1
|
Brooks AL, Conca J, Glines WM, Waltar AE. How the Science of Radiation Biology Can Help Reduce the Crippling Fear of Low-level Radiation. HEALTH PHYSICS 2023; 124:407-424. [PMID: 36989223 DOI: 10.1097/hp.0000000000001677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
ABSTRACT The fear of radiation has been present almost since the discovery of radiation, but has intensified since the "dawn of the atomic age" over 75 y ago. This fear has often served as an impediment to the safe and beneficial uses of radiation and radioactive material. The underlying causes of such fear are varied, can be complex, and are often not associated with any scientific knowledge or understanding. The authors believe that a clear understanding of the current scientific knowledge and understanding of the effects of radiation exposure may be useful in helping to allay some of the fear of radiation. This manuscript attempts to (1) address several scientific questions that we believe have contributed to the fear of radiation, (2) review the data derived from research that can be used to address these questions, and (3) summarize how the results of such scientific research can be used to help address the fear of low-dose and low-dose-rate radiation. Several examples of how fear of radiation has affected public perception of radiological events are discussed, as well as a brief history of the etiology of radiation fear. Actions needed to reduce the public fear of radiation and help fulfill the full societal benefits of radiation and radioactive materials are suggested.
Collapse
Affiliation(s)
- Antone L Brooks
- Research Professor Emeritus, Washington State University, Chief Scientist, DOE Low Dose Program, 6802 W. 13th Avenue, Kennewick, WA 99338
| | - James Conca
- President UFA Ventures, Inc., Richland, WA, Science writer for Forbes
| | - Wayne M Glines
- Senior Technical Advisor (retired), Department of Energy, 2315 Camas Avenue, Richland, WA 99354
| | - Alan E Waltar
- Professor and Head (retired), Department of Nuclear Engineering, Texas A&M University, Past President, American Nuclear Society, 12449 Ingalls Creek Road, Peshastin, WA 98847
| |
Collapse
|
2
|
Brooks AL, Hoel D, Glines WM. Radiobiology of Select Radionuclides in Hanford Site Tank Waste. HEALTH PHYSICS 2022; 123:99-115. [PMID: 35506883 DOI: 10.1097/hp.0000000000001563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There are several important radionuclides involved in the "clean-up" or environmental isolation of nuclear waste contained in US Department of Energy Hanford Site underground waste tanks that drive many of the decisions associated with this activity. To make proper human health risk analyses and ensure that the most appropriate decisions are made, it is important to understand the radiation biology and the human health risk associated with these radionuclides. This manuscript provides some basic radiological science, in particular radiation biology, for some of these radionuclides, i.e., 3 H, 90 Sr, 137 Cs, 99 Tc, 129 I, and the alpha emitters 239, 240 Pu, 233,234,235,238 U, and 241 Am. These radionuclides were selected based on their designation as "constituents of potential concern," historical significance, or potential impact on human health risk. In addition to the radiobiology of these select radionuclides, this manuscript provides brief discussions of the estimated cost of planned management of Hanford tank waste and a comparison with releases into the Techa River from activities associated with the Mayak Production Association. A set of summary conclusions of the potential human health risks associated with these radionuclides is given.
Collapse
Affiliation(s)
- Antone L Brooks
- Research Professor Emeritus, Washington State University Tri-Cities, Richland, WA
| | - David Hoel
- Medical University of South Carolina, 36 South Battery, Charleston, SC 29401
| | | |
Collapse
|
3
|
Shemetun OV, Pilinska MA. RADIATION-INDUCED BYSTANDER EFFECT - MODELING, MANIFESTATION, MECHANISMS, PERSISTENCE, CANCER RISKS (literature review). PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 24:65-92. [PMID: 31841459 DOI: 10.33145/2304-8336-2019-24-65-92] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 01/02/2023]
Abstract
The review summarizes and analyzes the data of world scientific literature and the results of the own research con- cerning one of the main non-targeted effects of ionizing radiation - the radiation induced bystander effect (RIBE) - the ability of irradiated target cells to induce secondary biological changes in non-irradiated receptor cells. The his- tory of studies of this phenomenon is presented - it described under various names since 1905, began to study from the end of the twentieth century when named as RIBE and caused particular interest in the scientific community during recent decades. It is shown that the development of biological science and the improvement of research methods allowed to get new in-depth data on the development of RIBE not only at the level of the whole organism, but even at the genome level. The review highlights the key points of numerous RIBE investigations including mod- eling; methodological approaches to studying; classification; features of interaction between irradiated and intact cells; the role of the immune system, oxidative stress, cytogenetic disorders, changes in gene expression in the mechanism of development of RIBE; rescue effect, abscopal effect, persistence, modification, medical effects. It is emphasized that despite the considerable amount of research concerning the bystander response as the universal phenomenon and RIBE as one of its manifestations, there are still enough «white spots» in determining the mech- anisms of the RIBE formation and assessing the possible consequences of its development for human health.
Collapse
Affiliation(s)
- O V Shemetun
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - M A Pilinska
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| |
Collapse
|
4
|
Evaluation of Anti-Tumor Effects of Whole-Body Low-Dose Irradiation in Metastatic Mouse Models. Cancers (Basel) 2020; 12:cancers12051126. [PMID: 32365904 PMCID: PMC7281283 DOI: 10.3390/cancers12051126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/09/2023] Open
Abstract
Low-dose irradiation (LDI) has recently been shown to have various beneficial effects on human health, such as on cellular metabolic activities, DNA repair, antioxidant activity, homeostasis potency, and immune activation. Although studies on the immunogenic effects of LDI are rapidly accumulating, clinical trials for cancer treatment are considered premature owing to the lack of available preclinical results and protocols. Here, we aim to investigate anti-tumor and anti-metastatic effects of whole-body LDI in several tumor-bearing mouse models. Mice were exposed to single or fractionated whole-body LDI prior to tumor transplantation, and tumor growth and metastatic potential were determined, along with analysis of immune cell populations and expression of epithelial-mesenchymal transition (EMT) markers. Whole-body fractionated-LDI decreased tumor development and lung metastasis not only by infiltration of CD4+, CD8+ T-cells, and dendritic cells (DCs) but also by attenuating EMT. Moreover, a combination of whole-body LDI with localized high-dose radiation therapy reduced the non-irradiated abscopal tumor growth and increased infiltration of effector T cells and DCs. Therefore, whole-body LDI in combination with high-dose radiation therapy could be a potential therapeutic strategy for treating cancer.
