1
|
Öztürk HK, Slanař O, Michaličková D. Safety and efficacy of antigen-specific therapeutic approaches for multiple sclerosis: Systematic review. PLoS One 2025; 20:e0320814. [PMID: 40388453 PMCID: PMC12088042 DOI: 10.1371/journal.pone.0320814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/24/2025] [Indexed: 05/21/2025] Open
Abstract
INTRODUCTION The objective of this systematic review is to evaluate the efficacy and safety of antigen-specific tolerance-inducing therapeutic approaches (products based on peptides, DNA and T cells) versus placebo or other comparators, where possible, in adult multiple sclerosis (MS) patients. METHODS PubMed, CINAHL, Web of Science, Cochrane and International Clinical Trials Registry Platform, ClinicalTrials.gov were searched for published and unpublished studies. Screening, critical appraisal, and data extraction for included studies were carried out by two independent reviewers. For efficacy, phase I, II and III clinical trials (randomized/non-randomized; double blind/single blind/unblinded; single-center/multicenter; single-arm/two-arm) and for safety, phase I, II and III clinical trials (randomized/non-randomized; double blind/single blind/unblinded; controlled/uncontrolled; single-center/multicenter; single-arm/two-arm) were included. Observational studies (cross-sectional studies, cohort studies, case studies/reports etc), review articles, systematic reviews, meta-analysis, preclinical and pilot studies were excluded. All included studies were critically appraised using standardized JBI tools, with no exclusions based on methodological quality. Where possible, studies were pooled in statistical meta-analysis, presented in tabular format, and accompanied by narrative synthesis. The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach for grading the certainty of evidence. RESULTS Search yielded 2644 results and in total 26 studies were included in the final analysis. Twelve studies were RCTs and 14 were quasi-experimental. In total, there were 1427 subjects from the RCTs, and 314 from non-RCTs. Sample size of studies ranged from 10 to 612 patients. All studies included adult patients, principally aged 18-55/65 years. Critical appraisal scores for the RCTs were in the range 31% to 92%. For quasi-experimental studies, critical appraisal scores were in the range 45% to 78%. Due to high heterogeneity of the studies, efficacy of all antigen-specific treatment remained ambiguous. For all three types of treatment, there was no statistical difference in occurrence of adverse effects (AEs) between the treatment- and placebo-related AEs (for DNA-based treatment RR was 1.06 (0.94-1.10), p = 0.334; for peptides-base treatments RR was 1.04 (0.90-1.08), p = 0.115; for T-cells-based treatments RR was 1.31 (0.97-1.76), p = 0.08). There were no differences in RR for serious AEs (SAEs) between the treatments either for DNA-based treatment (RR was 0.63 (0.25-1.58), p = 0.322) or peptide-based treatment (RR was 0.86 (0.62-1.19), p = 0.361). There were no reported SAEs for T cell-based treatments, so meta-analysis for these therapies was not performed. The most frequent AEs were local reactions to injection, such as redness, erythema, pain. DISCUSSION Antigen-specific tolerance-inducing therapeutic approaches appeared to be safe. However, the certainty for these results was very low for SAEs in peptide- and DNA-based therapies, whereas it was low for AEs in DNA- and T cells-based therapies and moderate for AEs in peptide-based therapies. The efficacy of antigen-specific therapies remains ambiguous. Larger, well-designed studies with high level quality are needed to ensure ultimate conclusions. REGISTRATION The registration number provided following registration of the protocol in PROSPERO is 'CRD42021236776'.
Collapse
Affiliation(s)
- Hatice Kübra Öztürk
- Institute of Pharmacology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Danica Michaličková
- Institute of Pharmacology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Ali A, Luqman Ali S. A Stable mRNA-Based Novel Multi-Epitope Vaccine Designs Against Infectious Heartland Virus by Integrated Immunoinformatics and Reverse Vaccinology Approaches. Viral Immunol 2025; 38:73-87. [PMID: 40125606 DOI: 10.1089/vim.2025.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
The Heartland virus (HRTV) is a tick-borne human pathogenic phlebovirus that primarily causes leukopenia and thrombocytopenia. It is transmitted by Amblyomma americanum type of tick, that is, notable for their aggressive biting behavior, affinity for human hosts, and high prevalence. Developing vaccines or immunizations against HRTV is gaining importance as a public-health preventive strategy. The current study was planned to prioritize a multi-epitope stable mRNA vaccine model against HRTV from lead B-cell and T-cell epitopes (with IC50 < 100 nM) of HRTV proteome following advanced immunoinformatics approaches. Model constructs were designed by linking the most potent, nonallergenic epitopes along with incorporation of human ribosomal protein adjuvant for immune response enhancement. The immunogenic potential of the coding vaccine molecule was examined via molecular docking against toll-like receptors immune receptors followed by normal mode analysis and molecular dynamics simulations-based energy minimization, molecular stability, and flexibility assessments. A robust, stable circular mRNA precursor of multi-epitopes vaccine model was designed by incorporating the Kozak consensus sequence, a start codon, and essential elements such as MHC class I trafficking domain (MITD), tPA, Goblin 5' and 3' Untranslated Region (UTRs), and a poly (A) tail. This strategic amalgamation ensures elevated immunogenicity and predicts a promising circular mRNA vaccine model against HRTV. The immune simulation predicted that the designed model vaccine is capable to elicit cell-mediated and humoral immune responses. The predicted circular mRNA vaccine precursor model is promising against HRTV to examine experimentally for its immunogenicity and safety features.
Collapse
Affiliation(s)
- Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Syed Luqman Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| |
Collapse
|
3
|
Swain SK, Panda S, Sahu BP, Mahapatra SR, Dey J, Sarangi R, Misra N. Inferring B-cell derived T-cell receptor induced multi-epitope-based vaccine candidate against enterovirus 71: a reverse vaccinology approach. Clin Exp Vaccine Res 2024; 13:132-145. [PMID: 38752008 PMCID: PMC11091429 DOI: 10.7774/cevr.2024.13.2.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/30/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Enterovirus 71, a pathogen that causes hand-foot and mouth disease (HFMD) is currently regarded as an increasing neurotropic virus in Asia and can cause severe complications in pediatric patients with blister-like sores or rashes on the hand, feet, and mouth. Notwithstanding the significant burden of the disease, no authorized vaccine is available. Previously identified attenuated and inactivated vaccines are worthless over time owing to changes in the viral genome. Materials and Methods A novel vaccine construct using B-cell derived T-cell epitopes from the virulent polyprotein found the induction of possible immune response. In order to boost the immune system, a beta-defensin 1 preproprotein adjuvant with EAAAK linker was added at the N-terminal end of the vaccine sequence. Results The immunogenicity of the designed, refined, and verified prospective three-dimensional-structure of the multi-epitope vaccine was found to be quite high, exhibiting non-allergenic and antigenic properties. The vaccine candidates bound to toll-like receptor 3 in a molecular docking analysis, and the efficacy of the potential vaccine to generate a strong immune response was assessed through in silico immunological simulation. Conclusion Computational analysis has shown that the proposed multi-epitope vaccine is possibly safe for use in humans and can elicit an immune response.
Collapse
Affiliation(s)
- Subrat Kumar Swain
- Department of Medical Research, IMS and SUM Hospital, Siksha “O” Anusandhan Deemed to be University, Bhubaneswar, India
| | - Subhasmita Panda
- Department of Pediatrics, IMS and SUM Hospital, Siksha “O” Anusandhan Deemed to be University, Bhubaneswar, India
| | - Basanta Pravas Sahu
- School of Biological Science, The University of Hong Kong, Hong Kong
- Decipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Rachita Sarangi
- Department of Pediatrics, IMS and SUM Hospital, Siksha “O” Anusandhan Deemed to be University, Bhubaneswar, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| |
Collapse
|
4
|
Nahian M, Shahab M, Mazumder L, Oliveira JIN, Banu TA, Sarkar MH, Goswami B, Habib A, Begum S, Akter S. In silico design of an epitope-based vaccine against PspC in Streptococcus pneumoniae using reverse vaccinology. J Genet Eng Biotechnol 2023; 21:166. [PMID: 38085389 PMCID: PMC10716094 DOI: 10.1186/s43141-023-00604-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/14/2023] [Indexed: 05/01/2025]
Abstract
BACKGROUND Streptococcus pneumoniae is a major pathogen that poses a significant hazard to global health, causing a variety of infections including pneumonia, meningitis, and sepsis. The emergence of antibiotic-resistant strains has increased the difficulty of conventional antibiotic treatment, highlighting the need for alternative therapies such as multi-epitope vaccines. In this study, immunoinformatics algorithms were used to identify potential vaccine candidates based on the extracellular immunogenic protein Pneumococcal surface protein C (PspC). METHOD The protein sequence of PspC was retrieved from NCBI for the development of the multi-epitope vaccine (MEV), and potential B cell and T cell epitopes were identified. Linkers including EAAAK, AAY, and CPGPG were used to connect the epitopes. Through molecular docking, molecular dynamics, and immunological simulation, the affinity between MEV and Toll-like receptors was determined. After cloning the MEV construct into the PET28a ( +) vector, SnapGene was used to achieve expression in Escherichia coli. RESULT The constructed MEV was discovered to be stable, non-allergenic, and antigenic. Microscopic interactions between ligand and receptor are confirmed by molecular docking and molecular dynamics simulation. The use of an in-silico cloning approach guarantees the optimal expression and translation efficiency of the vaccine within an expression vector. CONCLUSION Our study demonstrates the potential of in silico approaches for designing effective multi-epitope vaccines against S. pneumoniae. The designated vaccine exhibits the required physicochemical, structural, and immunological characteristics of a successful vaccine against SPN. However, laboratory validation is required to confirm the safety and immunogenicity of the proposed vaccine design.
