degrading SOCS1/2 protein through autophagy and promoting M1 polarization in 3D4/21 cells. Immunoprecipitation, confocal laser scanning microscopy, flow cytometry, and intracellular co-localization were used to detect the expression of related phenotypic proteins and cytokines in M1-polarized cells. The results showed that PGPSt significantly promoted the mRNA expression of IL-6, IL-12, and TNF-α and enhanced the protein expression of IL-6, IL-12, TNF-α, IL-1β, iNOS, CD80, and CD86, indicating that PGPSt promoted M1 polarization in 3D4/21 cells. Next, the effect of the PGPSt autophagy degradation of SOCS1/2 on the M1 polarization of 3D4/21 cells was detected. The results showed that PGPSt significantly downregulated the expression level of SOCS1/2 protein, but had no obvious effect on the mRNA expression level of SOCS1/2, indicating that PGPSt degraded SOCS1/2 protein by activating the lysosome system. Further research found that under the action of 3-MA and BafA1, PGPSt upregulated LC3B II and downregulated SOCS1/2 protein expression, which increased the possibility of LC3B, the key component of autophagy, bridging this connection and degrading SOCS1/2. The interaction between SOCS1/2 and LC3 was identified by indirect immunofluorescence and Co-IP. The results showed that the co-localization percentage of the two proteins increased significantly after PGPSt treatment, and LC3 interacted with SOCS1 and SOCS2. This provides a theoretical basis for the application of PGPSt in the treatment or improvement of diseases related to macrophage polarization by regulating the autophagy level.
Collapse
Affiliation(s)
- Liping Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, China
- Qingdao Animal Disease Prevention and Control Center, Qingdao Municipal Bureau of Agriculture and Rural Affairs, Qingdao, China
| | - Xufang Chen
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, China
| | - Meiyun Lv
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, China
| | - Fang Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, China
| | - Ying Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, China
| | - Aiqin Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, China
| | - Jianzhu Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, China
| | - Xiaona Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, China
| |
Collapse
|
8
|
Klotzsche-von Ameln A, Sprott D. Harnessing retinal phagocytes to combat pathological neovascularization in ischemic retinopathies? Pflugers Arch 2022; 474:575-590. [PMID: 35524802 PMCID: PMC9117346 DOI: 10.1007/s00424-022-02695-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
Ischemic retinopathies (IR) are vision-threatening diseases that affect a substantial amount of people across all age groups worldwide. The current treatment options of photocoagulation and anti-VEGF therapy have side effects and are occasionally unable to prevent disease progression. It is therefore worthwhile to consider other molecular targets for the development of novel treatment strategies that could be safer and more efficient. During the manifestation of IR, the retina, normally an immune privileged tissue, encounters enhanced levels of cellular stress and inflammation that attract mononuclear phagocytes (MPs) from the blood stream and activate resident MPs (microglia). Activated MPs have a multitude of effects within the retinal tissue and have the potential to both counter and exacerbate the harmful tissue microenvironment. The present review discusses the current knowledge about the role of inflammation and activated retinal MPs in the major IRs: retinopathy of prematurity and diabetic retinopathy. We focus particularly on MPs and their secreted factors and cell–cell-based interactions between MPs and endothelial cells. We conclude that activated MPs play a major role in the manifestation and progression of IRs and could therefore become a promising new target for novel pharmacological intervention strategies in these diseases.
Collapse
Affiliation(s)
| | - David Sprott
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
9
|
Oncocalyxone A (oncoA) has intrinsic fluorescence? Photodiagnosis Photodyn Ther 2022; 39:102869. [DOI: 10.1016/j.pdpdt.2022.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022]
|
10
|
Jeong H, Yoon H, Lee Y, Kim JT, Yang M, Kim G, Jung B, Park SH, Lee CE. SOCS3 Attenuates Dexamethasone-Induced M2 Polarization by Down-Regulation of GILZ via ROS- and p38 MAPK-Dependent Pathways. Immune Netw 2022; 22:e33. [PMID: 36081527 PMCID: PMC9433193 DOI: 10.4110/in.2022.22.e33] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 12/31/2022] Open
Abstract
Suppressors of cytokine signaling (SOCS) have emerged as potential regulators of macrophage function. We have investigated mechanisms of SOCS3 action on type 2 macrophage (M2) differentiation induced by glucocorticoid using human monocytic cell lines and mouse bone marrow-derived macrophages. Treatment of THP1 monocytic cells with dexamethasone (Dex) induced ROS generation and M2 polarization promoting IL-10 and TGF-β production, while suppressing IL-1β, TNF-α and IL-6 production. SOCS3 over-expression reduced, whereas SOCS3 ablation enhanced IL-10 and TGF-β induction with concomitant regulation of ROS. As a mediator of M2 differentiation, glucocorticoid-induced leucine zipper (GILZ) was down-regulated by SOCS3 and up-regulated by shSOCS3. The induction of GILZ and IL-10 by Dex was dependent on ROS and p38 MAPK activity. Importantly, GILZ ablation led to the inhibition of ROS generation and anti-inflammatory cytokine induction by Dex. Moreover, GILZ knock-down negated the up-regulation of IL-10 production induced by shSOCS3 transduction. Our data suggest that SOCS3 targets ROS- and p38-dependent GILZ expression to suppress Dex-induced M2 polarization.
Collapse
Affiliation(s)
- Hana Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyeyoung Yoon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Yerin Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Jun Tae Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Moses Yang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Gayoung Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Bom Jung
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Seok Hee Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Choong-Eun Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
11
|
Neves GWP, Wong SSW, Aimanianda V, Simenel C, Guijarro JI, Walls C, Willment JA, Gow NAR, Munro CA, Brown GD, Lopes-Bezerra LM. Complement-Mediated Differential Immune Response of Human Macrophages to Sporothrix Species Through Interaction With Their Cell Wall Peptidorhamnomannans. Front Immunol 2021; 12:749074. [PMID: 34867977 PMCID: PMC8636148 DOI: 10.3389/fimmu.2021.749074] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
In this study, the human immune response mechanisms against Sporothrix brasiliensis and Sporothrix schenckii, two causative agents of human and animal sporotrichosis, were investigated. The interaction of S. brasiliensis and S. schenckii with human monocyte-derived macrophages (hMDMs) was shown to be dependent on the thermolabile serum complement protein C3, which facilitated the phagocytosis of Sporothrix yeast cells through opsonization. The peptidorhamnomannan (PRM) component of the cell walls of these two Sporothrix yeasts was found to be one of their surfaces exposed pathogen-associated molecular pattern (PAMP), leading to activation of the complement system and deposition of C3b on the Sporothrix yeast surfaces. PRM also showed direct interaction with CD11b, the specific component of the complement receptor-3 (CR3). Furthermore, the blockade of CR3 specifically impacted the interleukin (IL)-1β secretion by hMDM in response to both S. brasiliensis and S. schenckii, suggesting that the host complement system plays an essential role in the inflammatory immune response against these Sporothrix species. Nevertheless, the structural differences in the PRMs of the two Sporothrix species, as revealed by NMR, were related to the differences observed in the host complement activation pathways. Together, this work reports a new PAMP of the cell surface of pathogenic fungi playing a role through the activation of complement system and via CR3 receptor mediating an inflammatory response to Sporothrix species.