Collapse
|
5
|
Abstract
When people discuss the risks associated with low doses of ionizing radiation, central to the discussion is the definition of a low dose and the nature of harm. Standard answers such as "doses below 0.1 Gy are low" or "cancer is the most sensitive measure of harm" obscure the complexity within these seemingly simple questions. This paper will discuss some of the complex issues involved in determining risks to human and nonhuman species from low-dose exposures. Central to this discussion will be the role of communicable responses to all stressors (often referred to as bystander responses), which include recently discovered epigenetic and nontargeted mechanisms. There is a growing consensus that low-dose exposure to radiation is but one of many stressors to impact populations. Many of these stressors trigger responses that are generic and not unique to radiation. The lack of a unique radiation signature makes absolute definition of radiation risk difficult. This paper examines a possible new way of defining low dose based on the systemic response to the radiation. Many factors will influence this systemic response and, because it is inherently variable, it is difficult to predict and so makes low-dose responses very uncertain. Rather than seeking to reduce uncertainty, it might be valuable to accept the variability in outcomes, which arise from the complexity and multifactorial nature of responses to stressors.
Collapse
Affiliation(s)
| | - Andrej Rusin
- Department of Biology, McMaster University, Hamilton, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada
| |
Collapse
|
6
|
Zarnke AM, Tharmalingam S, Boreham DR, Brooks AL. BEIR VI radon: The rest of the story. Chem Biol Interact 2019; 301:81-87. [DOI: 10.1016/j.cbi.2018.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
|
7
|
Brooks AL. The impact of dose rate on the linear no threshold hypothesis. Chem Biol Interact 2019; 301:68-80. [PMID: 30763551 DOI: 10.1016/j.cbi.2018.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/17/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The goal of this manuscript is to define the role of dose rate and dose protraction on the induction of biological changes at all levels of biological organization. Both total dose and the time frame over which it is delivered are important as the body has great capacity to repair all types of biological damage. The importance of dose rate has been recognized almost from the time that radiation was discovered and has been included in radiation standards as a Dose, Dose Rate, Effectiveness Factor (DDREF) and a Dose Rate Effectiveness Factor (DREF). This manuscript will evaluate the role of dose rate at the molecular, cellular, tissue, experimental animals and humans to demonstrate that dose rate is an important variable in estimating radiation cancer risk and other biological effects. The impact of low-dose rates on the Linear-No-Threshold Hypothesis (LNTH) will be reviewed since if the LNTH is not valid it is not possible to calculate a single value for a DDREF or DREF. Finally, extensive human experience is briefly reviewed to show that the radiation risks are not underestimated and that radiation at environmental levels has limited impact on total human cancer risk.
Collapse
Affiliation(s)
- Antone L Brooks
- Environmental Science, Washington State University, Richland, WA, USA.
| |
Collapse
|
8
|
Tharmalingam S, Sreetharan S, Brooks AL, Boreham DR. Re-evaluation of the linear no-threshold (LNT) model using new paradigms and modern molecular studies. Chem Biol Interact 2019; 301:54-67. [PMID: 30763548 DOI: 10.1016/j.cbi.2018.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
The linear no-threshold (LNT) model is currently used to estimate low dose radiation (LDR) induced health risks. This model lacks safety thresholds and postulates that health risks caused by ionizing radiation is directly proportional to dose. Therefore even the smallest radiation dose has the potential to cause an increase in cancer risk. Advances in LDR biology and cell molecular techniques demonstrate that the LNT model does not appropriately reflect the biology or the health effects at the low dose range. The main pitfall of the LNT model is due to the extrapolation of mutation and DNA damage studies that were conducted at high radiation doses delivered at a high dose-rate. These studies formed the basis of several outdated paradigms that are either incorrect or do not hold for LDR doses. Thus, the goal of this review is to summarize the modern cellular and molecular literature in LDR biology and provide new paradigms that better represent the biological effects in the low dose range. We demonstrate that LDR activates a variety of cellular defense mechanisms including DNA repair systems, programmed cell death (apoptosis), cell cycle arrest, senescence, adaptive memory, bystander effects, epigenetics, immune stimulation, and tumor suppression. The evidence presented in this review reveals that there are minimal health risks (cancer) with LDR exposure, and that a dose higher than some threshold value is necessary to achieve the harmful effects classically observed with high doses of radiation. Knowledge gained from this review can help the radiation protection community in making informed decisions regarding radiation policy and limits.
Collapse
Affiliation(s)
- Sujeenthar Tharmalingam
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.
| | - Shayenthiran Sreetharan
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street W, Hamilton ON, L8S 4K1, Canada
| | - Antone L Brooks
- Environmental Science, Washington State University, Richland, WA, USA
| | - Douglas R Boreham
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada; Bruce Power, Tiverton, ON(3), UK.
| |
Collapse
|
9
|
Madas BG, Drozsdik EJ. Effects of mucus thickness and goblet cell hyperplasia on microdosimetric quantities characterizing the bronchial epithelium upon radon exposure. Int J Radiat Biol 2018; 94:967-974. [PMID: 30265181 DOI: 10.1080/09553002.2018.1511931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE The most exposed tissue upon radon exposure is the bronchial epithelium where goblet cells serve as responsive and adaptable front-line defenders. They can rapidly produce a vast amount of mucus, and can change in number, in response to airway insults. The objective of the present study is to quantify the effects of mucus discharge and goblet cell hyperplasia on the microscopic dose consequences of macroscopic radon exposures. METHODS For this purpose, computational models of the bronchial epithelium and alpha-particle transport have been prepared and applied to quantify the hits received and doses absorbed by cell nuclei in case of different mucus thicknesses and goblet cell number. RESULTS AND CONCLUSIONS Both mucus discharge and induction of goblet cell hyperplasia reduce radiation burden at the cellular level, and as such they both can be considered as radioadaptive responses to radon exposure. As compared to basal cell hyperplasia, goblet cell hyperplasia is more effective in reducing the microscopic dose consequences of a given macroscopic exposure. Such changes in exposure geometry highlight the need for improvements in the application of biokinetic and dosimetry models for incorporated radionuclides as well as the dose and dose rate effectiveness factor.