Collapse
Affiliation(s)
- Md Nahian
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | - Muhammad Shahab
- State key laboratories of chemical Resources Engineering. Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
- Department of Biology, Indiana State University, Terre Haute, United States
| | - Jonas Ivan Nobre Oliveira
- Departamento de Biof ́ısica e Farmacologia, Universidade Federal do Rio Grande doNorte, 59072-970, Natal, RN, Brazil
| | - Tanjina Akhtar Banu
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Murshed Hasan Sarkar
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Barna Goswami
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Ahashan Habib
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Shamima Begum
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | - Shahina Akter
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh.
| |
Collapse
|
5
|
Pei M, Dong A, Ma X, Li S, Guo Y, Li M, Wang Z, Wang H, Zhu L, Pan C, Wang Y. Identification of potential antigenic peptides of Brucella through proteome and peptidome. Vet Med Sci 2022; 9:523-534. [PMID: 36583994 PMCID: PMC9856995 DOI: 10.1002/vms3.1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Brucellosis, caused by Brucella spp., is a major zoonotic public health threat. Although several Brucella vaccines have been demonstrated for use in animals, Brucella spp. can cause human infection and to date, there are no human-use vaccines licensed by any agency. Recently, methods in vaccine informatics have made major breakthroughs in peptide-based epitopes, opening up a new avenue of vaccine development. OBJECTIVES The purpose of this article was to identify potential antigenic peptides in Brucella by proteome and peptidome analyses. METHODS Mouse infection models were first established by injection with Brucella and spleen protein profiles were then analysed. Subsequently, the major histocompatibility complex class I or II (major histocompatibility complex [MHC]-I/II)-binding peptides in blood samples were collected by immunoprecipitation and peptides derived from Brucella proteins were identified through liquid chromatography-mass spectrometry (LC-MS/MS). These peptides were then evaluated in a variety of ways, such as in terms of conservation in Brucella and synchronicity in predicted peptides (similarity and coverage), which allowed us to more effectively measure their antigenic potential. RESULTS The expression of the inflammatory cytokines IL1B and IFN-γ was significantly altered in the spleen of infected mice and some Brucella proteins, such as Muri, AcpP and GroES, were also detected. Meanwhile, in blood, 35 peptides were identified and most showed high conservation, highlighting their potential as antigen epitopes for vaccine development. In particular, we identified four proteins containing both MHC-I- and MHC-II-binding peptides including AtpA, AtpD, DnaK and BAbS19_II02030. They were also compared with the predicted peptides to estimate their reliability. CONCLUSIONS The peptides we screened could bind to MHC molecules. After being stimulated with antigen T epitopes, Memory T cells can stimulate T cell activation and promote immune responses. Our results indicated that the peptides we identified may be good candidate targets for the design of subunit vaccines and these results pave the way for the study of safer vaccines against Brucella.
Collapse
Affiliation(s)
- Meijuan Pei
- Department of Clinical LaboratoryThe Third Medical Centre of Chinese PLA General HospitalThe Training Site for Postgraduate of Jinzhou Medical UniversityBeijingChina,State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyBeijingChina
| | - Ao Dong
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyBeijingChina
| | - Xueping Ma
- Department of Clinical LaboratoryThe Third Medical Centre of Chinese PLA General HospitalBeijingChina
| | - Shulei Li
- Department of Clinical LaboratoryThe Third Medical Centre of Chinese PLA General HospitalThe Training Site for Postgraduate of Jinzhou Medical UniversityBeijingChina,State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyBeijingChina
| | - Yan Guo
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyBeijingChina
| | - Menglan Li
- Department of Clinical LaboratoryThe Third Medical Centre of Chinese PLA General HospitalBeijingChina
| | - Zhenghui Wang
- Department of Clinical LaboratoryThe Third Medical Centre of Chinese PLA General HospitalBeijingChina
| | - Hengliang Wang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyBeijingChina
| | - Li Zhu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyBeijingChina
| | - Chao Pan
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyBeijingChina
| | - Yufei Wang
- Department of Clinical LaboratoryThe Third Medical Centre of Chinese PLA General HospitalThe Training Site for Postgraduate of Jinzhou Medical UniversityBeijingChina,Department of Clinical LaboratoryThe Third Medical Centre of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
6
|
Susithra Priyadarshni M, Isaac Kirubakaran S, Harish MC. In silico approach to design a multi-epitopic vaccine candidate targeting the non-mutational immunogenic regions in envelope protein and surface glycoprotein of SARS-CoV-2. J Biomol Struct Dyn 2022; 40:12948-12963. [PMID: 34528491 PMCID: PMC8477437 DOI: 10.1080/07391102.2021.1977702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The novel corona virus (COVID-19) is a causative agent for severe acute respiratory syndrome (SARS-CoV-2) and responsible for the current human pandemic situation which has caused global social and economic commotion. The currently available vaccines use whole viruses whereas there is scope for peptide based vaccines. Thus, the global raise in statistics of this infection at an alarming rate evoked us to determine a novel and effective vaccine candidate against SARS-CoV-2. To find the potential vaccine candidate targets, immunoinformatics approaches were used to analyze the mutations in the envelope protein and surface glycoprotein and determine the conserved region; further specific T-cell epitopes VSLVKPSFY, SLVKPSFYV, RVKNLNSSR, SEETGTLIV, LVKPSFYVY, LTDEMIAQY, YLQPRTFLL, RLFRKSNLK, SPRRARSVA, AEIRASANL, TLLALHRSY, YSRVKNLNS and FELLHAPAT and B-cells epitopes TLAILTALRLCAYCCN and AGTITSGWTFGAGAAL were identified. The 3 D structure of epitope was predicted, refined and validated. The molecular docking analysis of multi-epitope vaccine candidates with TLR receptors, predicted effective binding. Overall, using bioinformatics approach this multi-epitopic target facilitates the proof of concept for SARS-CoV-2 conserved epitopic vaccine design.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - S. Isaac Kirubakaran
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, KS, USA
| | - M. C. Harish
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India,CONTACT M. C. Harish Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore632115, India
| |
Collapse
|
7
|
Mia MM, Hasan M, Ahmed S, Rahman MN. Insight into the first multi-epitope-based peptide subunit vaccine against avian influenza A virus (H5N6): An immunoinformatics approach. INFECTION, GENETICS AND EVOLUTION 2022; 104:105355. [PMID: 36007760 PMCID: PMC9394107 DOI: 10.1016/j.meegid.2022.105355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/22/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022]
Abstract
The rampant spread of highly pathogenic avian influenza A (H5N6) virus has drawn additional concerns along with ongoing Covid-19 pandemic. Due to its migration-related diffusion, the situation is deteriorating. Without an existing effective therapy and vaccines, it will be baffling to take control measures. In this regard, we propose a revers vaccinology approach for prediction and design of a multi-epitope peptide based vaccine. The induction of humoral and cell-mediated immunity seems to be the paramount concern for a peptide vaccine candidate; thus, antigenic B and T cell epitopes were screened from the surface, membrane and envelope proteins of the avian influenza A (H5N6) virus, and passed through several immunological filters to determine the best possible one. Following that, the selected antigenic with immunogenic epitopes and adjuvant were linked to finalize the multi-epitope-based peptide vaccine by appropriate linkers. For the prediction of an effective binding, molecular docking was carried out between the vaccine and immunological receptors (TLR8). Strong binding affinity and good docking scores clarified the stringency of the vaccines. Furthermore, molecular dynamics simulation was performed within the highest binding affinity complex to observe the stability, and minimize the designed vaccine's high mobility region to order to increase its stability. Then, Codon optimization and other physicochemical properties were performed to reveal that the vaccine would be suitable for a higher expression at cloning level and satisfactory thermostability condition. In conclusion, predicting the overall in silico assessment, we anticipated that our designed vaccine would be a plausible prevention against avian influenza A (H5N6) virus.
Collapse
Affiliation(s)
- Md Mukthar Mia
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Shakil Ahmed
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mohammad Nahian Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
8
|
Kumar A, Rathi E, Kini SG. Computational design of a broad-spectrum multi-epitope vaccine candidate against seven strains of human coronaviruses. 3 Biotech 2022; 12:240. [PMID: 36003896 PMCID: PMC9395775 DOI: 10.1007/s13205-022-03286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Spike (S) proteins are an attractive target as it mediates the binding of the SARS-CoV-2 to the host through ACE-2 receptors. We hypothesize that the screening of the S protein sequences of all the seven known HCoVs would result in the identification of potential multi-epitope vaccine candidates capable of conferring immunity against various HCoVs. In the present study, several machine learning-based in-silico tools were employed to design a broad-spectrum multi-epitope vaccine candidate targeting the S protein of seven known strains of human coronaviruses. Herein, multiple B-cell epitopes and T-cell epitopes (CTL and HTL) were predicted from the S protein sequences of all seven known HCoVs. Post-prediction they were linked together with an adjuvant to construct a potential broad-spectrum vaccine candidate. Secondary and tertiary structures were predicted and validated, and the refined 3D-model was docked with an immune receptor. The vaccine candidate was evaluated for antigenicity, allergenicity, solubility, and its ability to achieve high-level expression in bacterial hosts. Finally, the immune simulation was carried out to evaluate the immune response after three vaccine doses. The designed vaccine is antigenic (with or without the adjuvant), non-allergenic, binds well with TLR-3 receptor and might elicit a diverse and strong immune response.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Suvarna Ganesh Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India.,Manipal Mc Gill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
9
|
Hasan M, Mia M. Exploratory Algorithm of a Multi-epitope-based Subunit Vaccine Candidate Against Cryptosporidium hominis: Reverse Vaccinology-Based Immunoinformatic Approach. Int J Pept Res Ther 2022; 28:134. [PMID: 35911179 PMCID: PMC9315849 DOI: 10.1007/s10989-022-10438-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 12/03/2022]
Abstract
Cryptosporidiosis is the leading protozoan-induced cause of diarrheal illness in children, and it has been linked to childhood mortality, malnutrition, cognitive development, with retardation of growth. Cryptosporidium hominis, the anthroponotically transmitted species within the Cryptosporidium genus, contributes significantly to the global burden of infection, accounting for the majority of clinical cases in numerous nations, as well as its emergence in the last decade is largely due to detections obtained through noteworthy epidemiologic research. Nevertheless, there is no vaccine available, and the only licensed medication, nitazoxanide, has been demonstrated to have efficacy limitations in a number of patient groups recognized to be at high risk of complications. Therefore, current study delineates the computational vaccine design for Cryptosporidium hominis, the notable pathogen for enteric diarrhea. Firstly, a comprehensive literature search was conducted to identify six proteins based on their toxigenicity, allergenicity, antigenicity, and prediction of transmembrane helices to make up a multi-epitope-based subunit vaccine. Following that, antigenic non-toxic HTL epitope, CTL epitope with B cell epitope were predicted from the selected proteins and construct a vaccine candidate with adding an adjuvant and some linkers with immunologically superior epitopes. Afterwards, the constructed vaccine candidates and TLR2 receptor were put into the ClusPro server for molecular dynamic simulation to know the binding stability of the vaccine-TLR2 complex. Following that, Escherichia coli strain K12 was used as a cloning host for the chosen vaccine construct via the JCat server. As a result of the findings, it was resolute that the proposed chimeric peptide vaccine could improve the immune response to Cryptosporidium hominis.