Collapse
Affiliation(s)
- Gabriela W. P. Neves
- Cell Biology Department, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | - Catherine Simenel
- Institut Pasteur, Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Paris, France
| | - J. Iñaki Guijarro
- Institut Pasteur, Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Paris, France
| | - Catriona Walls
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Janet A. Willment
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom,Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Neil A. R. Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom,Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Carol A. Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gordon D. Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom,Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Leila M. Lopes-Bezerra
- Cell Biology Department, Rio de Janeiro State University, Rio de Janeiro, Brazil,Biomedical Institute and Technology and Innovation Center (CIETEC), São Paulo University, São Paulo, Brazil,*Correspondence: Leila M. Lopes-Bezerra,
| |
Collapse
|
12
|
Sobah ML, Liongue C, Ward AC. SOCS Proteins in Immunity, Inflammatory Diseases, and Immune-Related Cancer. Front Med (Lausanne) 2021; 8:727987. [PMID: 34604264 PMCID: PMC8481645 DOI: 10.3389/fmed.2021.727987] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cytokine signaling represents one of the cornerstones of the immune system, mediating the complex responses required to facilitate appropriate immune cell development and function that supports robust immunity. It is crucial that these signals be tightly regulated, with dysregulation underpinning immune defects, including excessive inflammation, as well as contributing to various immune-related malignancies. A specialized family of proteins called suppressors of cytokine signaling (SOCS) participate in negative feedback regulation of cytokine signaling, ensuring it is appropriately restrained. The eight SOCS proteins identified regulate cytokine and other signaling pathways in unique ways. SOCS1–3 and CISH are most closely involved in the regulation of immune-related signaling, influencing processes such polarization of lymphocytes and the activation of myeloid cells by controlling signaling downstream of essential cytokines such as IL-4, IL-6, and IFN-γ. SOCS protein perturbation disrupts these processes resulting in the development of inflammatory and autoimmune conditions as well as malignancies. As a consequence, SOCS proteins are garnering increased interest as a unique avenue to treat these disorders.
Collapse
Affiliation(s)
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Institue of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Institue of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
13
|
Zhuang Y, Zhao X, Yuan B, Zeng Z, Chen Y. Blocking the CCL5-CCR5 Axis Using Maraviroc Promotes M1 Polarization of Macrophages Cocultured with Irradiated Hepatoma Cells. J Hepatocell Carcinoma 2021; 8:599-611. [PMID: 34178876 PMCID: PMC8219307 DOI: 10.2147/jhc.s300165] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose The C-C chemokine ligand 5 (CCL5)–C-C chemokine receptor (CCR5) axis facilitates tumor progression via multiple mechanisms. Herein, we elucidated the effect of a CCR5 antagonist (maraviroc [MVC]; blocking the CCL5–CCR5 axis) on the phenotype of macrophages cocultured with irradiated hepatoma cells. In addition, we investigated whether modulation of macrophage polarization can alter tumor cell sensitivity to radiation. Materials and Methods Quantitative reverse-transcription polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assays were applied to examine the levels of macrophage-associated markers. The mechanisms of macrophage polarization were explored by Western blotting in an in vitro model of coculture of human hepatoma cells with macrophages. The radiation sensitivity was examined in a clonogenic radiosensitivity assay. Tumor cell apoptosis was detected by Western blotting and flow cytometry. A mouse model of a subcutaneous tumor was also established. Results CCL5 skewed THP-1 M0 macrophages toward an M2-like phenotype. In coculture with hepatoma cells, macrophages manifested high levels of interleukin (IL) 10, IL-12, tumor necrosis factor α (TNF-α), transforming growth factor β1 (TGF-β1), arginase 1 (ARG1), and IL-1β. Tumor cell irradiation further upregulated these markers in macrophages. After incubation of macrophages with MVC for 24 h, levels of M1 cytokines significantly increased, whereas those of M2 phenotype factors ARG1, TGF-β1, and IL-10 decreased, accompanied by the activation of signal transducer and activator of transcription 3 (STAT3) and downregulation of suppressor of cytokine signaling 3 (SOCS3). The macrophage phenotype reverted to M2 states after treatment with a STAT3 inhibitor. The shift of macrophages toward the M1 phenotype enhanced the radiosensitivity and apoptosis of hepatoma cells. Mice receiving a combination of X-ray irradiation and MVC experienced a better antitumor effect than those receiving either MVC or irradiation alone did. Conclusion M2 polarization of macrophages induced by CCL5–CCR5 signaling can be inhibited using MVC via the STAT3–SOCS3 pathway. The shift of macrophages toward the M1 phenotype promotes the sensitivity of human hepatoma cells to X-ray irradiation.
Collapse
Affiliation(s)
- Yuan Zhuang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xiaomei Zhao
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Baoying Yuan
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yixing Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Yin C, Heit B. Cellular Responses to the Efferocytosis of Apoptotic Cells. Front Immunol 2021; 12:631714. [PMID: 33959122 PMCID: PMC8093429 DOI: 10.3389/fimmu.2021.631714] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
The rapid and efficient phagocytic clearance of apoptotic cells, termed efferocytosis, is a critical mechanism in the maintenance of tissue homeostasis. Removal of apoptotic cells through efferocytosis prevents secondary necrosis and the resultant inflammation caused by the release of intracellular contents. The importance of efferocytosis in homeostasis is underscored by the large number of inflammatory and autoimmune disorders, including atherosclerosis and systemic lupus erythematosus, that are characterized by defective apoptotic cell clearance. Although mechanistically similar to the phagocytic clearance of pathogens, efferocytosis differs from phagocytosis in that it is immunologically silent and induces a tissue repair response. Efferocytes face unique challenges resulting from the internalization of apoptotic cells, including degradation of the apoptotic cell, dealing with the extra metabolic load imposed by the processing of apoptotic cell contents, and the coordination of an anti-inflammatory, pro-tissue repair response. This review will discuss recent advances in our understanding of the cellular response to apoptotic cell uptake, including trafficking of apoptotic cell cargo and antigen presentation, signaling and transcriptional events initiated by efferocytosis, the coordination of an anti-inflammatory response and tissue repair, unique cellular metabolic responses and the role of efferocytosis in host defense. A better understanding of how efferocytic cells respond to apoptotic cell uptake will be critical in unraveling the complex connections between apoptotic cell removal and inflammation resolution and maintenance of tissue homeostasis.