Collapse
Affiliation(s)
| | - Emese J Drozsdik
- a MTA Centre for Energy Research , Budapest , Hungary.,b Doctoral School of Physics , ELTE Eötvös Loránd University , Budapest , Hungary
| |
Collapse
|
10
|
|
11
|
Song KH, Jung SY, Kho SH, Hwang SG, Ha H, Nam SY, Song JY. Effects of low-dose irradiation on mice with Escherichia coli-induced sepsis. Toxicol Appl Pharmacol 2017; 333:17-25. [PMID: 28818514 DOI: 10.1016/j.taap.2017.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 11/19/2022]
Abstract
Although favorable immune responses to low-dose irradiation (LDI) have been observed in normal mice, i.e., a hormesis effect, little is known about the effects of LDI in infectious diseases. In this study, we examined the effects of LDI on mice with sepsis, a severe and often lethal hyperinflammatory response to bacteria. Female C57BL/6 mice were whole-body irradiated with 10cGy 48h before Escherichia coli infection, and survival, bacterial clearance, cytokines, and antioxidants were quantified. LDI pretreatment significantly increased survival from 46.7% in control mice to 75% in mice with sepsis. The bacterial burden was significantly lower in the blood, spleen, and kidney of LDI-treated mice than in those of control septic mice. The levels of pro-inflammatory cytokines, e.g., IL-1β and IL-6, as well as anti-inflammatory IL-10 were markedly reduced in pre-LDI septic mice. Nitric oxide production by peritoneal macrophages was also reduced in pre-LDI septic mice. Immune cells in the spleen increased and Nrf2 and HO-1 were induced in pre-LDI septic mice. LDI stimulates the immune response and minimizes lethality in septic mice via enhanced bacterial clearance and reduced initial proinflammatory responses.
Collapse
Affiliation(s)
- Kyung-Hee Song
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seung-Youn Jung
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Seong-Ho Kho
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Sang-Gu Hwang
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seon Young Nam
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co., Ltd., Seoul 01450, Republic of Korea
| | - Jie-Young Song
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea.
| |
Collapse
|
12
|
Kovalchuk A, Kolb B. Low dose radiation effects on the brain - from mechanisms and behavioral outcomes to mitigation strategies. Cell Cycle 2017; 16:1266-1270. [PMID: 28656797 DOI: 10.1080/15384101.2017.1320003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Based on the most recent estimates by the Canadian Cancer Society, 2 in 5 Canadians will develop cancer in their lifetimes. More than half of all cancer patients receive some type of radiation therapy, and all patients undergo radiation-based diagnostics. While radiation is one of the most important diagnostic and treatments modalities, high-dose cranial radiation therapy causes numerous central nervous system side-effects, including declines in cognitive function, memory, and attention. While the mechanisms of these effects have been studies, they still need to be further elucidated. On the other hand, the effects of low dose radiation as well as indirect radiation bystander effects on the brain remain elusive. We pioneered analysis of the molecular and cellular effects of low dose direct, bystander and scatter radiation on the brain. Using a rat model, we showed that low dose radiation exposures cause molecular and cellular changes in the brain and impacts animal behavior. Here we reflect upon our recent findings and current state of knowledge in the field, and suggest novel radiation effect biomarkers and means of prevention. We propose strategies and interventions to prevent and mitigate radiation effects on the brain.
Collapse
Affiliation(s)
- Anna Kovalchuk
- a Department of Neuroscience , University of Lethbridge , Lethbridge , AB , Canada.,b Canadian Institute for Advanced Research , Toronto , ON , Canada.,c Alberta Epigenetics Network , AB , Canada
| | - Bryan Kolb
- a Department of Neuroscience , University of Lethbridge , Lethbridge , AB , Canada.,b Canadian Institute for Advanced Research , Toronto , ON , Canada.,c Alberta Epigenetics Network , AB , Canada
| |
Collapse
|
13
|
Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, Martin MT, Seed TM, Shay JW, Story MD, Suzuki K, Yamashita S. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. Ann ICRP 2016; 44:7-357. [PMID: 26637346 DOI: 10.1177/0146645315595585] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells; (c) retention of the DNA parental template strand during divisions in some tissue systems, so that mutations are passed to the daughter differentiating cells and not retained in the parental cell; and (d) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the niche. DNA repair mainly occurs within a few days of irradiation, while stem cell competition requires weeks or many months depending on the tissue type. The aforementioned processes may contribute to the differences in carcinogenic radiation risk values between tissues, and may help to explain why a rapidly replicating tissue such as small intestine is less prone to such risk. The processes also provide a mechanistic insight relevant to the LNT model, and the relative and absolute risk models. The radiobiological knowledge also provides a scientific insight into discussions of the dose and dose-rate effectiveness factor currently used in radiological protection guidelines. In addition, the biological information contributes potential reasons for the age-dependent sensitivity to radiation carcinogenesis, including the effects of in-utero exposure.
Collapse
|
14
|
Song KH, Kim MH, Kang SM, Jung SY, Ahn J, Woo HJ, Nam SY, Hwang SG, Ryu SY, Song JY. Analysis of immune cell populations and cytokine profiles in murine splenocytes exposed to whole-body low-dose irradiation. Int J Radiat Biol 2015; 91:795-803. [PMID: 26136089 DOI: 10.3109/09553002.2015.1068461] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE In contrast to high-dose therapeutic irradiation, definitive research detailing the physiological effects of low-dose irradiation is limited. Notably, the immunological response elicited after low-dose irradiation remains controversial. MATERIALS AND METHODS Female C57BL/6 mice were whole- body-irradiated with a single or three daily fractions up to a total dose of 0.1, 1, or 10 cGy. Blood and spleen were harvested 2, 7 and 14 days after irradiation. RESULTS The splenic CD4(+) T cell subpopulations were temporarily increased at 2 days after single or fractionated irradiation, whereas the percentage of dendritic cells (DC) and macrophages was decreased. Whereas CD8(+) T cell populations were decreased in single-dose irradiated mice at day 7, early and sustained reduction of CD8(+) T cell numbers was observed in fractionated- dose-irradiated mice from day 2 until day 14. In addition, single-dose irradiation resulted in a Th1 cytokine expression profile, whereas fractionated-dose irradiation drove a Th2 shift. Additionally, increased expression of immune-related factors was observed at early time-points with single-dose irradiation, in contrast to the dose-independent induction following fractionated-dose irradiation. CONCLUSIONS Our results demonstrate that low-dose irradiation modulates the immune response in mice, where the sensitivity and kinetics of the induced response vary according to the dosing method.