Collapse
Affiliation(s)
- Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100 Bangladesh
| | - Mukthar Mia
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100 Bangladesh.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100 Bangladesh
| |
Collapse
|
10
|
T-Cell Epitopes Based Vaccine Candidate’s Prediction for Treatment Against Burkholderia pseudomallei: Causative Agent of Melioidosis. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10400-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Alotaibi G, Khan K, Al Mouslem AK, Ahmad Khan S, Naseer Abbas M, Abbas M, Ali Shah S, Jalal K. Pan Genome Based Reverse Vaccinology Approach to Explore Enterococcus Faecium (VRE) Strains for Identification of Novel Multi-Epitopes Vaccine Candidate. Immunobiology 2022; 227:152221. [DOI: 10.1016/j.imbio.2022.152221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/24/2022] [Accepted: 04/15/2022] [Indexed: 11/05/2022]
|
12
|
Khan N, Bhat R, Jain V, Raghavendhar B S, Patel AK, Nayak K, Chandele A, Murali-Krishna K, Ray P. Epidemiology and molecular characterization of chikungunya virus from human cases in North India, 2016. Microbiol Immunol 2021; 65:290-301. [PMID: 33347650 DOI: 10.1111/1348-0421.12869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/08/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022]
Abstract
Chikungunya virus (CHIKV), an arthropod-borne Alphavirus is responsible for chikungunya disease. Arthralgia and arthritis are the major symptom. Some patients recover early while others for a very long time. This study provides, epidemiology and molecular characterization of three whole-genome sequences of CHIKV and assessed phylogenetic analysis, physiological properties, antigenicity, and B-cell epitope prediction by in silico. We report the clinical epidemiology of 325 suspected patients. Of these, 118 (36.30%) were confirmed CHIKV positive by either PCR or ELISA. Clinical analysis showed joint pain, joint swelling and headache were frequent and significant features. Phylogenie analysis showed the currently circulating strain is in close clustring to Africa, Uganda, and Singapore CHIKV strains. Molecular characterization by WGS was done. Thirty eight amino acid changes in the nonstructural proteins were found with respect to the S27 (ECSA) strain. Of these five located in nsP2. Similarly, 34 amino acid changes in structural proteins were observed. The major change was notice; in E3 protein hydropathicity -0.281 to -0.362, in E2 isoelectric point (pI) 8.24 to 8.37, instability index 66.08 to 71.062, aliphatic index varied from 74.69 to 68.59 and E3 75.79 to 70.05. In nsP1 protein pI varies from 6.62 to 8.04, while no other change was observed in structural and nonstructural protein. The linear B-cell epitopes, position, and number varied with the mutation. The molecular characterizations of WGS demonstrate the observation of protein, antigenicity with respect to the mutation.
Collapse
Affiliation(s)
- Naushad Khan
- Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Ruchika Bhat
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Vineet Jain
- Department of Medicine, Hamdard Institute of Medical Sciences and Research (HIMSR), New Delhi, India
| | - Siva Raghavendhar B
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Ashok K Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Pratima Ray
- Department of Biotechnology, Jamia Hamdard, New Delhi, India
| |
Collapse
|
13
|
Alam A, Khan A, Imam N, Siddiqui MF, Waseem M, Malik MZ, Ishrat R. Design of an epitope-based peptide vaccine against the SARS-CoV-2: a vaccine-informatics approach. Brief Bioinform 2021; 22:1309-1323. [PMID: 33285567 PMCID: PMC7799329 DOI: 10.1093/bib/bbaa340] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
The recurrent and recent global outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has turned into a global concern which has infected more than 42 million people all over the globe, and this number is increasing in hours. Unfortunately, no vaccine or specific treatment is available, which makes it more deadly. A vaccine-informatics approach has shown significant breakthrough in peptide-based epitope mapping and opens the new horizon in vaccine development. In this study, we have identified a total of 15 antigenic peptides [including thymus cells (T-cells) and bone marrow or bursa-derived cells] in the surface glycoprotein (SG) of SARS-CoV-2 which is nontoxic and nonallergenic in nature, nonallergenic, highly antigenic and non-mutated in other SARS-CoV-2 virus strains. The population coverage analysis has found that cluster of differentiation 4 (CD4+) T-cell peptides showed higher cumulative population coverage over cluster of differentiation 8 (CD8+) peptides in the 16 different geographical regions of the world. We identified 12 peptides ((LTDEMIAQY, WTAGAAAYY, WMESEFRVY, IRASANLAA, FGAISSVLN, VKQLSSNFG, FAMQMAYRF, FGAGAALQI, YGFQPTNGVGYQ, LPDPSKPSKR, QTQTNSPRRARS and VITPGTNTSN) that are $80\hbox{--} 90\%$ identical with experimentally determined epitopes of SARS-CoV, and this will likely be beneficial for a quick progression of the vaccine design. Moreover, docking analysis suggested that the identified peptides are tightly bound in the groove of human leukocyte antigen molecules which can induce the T-cell response. Overall, this study allows us to determine potent peptide antigen targets in the SG on intuitive grounds, which opens up a new horizon in the coronavirus disease (COVID-19) research. However, this study needs experimental validation by in vitro and in vivo.
Collapse
Affiliation(s)
- Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi 110025, India
| | - Arbaaz Khan
- Department of computer science, Jamia Millia Islamia University, New Delhi, India
| | - Nikhat Imam
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia University, New Delhi, India
| | | | - Mohd Waseem
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Md Zubbair Malik
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia University, New Delhi, India
| |
Collapse
|
14
|
Lutterotti A, Hayward-Koennecke H, Sospedra M, Martin R. Antigen-Specific Immune Tolerance in Multiple Sclerosis-Promising Approaches and How to Bring Them to Patients. Front Immunol 2021; 12:640935. [PMID: 33828551 PMCID: PMC8019937 DOI: 10.3389/fimmu.2021.640935] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/26/2021] [Indexed: 01/28/2023] Open
Abstract
Antigen-specific tolerance induction aims at treating multiple sclerosis (MS) at the root of its pathogenesis and has the prospect of personalization. Several promising tolerization approaches using different technologies and modes of action have already advanced to clinical testing. The prerequisites for successful tolerance induction include the knowledge of target antigens, core pathomechanisms, and how to pursue a clinical development path that is distinct from conventional drug development. Key aspects including patient selection, outcome measures, demonstrating the mechanisms of action as well as the positioning in the rapidly growing spectrum of MS treatments have to be considered to bring this therapy to patients.
Collapse
Affiliation(s)
- Andreas Lutterotti
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Helen Hayward-Koennecke
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Derdelinckx J, Cras P, Berneman ZN, Cools N. Antigen-Specific Treatment Modalities in MS: The Past, the Present, and the Future. Front Immunol 2021; 12:624685. [PMID: 33679769 PMCID: PMC7933447 DOI: 10.3389/fimmu.2021.624685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Antigen-specific therapy for multiple sclerosis may lead to a more effective therapy by induction of tolerance to a wide range of myelin-derived antigens without hampering the normal surveillance and effector function of the immune system. Numerous attempts to restore tolerance toward myelin-derived antigens have been made over the past decades, both in animal models of multiple sclerosis and in clinical trials for multiple sclerosis patients. In this review, we will give an overview of the current approaches for antigen-specific therapy that are in clinical development for multiple sclerosis as well provide an insight into the challenges for future antigen-specific treatment strategies for multiple sclerosis.
Collapse
Affiliation(s)
- Judith Derdelinckx
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Division of Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Patrick Cras
- Division of Neurology, Antwerp University Hospital, Edegem, Belgium.,Born Bunge Institute, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
16
|
Sahoo S, Mahapatra SR, Parida BK, Rath S, Dehury B, Raina V, Mohakud NK, Misra N, Suar M. DBCOVP: A database of coronavirus virulent glycoproteins. Comput Biol Med 2021; 129:104131. [PMID: 33276297 PMCID: PMC7679231 DOI: 10.1016/j.compbiomed.2020.104131] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/31/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Since the emergence of SARS-CoV-1 (2002), novel coronaviruses have emerged periodically like the MERS- CoV (2012) and now, the SARS-CoV-2 outbreak which has posed a global threat to public health. Although, this is the third zoonotic coronavirus breakout within the last two decades, there are only a few platforms that provide information about coronavirus genomes. None of them is specific for the virulence glycoproteins and complete sequence-structural features of these virulence factors across the betacoronavirus family including SARS-CoV-2 strains are lacking. Against this backdrop, we present DBCOVP (http://covp.immt.res.in/), the first manually-curated, web-based resource to provide extensive information on the complete repertoire of structural virulent glycoproteins from coronavirus genomes belonging to betacoronavirus genera. The database provides various sequence-structural properties in which users can browse and analyze information in different ways. Furthermore, many conserved T-cell and B-cell epitopes predicted for each protein are present that may perform a significant role in eliciting the humoral and cellular immune response. The tertiary structure of the epitopes together with the docked epitope-HLA binding-complex is made available to facilitate further analysis. DBCOVP presents an easy-to-use interface with in-built tools for similarity search, cross-genome comparison, phylogenetic, and multiple sequence alignment. DBCOVP will certainly be an important resource for experimental biologists engaged in coronavirus research studies and will aid in vaccine development.