Collapse
Affiliation(s)
- Charles Yin
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Center for Human Immunology, Western University, London, ON, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Center for Human Immunology, Western University, London, ON, Canada
- Robarts Research Institute, London, ON, Canada
| |
Collapse
|
15
|
Deletion of the myeloid endothelin-B receptor confers long-term protection from angiotensin II-mediated kidney, eye and vessel injury. Kidney Int 2020; 98:1193-1209. [PMID: 32569653 PMCID: PMC7652550 DOI: 10.1016/j.kint.2020.05.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/25/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
The endothelin system may be an important player in hypertensive end-organ injury as endothelin-1 increases blood pressure and is pro-inflammatory. The immune system is emerging as an important regulator of blood pressure and we have shown that the early hypertensive response to angiotensin-II infusion was amplified in mice deficient of myeloid endothelin-B (ETB) receptors (LysM-CreEdnrblox/lox). Hypothesizing that these mice would display enhanced organ injury, we gave angiotensin-II to LysM-CreEdnrblox/lox and littermate controls (Ednrblox/lox) for six weeks. Unexpectedly, LysM-CreEdnrblox/lox mice were significantly protected from organ injury, with less proteinuria, glomerulosclerosis and inflammation of the kidney compared to controls. In the eye, LysM-CreEdnrblox/lox mice had fewer retinal hemorrhages, less microglial activation and less vessel rarefaction. Cardiac remodeling and dysfunction were similar in both groups at week six but LysM-CreEdnrblox/lox mice had better endothelial function. Although blood pressure was initially higher in LysM-CreEdnrblox/lox mice, this was not sustained. A natriuretic switch at about two weeks, due to enhanced ETB signaling in the kidney, induced a hypertensive reversal. By week six, blood pressure was lower in LysM-CreEdnrblox/lox mice than in controls. At six weeks, macrophages from LysM-CreEdnrblox/lox mice were more anti-inflammatory and had greater phagocytic ability compared to the macrophages of Ednrblox/lox mice. Thus, myeloid cell ETB receptor signaling drives this injury both through amplifying hypertension and by inflammatory polarization of macrophages.
Collapse
|
16
|
Overcoming the Inflammatory Stage of Non-Healing Wounds: In Vitro Mechanism of Action of Negatively Charged Microspheres (NCMs). NANOMATERIALS 2020; 10:nano10061108. [PMID: 32503283 PMCID: PMC7353184 DOI: 10.3390/nano10061108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 01/20/2023]
Abstract
Negatively charged microspheres (NCMs) represent a new therapeutic approach for wound healing since recent clinical trials have shown NCM efficacy in the recovery of hard-to-heal wounds that tend to stay in the inflammatory phase, unlocking the healing process. The aim of this study was to elucidate the NCM mechanism of action. NCMs were extracted from a commercial microsphere formulation (PolyHeal® Micro) and cytotoxicity, attachment, proliferation and viability assays were performed in keratinocytes and dermal fibroblasts, while macrophages were used for the phagocytosis and polarization assays. We demonstrated that cells tend to attach to the microsphere surface, and that NCMs are biocompatible and promote cell proliferation at specific concentrations (50 and 10 NCM/cell) by a minimum of 3 fold compared to the control group. Furthermore, NCM internalization by macrophages seemed to drive these cells to a noninflammatory condition, as demonstrated by the over-expression of CD206 and the under-expression of CD64, M2 and M1 markers, respectively. NCMs are an effective approach for reverting the chronic inflammatory state of stagnant wounds (such as diabetic wounds) and thus for improving wound healing.
Collapse
|
17
|
HuoXueTongFu Formula Alleviates Intraperitoneal Adhesion by Regulating Macrophage Polarization and the SOCS/JAK2/STAT/PPAR- γ Signalling Pathway. Mediators Inflamm 2019; 2019:1769374. [PMID: 31772499 PMCID: PMC6854253 DOI: 10.1155/2019/1769374] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Intraperitoneal adhesion is a common complication after abdominal surgery, which seriously affects the quality of life of patients. HuoXueTongFu Formula (HXTF) plays an important role in the prevention and treatment of intraperitoneal adhesions. However, the molecular-related mechanisms are still not fully known. In this study, the model of Intrapetitoneal adhesion was established by cecum abrasion and treated with HXTF for one week. RAW264.7 cells were given LPS, IFN-γ, IL-4, HXTF-medicated serum, and PPAR-γ agonist/antagonist, respectively. Histopathology, flow cytometry, ELISA, real-time PCR, and Western blotting were used to further detect the related protein, M1/M2 polarization tendency, and PPAR-γ nuclear translocation. The deposition of collagen fibres reduced in the local area of rats after the operation with HXTF treatment. Similar to IL-4, HXTF induced a tendency for macrophages to polarize toward M2 and promoted peroxisome proliferator-activated receptor-gamma (PPAR-γ) nuclear translocation. Furthermore, the use of HXTF and PPAR-γ agonists downregulated macrophage M1 polarization-related factors IL-1, IL-6, and TNF-alpha and upregulated M2 polarization-related factors IL-4, IL-10, and TGF-beta 1. Meanwhile, the use of HXTF and PPAR-γ agonists downregulated the SOCS3/JAK2/STAT1 pathway and activated the SOCS1/STAT6/PPAR-γ pathway. These results show that HXTF may reduce intraperitoneal adhesion by inducing macrophage M2 polarization and regulating the SOCS/JAK2/STAT/PPAR-γ pathway.