Collapse
Affiliation(s)
- Kyung-Hee Song
- a Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - Mi-Hyoung Kim
- a Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea.,b Laboratory of Immunology, College of Veterinary Medicine, Seoul National University , Seoul , Republic of Korea
| | - Seong-Mook Kang
- a Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - Seung-Youn Jung
- a Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - Jiyeon Ahn
- a Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - Hee-Jong Woo
- b Laboratory of Immunology, College of Veterinary Medicine, Seoul National University , Seoul , Republic of Korea
| | - Seon Young Nam
- c Radiation Effect Research Team, Radiation Health Research Institute, Korea Hydro & Nuclear Power Co., Ltd , Seoul , Republic of Korea
| | - Sang-Gu Hwang
- a Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - Sang-Young Ryu
- d Department of Obstetrics and Gynecology , Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - Jie-Young Song
- a Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| |
Collapse
|
15
|
Abstract
Over the past 15 years and more, extensive research has been conducted on the responses of biological systems to radiation delivered at a low dose or low dose rate. This research has demonstrated that the molecular-, cellular-, and tissue-level responses are different following low doses than those observed after a single short-term high-dose radiation exposure. Following low-dose exposure, 3 unique responses were observed, these included bystander effects, adaptive protective responses, and genomic instability. Research on the mechanisms of action for each of these observations demonstrates that the molecular and cellular processes activated by low doses of radiation are often related to protective responses, whereas high-dose responses are often associated with extensive damage such as cell killing, tissue disruption, and inflammatory diseases. Thus, the mechanisms of action are unique for low-dose radiation exposure. When the dose is delivered at a low dose rate, the responses typically differ at all levels of biological organization. These data suggest that there must be a dose rate effectiveness factor that is greater than 1 and that the risk following low-dose rate exposure is likely less than that for single short-term exposures. All these observations indicate that using the linear no-threshold model for radiation protection purposes is conservative. Low-dose research therefore supports the current standards and practices. When a nuclear medical procedure is justified, it should be carried out with optimization (lowest radiation dose commensurate with diagnostic or therapeutic outcome).
Collapse
|
16
|
Tang FR, Loke WK. Molecular mechanisms of low dose ionizing radiation-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability. Int J Radiat Biol 2014; 91:13-27. [DOI: 10.3109/09553002.2014.937510] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Seth I, Schwartz JL, Stewart RD, Emery R, Joiner MC, Tucker JD. Neutron exposures in human cells: bystander effect and relative biological effectiveness. PLoS One 2014; 9:e98947. [PMID: 24896095 PMCID: PMC4045982 DOI: 10.1371/journal.pone.0098947] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/09/2014] [Indexed: 11/19/2022] Open
Abstract
Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001). These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0 ± 0.13 for micronuclei and 5.8 ± 2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety.
Collapse
Affiliation(s)
- Isheeta Seth
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Jeffrey L. Schwartz
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Robert D. Stewart
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Robert Emery
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Michael C. Joiner
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan, United States of America
| | - James D. Tucker
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
18
|
Non-targeted radiation effects in vivo: a critical glance of the future in radiobiology. Cancer Lett 2013; 356:34-42. [PMID: 24333869 DOI: 10.1016/j.canlet.2013.11.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 11/22/2022]
Abstract
Radiation-induced bystander effects (RIBE), demonstrate the induction of biological non-targeted effects in cells which have not directly hit by radiation or by free radicals produced by ionization events. Although RIBE have been demonstrated using a variety of biological endpoints the mechanism(s) of this phenomenon still remain unclear. The controversial results of the in vitro RIBE and the evidence of non-targeted effects in various in vivo systems are discussed. The experimental evidence on RIBE, indicate that a more analytical and mechanistic in depth approach is needed to secure an answer to one of the most intriguing questions in radiobiology.
Collapse
|
19
|
Hiyama A, Nohara C, Taira W, Kinjo S, Iwata M, Otaki JM. The Fukushima nuclear accident and the pale grass blue butterfly: evaluating biological effects of long-term low-dose exposures. BMC Evol Biol 2013; 13:168. [PMID: 23937355 PMCID: PMC3751199 DOI: 10.1186/1471-2148-13-168] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/08/2013] [Indexed: 12/31/2022] Open
Abstract
Background On August 9th 2012, we published an original research article in Scientific Reports, concluding that artificial radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant exerted genetically and physiologically adverse effects on the pale grass blue butterfly Zizeeria maha in the Fukushima area. Immediately following publication, many questions and comments were generated from all over the world. Here, we have clarified points made in the original paper and answered questions posed by the readers. Results The following points were clarified. (1) There are many advantages to using the pale grass blue butterfly as an indicator species. (2) The forewings of the individuals collected in Fukushima were significantly smaller than in the northern and southern localities. (3) We observed growth retardation in the butterflies from the Fukushima area. (4) The aberrant colour patterns in the butterflies obtained in the Fukushima area were different from the colour patterns induced by temperature and sibling crosses but similar to those induced by external and internal exposures to the artificial radionuclides and by a chemical mutagen, suggesting that genetic mutations caused the aberrations. (5) This species of butterfly has been plentiful in Fukushima area for at least half a century. We here present specimens collected from Fukushima Prefecture before the accident. (6) Mutation accumulation was detected by the increase in the abnormality rates from May 2011 to September 2011. (7) The abnormal traits were heritable. (8) Our sampling localities were not affected by the tsunami. (9) We used a high enough number of samples to obtain statistically significant results. (10) The standard rearing method was followed, producing normal adults in the control groups. (11) The exposure experiments successfully reproduced the results of the field work. This species of butterfly is vulnerable to long-term low-dose internal and external exposures; however, insect cells are known to be resistant to short-term high-dose irradiation. This discrepancy is reconcilable based on the differences in the experimental conditions. Conclusions We are just beginning to understand the biological effects of long-term low-dose exposures in animals. Further research is necessary to accurately assess the possible biological effects of the accident.
Collapse
Affiliation(s)
- Atsuki Hiyama
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Gow MD, Seymour CB, Boyd M, Mairs RJ, Prestiwch WV, Mothersill CE. Dose calculations for [(131)i] meta-iodobenzylguanidine-induced bystander effects. Dose Response 2013; 12:1-23. [PMID: 24659931 DOI: 10.2203/dose-response.13-001.mothersill] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
UNLABELLED Targeted radiotherapy is a potentially useful treatment for some cancers and may be potentiated by bystander effects. However, without estimation of absorbed dose, it is difficult to compare the effects with conventional external radiation treatment. METHODS Using the Vynckier - Wambersie dose point kernel, a model for dose rate evaluation was created allowing for calculation of absorbed dose values to two cell lines transfected with the noradrenaline transporter (NAT) gene and treated with [(131)I]MIBG. RESULTS The mean doses required to decrease surviving fractions of UVW/NAT and EJ138/NAT cells, which received medium from [(131)I]MIBG-treated cells, to 25 - 30% were 1.6 and 1.7 Gy respectively. The maximum mean dose rates achieved during [(131)I]MIBG treatment were 0.09 - 0.75 Gy/h for UVW/NAT and 0.07 - 0.78 Gy/h for EJ138/NAT. These were significantly lower than the external beam gamma radiation dose rate of 15 Gy/h. In the case of control lines which were incapable of [(131)I]MIBG uptake the mean absorbed doses following radiopharmaceutical were 0.03 - 0.23 Gy for UVW and 0.03 - 0.32 Gy for EJ138. CONCLUSION [(131)I]MIBG treatment for ICCM production elicited a bystander dose-response profile similar to that generated by external beam gamma irradiation but with significantly greater cell death.