Collapse
Affiliation(s)
- Susrita Sahoo
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Bikram Kumar Parida
- Informatics Lab, CSIR-Institute of Minerals and Materials Technology (CSIR-IMMT), Bhubaneswar, Odisha, India
| | - Satyajit Rath
- Informatics Lab, CSIR-Institute of Minerals and Materials Technology (CSIR-IMMT), Bhubaneswar, Odisha, India
| | - Budheswar Dehury
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Vishakha Raina
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Nirmal Kumar Mohakud
- Department of Pediatrics, Kalinga Institute of Medical Sciences, KIIT Deemed to Be University, Bhubaneswar, Odisha, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India; KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India; KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
17
|
Munia M, Mahmud S, Mohasin M, Kibria KK. In silico design of an epitope-based vaccine against choline binding protein A of Streptococcus pneumoniae. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100546] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
18
|
Di Natale C, La Manna S, De Benedictis I, Brandi P, Marasco D. Perspectives in Peptide-Based Vaccination Strategies for Syndrome Coronavirus 2 Pandemic. Front Pharmacol 2020; 11:578382. [PMID: 33343349 PMCID: PMC7744882 DOI: 10.3389/fphar.2020.578382] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023] Open
Abstract
At the end of December 2019, an epidemic form of respiratory tract infection now named COVID-19 emerged in Wuhan, China. It is caused by a newly identified viral pathogen, the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which can cause severe pneumonia and acute respiratory distress syndrome. On January 30, 2020, due to the rapid spread of infection, COVID-19 was declared as a global health emergency by the World Health Organization. Coronaviruses are enveloped RNA viruses belonging to the family of Coronaviridae, which are able to infect birds, humans and other mammals. The majority of human coronavirus infections are mild although already in 2003 and in 2012, the epidemics of SARS-CoV and Middle East Respiratory Syndrome coronavirus (MERS-CoV), respectively, were characterized by a high mortality rate. In this regard, many efforts have been made to develop therapeutic strategies against human CoV infections but, unfortunately, drug candidates have shown efficacy only into in vitro studies, limiting their use against COVID-19 infection. Actually, no treatment has been approved in humans against SARS-CoV-2, and therefore there is an urgent need of a suitable vaccine to tackle this health issue. However, the puzzled scenario of biological features of the virus and its interaction with human immune response, represent a challenge for vaccine development. As expected, in hundreds of research laboratories there is a running out of breath to explore different strategies to obtain a safe and quickly spreadable vaccine; and among others, the peptide-based approach represents a turning point as peptides have demonstrated unique features of selectivity and specificity toward specific targets. Peptide-based vaccines imply the identification of different epitopes both on human cells and virus capsid and the design of peptide/peptidomimetics able to counteract the primary host-pathogen interaction, in order to induce a specific host immune response. SARS-CoV-2 immunogenic regions are mainly distributed, as well as for other coronaviruses, across structural areas such as spike, envelope, membrane or nucleocapsid proteins. Herein, we aim to highlight the molecular basis of the infection and recent peptide-based vaccines strategies to fight the COVID-19 pandemic including their delivery systems.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano Di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, University of Naples Federico II, Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Paola Brandi
- Centro Nacional De Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
19
|
Islam MSB, Miah M, Hossain ME, Kibria KMK. A conserved multi-epitope-based vaccine designed by targeting hemagglutinin protein of highly pathogenic avian H5 influenza viruses. 3 Biotech 2020; 10:546. [PMID: 33251084 PMCID: PMC7682764 DOI: 10.1007/s13205-020-02544-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/03/2020] [Indexed: 11/29/2022] Open
Abstract
The highly pathogenic avian H5N1 influenza viruses have been recognized as a potential pandemic threat to humans, and to the poultry industry since 1997. H5 viruses consist of a high mutation rate, so universal vaccine designing is very challenging. Here, we describe a vaccinomics approach to design a novel multi-epitope influenza vaccine, based on the highly conserved regions of surface glycoprotein, Hemagglutinin (HA). Initially, the HA protein sequences from Bangladeshi origin were retrieved and aligned by ClustalW. The sequences of 100% conserved regions extracted and analyzed to select the highest potential T-cell and B-cell epitope. The HTL and CTL analyses using IEDB tools showed that DVWTYNAELLVLMEN possesses the highest affinity with MHC class I and II alleles, and it has the highest population coverage. The docking simulation study suggests that this epitope has the potential to interact with both MHC class I and MHC class II. The B-cell epitope prediction provides a potential peptide, GAIAGFIEGGWQGM. We further retrieved HA sequences of 3950 avian and 250 human H5 isolates from several populations of the world, where H5 was an epidemic. Surprisingly, these epitopes are more than 98% conserved in those regions which indicate their potentiality as a conserved vaccine. We have proposed a multi-epitope vaccine using these sequences and assess its stability and potentiality to induce B-cell immunity. In vivo study is necessary to corroborate this epitope as a vaccine, however, setting forth groundwork for wet-lab studies essential to mitigate pandemic threats and provide cross-protection of both avian and humans against H5 influenza viruses.
Collapse
Affiliation(s)
- Md. Shaid Bin Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902 Bangladesh
| | - Mojnu Miah
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Enayet Hossain
- Emerging Infections, Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - K. M. Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902 Bangladesh
| |
Collapse
|
20
|
Arevalo-Villalobos JI, Govea-Alonso DO, Bañuelos-Hernández B, González-Ortega O, Zarazúa S, Rosales-Mendoza S. Inducible expression of antigens in plants: a study focused on peptides related to multiple sclerosis immunotherapy. J Biotechnol 2020; 318:51-56. [PMID: 32387449 DOI: 10.1016/j.jbiotec.2020.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/26/2022]
Abstract
Multiple sclerosis (MS) affects 2.3 million patients worldwide with no effective treatments available thus far. Depletion of autoreactive T-cells is considered the basis for immunotherapeutic approaches. For this purpose the peptides BV5S2, BV6S5, and BV13S1 have been identified as candidates for the development of a MS vaccine. Herein, the plant-based simultaneous production of these peptides is described as an effort to generate a new model of MS immunotherapy. A polyprotein comprising the sequence of the target peptides was designed having the picornaviral 2A sequence in between to mediate the release of the individual peptides upon translation. A codon optimized gene was cloned in vectors mediating constitutive (CaMV35S promoter) or inducible (AlcA promoter) expression. No transgenic tobacco plants were recovered from the constitutive vector suggesting toxicity of the target peptides. In contrast, several transformed lines were obtained with the inducible vector. The individual BV5S2, BV6S5, and BV13S1 peptides were detected in transformed lines upon ethanol-mediated induction and a quantitative analysis based on a OVA conjugate carrying the three peptides revealed accumulation levels up to 0.5 μg g-1 FW leaves. The plant-made peptides were able to induce humoral responses in orally immunized mice. This platform will be useful in the development of alternative immunotherapies against MS having low cost and safety as main attributes. Moreover the platform represents an attractive alternative for the expression of antigens having detrimental effects in plants.
Collapse
Affiliation(s)
- Jaime I Arevalo-Villalobos
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª Sección, San Luis Potosí, 78210, Mexico
| | - Dania O Govea-Alonso
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª Sección, San Luis Potosí, 78210, Mexico
| | - Bernardo Bañuelos-Hernández
- Escuela de Veterinaria, Universidad De La Salle Bajío, Avenida Universidad 602, Lomas del Campestre, 37150, León, Guanajuato, Mexico
| | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico
| | - Sergio Zarazúa
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª Sección, San Luis Potosí, 78210, Mexico.
| |
Collapse
|
21
|
Jakimovski D, Weinstock-Guttman B, Ramanathan M, Dwyer MG, Zivadinov R. Infections, Vaccines and Autoimmunity: A Multiple Sclerosis Perspective. Vaccines (Basel) 2020; 8:vaccines8010050. [PMID: 32012815 PMCID: PMC7157658 DOI: 10.3390/vaccines8010050] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease that is associated with multiple environmental factors. Among suspected susceptibility events, studies have questioned the potential role of overt viral and bacterial infections, including the Epstein Bar virus (EBV) and human endogenous retroviruses (HERV). Furthermore, the fast development of immunomodulatory therapies further questions the efficacy of the standard immunization policies in MS patients. Topics reviewed: This narrative review will discuss the potential interplay between viral and bacterial infections and their treatment on MS susceptibility and disease progression. In addition, the review specifically discusses the interactions between MS pathophysiology and vaccination for hepatitis B, influenza, human papillomavirus, diphtheria, pertussis, and tetanus (DTP), and Bacillus Calmette-Guerin (BCG). Data regarding potential interaction between MS disease modifying treatment (DMT) and vaccine effectiveness is also reviewed. Moreover, HERV-targeted therapies such as GNbAC1 (temelimab), EBV-based vaccines for treatment of MS, and the current state regarding the development of T-cell and DNA vaccination are discussed. Lastly, a reviewing commentary on the recent 2019 American Academy of Neurology (AAN) practice recommendations regarding immunization and vaccine-preventable infections in the settings of MS is provided. Conclusion: There is currently no sufficient evidence to support associations between standard vaccination policies and increased risk of MS. MS patients treated with immunomodulatory therapies may have a lower benefit from viral and bacterial vaccination. Despite their historical underperformance, new efforts in creating MS-based vaccines are currently ongoing. MS vaccination programs follow the set back and slow recovery which is widely seen in other fields of medicine.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
- Correspondence:
| | - Bianca Weinstock-Guttman
- Jacobs MS Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Murali Ramanathan
- School of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Michael G. Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
22
|
Delineating blueprint of an epitope-based peptide vaccine against the multiple serovars of dengue virus: A hierarchical reverse vaccinology approach. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Genetically modified hematopoietic stem/progenitor cells that produce IL-10-secreting regulatory T cells. Proc Natl Acad Sci U S A 2019; 116:2634-2639. [PMID: 30683721 DOI: 10.1073/pnas.1811984116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Random amino acid copolymers used in the treatment of multiple sclerosis in man or experimental autoimmune encephalomyelitis (EAE) in mice [poly(Y,E,A,K)n, known as Copaxone, and poly(Y,F,A,K)n] function at least in part by generation of IL-10-secreting regulatory T cells that mediate bystander immunosuppression. The mechanism through which these copolymers induce Tregs is unknown. To investigate this question, four previously described Vα3.2 Vβ14 T cell receptor (TCR) cDNAs, the dominant clonotype generated in splenocytes after immunization of SJL mice, that differed only in their CDR3 sequences were utilized to generate retrogenic mice. The high-level production of IL-10 as well as IL-5 and small amounts of the related cytokines IL-4 and IL-13 by CD4+ T cells isolated from the splenocytes of these mice strongly suggests that the TCR itself encodes information for specific cytokine secretion. The proliferation and production of IL-10 by these Tregs was costimulated by activation of glucocorticoid-induced TNF receptor (GITR) (expressed at high levels by these cells) through its ligand GITRL. A mechanism for generation of cells with this specificity is proposed. Moreover, retrogenic mice expressing these Tregs were protected from induction of EAE by the appropriate autoantigen.
Collapse
|
24
|
Hossain MU, Keya CA, Das KC, Hashem A, Omar TM, Khan MA, Rakib-Uz-Zaman SM, Salimullah M. An Immunopharmacoinformatics Approach in Development of Vaccine and Drug Candidates for West Nile Virus. Front Chem 2018; 6:246. [PMID: 30035107 PMCID: PMC6043868 DOI: 10.3389/fchem.2018.00246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 06/08/2018] [Indexed: 01/02/2023] Open
Abstract
An outbreak of West Nile Virus (WNV) like the recent Ebola can be more epidemic and fatal to public health throughout the world. WNV possesses utmost threat as no vaccine or drug is currently available for its treatment except mosquito control. The current study applied the combined approach of immunoinformatics and pharmacoinformatics to design potential epitope-based vaccines and drug candidates against WNV. By analyzing the whole proteome of 2994 proteins, the WNV envelope glycoprotein was selected as a therapeutic target based on its highest antigenicity. After proper assessment “KSFLVHREW” and “ITPSAPSYT” were found to be the most potential T and B-cell epitopes, respectively. Besides, we have designed and validated four novel drugs from a known WNV inhibitor, AP30451 by adopting computational approaches. Toxicity assessment and drug score confirmed the effectiveness of these drug candidates. This in silico research might greatly facilitate the wet lab experiments to develop vaccine and drug against WNV.