Collapse
|
18
|
Korovina I, Neuwirth A, Sprott D, Troullinaki M, Poitz DM, Deussen A, Klotzsche-von Ameln A. Myeloid SOCS3 Deficiency Regulates Angiogenesis via Enhanced Apoptotic Endothelial Cell Engulfment. J Innate Immun 2019; 12:248-256. [PMID: 31574508 DOI: 10.1159/000502645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 08/12/2019] [Indexed: 01/05/2023] Open
Abstract
Mononuclear phagocytes, such as macrophages and microglia, are key regulators of organ homeostasis including vascularization processes. Here, we investigated the role of the suppressor of cytokine signaling 3 (SOCS3) in myeloid cells as a regulator of mononuclear phagocyte function and their interaction with endothelial cells in the context of sprouting angiogenesis. As compared to SOCS3-sufficient counterparts, SOCS3-deficient microglia and macrophages displayed an increased phagocytic activity toward primary apoptotic endothelial cells, which was associated with an enhanced expression of the opsonin growth arrest-specific 6 (Gas6), a major prophagocytic molecule. Furthermore, we found that myeloid SOCS3 deficiency significantly reduced angiogenesis in an ex vivo mouse aortic ring assay, which could be reversed by the inhibition of the Gas6 receptor Mer. Together, SOCS3 in myeloid cells regulates the Gas6/Mer-dependent phagocytosis of endothelial cells, and thereby angiogenesis-related processes. Our findings provide novel insights into the complex crosstalk between mononuclear phagocytes and endothelial cells, and may therefore provide a new platform for the development of new antiangiogenic therapies.
Collapse
Affiliation(s)
- Irina Korovina
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ales Neuwirth
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - David Sprott
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Maria Troullinaki
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Andreas Deussen
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anne Klotzsche-von Ameln
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany, .,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany,
| |
Collapse
|
19
|
Morey M, O'Gaora P, Pandit A, Hélary C. Hyperglycemia acts in synergy with hypoxia to maintain the pro-inflammatory phenotype of macrophages. PLoS One 2019; 14:e0220577. [PMID: 31415598 PMCID: PMC6695165 DOI: 10.1371/journal.pone.0220577] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are characterized by a chronic inflammation state which prevents cutaneous wound healing, and DFUs eventually lead to infection and leg amputation. Macrophages located in DFUs are locked in an pro-inflammatory phenotype. In this study, the effect of hyperglycemia and hypoxia on the macrophage phenotype was analyzed. For this purpose, a microarray was performed to study the gene expression profile of macrophages cultivated in a high glucose concentration. Hyperglycemia upregulated the expression of pro-inflammatory cytokines such as TNF-α, IL-1, IL-6, chemokines and downregulated the expression of two receptors involved in phagocytosis (CD 36 and Class B scavenger type I receptors). In addition, eleven anti-apoptotic factors were upregulated whereas three pro-apoptotic genes were downregulated. Subsequently, the contribution of hypoxia and hyperglycemia to chronic inflammation and their potential synergistic effect was evaluated on activated THP-1 derived macrophages. A long term post activation effect (17 hours) was only observed on the upregulation of pro-inflammatory cytokines when hypoxia was combined with a high glucose concentration. In contrast, hyperglycemia and hypoxia did not have any effect on wound healing molecules such as TGF-β1. Taken together, the results show that hyperglycemia acts in synergy with hypoxia to maintain a chronic inflammation state in macrophages.
Collapse
Affiliation(s)
- Mangesh Morey
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Peadar O'Gaora
- UCD School of Biomedical and Biomolecular Science, University College Dublin, Belfield, Dublin, Ireland
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
- * E-mail: (AP); (CH)
| | - Christophe Hélary
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris,place Jussieu, Paris, France
- * E-mail: (AP); (CH)
| |
Collapse
|
20
|
Pal S, Nath P, Biswas S, Mukherjee U, Maitra S. Nonylphenol attenuates SOCS3 expression and M1 polarization in lipopolysaccharide-treated rat splenic macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:574-583. [PMID: 30870658 DOI: 10.1016/j.ecoenv.2019.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Endocrine disruptors interfere with normal sexual and reproductive development of numerous organisms. Widely used in several chemical and manufacturing industries, nonylphenol (NP), a potent xenoestrogen, has the potential to perturb immune system. Using rat splenic macrophages (SMΦ) as the model system, NP-modulation of lipopolysaccharide (LPS)-induced inflammatory response has been investigated. Our results demonstrate that NP (0.1-10 µM) attenuates catalase activity, reactive oxygen species (ROS) generation and nitric oxide (NO) synthesis in LPS-treated SMΦ in vitro. NP inhibition of LPS-induced nuclear factor kappa B (NF-κB) activation and pro-inflammatory cytokine gene expression corroborate well with attenuation of suppressor of cytokine signalling 3 (SOCS3). Besides, elevated expression of anti-inflammatory factors reveals inverse correlation with suppression of endotoxin-induced M1 polarization in NP pre-incubated cells. While LPS promotes, NP prevents ERK1/2 (extracellular-signa1-regulated kinase 1/2) phosphorylation and MEK-inhibitor abrogates SOCS3 expression and NO production suggesting involvement of ERK1/2 in NP inhibition of SOCS3 expression. Further, translational inhibitor cycloheximide prevents LPS-induced NF-κB activation indicating functional importance of de novo synthesis of SOCS3, at least in part, in toll-like receptor 4 (TLR4)-mediated inflammatory response. Collectively, present study provides evidence favouring participation of SOCS3 in NP modulation of inflammatory response in rat SMΦ.
Collapse
Affiliation(s)
- Soumojit Pal
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Subhasri Biswas
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Urmi Mukherjee
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
21
|
Kwon YC, Meyer K, Peng G, Chatterjee S, Hoft DF, Ray R. Hepatitis C Virus E2 Envelope Glycoprotein Induces an Immunoregulatory Phenotype in Macrophages. Hepatology 2019; 69:1873-1884. [PMID: 29443378 PMCID: PMC6092255 DOI: 10.1002/hep.29843] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
A comprehensive strategy to control hepatitis C virus (HCV) infection needs a vaccine. Our phase I study with recombinant HCV E1/E2 envelope glycoprotein (EnvGPs) as a candidate vaccine did not induce a strong immune response in volunteers. We analyzed the interactions of HCV EnvGPs with human monocyte-derived macrophages as antigen-presenting cells. HCV E2 induced immune regulatory cytokine interleukin (IL)-10 and soluble CD163 (sCD163) protein expression in macrophages from 7 of 9 blood donors tested. Furthermore, HCV E2 enhanced Stat3 and suppressed Stat1 activation, reflecting macrophage polarization toward M2 phenotype. E2-associated macrophage polarization appeared to be dependent of its interaction with CD81 leading endothelial growth factor receptor (EGFR) activation. Additionally, E2 suppressed the expression of C3 complement, similar to HCV-exposed dendritic cells (DCs), implying potential impairment of immune cell priming. Conclusion: Our results suggest that E2 EnvGP may not be an ideal candidate for HCV vaccine development, and discrete domains within E2 may prove to be more capable of elliciting a protective immune response. (Hepatology 2018).