Collapse
Affiliation(s)
- M D Gow
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - C B Seymour
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - M Boyd
- Targeted Therapy Group, Division of Cancer Science and Molecular Pathology, Glasgow University, Cancer Research United Kingdom Beatson Laboratories, Glasgow, United Kingdom
| | - R J Mairs
- Targeted Therapy Group, Division of Cancer Science and Molecular Pathology, Glasgow University, Cancer Research United Kingdom Beatson Laboratories, Glasgow, United Kingdom; ; Department of Child Health, Yorkhill Hospital, Glasgow, United Kingdom
| | - W V Prestiwch
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - C E Mothersill
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
21
|
Morgan WF, Bair WJ. Issues in Low Dose Radiation Biology: The Controversy Continues. A Perspective. Radiat Res 2013; 179:501-10. [DOI: 10.1667/rr3306.1] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Merrifield M, Kovalchuk O. Epigenetics in radiation biology: a new research frontier. Front Genet 2013; 4:40. [PMID: 23577019 PMCID: PMC3616258 DOI: 10.3389/fgene.2013.00040] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 03/06/2013] [Indexed: 11/13/2022] Open
Abstract
The number of people that receive exposure to ionizing radiation (IR) via occupational, diagnostic, or treatment-related modalities is progressively rising. It is now accepted that the negative consequences of radiation exposure are not isolated to exposed cells or individuals. Exposure to IR can induce genome instability in the germline, and is further associated with transgenerational genomic instability in the offspring of exposed males. The exact molecular mechanisms of transgenerational genome instability have yet to be elucidated, although there is support for it being an epigenetically induced phenomenon. This review is centered on the long-term biological effects associated with IR exposure, mainly focusing on the epigenetic mechanisms (DNA methylation and small RNAs) involved in the molecular etiology of IR-induced genome instability, bystander and transgenerational effects. Here, we present evidence that IR-mediated effects are maintained by epigenetic mechanisms, and demonstrate how a novel, male germline-specific, small RNA pathway is posited to play a major role in the epigenetic inheritance of genome instability.
Collapse
Affiliation(s)
- Matt Merrifield
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | | |
Collapse
|
23
|
Kovalchuk A, Lowings M, Rodriguez-Juarez R, Muhammad A, Ilnytskyy S, Kolb B, Kovalchuk O. Epigenetic bystander-like effects of stroke in somatic organs. Aging (Albany NY) 2012; 4:224-34. [PMID: 22466454 PMCID: PMC3348482 DOI: 10.18632/aging.100447] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Clinical evidence suggests that stroke may lead to damage of somatic organs. This communication of damage is well- established in the case of exposure to genotoxic agents is termed a bystander effect. Genotoxic stress-induced bystander effects are epigenetically mediated. Here we investigated whether stroke causes epigenetic bystander-like effects in the liver, kidney and heart. We found a significant increase in the levels of H3K3 acetylation and H3K4 trimethylation, as well as a decrease in the H3K9 trimethylation in the kidney tissue of stroked rats. Furthermore, here we for the first time show changes in the gene and microRNA expression profile in the kidney tissues of stroked rats, as compared to intact control animals. Interestingly, the observed changes were somewhat similar to those reported earlier in kidney injury, inflammation, and acute renal failure. Our data explain the recent epidemiological evidence for the increased incidence of acute kidney injury post-stroke and provide an important roadmap for the future analysis of the mechanisms and cellular repercussions of the stroke-induced bystander-like effects in distal somatic organs.
Collapse
Affiliation(s)
- Anna Kovalchuk
- Department of Biology, University of Lethbridge, Lethbridge, Alberta
| | | | | | | | | | | | | |
Collapse
|
24
|
Tavares AAS, Tavares JMRS. Computational modeling of cellular effects post-irradiation with low- and high-let particles and different absorbed doses. Dose Response 2012; 11:191-206. [PMID: 23930101 DOI: 10.2203/dose-response.11-049.tavares] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The use of computational methods to improve the understanding of biological responses to various types of radiation is an approach where multiple parameters can be modelled and a variety of data is generated. This study compares cellular effects modelled for low absorbed doses against high absorbed doses. The authors hypothesized that low and high absorbed doses would contribute to cell killing via different mechanisms, potentially impacting on targeted tumour radiotherapy outcomes. Cellular kinetics following irradiation with selective low- and high-linear energy transfer (LET) particles were investigated using the Virtual Cell (VC) radiobiology algorithm. Two different cell types were assessed using the VC radiobiology algorithm: human fibroblasts and human crypt cells. The results showed that at lower doses (0.01 to 0.2 Gy), all radiation sources used were equally able to induce cell death (p>0.05, ANOVA). On the other hand, at higher doses (1.0 to 8.0 Gy), the radiation response was LET and dose dependent (p<0.05, ANOVA). The data obtained suggests that the computational methods used might provide some insight into the cellular effects following irradiation. The results also suggest that it may be necessary to re-evaluate cellular radiation-induced effects, particularly at low doses that could affect therapeutic effectiveness.
Collapse
|
25
|
Vinnikov V, Lloyd D, Finnon P. Bystander apoptosis in human cells mediated by irradiated blood plasma. Mutat Res 2012; 731:107-116. [PMID: 22230196 DOI: 10.1016/j.mrfmmm.2011.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 10/11/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
Following exposure to high doses of ionizing radiation, due to an accident or during radiotherapy, bystander signalling poses a potential hazard to unirradiated cells and tissues. This process can be mediated by factors circulating in blood plasma. Thus, we assessed the ability of plasma taken from in vitro irradiated human blood to produce a direct cytotoxic effect, by inducing apoptosis in primary human peripheral blood mononuclear cells (PBM), which mainly comprised G(0)-stage lymphocytes. Plasma was collected from healthy donors' blood irradiated in vitro to 0-40Gy acute γ-rays. Reporter PBM were separated from unirradiated blood with Histopaque and held in medium with the test plasma for 24h at 37°C. Additionally, plasma from in vitro irradiated and unirradiated blood was tested against PBM collected from blood given 4Gy. Apoptosis in reporter PBM was measured by the Annexin V test using flow cytometry. Plasma collected from unirradiated and irradiated blood did not produce any apoptotic response above the control level in unirradiated reporter PBM. Surprisingly, plasma from irradiated blood caused a dose-dependent reduction of apoptosis in irradiated reporter PBM. The yields of radiation-induced cell death in irradiated reporter PBM (after subtracting the respective values in unirradiated reporter PBM) were 22.2±1.8% in plasma-free cultures, 21.6±1.1% in cultures treated with plasma from unirradiated blood, 20.2±1.4% in cultures with plasma from blood given 2-4Gy and 16.7±3.2% in cultures with plasma from blood given 6-10Gy. These results suggested that irradiated blood plasma did not cause a radiation-induced bystander cell-killing effect. Instead, a reduction of apoptosis in irradiated reporter cells cultured with irradiated blood plasma has implications concerning oncogenic risk from mutated cells surviving after high dose in vivo irradiation (e.g. radiotherapy) and requires further study.