Collapse
Affiliation(s)
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Abu Hashem
- Microbial Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Taimur Md Omar
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md Arif Khan
- Bio-Bio-1 Research Foundation, Sangskriti Bikash Kendra Bhavan, Dhaka, Bangladesh
| | - S M Rakib-Uz-Zaman
- Department of Mathematics and Natural Sciences, Biotechnology Program, BRAC University, Dhaka, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| |
Collapse
|
25
|
Dutta SK, Bhattacharya T, Tripathi A. Chikungunya virus: genomic microevolution in Eastern India and its in-silico epitope prediction. 3 Biotech 2018; 8:318. [PMID: 30023150 DOI: 10.1007/s13205-018-1339-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 07/06/2018] [Indexed: 01/12/2023] Open
Abstract
This is the first study reporting whole genome sequences of two CHIKV strains (KJ679577 and KJ679578) isolated from Eastern Indian patients sera during 2010-2011 outbreak, both of which were of ECSA genotype, but from different subgroups: Indian Ocean outbreak and ECSA subtypes. Furthermore, viral sequences were analyzed using different in-silico approaches to identify potential genetic variations that might have functional implications on various aspects of virus replication, viral protein functionality, immunogenicity and transmission. Epitope prediction analysis revealed 70.9% increase in number of MHC Class-II interacting epitopes of KJ679578 and 25-28% increase in Class-I interacting epitopes of KJ679577 and KJ679578 compared to that of EF027141 (CHIKV of Asian genotype circulating in India during 1973, after which CHIKV infection disappeared from India for three decades). CHIKV peptides DLAKLAFKRSSKYDLECAQIPVHMKSDA and KVVLCGDPKQCGFFNMMQMKYNYNHNI were predicted to interact with maximum number of HLA Class-I (68 and 76.5%, respectively) and Class-II (47 and 100%, respectively) alleles present within Indian population with allele frequency of > 0.1 and were also recognized as predicted B-cell epitopes with BCPred score between 0.766 and 0.961 and with antigenicity ranging from 0.52 to 1.69; thus these peptides might be used to induce T- and B-cell-mediated immunity against CHIKV. Thus, the present study might help to bridge the gap between virus microevolution and its implication in host immunity by taking into account viral genetic and conformational changes. Predicted epitopes might be used as promising targets for peptide-based vaccine development and rapid diagnostics against CHIKV infection.
Collapse
Affiliation(s)
- Sudip Kumar Dutta
- 1Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata, West Bengal 700073 India
| | - Tamanash Bhattacharya
- 1Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata, West Bengal 700073 India
- 2Present Address: Department of Biology, Indiana University Bloomington, Bloomington, IN 474057000 USA
| | - Anusri Tripathi
- 1Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata, West Bengal 700073 India
| |
Collapse
|
26
|
De Angelis F, Plantone D, Chataway J. Pharmacotherapy in Secondary Progressive Multiple Sclerosis: An Overview. CNS Drugs 2018; 32:499-526. [PMID: 29968175 DOI: 10.1007/s40263-018-0538-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis is an immune-mediated inflammatory disease of the central nervous system characterised by demyelination, neuroaxonal loss and a heterogeneous clinical course. Multiple sclerosis presents with different phenotypes, most commonly a relapsing-remitting course and, less frequently, a progressive accumulation of disability from disease onset (primary progressive multiple sclerosis). The majority of people with relapsing-remitting multiple sclerosis, after a variable time, switch to a stage characterised by gradual neurological worsening known as secondary progressive multiple sclerosis. We have a limited understanding of the mechanisms underlying multiple sclerosis, and it is believed that multiple genetic, environmental and endogenous factors are elements driving inflammation and ultimately neurodegeneration. Axonal loss and grey matter damage have been regarded as amongst the leading causes of irreversible neurological disability in the progressive stages. There are over a dozen disease-modifying therapies currently licenced for relapsing-remitting multiple sclerosis, but none of these has provided evidence of effectiveness in secondary progressive multiple sclerosis. Recently, there has been some early modest success with siponimod in secondary progressive multiple sclerosis and ocrelizumab in primary progressive multiple sclerosis. Finding treatments to delay or prevent the courses of secondary progressive multiple sclerosis is an unmet and essential goal of the research in multiple sclerosis. In this review, we discuss new findings regarding drugs with immunomodulatory, neuroprotective or regenerative properties and possible treatment strategies for secondary progressive multiple sclerosis. We examine the field broadly to include trials where participants have progressive or relapsing phenotypes. We summarise the most relevant results from newer investigations from phase II and III randomised controlled trials over the past decade, with particular attention to the last 5 years.
Collapse
Affiliation(s)
- Floriana De Angelis
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK.
| | - Domenico Plantone
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, UCL, London, UK
| |
Collapse
|
27
|
Zhang N, Nandakumar KS. Recent advances in the development of vaccines for chronic inflammatory autoimmune diseases. Vaccine 2018; 36:3208-3220. [PMID: 29706295 DOI: 10.1016/j.vaccine.2018.04.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/28/2018] [Accepted: 04/19/2018] [Indexed: 12/16/2022]
Abstract
Chronic inflammatory autoimmune diseases leading to target tissue destruction and disability are not only causing increase in patients' suffering but also contribute to huge economic burden for the society. General increase in life expectancy and high prevalence of these diseases both in elderly and younger population emphasize the importance of developing safe and effective vaccines. In this review, at first the possible mechanisms and risk factors associated with chronic inflammatory autoimmune diseases, such as rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) are discussed. Current advances in the development of vaccines for such autoimmune diseases, particularly those based on DNA, altered peptide ligands and peptide loaded MHC II complexes are discussed in detail. Finally, strategies for improving the efficacy of potential vaccines are explored.
Collapse
Affiliation(s)
- Naru Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Kutty Selva Nandakumar
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
28
|
Hossain MU, Omar TM, Oany AR, Kibria KMK, Shibly AZ, Moniruzzaman M, Ali SR, Islam MM. Design of peptide-based epitope vaccine and further binding site scrutiny led to groundswell in drug discovery against Lassa virus. 3 Biotech 2018; 8:81. [PMID: 29430345 DOI: 10.1007/s13205-018-1106-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/07/2018] [Indexed: 10/18/2022] Open
Abstract
Lassa virus (LASV) is responsible for an acute viral hemorrhagic fever known as Lassa fever. Sequence analyses of LASV proteome identified the most immunogenic protein that led to predict both T-cell and B-cell epitopes and further target and binding site depiction could allow novel drug findings for drug discovery field against this virus. To induce both humoral and cell-mediated immunity peptide sequence SSNLYKGVY, conserved region 41-49 amino acids were found as the most potential B-cell and T-cell epitopes, respectively. The peptide sequence might intermingle with 17 HLA-I and 16 HLA-II molecules, also cover 49.15-96.82% population coverage within the common people of different countries where Lassa virus is endemic. To ensure the binding affinity to both HLA-I and HLA-II molecules were employed in docking simulation with suggested epitope sequence. Further the predicted 3D structure of the most immunogenic protein was analyzed to reveal out the binding site for the drug design against Lassa Virus. Herein, sequence analyses of proteome identified the most immunogenic protein that led to predict both T-cell and B-cell epitopes and further target and binding site depiction could allow novel drug findings for drug discovery field against this virus.
Collapse
|
29
|
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system (CNS) characterized by neuroinflammation, neurodegeneration and impaired repair mechanisms that lead to neurological disability. The crux of MS is the patient's own immune cells attacking self-antigens in the CNS, namely the myelin sheath that protects nerve cells of the brain and spinal cord. Restoring antigen-specific tolerance via therapeutic vaccination is an innovative and exciting approach in MS therapy. Indeed, leveraging the body's attempt to prevent autoimmunity, i.e., tolerization, focuses on the underlying cause of the disease and could be the key to solving neuroinflammation. In this perspective, antigen-specific vaccination targets only the detrimental and aberrant immune response against the specific disease-associated antigen(s) involved while retaining the capacity of the immune system to respond to unrelated antigens. We review the experimental approaches of tolerance-inducing vaccination in relapsing and progressive forms of MS that have reached the clinical development phase, including vaccination with autologous T cells, autologous tolerogenic dendritic cells, T cell receptor peptide vaccination, altered peptide ligand, ATX-MS-1467, cluster of differentiation (CD)-206-targeted liposomal myelin basic protein peptides and DNA vaccination. Failures, successes and future directions are discussed.
Collapse
|
30
|
Vaccinomics Approach for Designing Potential Peptide Vaccine by Targeting Shigella spp. Serine Protease Autotransporter Subfamily Protein SigA. J Immunol Res 2017; 2017:6412353. [PMID: 29082265 PMCID: PMC5610819 DOI: 10.1155/2017/6412353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/28/2017] [Accepted: 07/24/2017] [Indexed: 11/18/2022] Open
Abstract
Shigellosis, a bacillary dysentery, is closely associated with diarrhoea in human and causes infection of 165 million people worldwide per year. Casein-degrading serine protease autotransporter of enterobacteriaceae (SPATE) subfamily protein SigA, an outer membrane protein, exerts both cytopathic and enterotoxic effects especially cytopathic to human epithelial cell type-2 (HEp-2) and is shown to be highly immunogenic. In the present study, we have tried to impose the vaccinomics approach for designing a common peptide vaccine candidate against the immunogenic SigA of Shigella spp. At first, 44 SigA proteins from different variants of S. flexneri, S. dysenteriae, S. boydii, and S. sonnei were assessed to find the most antigenic protein. We retrieved 12 peptides based on the highest score for human leukocyte antigen (HLA) supertypes analysed by NetCTL. Initially, these peptides were assessed for the affinity with MHC class I and class II alleles, and four potential core epitopes VTARAGLGY, FHTVTVNTL, HTTWTLTGY, and IELAGTLTL were selected. From these, FHTVTVNTL and IELAGTLTL peptides were shown to have 100% conservancy. Finally, IELAGTLTL was shown to have the highest population coverage (83.86%) among the whole world population. In vivo study of the proposed epitope might contribute to the development of functional and unique widespread vaccine, which might be an operative alleyway to thwart dysentery from the world.
