1
|
Schust DJ, Bonney EA, Sugimoto J, Ezashi T, Roberts RM, Choi S, Zhou J. The Immunology of Syncytialized Trophoblast. Int J Mol Sci 2021; 22:ijms22041767. [PMID: 33578919 PMCID: PMC7916661 DOI: 10.3390/ijms22041767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Multinucleate syncytialized trophoblast is found in three forms in the human placenta. In the earliest stages of pregnancy, it is seen at the invasive leading edge of the implanting embryo and has been called primitive trophoblast. In later pregnancy, it is represented by the immense, multinucleated layer covering the surface of placental villi and by the trophoblast giant cells found deep within the uterine decidua and myometrium. These syncytia interact with local and/or systemic maternal immune effector cells in a fine balance that allows for invasion and persistence of allogeneic cells in a mother who must retain immunocompetence for 40 weeks of pregnancy. Maternal immune interactions with syncytialized trophoblast require tightly regulated mechanisms that may differ depending on the location of fetal cells and their invasiveness, the nature of the surrounding immune effector cells and the gestational age of the pregnancy. Some specifically reflect the unique mechanisms involved in trophoblast cell–cell fusion (aka syncytialization). Here we will review and summarize several of the mechanisms that support healthy maternal–fetal immune interactions specifically at syncytiotrophoblast interfaces.
Collapse
Affiliation(s)
- Danny J. Schust
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Correspondence:
| | - Elizabeth A. Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA;
| | - Jun Sugimoto
- Department of Obstetrics and Gynecology, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Toshi Ezashi
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - R. Michael Roberts
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Sehee Choi
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jie Zhou
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Tan KH, Zeng XX, Sasajala P, Yeo A, Udolph G. Fetomaternal microchimerism: Some answers and many new questions. CHIMERISM 2017; 2:16-8. [PMID: 21547031 DOI: 10.4161/chim.2.1.14692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/20/2010] [Indexed: 01/27/2023]
Abstract
The transfer of fetal cells into mothers during pregnancy and their organ specific integration is a well recognized phenomenon in placental vertebrates. Recently, it has been reported that some fetal cells found in the mothers have progenitor cell-like features such as multilineage differentiation potential and as a consequence they were termed pregnancy associated progenitor cells (PAPC). The multilineage differentiation potential suggested some level of cellular plasticity, which these cells share with other stem or progenitor cells. In this context, we have shown that PAPCs indeed express neural stem cell and markers for developing neurons in the brain and that PAPCs morphologically mature into neurons over time. The stem/progenitor properties of PAPCs raises the hope that they might be valuable for studying the functional integration of foreign cells into preexisting tissues and organs, for example in cellular therapies. The functional integration of transplanted cells and their connectivity to the host circuitry is still a major bottleneck in cellular therapies particularly for the brain. The animal models of fetomaternal microchimerism might provide valuable insights into the mechanism how cells survive, migrate, integrate and differentiate in a foreign environment of a host. This review discusses some of the recent findings in the field of fetomaternal microchimerism. It also tries to identify some major gaps of knowledge and raises some questions resulting from the recent advances. Studying fetomaternal microchimerism and the properties of PAPCs in greater detail might pave the way to advance cell based regenerative medicine as well as transplantation medicine.
Collapse
|
3
|
Hematopoietic stem cell infusion/transplantation for induction of allograft tolerance. Curr Opin Organ Transplant 2015; 20:49-56. [PMID: 25563992 DOI: 10.1097/mot.0000000000000159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The present review updates the current status of basic, preclinical, and clinical research on donor hematopoietic stem cell infusion for allograft tolerance induction. RECENT FINDINGS Recent basic studies in mice provide evidence of significant involvement of both central deletional and peripheral regulatory mechanisms in induction and maintenance of allograft tolerance effected through a mixed chimerism approach with donor hematopoietic stem cell infusion. The presence of heterologous memory T cells in primates hampers the induction of persistent chimerism. Durable mixed chimerism, however, now has been recently induced in inbred major histocompatibility complex-mismatched swine, resulting in tolerance of vascularized composite tissue allografts. In clinical transplantation, allograft tolerance has been achieved in human leukocyte antigen-mismatched kidney transplantation after the induction of transient mixed chimerism or persistent full donor chimerism. SUMMARY Tolerance induction in clinical kidney transplantation has been achieved by donor hematopoietic stem cell infusion. Improving the consistency and safety of tolerance induction and extending successful protocols to other organs, and to organs from deceased donors, are critical next steps to bringing tolerance to a wider range of clinical applications.