Collapse
Affiliation(s)
- Young-Chan Kwon
- Departments of Internal Medicine, Saint Louis University, Missouri, USA
| | - Keith Meyer
- Departments of Internal Medicine, Saint Louis University, Missouri, USA
| | - Guangyong Peng
- Departments of Internal Medicine, Saint Louis University, Missouri, USA,Molecular Microbiology & Immunology, Saint Louis University, Missouri, USA
| | - Soumya Chatterjee
- Departments of Internal Medicine, Saint Louis University, Missouri, USA,Molecular Microbiology & Immunology, Saint Louis University, Missouri, USA
| | - Daniel F Hoft
- Departments of Internal Medicine, Saint Louis University, Missouri, USA,Molecular Microbiology & Immunology, Saint Louis University, Missouri, USA
| | - Ranjit Ray
- Departments of Internal Medicine, Saint Louis University, Missouri, USA,Molecular Microbiology & Immunology, Saint Louis University, Missouri, USA
| |
Collapse
|
22
|
Chen HM, van der Touw W, Wang YS, Kang K, Mai S, Zhang J, Alsina-Beauchamp D, Duty JA, Mungamuri SK, Zhang B, Moran T, Flavell R, Aaronson S, Hu HM, Arase H, Ramanathan S, Flores R, Pan PY, Chen SH. Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. J Clin Invest 2018; 128:5647-5662. [PMID: 30352428 DOI: 10.1172/jci97570] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated myeloid cells maintain immunosuppressive microenvironments within tumors. Identification of myeloid-specific receptors to modulate tumor-associated macrophage and myeloid-derived suppressor cell (MDSC) functions remains challenging. The leukocyte immunoglobulin-like receptor B (LILRB) family members are negative regulators of myeloid cell activation. We investigated how LILRB targeting could modulate tumor-associated myeloid cell function. LILRB2 antagonism inhibited receptor-mediated activation of SHP1/2 and enhanced proinflammatory responses. LILRB2 antagonism also inhibited AKT and STAT6 activation in the presence of M-CSF and IL-4. Transcriptome analysis revealed that LILRB2 antagonism altered genes involved in cell cytoskeleton remodeling, lipid/cholesterol metabolism, and endosomal sorting pathways, as well as changed differentiation gene networks associated with inflammatory myeloid cells as opposed to their alternatively activated phenotype. LILRB2 blockade effectively suppressed granulocytic MDSC and Treg infiltration and significantly promoted in vivo antitumor effects of T cell immune checkpoint inhibitors. Furthermore, LILRB2 blockade polarized tumor-infiltrating myeloid cells from non-small cell lung carcinoma tumor tissues toward an inflammatory phenotype. Our studies suggest that LILRB2 can potentially act as a myeloid immune checkpoint by reprogramming tumor-associated myeloid cells and provoking antitumor immunity.
Collapse
Affiliation(s)
- Hui-Ming Chen
- Immunotherapy Research Center, and.,Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | | | | | - Kyeongah Kang
- Immunotherapy Research Center, and.,Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | | | - Jilu Zhang
- Immunotherapy Research Center, and.,Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | | | | | | | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Richard Flavell
- Department of Immunobiology, Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Hong-Ming Hu
- Laboratory of Cancer Immunobiology, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, USA
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Suresh Ramanathan
- Department of Thoracic Surgery, Mount Sinai Hospital, New York, New York, USA
| | - Raja Flores
- Department of Thoracic Surgery, Mount Sinai Hospital, New York, New York, USA.,Department of General Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ping-Ying Pan
- Immunotherapy Research Center, and.,Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Shu-Hsia Chen
- Immunotherapy Research Center, and.,Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
23
|
Minami S, Suzuki K, Watanabe S, Sano M, Kato G. Maturation-associated changes in the non-specific immune response against Flavobacterium psychrophilum in Ayu Plecoglossus altivelis. FISH & SHELLFISH IMMUNOLOGY 2018; 76:167-173. [PMID: 29510257 DOI: 10.1016/j.fsi.2018.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
In this study, we investigated maturation-associated changes in non-specific immune responses of ayu against Flavobacterium psychrophilum. The gonadosomatic index was minimum on 16 June, began to increase on 17 July, and reached the maximum value during August. The highest phagocytic rate (16.3%) was observed on 16 June, which decreased significantly to 5.6% on 26 August. The number of viable bacteria after the serum treatment was highest during August, suggesting that bactericidal activity of the serum decreased along with the sexual maturation. Gene expression levels of interleukin-8, and tumor necrosis factor-α in the spleen did not change significantly during this period, whereas the level of suppressor of cytokine signaling (SOCS)3 was significantly higher on 26 August than that on 16 July (p < 0.05). These results suggest that phagocytic activity of trunk kidney leukocytes and serum bactericidal activity against F. psychrophilum decreased with sexual maturation, and that SOCS3 may be related to the decrease in non-specific immune activity in ayu.
Collapse
Affiliation(s)
- Shungo Minami
- Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477 Japan
| | - Kyuma Suzuki
- Gunma Prefectural Fisheries Experiment Station, Shikishima 13, Maebashi, Gunma, 371-0036 Japan
| | - Shun Watanabe
- Gunma Prefectural Fisheries Experiment Station, Shikishima 13, Maebashi, Gunma, 371-0036 Japan
| | - Motohiko Sano
- Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477 Japan
| | - Goshi Kato
- Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477 Japan.