Collapse
|
31
|
Waheed Y, Safi SZ, Najmi MH, Aziz H, Imran M. Prediction of promiscuous T cell epitopes in RNA dependent RNA polymerase of Chikungunya virus. ASIAN PAC J TROP MED 2017; 10:760-764. [PMID: 28942824 DOI: 10.1016/j.apjtm.2017.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To explore RNA dependent RNA polymerase of Chikungunya virus (CHIKV) and develop T cell based epitopes with high antigenicity and good binding affinity for the human leukocyte antigen (HLA) classes as targets for epitopes based CHIKV vaccine. METHODS In this study we downloaded 371 non-structural protein 4 protein sequences of CHIKV belonging to different regions of the world from the US National Institute of Allergy and Infectious Diseases (NIAID) virus pathogen resource database. All the sequences were aligned by using CLUSTALW software and a consensus sequence was developed by using Uni Pro U Gene Software version 1.2.1. Propred I and Propred software were used to predict HLA I and HLA II binding promiscuous epitopes from the consensus sequence of non-structural protein 4 protein. The predicted epitopes were analyzed to determine their antigenicity through Vaxijen server version 2.0. All the HLA I binding epitopes were scanned to determine their immunogenic potential through the Immune Epitope Database (IEDB). All the predicted epitopes of our study were fed to IEDB database to determine whether they had been tested earlier. RESULTS Twenty two HLA class II epitopes and eight HLA class I epitopes were predicted. The promiscuous epitopes WMNMEVKII at position 486-494 and VRRLNAVLL at 331-339 were found to bind with 37 and 36 of the 51 HLA class II alleles respectively. Epitope MANRSRYQS at position 58-66 and epitopes YQSRKVENM at positions 64-72 were predicted to bind with 12 and 9 HLA II alleles with antigenicity scores of 0.754 9 and 1.013 0 respectively. Epitope YSPPINVRL was predicted to bind 18 HLA I alleles and its antigenicity score was 1.425 9 and immunogenicity score was 0.173 83. This epitope is very useful in the preparation of a universal vaccine against CHIKV infection. CONCLUSIONS Epitopes reported in this study showed promiscuity, antigenicity as well as good binding affinity for the HLA classes. These epitopes will provide the baseline for development of efficacious vaccine for CHIKV.
Collapse
Affiliation(s)
- Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, DHA-I, Islamabad 44000, Pakistan.
| | - Sher Zaman Safi
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore Campus, Lahore, Pakistan
| | - Muzammil Hasan Najmi
- Foundation University Medical College, Foundation University Islamabad, DHA-I, Islamabad 44000, Pakistan
| | - Hafsa Aziz
- Nuclear Medicine Oncology and Radiotherapy Institute Islamabad, Islamabad 44000, Pakistan
| | - Muhammad Imran
- Department of Medical Laboratory Sciences (DMLS), Faculty of Health and Allied Sciences (FHAS), Imperial College of Business Studies (ICBS), Lahore, Pakistan; Department of Microbiology, University of Health Sciences, Lahore, Pakistan
| |
Collapse
|
32
|
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS) characterized by loss of motor and sensory function that results from immune-mediated inflammation, demyelination, and subsequent axonal damage. Clinically, most MS patients experience recurrent episodes (relapses) of neurological impairment, but in most cases (60–80%) the course of the disease eventually becomes chronic and progressive, leading to cumulative motor, sensory, and visual disability, and cognitive deficits. The course of the disease is largely unpredictable and its clinical presentation is variable, but its predilection for certain parts of the CNS, which includes the optic nerves, the brain stem, cerebellum, and cervical spinal cord, provides a characteristic constellation of signs and symptoms. Several variants of MS have been nowadays defined with variable immunopathogenesis, course and prognosis. Many new treatments targeting the immune system have shown efficacy in preventing the relapses of MS and have been introduced to its management during the last decade.
Collapse
|
33
|
Alam A, Ali S, Ahamad S, Malik MZ, Ishrat R. From ZikV genome to vaccine: in silico approach for the epitope-based peptide vaccine against Zika virus envelope glycoprotein. Immunology 2016; 149:386-399. [PMID: 27485738 DOI: 10.1111/imm.12656] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/18/2016] [Accepted: 07/29/2016] [Indexed: 12/22/2022] Open
Abstract
Zika virus (ZikV) has emerged as a potential threat to human health worldwide. A member of the Flaviviridae, ZikV is transmitted to humans by mosquitoes. It is related to other pathogenic vector-borne flaviviruses including dengue, West Nile and Japanese encephalitis viruses, but produces a comparatively mild disease in humans. As a result of its epidemic outbreak and the lack of potential medication, there is a need for improved vaccine/drugs. Computational techniques will provide further information about this virus. Comparative analysis of ZikV genomes should lead to the identification of the core characteristics that define a virus family, as well as its unique properties, while phylogenetic analysis will show the evolutionary relationships and provide clues about the protein's ancestry. Envelope glycoprotein of ZikV was obtained from a protein database and the most immunogenic epitope for T cells and B cells involved in cell-mediated immunity, whereas B cells are primarily responsible for humoral immunity. We mainly focused on MHC class I potential peptides. YRIMLSVHG, VLIFLSTAV and MMLELDPPF, GLDFSDLYY are the most potent peptides predicted as epitopes for CD4+ and CD8+ T cells, respectively, whereas MMLELDPPF and GLDFSDLYY had the highest pMHC-I immunogenicity score and these are further tested for interaction against the HLA molecules, using in silico docking techniques to verify the binding cleft epitope. However, this is an introductory approach to design an epitope-based peptide vaccine against ZikV; we hope that this model will be helpful in designing and predicting novel vaccine candidates.
Collapse
Affiliation(s)
- Aftab Alam
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Shahnawaz Ali
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Shahzaib Ahamad
- Department of Biotechnology, College of Engineering & Technology, IFTM, Moradabad, India
| | - Md Zubbair Malik
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
34
|
Hossain MU, Hashem A, Keya CA, Salimullah M. Therapeutics Insight with Inclusive Immunopharmacology Explication of Human Rotavirus A for the Treatment of Diarrhea. Front Pharmacol 2016; 7:153. [PMID: 27445802 PMCID: PMC4917548 DOI: 10.3389/fphar.2016.00153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/27/2016] [Indexed: 01/02/2023] Open
Abstract
Rotavirus is the most common cause of severe infant and childhood diarrhea worldwide, and the morbidity and mortality rate is going to be outnumbered in developing countries like Bangladesh. To mitigate this substantial burden of disease, new therapeutics such as vaccine and drug are swiftly required against rotavirus. The present therapeutics insight study was performed with comprehensive immunoinformatics and pharmacoinformatics approach. T and B-cell epitopes were assessed in the conserved region of outer capsid protein VP4 among the highly reviewed strains from different countries including Bangladesh. The results suggest that epitope SU1 (TLKNLNDNY) could be an ideal candidate among the predicted five epitopes for both T and B-cell epitopes for the development of universal vaccine against rotavirus. This research also suggests five novel drug compounds from medicinal plant Rhizophora mucronata Lamk. for better therapeutics strategies against rotavirus diarrhea based on 3D structure building, pharmacophore, ADMET, and QSAR properties. The exact mode of action between drug compounds and target protein VP4 were revealed by molecular docking analysis. Drug likeness and oral bioavailability further confirmed the effectiveness of the proposed drugs against rotavirus diarrhea. This study might be implemented for experimental validation to facilitate the novel vaccine and drug design.
Collapse
Affiliation(s)
- Mohammad Uzzal Hossain
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University Tangail, Bangladesh
| | - Abu Hashem
- Microbial Biotechnology Division, National Institute of Biotechnology Dhaka, Bangladesh
| | - Chaman Ara Keya
- Department of Biology and Chemistry, North South University Dhaka, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology Dhaka, Bangladesh
| |
Collapse
|
35
|
|
36
|
Oany AR, Sharmin T, Chowdhury AS, Jyoti TP, Hasan MA. Highly conserved regions in Ebola virus RNA dependent RNA polymerase may be act as a universal novel peptide vaccine target: a computational approach. In Silico Pharmacol 2015; 3:7. [PMID: 26820892 PMCID: PMC4529428 DOI: 10.1186/s40203-015-0011-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/22/2015] [Indexed: 11/10/2022] Open
Abstract
Purpose Ebola virus (EBOV) is such kind of virus which is responsible for 23,825 cases and 9675 deaths worldwide only in 2014 and with an average diseases fatality rate between 25 % and 90 %. Although, medical technology has tried to handle the problems, there is no Food and Drug Administration (FDA)-approved therapeutics or vaccines available for the prevention, post exposure, or treatment of Ebola virus disease (EVD). Methods In the present study, we used the immunoinformatics approach to design a potential epitope-based vaccine against the RNA-dependent RNA polymerase-L of EBOV. BioEdit v7.2.3 sequence alignment editor, Jalview v2 and CLC Sequence Viewer v7.0.2 were used for the initial sequence analysis for securing the conservancy from the sequences. Later the Immune Epitope Database and Analysis Resource (IEDB-AR) was used for the identification of T-cell and B-cellepitopes associated with type I and II major histocompatibility complex molecules analysis. Finally, the population coverage analysis was employed. Results The core epitope “FRYEFTAPF” was found to be the most potential one, with 100 % conservancy among all the strains of EBOV. It also interacted with both type I and II major histocompatibility complex molecules and is considered as nonallergenic in nature. Finally, with impressive cumulative population coverage of 99.87 % for the both MHC-I and MHC-II class throughout the world population was found for the proposed epitope. Conclusion To end, the projected peptide gave us a solid stand to propose for vaccine consideration and that might be experimented for its potency in eliciting immunity through humoral and cell mediated immune responses in vitro and in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s40203-015-0011-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arafat Rahman Oany
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Tahmina Sharmin
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Afrin Sultana Chowdhury
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong-4331, Bangladesh
| | - Tahmina Pervin Jyoti
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna-9208, Bangladesh
| | - Md Anayet Hasan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong-4331, Bangladesh.
| |
Collapse
|
37
|
Ali MT, Morshed MM, Hassan F. A Computational Approach for Designing a Universal Epitope-Based Peptide Vaccine Against Nipah Virus. Interdiscip Sci 2015; 7:177-85. [PMID: 26156209 DOI: 10.1007/s12539-015-0023-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 01/27/2015] [Accepted: 04/09/2015] [Indexed: 11/29/2022]
Abstract
Nipah virus (NiV) is highly pathogenic single-stranded negative sense RNA virus. It can cause severe encephalitis and respiratory disease in humans. In addition, NiV infects a large range of host including mammals. As a result of its higher zoonotic potential and pathogenicity for human, it has been rated as an alert in recent days. A therapeutic treatment or vaccines has become elusive to fight against this virus. In this study, the attachment (G) and fusion (F) glycoproteins of NiV, responsible for the viral attachment and entry to the host cell, were selected to develop epitope-based vaccine against Nipah virus. Epitopes were identified from the conserved region of G and F protein of NiV. Both B-cell and T-cell immunity were checked to affirm it that these epitopes will be able to induce humoral and cellular immunity. A total of 6 T-cell epitopes and 19 significant HLA-epitope interactions were identified. Eventually it has shown an acceptable percentage in population coverage (46.45 %) and efficient binding with HLA molecule by molecular docking study.