Collapse
|
26
|
Rastogi S, Coates PJ, Lorimore SA, Wright EG. Bystander-type effects mediated by long-lived inflammatory signaling in irradiated bone marrow. Radiat Res 2011; 177:244-50. [PMID: 22149991 DOI: 10.1667/rr2805.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced bystander and abscopal effects, in which DNA damage is produced in nonirradiated cells as a consequence of communication with irradiated cells, indicate mechanisms of inducing damage and cell death additional to the conventional model of deposition of energy in the cell nucleus at the time of irradiation. In this study we show that signals generated in vivo in the bone marrow of mice irradiated with 4 Gy γ rays 18 h to 15 months previously are able to induce DNA damage and apoptosis in nonirradiated bone marrow cells but that comparable signals are not detected at earlier times postirradiation or at doses below 100 mGy. Bone marrow cells of both CBA/Ca and C57BL/6 genotypes exhibit responses to signals produced by either irradiated CBA/Ca or C57BL/6 mice, and the responses are mediated by the cytokines FasL and TNF-α converging on a COX-2-dependent pathway. The findings are consistent with indirect inflammatory signaling induced as a response to the initial radiation damage rather than to direct signaling between irradiated and nonirradiated cells. The findings also demonstrate the importance of studying tissue responses when considering the mechanisms underlying the consequences of radiation exposures.
Collapse
Affiliation(s)
- Shubhra Rastogi
- Centre for Oncology and Molecular Medicine, University of Dundee Medical School, Scotland, United Kingdom
| | | | | | | |
Collapse
|
27
|
Zyuzikov NA, Coates PJ, Parry JM, Lorimore SA, Wright EG. Lack of Nontargeted Effects in Murine Bone Marrow after Low-DoseIn VivoX Irradiation. Radiat Res 2011; 175:322-7. [DOI: 10.1667/rr2386.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Ulsh BA. Checking the foundation: recent radiobiology and the linear no-threshold theory. HEALTH PHYSICS 2010; 99:747-758. [PMID: 21068593 DOI: 10.1097/hp.0b013e3181e32477] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The linear no-threshold (LNT) theory has been adopted as the foundation of radiation protection standards and risk estimation for several decades. The "microdosimetric argument" has been offered in support of the LNT theory. This argument postulates that energy is deposited in critical cellular targets by radiation in a linear fashion across all doses down to zero, and that this in turn implies a linear relationship between dose and biological effect across all doses. This paper examines whether the microdosimetric argument holds at the lowest levels of biological organization following low dose, low dose-rate exposures to ionizing radiation. The assumptions of the microdosimetric argument are evaluated in light of recent radiobiological studies on radiation damage in biological molecules and cellular and tissue level responses to radiation damage. There is strong evidence that radiation initially deposits energy in biological molecules (e.g., DNA) in a linear fashion, and that this energy deposition results in various forms of prompt DNA damage that may be produced in a pattern that is distinct from endogenous (e.g., oxidative) damage. However, a large and rapidly growing body of radiobiological evidence indicates that cell and tissue level responses to this damage, particularly at low doses and/or dose-rates, are nonlinear and may exhibit thresholds. To the extent that responses observed at lower levels of biological organization in vitro are predictive of carcinogenesis observed in vivo, this evidence directly contradicts the assumptions upon which the microdosimetric argument is based.
Collapse
Affiliation(s)
- Brant A Ulsh
- National Institute for Occupational Safety and Health, 4676 Columbia Parkway, Mailstop C-46, Cincinnati, OH 45226, USA
| |
Collapse
|
29
|
Staudacher AH, Blyth BJ, Lawrence MD, Ormsby RJ, Bezak E, Sykes PJ. If bystander effects for apoptosis occur in spleen after low-dose irradiation in vivo then the magnitude of the effect falls within the range of normal homeostatic apoptosis. Radiat Res 2010; 174:727-31. [PMID: 21128796 DOI: 10.1667/rr2300.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To test whether bystander effects occur in vivo after low doses of radiation relevant to occupational and population exposure, we exposed mice to whole-body X-radiation doses (0.01 and 1 mGy) where only a proportion of cells would receive an electron track. We used a precise method to analyze the apoptosis frequency in situ in spleen tissue sections at 7 h and 1, 3 and 7 days after irradiation to determine whether an increase in apoptosis above that predicted by direct effects was observed. No significant changes in the apoptosis frequency at any time after low-dose irradiation were detected. Apoptosis was induced above endogenous levels by five- to sevenfold 7 h after 1000 mGy. Using these data, the expected increases in apoptosis 7 h after a dose of 1 mGy or 0.01 mGy were calculated based on the assumption that induction of apoptosis would decrease linearly with dose. The magnitude of potential bystander effects for apoptosis that could be detected above homeostatic levels after these low doses of radiation was determined. A substantial bystander effect for apoptosis (>50-fold above direct effects) would be required before such proposed effects would be identified using 10 animals/treatment group as studied here. These data demonstrate that amplification of apoptosis even due to a substantial bystander effect would fall within the homeostatic range.