| |
Collapse
|
24
|
Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers. PLoS Negl Trop Dis 2018. [PMID: 29522522 PMCID: PMC5903669 DOI: 10.1371/journal.pntd.0006169] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sporotrichosis is a subcutaneous mycosis caused by pathogenic species of the Sporothrix genus. A new emerging species, Sporothrix brasiliensis, is related to cat-transmitted sporotrichosis and has severe clinical manifestations. The cell wall of pathogenic fungi is a unique structure and impacts directly on the host immune response. We reveal and compare the cell wall structures of Sporothrix schenckii and S. brasiliensis using high-pressure freezing electron microscopy to study the cell wall organization of both species. To analyze the components of the cell wall, we also used infrared and 13C and 1H NMR spectroscopy and the sugar composition was determined by quantitative high-performance anion-exchange chromatography. Our ultrastructural data revealed a bi-layered cell wall structure for both species, including an external microfibrillar layer and an inner electron-dense layer. The inner and outer layers of the S. brasiliensis cell wall were thicker than those of S. schenckii, correlating with an increase in the chitin and rhamnose contents. Moreover, the outer microfibrillar layer of the S. brasiliensis cell wall had longer microfibrils interconnecting yeast cells. Distinct from those of other dimorphic fungi, the cell wall of Sporothrix spp. lacked α-glucan component. Interestingly, glycogen α-particles were identified in the cytoplasm close to the cell wall and the plasma membrane. The cell wall structure as well as the presence of glycogen α-particles varied over time during cell culture. The structural differences observed in the cell wall of these Sporothrix species seemed to impact its uptake by monocyte-derived human macrophages. The data presented here show a unique cell wall structure of S. brasiliensis and S. schenckii during the yeast parasitic phase. A new cell wall model for Sporothrix spp. is therefore proposed that suggests that these fungi molt sheets of intact cell wall layers. This observation may have significant effects on localized and disseminated immunopathology.
Collapse
|
25
|
Chen M, Zhao J, Ali IHA, Marry S, Augustine J, Bhuckory M, Lynch A, Kissenpfennig A, Xu H. Cytokine Signaling Protein 3 Deficiency in Myeloid Cells Promotes Retinal Degeneration and Angiogenesis through Arginase-1 Up-Regulation in Experimental Autoimmune Uveoretinitis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1007-1020. [PMID: 29452101 DOI: 10.1016/j.ajpath.2017.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 11/14/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023]
Abstract
The suppressor of cytokine signaling protein 3 (SOCS3) critically controls immune cell activation, although its role in macrophage polarization and function remains controversial. Using experimental autoimmune uveoretinitis (EAU) as a model, we show that inflammation-mediated retinal degeneration is exaggerated and retinal angiogenesis is accelerated in mice with SOCS3 deficiency in myeloid cells (LysMCre/+SOCS3fl/fl). At the acute stage of EAU, the population of infiltrating neutrophils was increased and the population of macrophages decreased in LysMCre/+SOCS3fl/fl mice compared with that in wild-type (WT) mice. Real-time RT-PCR showed that the expression of tumor necrosis factor-α, IL-1β, interferon-γ, granulocyte-macrophage colony-stimulating factor, and arginase-1 was significantly higher in the LysMCre/+SOCS3fl/fl EAU retina in contrast to the WT EAU retina. The percentage of arginase-1+ infiltrating cells was significantly higher in the LysMCre/+SOCS3fl/fl EAU retina than that in the WT EAU retina. In addition, bone marrow-derived macrophages and neutrophils from the LysMCre/+SOCS3fl/fl mice express significantly higher levels of chemokine (C-C motif) ligand 2 and arginase-1 compared with those from WT mice. Inhibition of arginase using an l-arginine analog amino-2-borono-6-hexanoic suppressed inflammation-induced retinal angiogenesis without affecting the severity of inflammation. Our results suggest that SOCS3 critically controls the phenotype and function of macrophages and neutrophils under inflammatory conditions and loss of SOCS3 promotes the angiogenic phenotype of the cells through up-regulation of arginase-1.
Collapse
Affiliation(s)
- Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Jiawu Zhao
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Imran H A Ali
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Stephen Marry
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Josy Augustine
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mohajeet Bhuckory
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Aisling Lynch
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Adrien Kissenpfennig
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
26
|
Campana L, Starkey Lewis PJ, Pellicoro A, Aucott RL, Man J, O'Duibhir E, Mok SE, Ferreira-Gonzalez S, Livingstone E, Greenhalgh SN, Hull KL, Kendall TJ, Vernimmen D, Henderson NC, Boulter L, Gregory CD, Feng Y, Anderton SM, Forbes SJ, Iredale JP. The STAT3-IL-10-IL-6 Pathway Is a Novel Regulator of Macrophage Efferocytosis and Phenotypic Conversion in Sterile Liver Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1169-1187. [PMID: 29263216 PMCID: PMC5784823 DOI: 10.4049/jimmunol.1701247] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/25/2017] [Indexed: 12/20/2022]
Abstract
The disposal of apoptotic bodies by professional phagocytes is crucial to effective inflammation resolution. Our ability to improve the disposal of apoptotic bodies by professional phagocytes is impaired by a limited understanding of the molecular mechanisms that regulate the engulfment and digestion of the efferocytic cargo. Macrophages are professional phagocytes necessary for liver inflammation, fibrosis, and resolution, switching their phenotype from proinflammatory to restorative. Using sterile liver injury models, we show that the STAT3-IL-10-IL-6 axis is a positive regulator of macrophage efferocytosis, survival, and phenotypic conversion, directly linking debris engulfment to tissue repair.