Collapse
Affiliation(s)
- Mohammad Tuhin Ali
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | | |
Collapse
|
38
|
A Highly Conserved GEQYQQLR Epitope Has Been Identified in the Nucleoprotein of Ebola Virus by Using an In Silico Approach. Adv Bioinformatics 2015; 2015:278197. [PMID: 25709646 PMCID: PMC4331325 DOI: 10.1155/2015/278197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/14/2015] [Indexed: 11/18/2022] Open
Abstract
Ebola virus (EBOV) is a deadly virus that has caused several fatal outbreaks. Recently it caused another outbreak and resulted in thousands afflicted cases. Effective and approved vaccine or therapeutic treatment against this virus is still absent. In this study, we aimed to predict B-cell epitopes from several EBOV encoded proteins which may aid in developing new antibody-based therapeutics or viral antigen detection method against this virus. Multiple sequence alignment (MSA) was performed for the identification of conserved region among glycoprotein (GP), nucleoprotein (NP), and viral structural proteins (VP40, VP35, and VP24) of EBOV. Next, different consensus immunogenic and conserved sites were predicted from the conserved region(s) using various computational tools which are available in Immune Epitope Database (IEDB). Among GP, NP, VP40, VP35, and VP30 protein, only NP gave a 100% conserved GEQYQQLR B-cell epitope that fulfills the ideal features of an effective B-cell epitope and could lead a way in the milieu of Ebola treatment. However, successful in vivo and in vitro studies are prerequisite to determine the actual potency of our predicted epitope and establishing it as a preventing medication against all the fatal strains of EBOV.
Collapse
|
39
|
Oany AR, Ahmad SAI, Hossain MU, Jyoti TP. Identification of highly conserved regions in L-segment of Crimean-Congo hemorrhagic fever virus and immunoinformatic prediction about potential novel vaccine. Adv Appl Bioinform Chem 2015; 8:1-10. [PMID: 25609983 PMCID: PMC4293217 DOI: 10.2147/aabc.s75250] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne zoonotic viral disease with a disease fatality rate between 15% and 70%. Despite the wide range of distribution, the virus (CCHFV) is basically endemic in Africa, Asia, eastern Europe, and the Middle East. Acute febrile illness associated with petechiae, disseminated intravascular coagulation, and multiple-organ failure are the main symptoms of the disease. With all these fatal effects, CCHFV is considered a huge threat as no successful therapeutic approach is currently available for the treatment of this disease. In the present study, we have used the immunoinformatics approach to design a potential epitope-based vaccine against the RNA-dependent RNA polymerase-L of CCHFV. Both the T-cell and B-cell epitopes were assessed, and the epitope "DCSSTPPDR" was found to be the most potential one, with 100% conservancy among all the strains of CCHFV. The epitope was also found to interact with both type I and II major histocompatibility complex molecules and is considered nonallergenic as well. In vivo study of our proposed peptide is advised for novel universal vaccine production, which might be an effective path to prevent CCHF disease.
Collapse
Affiliation(s)
- Arafat Rahman Oany
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Shah Adil Ishtiyaq Ahmad
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Mohammad Uzzal Hossain
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Tahmina Pervin Jyoti
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
40
|
Tanu AR, Ashraf MA, Hossain MF, Ismail M, Shekhar HU. Identification and validation of T-cell epitopes in outer membrane protein (OMP) of Salmonella typhi. Bioinformation 2014; 10:480-486. [PMID: 25258481 PMCID: PMC4166765 DOI: 10.6026/97320630010480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/04/2014] [Indexed: 11/23/2022] Open
Abstract
This study aims to design epitope-based peptides for the utility of vaccine development by targeting outer membrane protein F (Omp F), because two available licensed vaccines, live oral Ty21a and injectable polysaccharide, are 50% to 80% protective with a higher rate of side effects. Conventional vaccines take longer time for development and have less differentiation power between vaccinated and infected cells. On the other hand, Peptide-based vaccines present few advantages over other vaccines, such as stability of peptide, ease to manufacture, better storage, avoidance of infectious agents during manufacture, and different molecules can be linked with peptides to enhance their immunogenicity. Omp F is highly conserved and facilitates attachment and fusion of Salmonella typhi with host cells. Using various databases and tools, immune parameters of conserved sequences from Omp F of different isolates of Salmonella typhi were tested to predict probable epitopes. Binding analysis of the peptides with MHC molecules, epitopes conservancy, population coverage, and linear B cell epitope prediction were analyzed. Among all those predicted peptides, ESYTDMAPY epitope interacted with six MHC alleles and it shows highest amount of interaction compared to others. The cumulative population coverage for these epitopes as vaccine candidates was approximately 70%. Structural analysis suggested that epitope ESYTDMAPY fitted well into the epitope-binding groove of HLA-C*12:03, as this HLA molecule was common which interact with each and every predicted epitopes. So, this potential epitope may be linked with other molecules to enhance its immunogenicity and used for vaccine development.
Collapse
Affiliation(s)
- Arifur Rahman Tanu
- Department of Biochemistry & Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Mohammad Arif Ashraf
- Department of Biochemistry & Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Md Faruk Hossain
- Department of Biochemistry & Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Md Ismail
- Department of Biochemistry & Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Hossain Uddin Shekhar
- Department of Biochemistry & Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
41
|
Oany AR, Emran AA, Jyoti TP. Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1139-49. [PMID: 25187696 PMCID: PMC4149408 DOI: 10.2147/dddt.s67861] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human coronavirus (HCoV), a member of Coronaviridae family, is the
causative agent of upper respiratory tract infections and “atypical
pneumonia”. Despite severe epidemic outbreaks on several occasions and lack of
antiviral drug, not much progress has been made with regard to an epitope-based vaccine
designed for HCoV. In this study, a computational approach was adopted to identify a
multiepitope vaccine candidate against this virus that could be suitable to trigger a
significant immune response. Sequences of the spike proteins were collected from a protein
database and analyzed with an in silico tool, to identify the most immunogenic protein.
Both T cell immunity and B cell immunity were checked for the peptides to ensure that they
had the capacity to induce both humoral and cell-mediated immunity. The peptide sequence
from 88–94 amino acids and the sequence KSSTGFVYF were found as the most potential
B cell and T cell epitopes, respectively. Furthermore, conservancy analysis was also done
using in silico tools and showed a conservancy of 64.29% for all epitopes. The peptide
sequence could interact with as many as 16 human leukocyte antigens (HLAs) and showed high
cumulative population coverage, ranging from 75.68% to 90.73%. The epitope was further
tested for binding against the HLA molecules, using in silico docking techniques, to
verify the binding cleft epitope interaction. The allergenicity of the epitopes was also
evaluated. This computational study of design of an epitope-based peptide vaccine against
HCoVs allows us to determine novel peptide antigen targets in spike proteins on intuitive
grounds, albeit the preliminary results thereof require validation by in vitro and in vivo
experiments.
Collapse
Affiliation(s)
- Arafat Rahman Oany
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Abdullah-Al Emran
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh ; Translational Research Institute, University of Queensland, Brisbane, Australia
| | - Tahmina Pervin Jyoti
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
42
|
Khan MK, Zaman S, Chakraborty S, Chakravorty R, Alam MM, Bhuiyan TR, Rahman MJ, Fernández C, Qadri F, Seraj ZI. In silico predicted mycobacterial epitope elicits in vitro T-cell responses. Mol Immunol 2014; 61:16-22. [PMID: 24853589 DOI: 10.1016/j.molimm.2014.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/07/2014] [Accepted: 04/24/2014] [Indexed: 11/17/2022]
Abstract
Epitope-based vaccines permit the selection of only a specific subset of epitopes to induce the necessary immune response, thus providing a rational alternative to conventional design approaches. Using a range of immunoinformatics tools, we identified a novel, contiguous 28 amino acid multi-epitope cluster within the highly conserved secretory protein Ag85B of Mycobacterium tuberculosis, the causative agent of TB. This cluster, named Ep85B, is composed of epitopes which bind to three HLA Class I and 15 Class II molecules, and harbors the potential to generate 99% population coverage in TB-endemic regions. We experimentally evaluated the capacity of Ep85B to elicit T-cell immune responses using whole blood cells and, as predicted, observed significant increases in populations of both CD4+ and memory CD4+ CD45RO+ T-cells. Our results demonstrate the practical utility of an epitope-based design methodology - a strategy that, following further evaluation, may serve as an additional tool for the development of novel vaccine candidates against TB and other diseases.