Collapse
Affiliation(s)
- Alexander H Staudacher
- Haematology and Genetic Pathology, Flinders University, Bedford Park, South Australia, 5042
| | | | | | | | | | | |
Collapse
|
30
|
Ma S, Liu X, Jiao B, Yang Y, Liu X. Low-dose radiation-induced responses: focusing on epigenetic regulation. Int J Radiat Biol 2010; 86:517-28. [PMID: 20545569 DOI: 10.3109/09553001003734592] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE With the widespread use of ionising radiation, the risks of low-dose radiation have been increasingly highlighted for special attention. This review introduces the potential role of epigenetic elements in the regulation of the effects of low-dose radiation. MATERIALS AND METHODS The related literature has been analysed according to the topics of DNA methylation, histone modifications, chromatin remodelling and non-coding RNA modulation in low-dose radiation responses. RESULTS DNA methylation and radiation can reciprocally regulate effects, especially in the low-dose radiation area. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase inhibitors show a promising application to enhance radiation sensitivity, both in the low-dose and high-dose areas; phosphorylated histone 2 AX (H2AX) shows a low sensitivity with 1-15 Gy irradiation as compared with lower dose radiation; and histone ubiquitination plays an important role in DNA damage repair mechanisms. Moreover, chromatin remodelling has an integral role in the repair of DNA double-strand breaks and the response of chromatin to ionising radiation. Finally, the effect of radiation on microRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. CONCLUSION Small advances have been made in the understanding of epigenetic regulation of low-dose radiation responses. Many questions and blind spots deserve to be investigated. Many new epigenetic elements will be identified in low-dose radiation responses, which may give new insights into the mechanisms of radiation response and their exploitation in radiotherapy.
Collapse
Affiliation(s)
- Shumei Ma
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China
| | | | | | | | | |
Collapse
|
31
|
Terzoudi GI, Donta-Bakoyianni C, Iliakis G, Pantelias GE. Investigation of bystander effects in hybrid cells by means of cell fusion and premature chromosome condensation induction. Radiat Res 2010; 173:789-801. [PMID: 20518658 DOI: 10.1667/rr2023.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The established dogma in radiation sciences that underlies radiation protection and therapeutic applications is that radiation effects require induction of DNA damage only in cells that are directly hit by the radiation. However, extensive work during the last decade demonstrates that DNA damage responses can be detected in cells that are only bystanders. Such effects include cell killing and responses associated with DNA and chromosome damage. Here, we developed a strategy for investigating bystander effects on chromosomal integrity by premature chromosome condensation using hybrid cell formation between nontargeted human lymphocytes and targeted CHO cells or vice versa. We reasoned that signaling molecules generated in the targeted component of the hybrid will transfer to the nontargeted cell, inducing damage detectable at the chromosomal level. The results indicate that bystander cytogenetic effects between CHO and human lymphocytes cannot be detected under the experimental conditions used. This may be due either to the lack of communication of such responses between the components of the hybrid or to their abrogation by the experimental manipulations. These observations and the methodology developed should be useful in the further development of protocols for investigating bystander responses and for elucidating the underlying mechanisms.
Collapse
Affiliation(s)
- G I Terzoudi
- Institute of Radioisotopes and Radiodiagnostic Products, National Centre for Scientific Research Demokritos, Athens, Greece
| | | | | | | |
Collapse
|
32
|
Blyth BJ, Azzam EI, Howell RW, Ormsby RJ, Staudacher AH, Sykes PJ. An adoptive transfer method to detect low-dose radiation-induced bystander effects in vivo. Radiat Res 2010; 173:125-37. [PMID: 20095844 DOI: 10.1667/rr1899.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The potential for irradiated cells to induce biological effects in their unirradiated neighbors (known as the bystander effect) has been observed repeatedly in vitro. However, whether bystander effects occur in vivo under the specific conditions relevant to low-dose radiation protection is still unclear. To test this, the fate of bystander cells in the mouse spleen was examined using an adoptive transfer method designed to replicate the rare, irradiated cells in an organ that might be expected after a low-dose-rate, low-LET radiation exposure. Splenic lymphocytes radiolabeled with low activities of (3)H-thymidine were introduced into the spleens of unirradiated recipient mice. In this study, the apoptotic and proliferative response of the neighboring bystander spleen cells was compared to the response of spleen cells in parallel control recipients that received sham-irradiated cells. Neither the local area surrounding lodged radiolabeled cells nor the spleen as a whole showed a change in apoptosis or proliferation either 1 or 3 days after adoptive transfer. Increasing the irradiated cell numbers, increasing the mean (3)H-thymidine activity per cell, or exposing cells ex vivo to an acute X-ray dose also had no effect. Possible reasons for the absence of a bystander effect in the spleen under these conditions are discussed.
Collapse
Affiliation(s)
- Benjamin J Blyth
- a Haematology and Genetic Pathology, Flinders University, Bedford Park, South Australia 5042, Australia
| | | | | | | | | | | |
Collapse
|
33
|
Jaurand MCF, Renier A, Daubriac J. Mesothelioma: Do asbestos and carbon nanotubes pose the same health risk? Part Fibre Toxicol 2009; 6:16. [PMID: 19523217 PMCID: PMC2706793 DOI: 10.1186/1743-8977-6-16] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 06/12/2009] [Indexed: 12/24/2022] Open
Abstract
Carbon nanotubes (CNTs), the product of new technology, may be used in a wide range of applications. Because they present similarities to asbestos fibres in terms of their shape and size, it is legitimate to raise the question of their safety for human health. Recent animal and cellular studies suggest that CNTs elicit tissue and cell responses similar to those observed with asbestos fibres, which increases concern about the adverse biological effects of CNTs. While asbestos fibres' mechanisms of action are not fully understood, sufficient results are available to develop hypotheses about the significant factors underlying their damaging effects. This review will summarize the current state of knowledge about the biological effects of CNTs and will discuss to what extent they present similarities to those of asbestos fibres. Finally, the characteristics of asbestos known to be associated with toxicity will be analyzed to address the possible impact of CNTs.
Collapse
|
34
|
Ilnytskyy Y, Koturbash I, Kovalchuk O. Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:105-113. [PMID: 19107897 DOI: 10.1002/em.20440] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Exposure of animal body parts to ionizing radiation (IR) can lead to molecular changes in distant shielded "bystander" tissues and organs. Nevertheless, tissue specificity of bystander responses within the same organism has not been examined in detail. Studies on in vivo bystander effect conducted so far analyzed changes induced by single-dose exposure. The potential of fractionated irradiation to induce bystander effects in vivo has never been studied. We analyzed changes in global DNA methylation and microRNAome in skin and spleen of animals subjected to single-dose (acute or fractionated) whole-body or cranial exposure to 0.5 Gy of X-rays. We found that IR-induced DNA methylation changes in bystander spleen and skin were distinct. Acute radiation exposure resulted in a significant loss of global DNA methylation in the exposed and bystander spleen 6 hr, 96 hr, and 14 days after irradiation. Fractionated irradiation led to hypomethylation in bystander spleen 6 hr after whole-body exposure, and 6 hr, 96 hr, and 14 days after cranial irradiation. Contrarily, changes in the skin of the same animals were seen only 6 hr after acute whole-body and head exposure. DNA hypomethylation observed in spleen was paralleled by a reduction of methyl-binding protein MeCP2 expression. Irradiation also induced tissue-specific microRNAome alterations in skin and spleen. For the first time, we have shown that IR-induced epigenetic bystander effects that occur in the same organism are triggered by both acute and fractionated exposure and are very distinct in different bystander organs. Future studies are clearly needed to address organismal and carcinogenic repercussions of those changes.