Collapse
Affiliation(s)
- Lara Campana
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom;
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Philip J Starkey Lewis
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Antonella Pellicoro
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Rebecca L Aucott
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Janet Man
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Eoghan O'Duibhir
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Sarah E Mok
- University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Sofia Ferreira-Gonzalez
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Eilidh Livingstone
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Stephen N Greenhalgh
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Katherine L Hull
- University Hospitals of Leicester, Leicester LE3 9QP, United Kingdom
| | - Timothy J Kendall
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
- Division of Pathology, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Douglas Vernimmen
- Developmental Biology Division, The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, United Kingdom
| | - Neil C Henderson
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Luke Boulter
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom; and
| | - Christopher D Gregory
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Yi Feng
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Stephen M Anderton
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Stuart J Forbes
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - John P Iredale
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
- Senate House, University of Bristol, Bristol BS8 1TH, United Kingdom
| |
Collapse
|
27
|
Jiang Z, Chen Z, Li L, Zhou W, Zhu L. Lack of SOCS3 increases LPS-induced murine acute lung injury through modulation of Ly6C(+) macrophages. Respir Res 2017; 18:217. [PMID: 29284516 PMCID: PMC5747159 DOI: 10.1186/s12931-017-0707-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND SOCS3 (suppressor of cytokine signaling 3) is a negative regulator of JAK/STAT3 signaling pathway and participates in the regulation of lung inflammation in a mouse model with acute lung injury (ALI). However, it is not well understood how SOCS3 regulates lung inflammation in the ALI mouse model. METHOD In the present study, we investigated the effects of SOCS3 on modulation of Ly6C(+) monocyte phenotypes in a mouse model with lipopolysaccharide (LPS)-induced ALI. Conditional SOCS3(Lyz2cre) mice with myeloid cell-restricted depletion of SOCS3 gene were created by breeding transgenic Lyz2Cre mice with SOCS3(fl/fl) mice. Wilde-type (WT) and SOCS3(Lyz2cre) mice were intratracheal instilled with 5 mg/kg LPS for 2 days. Lung, bronchoalveolar lavage (BAL) and blood were collected for analysis by flow cytometry, ELISA, qRT-PCR and Western blot analysis. RESULTS The studies in the ALI mouse model revealed that myeloid cell-restricted SOCS3 deficiency exacerbated the severity of ALI as compared to the WT mice. The increased severity of ALI in SOCS3-deficient mice was associated with higher populations of neutrophils, T lymphocytes and Ly6C(+) monocytes in the inflamed lung tissues. In addition, CCR2 and CXCL15 were elevated, and accompanied by greater expression and activation of STAT3 in the lung of SOCS3-deficient mice. SOCS3-deficient bone marrow-derived macrophages (BMDMs) expressed a higher amount of TNF-alpha, and adoptive transfer of the SOCS3-deficient Ly6C(+) BMDMs into WT mice enhanced the severity of ALI than adoptive transfer of WT control BMDMs. However, depletion of Ly6C(+) circulating monocytes by anti-Ly6C(+) neutralizing antibody moderately attenuated neutrophil infiltration and resulted in lower prevalence of Ly6C(+) cells in the lung of treated mice. CONCLUSION Myeloid cell-restricted lack of SOCS3 induced more severe ALI through modulation of Ly6C(+) subtype macrophages. The results provide insight into a new role of SOCS3 in modulation of Ly6C(+) monocyte phenotypes and provide a novel therapeutic strategy for ALI by molecular intervention of macrophages subtypes.
Collapse
Affiliation(s)
| | | | | | | | - Lei Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| |
Collapse
|
28
|
Chu Q, Shen D, He L, Wang H, Liu C, Zhang W. Prognostic significance of SOCS3 and its biological function in colorectal cancer. Gene 2017; 627:114-122. [DOI: 10.1016/j.gene.2017.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 01/22/2023]
|
29
|
Chen Y, Liu W, Wang Y, Zhang L, Wei J, Zhang X, He F, Zhang L. Casein Kinase 2 Interacting Protein-1 regulates M1 and M2 inflammatory macrophage polarization. Cell Signal 2017; 33:107-121. [PMID: 28212865 DOI: 10.1016/j.cellsig.2017.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 12/18/2022]
Abstract
The importance of macrophage plasticity, albeit being discovered recently, has been highlighted in a broad spectrum of biological processes operative in physiological and pathological environments. Macrophage polarized activation and inactivation has profound effects on immune and inflammatory responses with several major pathways being elucidated in the past few years. However, transcriptional regulation mechanisms governing macrophage polarization is still preliminary. In this study, we identify the Casein Kinase 2 Interacting Protein 1 (CKIP-1) as a molecular toggle manipulating macrophage speciation. CKIP-1 expression was strongly induced by pro-inflammatory M1 stimuli (LPS and IFN-γ) and robustly suppressed by M2 stimuli (IL-4 and IL-13) in human and murine macrophage. Gain and loss of function studies suggest that CKIP-1 is a prerequisite for optimal LPS-induced pro-inflammatory gene activation, which exhibits its roles in a NF-κB dependent manner. Furthermore, CKIP-1 inhibits anti-inflammatory gene expression by negatively regulating JAK1-STAT6 activation in macrophages. Taken together, these data integrated CKIP-1 expression and function as a novel transcriptional regulator of macrophage polarization and identified a double feedback loop consisting of CKIP-1 and the key regulators of the M1 and M2 macrophage effectors in polarization pathway. Moreover, the inhibitory roles of CKIP-1 in LPS-mediated sepsis and TPA-mediated cutaneous provide a new target for treatments of acute inflammation.
Collapse
Affiliation(s)
- Yuhan Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China; Bayi Children's Hospital, Army General Hospital, Beijing, China
| | - Wen Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Yiwu Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China; Department of Infectious Diseases, Chinese PLA 532 Hospital, Huangshan, Anhui, China
| | - Luo Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China; 307-lvy Translational Medicine Center, Laboratory of Oncology, Chinese PLA 307 Hospital, Beijing, China
| | - Jun Wei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China; Shanghai Fengxian Central Hospital Graduate Training Base, Department of General Surgery, Fengxian Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Xueli Zhang
- Shanghai Fengxian Central Hospital Graduate Training Base, Department of General Surgery, Fengxian Hospital Affiliated to Southern Medical University, Shanghai, China.
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China.
| |
Collapse
|
30
|
Abstract
Chronic wounds pose considerable public health challenges and burden. Wound healing is known to require the participation of macrophages, but mechanisms remain unclear. The M1 phenotype macrophages have a known scavenger function, but they also play multiple roles in tissue repair and regeneration when they transition to an M2 phenotype. Macrophage precursors (mononuclear cells/monocytes) follow the influx of PMN neutrophils into a wound during the natural wound-healing process, to become the major cells in the wound. Natural wound-healing process is a four-phase progression consisting of hemostasis, inflammation, proliferation, and remodeling. A lag phase of 3-6 days precedes the remodeling phase, which is characterized by fibroblast activation and finally collagen production. This normal wound-healing process can be accelerated by the intracellular delivery of ATP to wound tissue. This novel ATP-mediated acceleration arises due to an alternative activation of the M1 to M2 transition (macrophage polarization), a central and critical feature of the wound-healing process. This response is also characterized by an early increased release of pro-inflammatory cytokines (TNF, IL-1 beta, IL-6), a chemokine (MCP-1), an activation of purinergic receptors (a family of plasma membrane receptors found in almost all mammalian cells), and an increased production of platelets and platelet microparticles. These factors trigger a massive influx of macrophages, as well as in situ proliferation of the resident macrophages and increased synthesis of VEGFs. These responses are followed, in turn, by rapid neovascularization and collagen production by the macrophages, resulting in wound covering with granulation tissue within 24 h.