Collapse
Affiliation(s)
- Md Kawsar Khan
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh; Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Shabnam Zaman
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh; Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Sajib Chakraborty
- Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | | | - Mohammad Murshid Alam
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Muhammad Jubayer Rahman
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), The Arrhenius Laboratories, Stockholm University, Sweden
| | - Carmen Fernández
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), The Arrhenius Laboratories, Stockholm University, Sweden
| | - Firdausi Qadri
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Zeba I Seraj
- Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh.
| |
Collapse
|
43
|
Hasan MA, Hossain M, Alam MJ. A computational assay to design an epitope-based Peptide vaccine against saint louis encephalitis virus. Bioinform Biol Insights 2013; 7:347-55. [PMID: 24324329 PMCID: PMC3855041 DOI: 10.4137/bbi.s13402] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Saint Louis encephalitis virus, a member of the flaviviridae subgroup, is a culex mosquito-borne pathogen. Despite severe epidemic outbreaks on several occasions, not much progress has been made with regard to an epitope-based vaccine designed for Saint Louis encephalitis virus. The envelope proteins were collected from a protein database and analyzed with an in silico tool to identify the most immunogenic protein. The protein was then verified through several parameters to predict the T-cell and B-cell epitopes. Both T-cell and B-cell immunity were assessed to determine that the protein can induce humoral as well as cell-mediated immunity. The peptide sequence from 330-336 amino acids and the sequence REYCYEATL from the position 57 were found as the most potential B-cell and T-cell epitopes, respectively. Furthermore, as an RNA virus, one important thing was to establish the epitope as a conserved one; this was also done by in silico tools, showing 63.51% conservancy. The epitope was further tested for binding against the HLA molecule by computational docking techniques to verify the binding cleft epitope interaction. However, this is a preliminary study of designing an epitope-based peptide vaccine against Saint Louis encephalitis virus; the results awaits validation by in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Md Anayet Hasan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | | | | |
Collapse
|
44
|
Ji N, Somanaboeina A, Dixit A, Kawamura K, Hayward NJ, Self C, Olson GL, Forsthuber T. Small molecule inhibitor of antigen binding and presentation by HLA-DR2b as a therapeutic strategy for the treatment of multiple sclerosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:5074-84. [PMID: 24123687 PMCID: PMC3891844 DOI: 10.4049/jimmunol.1300407] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The strong association of HLA-DR2b (DRB1*1501) with multiple sclerosis (MS) suggests this molecule as prime target for specific immunotherapy. Inhibition of HLA-DR2b-restricted myelin-specific T cells has the potential to selectively prevent CNS pathology mediated by these MHC molecules without undesired global immunosuppression. In this study, we report development of a highly selective small molecule inhibitor of peptide binding and presentation by HLA-DR2b. PV-267, the candidate molecule used in these studies, inhibited cytokine production and proliferation of myelin-specific HLA-DR2b-restricted T cells. PV-267 had no significant effect on T cell responses mediated by other MHC class II molecules, including HLA-DR1, -DR4, or -DR9. Importantly, PV-267 did not induce nonspecific immune activation of human PBMC. Lastly, PV-267 showed treatment efficacy both in preventing experimental autoimmune encephalomyelitis and in treating established disease. The results suggest that blocking the MS-associated HLA-DR2b allele with small molecule inhibitors may be a promising therapeutic strategy for the treatment of MS.
Collapse
Affiliation(s)
- Niannian Ji
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249
| | - Animesh Somanaboeina
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249
| | - Aakanksha Dixit
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249
| | - Kazuyuki Kawamura
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249
| | | | - Christopher Self
- Provid Pharmaceuticals Inc., 7 Deer Park Drive, Monmouth Junction, NJ 08852
| | - Gary L. Olson
- Provid Pharmaceuticals Inc., 7 Deer Park Drive, Monmouth Junction, NJ 08852
| | - Thomas Forsthuber
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249
| |
Collapse
|
45
|
Lutterotti A, Martin R. Antigen-specific tolerization approaches in multiple sclerosis. Expert Opin Investig Drugs 2013; 23:9-20. [PMID: 24151958 DOI: 10.1517/13543784.2014.844788] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Inhibition of self-reactive T cells through induction of antigen-specific immune tolerance holds the promise of effective treatment of autoimmune pathology with few side effects and preservation of normal immune functions. In multiple sclerosis (MS) several approaches have been tested already in clinical trials or are currently ongoing with the aim to inhibit myelin-reactive immune responses. AREAS COVERED This article provides an overview of the recent and ongoing strategies to inhibit specific immune responses in MS, including different applications of myelin peptide-based approaches, T-cell vaccination, DNA vaccination and antigen-coupled cells. EXPERT OPINION Despite difficulties in translation of antigen-specific therapies in MS, novel approaches have the potential to effectively induce immune tolerance and ameliorate the disease. To improve efficacy of treatments, future trials should include patients in the early phases of the disease, when the autoimmune response is predominant and immune reactivity still focused. The target antigens are not fully defined yet, and robust immunomonitoring assays should developed to provide mechanistic proof of concept in parallel to showing efficacy with respect to inhibiting inflammatory disease activity in the central nervous system (CNS).
Collapse
Affiliation(s)
- Andreas Lutterotti
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck , Austria
| | | |
Collapse
|
46
|
Abstract
It is widely accepted that the main common pathogenetic pathway in multiple sclerosis (MS) involves an immune-mediated cascade initiated in the peripheral immune system and targeting CNS myelin. Logically, therefore, the therapeutic approaches to the disease include modalities aiming at downregulation of the various immune elements that are involved in this immunologic cascade. Since the introduction of interferons in 1993, which were the first registered treatments for MS, huge steps have been made in the field of MS immunotherapy. More efficious and specific immunoactive drugs have been introduced and it appears that the increased specificity for MS of these new treatments is paralleled by greater efficacy. Unfortunately, this seemingly increased efficacy has been accompanied by more safety issues. The immunotherapeutic modalities can be divided into two main groups: those affecting the acute stages (relapses) of the disease and the long-term treatments that are aimed at preventing the appearance of relapses and the progression in disability. Immunomodulating treatments may also be classified according to the level of the 'immune axis' where they exert their main effect. Since, in MS, a neurodegenerative process runs in parallel and as a consequence of inflammation, early immune intervention is warranted to prevent progression of relapses of MS and the accumulation of disability. The use of neuroimaging (MRI) techniques that allow the detection of silent inflammatory activity of MS and neurodegeneration has provided an important tool for the substantiation of the clinical efficacy of treatments and the early diagnosis of MS. This review summarizes in detail the existing information on all the available immunotherapies for MS, old and new, classifies them according to their immunologic mechanisms of action and proposes a structured algorithm/therapeutic scheme for the management of the disease.
Collapse
|
47
|
Noninfectious disease vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
48
|
Vandenbark AA, Culbertson NE, Bartholomew RM, Huan J, Agotsch M, LaTocha D, Yadav V, Mass M, Whitham R, Lovera J, Milano J, Theofan G, Chou YK, Offner H, Bourdette DN. Therapeutic vaccination with a trivalent T-cell receptor (TCR) peptide vaccine restores deficient FoxP3 expression and TCR recognition in subjects with multiple sclerosis. Immunology 2007; 123:66-78. [PMID: 17944900 DOI: 10.1111/j.1365-2567.2007.02703.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Therapeutic vaccination using T-cell receptor (TCR) peptides from V genes commonly expressed by potentially pathogenic T cells remains an approach of interest for treatment of multiple sclerosis (MS) and other autoimmune diseases. We developed a trivalent TCR vaccine containing complementarity determining region (CDR) 2 peptides from BV5S2, BV6S5 and BV13S1 emulsified in incomplete Freund's adjuvant that reliably induced high frequencies of TCR-specific T cells. To evaluate induction of regulatory T-cell subtypes, immunological and clinical parameters were followed in 23 treatment-naïve subjects with relapsing-remitting or progressive MS who received 12 monthly injections of the trivalent peptide vaccine over 1 year in an open-label study design. Prior to vaccination, subjects had reduced expression of forkhead box (Fox) P3 message and protein, and reduced recognition of the expressed TCR repertoire by TCR-reactive cells compared with healthy control donors. After three or four injections, most vaccinated MS subjects developed high frequencies of circulating interleukin (IL)-10-secreting T cells specific for the injected TCR peptides and significantly enhanced expression of FoxP3 by regulatory T cells present in both 'native' CD4+ CD25+ and 'inducible' CD4+ CD25- peripheral blood mononuclear cells (PBMC). At the end of the trial, PBMC from vaccinated MS subjects retained or further increased FoxP3 expression levels, exhibited significantly enhanced recognition of the TCR V gene repertoire apparently generated by perturbation of the TCR network, and significantly suppressed neuroantigen but not recall antigen responses. These findings demonstrate that therapeutic vaccination using only three commonly expressed BV gene determinants can induce an expanded immunoregulatory network in vivo that may optimally control complex autoreactive responses that characterize the inflammatory phase of MS.
Collapse
Affiliation(s)
- Arthur A Vandenbark
- Neuroimmunology Laboratory, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Miller SD, Turley DM, Podojil JR. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat Rev Immunol 2007; 7:665-77. [PMID: 17690713 DOI: 10.1038/nri2153] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of safe and effective antigen-specific therapies is needed to treat patients with autoimmune diseases. These therapies must allow for the specific tolerization of self-reactive immune cells without altering host immunity to infectious insults. Experimental models and clinical trials for the treatment of autoimmune disease have identified putative mechanisms by which antigen-specific therapies induce tolerance. Although advances have been made in the development of efficient antigen-specific therapies, translating these therapies from bench to bedside has remained difficult. Here, we discuss the recent advances in our understanding of antigen-specific therapies for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
50
|
McCormick AA, Corbo TA, Wykoff-Clary S, Palmer KE, Pogue GP. Chemical conjugate TMV-peptide bivalent fusion vaccines improve cellular immunity and tumor protection. Bioconjug Chem 2007; 17:1330-8. [PMID: 16984144 DOI: 10.1021/bc060124m] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical conjugation of CTL peptides to tobacco mosaic virus (TMV) has shown promise as a molecular adjuvant scaffold for augmentation of cellular immune responses to peptide vaccines. This study demonstrates the ease of generating complex multipeptide vaccine formulations using chemical conjugation to TMV for improved vaccine efficacy. We have tested a model foreign antigen target-the chicken ovalbumin-derived CTL peptide (Ova peptide), as well as mouse melanoma-associated CTL epitopes p15e and tyrosinase-related protein 2 (Trp2) peptides that are self-antigen targets. Ova peptide fusions to TMV, as bivalent formulations with peptides encoding additional T-help or cellular uptake via the integrin-receptor binding RGD peptide, showed improved vaccine potency evidenced by significantly enhanced numbers of antigen-reactive T cells measured by in vitro IFNgamma cellular analysis. We measured the biologically relevant outcome of vaccination in protection of mice from EG.7-Ova tumor challenge, which was achieved with only two doses of vaccine ( approximately 600 ng peptide) given without adjuvant. The p15e peptide alone or Trp2 peptide alone, or as a bivalent formulation with T-help or RGD uptake epitopes, was unable to stimulate effective tumor protection. However, a vaccine with both CTL peptides fused together onto TMV generated significantly improved survival. Interestingly, different bivalent vaccine formulations were required to improve vaccine efficacy for Ova or melanoma tumor model systems.
Collapse
Affiliation(s)
- Alison A McCormick
- Large Scale Biology Corporation, 3333 Vacavalley Parkway, Suite 1000, Vacaville, California 95688, USA.
| | | | | | | | | |
Collapse
|