Collapse
Affiliation(s)
- Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Alberta, Canada
| | | | | |
Collapse
|
35
|
Koturbash I, Kutanzi K, Hendrickson K, Rodriguez-Juarez R, Kogosov D, Kovalchuk O. Radiation-induced bystander effects in vivo are sex specific. Mutat Res 2008; 642:28-36. [PMID: 18508093 DOI: 10.1016/j.mrfmmm.2008.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 03/24/2008] [Accepted: 04/01/2008] [Indexed: 05/26/2023]
Abstract
Ionizing radiation (IR) effects span beyond the area of direct exposure and can be observed in neighboring and distant naïve cells and organs. This phenomenon is termed a 'bystander effect'. IR effects in directly exposed tissue in vivo are epigenetically mediated and distinct in males and females. Yet, IR-induced bystander effects have never been explored in a sex-specificity domain. We used an in vivo mouse model, whereby the bystander effects are studied in spleen of male and female animals subjected to head exposure when the rest of the body is protected by a medical-grade lead shield. We analyzed the induction of DNA damage and alterations in global DNA methylation. Molecular parameters were correlated with cellular proliferation and apoptosis levels. The changes observed in bystander organs are compared to the changes in unexposed animals and animals exposed to predicted and measured scatter doses. We have found the selective induction of DNA damage levels, global DNA methylation, cell proliferation and apoptosis in exposed and bystander spleen tissue of male and female mice. Sex differences were significantly diminished in animals subjected to a surgical removal of gonads. These data constitute the first evidence of sex differences in radiation-induced bystander effects in mouse spleen in vivo. We show the role of sex hormones in spleen bystander responses and discuss implications of the observed changes.
Collapse
Affiliation(s)
- Igor Koturbash
- Department of Biological Sciences, University of Lethbridge, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Kovalchuk O, Baulch JE. Epigenetic changes and nontargeted radiation effects--is there a link? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:16-25. [PMID: 18172877 DOI: 10.1002/em.20361] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
It is now well accepted that the effects of ionizing radiation (IR) exposure can be noticed far beyond the borders of the directly irradiated tissue. IR can affect neighboring cells in the proximity, giving rise to a bystander effect. IR effects can also span several generations and influence the progeny of exposed parents, leading to transgeneration effects. Bystander and transgeneration IR effects are linked to the phenomenon of the IR-induced genome instability that manifests itself as chromosome aberrations, gene mutations, late cell death, and aneuploidy. While the occurrence of the above-mentioned phenomena is well documented, the exact mechanisms that lead to their development have still to be delineated. Evidence suggests that the IR-induced genome instability, bystander, and transgeneration effects may be epigenetically mediated. The epigenetic changes encompass DNA methylation, histone modification, and RNA-associated silencing. Recent studies demonstrated that IR exposure alters epigenetic parameters in the directly exposed tissues and in the distant bystander tissues. Transgeneration radiation effects were also proposed to be of an epigenetic nature. We will discuss the role of the epigenetic mechanisms in radiation responses, bystander effects, and transgeneration effects.
Collapse
Affiliation(s)
- Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Alberta, Canada.
| | | |
Collapse
|
37
|
|
38
|
Lorimore SA, McIlrath JM, Coates PJ, Wright EG. Chromosomal instability in unirradiated hemopoietic cells resulting from a delayed in vivo bystander effect of gamma radiation. Cancer Res 2005; 65:5668-73. [PMID: 15994940 DOI: 10.1158/0008-5472.can-05-0834] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Untargeted effects of ionizing radiation (de novo effects in the unirradiated descendants or neighbors of irradiated cells) challenge widely held views about the mechanisms of radiation-induced DNA damage with implications for the health consequences of radiation exposures particularly in the context of the induction of malignancy. To investigate in vivo untargeted effects of sparsely ionizing (low linear energy transfer) radiation, a congenic sex-mismatch bone marrow transplantation protocol has been used to repopulate the hemopoietic system from a mixture of gamma-irradiated and nonirradiated hemopoietic stem cells such that host-, irradiated donor- and unirradiated donor-derived cells can be distinguished. Chromosomal instability in the progeny of irradiated hemopoietic stem cells accompanied by a reduction in their contribution to the repopulated hemopoietic system is consistent with a delayed genomic instability phenotype being expressed in vivo. However, chromosomal instability was also shown in the progeny of the nonirradiated hemopoietic stem cells implicating a bystander mechanism. Studies of the influence of irradiated recipient stromal microenvironment and experiments replacing irradiated cells with irradiated cell-conditioned medium reveal the source of the in vivo bystander effect to be the descendants of irradiated cells, rather than irradiated cell themselves. Thus, it is possible that a radiation-induced genomic instability phenotype in vivo need not necessarily be a reflection of intrinsically unstable cells but the responses to ongoing production of inflammatory-type damaging signals as a long-term unexpected consequence of the initial single radiation exposure.
Collapse
Affiliation(s)
- Sally A Lorimore
- Department of Molecular and Cellular Pathology, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | | | | | | |
Collapse
|
39
|
Matsumoto H, Takahashi A, Ohnishi T. Radiation-induced adaptive responses and bystander effects. ACTA ACUST UNITED AC 2005; 18:247-54. [PMID: 15858392 DOI: 10.2187/bss.18.247] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A classical paradigm [correction of paradym] of radiation biology asserts that all radiation effects on cells, tissues and organisms are due to the direct action of radiation. However, there has been a recent growth of interest in the indirect actions of radiation including the radiation-induced adaptive response, the bystander effect, low-dose hypersensitivity, and genomic instability, which are specific modes of stress exhibited in response to low-dose/low-dose rate radiation. This review focuses on the radiation-induced bystander effect and the adaptive response, provides a description of the two phenomena, and discusses the contribution of the former to the latter.
Collapse
Affiliation(s)
- Hideki Matsumoto
- Department of Experimental Radiology and Health Physics, Faculty of Medical Science, University of Fukui, Matsuoka, Fukui, Japan.
| | | | | |
Collapse
|