Collapse
Affiliation(s)
| | - Sufan Chien
- Noveratech LLC, Louisville, KY, USA.
- Department of Surgery, University of Louisville, School of Medicine, Louisville, KY, USA.
| |
Collapse
|
31
|
Ponsuksili S, Trakooljul N, Hadlich F, Haack F, Murani E, Wimmers K. Genetically regulated hepatic transcripts and pathways orchestrate haematological, biochemical and body composition traits. Sci Rep 2016; 6:39614. [PMID: 28000754 PMCID: PMC5175187 DOI: 10.1038/srep39614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/22/2016] [Indexed: 01/19/2023] Open
Abstract
The liver is the central metabolic organ and exhibits fundamental functions in haematological traits. Hepatic expression, haematological, plasma biochemical, and body composition traits were assessed in a porcine model (n = 297) to establish tissue-specific genetic variations that influence the function of immune-metabolism-correlated expression networks. At FDR (false discovery rate) <1%, more than 3,600 transcripts were jointly correlated (r = |0.22-0.48|) with the traits. Functional enrichment analysis demonstrated common links of metabolic and immune traits. To understand how immune and metabolic traits are affected via genetic regulation of gene expression, eQTLs were assessed. 20517 significant (FDR < 5%) eQTLs for 1401 transcripts were identified, among which 443 transcripts were associated with at least one of the examined traits and had cis-eQTL (such as ACO1 (6.52 × 10-7) and SOD1 (6.41 × 10-30). The present study establishes a comprehensive view of hepatic gene activity which links together metabolic and immune traits in a porcine model for medical research.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Frieder Hadlich
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Fiete Haack
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Eduard Murani
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| |
Collapse
|
32
|
Jiang Z, Zhou Q, Gu C, Li D, Zhu L. Depletion of circulating monocytes suppresses IL-17 and HMGB1 expression in mice with LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 312:L231-L242. [PMID: 27913426 DOI: 10.1152/ajplung.00389.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 12/26/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is an important cause of mortality in critically ill patients. Macrophages play an important role in the pathogenesis of ALI/ARDS. To investigate the role and underlying mechanisms of circulating monocytes and resident alveolar macrophages (AMs) in ALI/ARDS, we depleted circulating monocytes and AMs by clodronate-loaded liposome (CL) in a lipopolysaccharide (LPS)-induced ALI/ARDS mouse model. Our results indicated that depletion of circulating monocytes by intravenous injection of CL 2 days before intratracheal LPS treatment significantly suppressed the acute lung injury in mice with ALI/ARDS, accompanied with significant reduction in neutrophil influx, interleukin-17, monocyte chemoattractant protein 1, high-mobility group box 1 protein, suppressor of cytokine signaling 3, and surfactant protein D (SP-D) in the lungs of 2 days intratracheal LPS-treated mice. In contrast, depletion of AMs by intratracheal delivery of CL enhanced the acute lung injury in association with upregulation of these mediators. Blocking monocyte chemoattractant protein 1 signaling by intraperitoneal instillation of anti-mouse CCL2 neutralizing antibody significantly reduced acute lung injury and neutrophil influx. In addition, SP-D was upregulated by mediators released from AMs because primary murine type II alveolar epithelial cells expressed more SP-D after treatment with bronchoalveolar lavage from LPS-treated mice or the conditioned media from LPS-treated RAW 264.7 cells. The results indicated that circulating monocytes are proinflammatory, but AMs have anti-inflammatory functions in the early phase of ALI/ARDS. The study provided a molecular basis for the treatment of ALI/ARDS through modulation of circulating monocytes and AMs.
Collapse
Affiliation(s)
- Zhilong Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianlin Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenlin Gu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dandan Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
McCormick SM, Gowda N, Fang JX, Heller NM. Suppressor of Cytokine Signaling (SOCS)1 Regulates Interleukin-4 (IL-4)-activated Insulin Receptor Substrate (IRS)-2 Tyrosine Phosphorylation in Monocytes and Macrophages via the Proteasome. J Biol Chem 2016; 291:20574-87. [PMID: 27507812 DOI: 10.1074/jbc.m116.746164] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 11/06/2022] Open
Abstract
Allergic asthma is a chronic lung disease initiated and driven by Th2 cytokines IL-4/-13. In macrophages, IL-4/-13 bind IL-4 receptors, which signal through insulin receptor substrate (IRS)-2, inducing M2 macrophage differentiation. M2 macrophages correlate with disease severity and poor lung function, although the mechanisms that regulate M2 polarization are not understood. Following IL-4 exposure, suppressor of cytokine signaling (SOCS)1 is highly induced in human monocytes. We found that siRNA knockdown of SOCS1 prolonged IRS-2 tyrosine phosphorylation and enhanced M2 differentiation, although siRNA knockdown of SOCS3 did not affect either. By co-immunoprecipitation, we found that SOCS1 complexes with IRS-2 at baseline, and this association increased after IL-4 stimulation. Because SOCS1 is an E3 ubiquitin ligase, we examined the effect of proteasome inhibitors on IL-4-induced IRS-2 phosphorylation. Proteasomal inhibition prolonged IRS-2 tyrosine phosphorylation, increased ubiquitination of IRS-2, and enhanced M2 gene expression. siRNA knockdown of SOCS1 inhibited ubiquitin accumulation on IRS-2, although siRNA knockdown of SOCS3 had no effect on ubiquitination of IRS-2. Monocytes from healthy and allergic individuals revealed that SOCS1 is induced by IL-4 in healthy monocytes but not allergic cells, whereas SOCS3 is highly induced in allergic monocytes. Healthy monocytes displayed greater ubiquitination of IRS-2 and lower M2 polarization than allergic monocytes in response to IL-4 stimulation. Here, we identify SOCS1 as a key negative regulator of IL-4-induced IRS-2 signaling and M2 differentiation. Our findings provide novel insight into how dysregulated expression of SOCS increases IL-4 responses in allergic monocytes, and this may represent a new therapeutic avenue for managing allergic disease.
Collapse
Affiliation(s)
- Sarah M McCormick
- From the Department of Anesthesiology and Critical Care Medicine and
| | - Nagaraj Gowda
- From the Department of Anesthesiology and Critical Care Medicine and
| | - Jessie X Fang
- From the Department of Anesthesiology and Critical Care Medicine and
| | - Nicola M Heller
- From the Department of Anesthesiology and Critical Care Medicine and Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|