Collapse
|
4
|
Bucher C, Stern M, Buser A, Heim D, Paulussen M, Halter J, Tsakiris D, Droll A, Meyer-Monard S, Tichelli A, Passweg J, Gratwohl A. Role of primacy of birth in HLA-identical sibling transplantation. Blood 2007; 110:468-9. [PMID: 17579188 DOI: 10.1182/blood-2007-02-076257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Fleta Asín B, Gonzalvo Liarte MC, Cía Gómez P. Quimerismo: origen e implicaciones médicas. Rev Clin Esp 2006; 206:340-2. [PMID: 16831382 DOI: 10.1157/13090483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The organism whose cells come from different individuals is called chimera. It is frequently observed in nature: pregnancy, organ transplantation or transfusion are considered chimeric cell sources. It has been involved in autoimmune diseases development such as scleroderma, because of similarities between it and graft versus host disease, long term persistence of fetal cells in women and the finding of greater number of chimeric cells in affected women than healthy ones. It is not strictly a disease but might be considered helpful in non-invasive prenatal diagnosis and damaged organs regeneration.
Collapse
Affiliation(s)
- B Fleta Asín
- Servicio de Medicina Interna, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España.
| | | | | |
Collapse
|
6
|
Kawakami N, Odoardi F, Ziemssen T, Bradl M, Ritter T, Neuhaus O, Lassmann H, Wekerle H, Flügel A. Autoimmune CD4+ T cell memory: lifelong persistence of encephalitogenic T cell clones in healthy immune repertoires. THE JOURNAL OF IMMUNOLOGY 2005; 175:69-81. [PMID: 15972633 DOI: 10.4049/jimmunol.175.1.69] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We embedded green fluorescent CD4(+) T cells specific for myelin basic protein (MBP) (T(MBP-GFP) cells) in the immune system of syngeneic neonatal rats. These cells persisted in the animals for the entire observation period spanning >2 years without affecting the health of the hosts. They maintained a memory phenotype with low levels of L-selectin and CD45RC, but high CD44. Although persisting in low numbers (0.01-0.1% of lymph node cells) they were sufficient to raise susceptibility toward clinical autoimmune disease. Immunization with MBP in IFA induced CNS inflammation and overt clinical disease in animals carrying neonatally transferred T(MBP-GFP) cells, but not in controls. The onset of the clinical disease coincided with mass infiltration of T(MBP-GFP) cells into the CNS. In the periphery, following the amplification phase a rapid contraction of the T cell population was observed. However, elevated numbers of fully reactive T(MBP-GFP) cells remained in the peripheral immune system after acute experimental autoimmune encephalomyelitis mediating reimmunization-induced disease relapses.
Collapse
Affiliation(s)
- Naoto Kawakami
- Department of Neuroimmunology, Max-Planck-Institute for Neurobiology, Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Influence of noninherited maternal antigens on alloimmunity and allotransplant rejection. Curr Opin Organ Transplant 2004. [DOI: 10.1097/01.mot.0000137840.02798.a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Zhou L, Yoshimura Y, Huang Y, Suzuki R, Yokoyama M, Okabe M, Shimamura M. Two independent pathways of maternal cell transmission to offspring: through placenta during pregnancy and by breast-feeding after birth. Immunology 2000; 101:570-80. [PMID: 11122462 PMCID: PMC2327113 DOI: 10.1046/j.1365-2567.2000.00144.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell transmission from mother to offspring was demonstrated using mice with green fluorescent protein (GFP) transgenic markers. GFP transgene heterozygous (+/-) females were mated with GFP (-/-) males, and GFP(+) cells in the GFP (-/-) fetuses generated between them were analysed to assess maternal blood cell transmission to conceptuses in utero. The GFP+ maternal cells were observed throughout the body of the fetuses, as shown by fluorescence stereomicroscopy. Cell entrance into the fetal immune system was shown by histochemical and flow cytometric analyses of fetal organs such as thymus, spleen and liver. The GFP(+) maternal cells persisted in the offspring until postpartum. Next, GFP (-/-) neonates fed by GFP(+) foster mothers were examined to study the transfer of maternal milk leucocytes to offspring through breast-feeding. GFP(+) leucocytes that had infiltrated through the wall of the digestive tract were mainly localized in the livers of neonates. Their accumulation in the livers reached a maximum on days 5 or 6, and these cells became undetectable, as assessed by either histochemistry or flow cytometry, after day 9 of starting foster nursing. Collectively, the present results demonstrate two independent pathways of maternal cell transmission to offspring: transplacental passage during pregnancy and breast-feeding after birth.
Collapse
Affiliation(s)
- L Zhou
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|