1
|
Chen Y, Wu Y, Wang D, Yang Y, Guo Q, Qiu Q, Wan C, Li X. Delayed niacin skin flush response identifies cognitive impairment in late-life depression. J Affect Disord 2025; 379:772-781. [PMID: 40113179 DOI: 10.1016/j.jad.2025.03.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE This research aimed to inspect the discriminative and predictive utility of the niacin skin flush response (NSFR) in patients with late-life depression (LLD) with cognitive impairment (CI). METHODS This study consisted of 86 LLD patients (46 with CI and 40 without CI), along with 22 Alzheimer's disease (AD) patients and 32 healthy elderly controls (HCs) as positive and negative controls, respectively. A subset of 74 LLD patients were reassessed after six months. The Montreal Cognitive Assessment (MoCA) was administered to assess cognitive capabilities. NSFR tests were performed using a modified protocol. Group differences in NSFR and clinical parameters were examined using multivariate ANOVA analysis. Model performance was evaluated using receiver operating characteristic (ROC) curves derived from NSFR measurements. RESULTS NSFR showed a significant inverse correlation with cognitive functions in LLD patients (R = -0.456, P < .001). Moreover, the parameter logEC50, which quantifies the NSFR rate, was elevated in the LLD with CI group. LogEC50 had an AUC of 0.767 (95 % CI: 0.667-0.867) in distinguishing LLD with CI from those without CI, which increased to 0.961 (95%CI:0.925-0.998) when combined with C- reactive protein. The predictive capacity of the baseline logEC50 for cognitive prognosis (decline versus preservation) in LLD patients was statistically significant (AUC = 0.826, 95 % CI 0.731-0.921), which increased to 0.857 (95%CI:0.775-0.941) when combined with baseline MoCA. CONCLUSION A delayed NSFR represents a promising biomarker for identifying CI and predicting cognitive trajectories in patients with LLD. This study elucidates a novel methodology for the precise identification and prognostic evaluation of CI in LLD.
Collapse
Affiliation(s)
- Yan Chen
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - You Wu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Yang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qianqian Guo
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chunlin Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
2
|
Savitz J, Figueroa-Hall LK, Teague TK, Yeh HW, Zheng H, Kuplicki R, Burrows K, El-Sabbagh N, Thomas M, Ewers I, Cha YH, Guinjoan S, Khalsa SS, Paulus MP, Irwin MR. Systemic Inflammation and Anhedonic Responses to an Inflammatory Challenge in Adults With Major Depressive Disorder: A Randomized Controlled Trial. Am J Psychiatry 2025:appiajp20240142. [PMID: 40264292 DOI: 10.1176/appi.ajp.20240142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
OBJECTIVE The authors sought to determine whether an inflammatory challenge with lipopolysaccharide (LPS) differentially impacts symptoms of anhedonia in participants with major depressive disorder with high (≥3 mg/L) and low (≤1.5 mg/L) serum C-reactive protein (CRP) concentrations. METHODS Sixty-eight participants with major depressive disorder were randomly assigned, in a 1:1 ratio, to receive LPS (0.8 ng/kg body weight) or placebo (saline) in a parallel-group double-blind design. Participants were stratified according to baseline CRP concentrations, yielding four groups: high-CRP LPS (N=13), low-CRP LPS (N=19), high-CRP placebo (N=13), and low-CRP placebo (N=19). Blood was sampled at baseline, at 1, 1.5, 3.5, 6, and 24 hours, and 1 week after LPS or saline administration, with concurrent assessment of psychological outcomes. The primary outcome measure was the Snaith-Hamilton Pleasure Scale (SHAPS), and the primary contrast of interest was the change between baseline and 1.5 hours (peak of the inflammatory response) in the high-CRP versus low-CRP groups receiving LPS. Secondary outcomes included the Montgomery-Åsberg Depression Rating Scale (MADRS) and serum levels of three cytokines: interleukin-6 (IL-6), IL-10, and tumor necrosis factor (TNF). Data were analyzed with linear mixed models. RESULTS Significantly greater increases in self-reported anhedonia (on the SHAPS) and IL-6 levels were observed between baseline and 1.5 hours in the high-CRP versus low-CRP LPS groups. There were no significant differences for TNF and IL-10. The MADRS was not administered at 1.5 hours; secondary analyses showed a significant group-by-condition-by-time interaction driven by a greater decrease in MADRS scores between baseline and 24 hours in the high-CRP group. CONCLUSIONS Depressed individuals with systemic inflammation appeared to be biologically primed to respond more strongly to inflammatory stimuli, and psychologically, this sensitization impacted the symptom of anhedonia, the primary outcome.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK (Savitz, Figueroa-Hall, Zheng, Kuplicki, Burrows, El-Sabbagh, Ewers, Guinjoan, Khalsa, Paulus); Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK (Savitz, Guinjoan, Khalsa, Paulus); Department of Surgery (Teague, Guinjoan) and Department of Psychiatry (Guinjoan), University of Oklahoma School of Community Medicine, Tulsa, OK; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK (Teague); Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Kansas City, MO (Yeh); School of Medicine, University of Missouri-Kansas City, Kansas City, MO (Yeh); University of Oklahoma School of Medicine, Oklahoma City (Thomas); Department of Neurology, University of Minnesota School of Medicine, Minneapolis (Cha); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles (Khalsa); Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience at UCLA, and Department of Psychiatry and Biobehavioral Sciences at David Geffen School of Medicine, UCLA, Los Angeles (Irwin)
| | - Leandra K Figueroa-Hall
- Laureate Institute for Brain Research, Tulsa, OK (Savitz, Figueroa-Hall, Zheng, Kuplicki, Burrows, El-Sabbagh, Ewers, Guinjoan, Khalsa, Paulus); Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK (Savitz, Guinjoan, Khalsa, Paulus); Department of Surgery (Teague, Guinjoan) and Department of Psychiatry (Guinjoan), University of Oklahoma School of Community Medicine, Tulsa, OK; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK (Teague); Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Kansas City, MO (Yeh); School of Medicine, University of Missouri-Kansas City, Kansas City, MO (Yeh); University of Oklahoma School of Medicine, Oklahoma City (Thomas); Department of Neurology, University of Minnesota School of Medicine, Minneapolis (Cha); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles (Khalsa); Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience at UCLA, and Department of Psychiatry and Biobehavioral Sciences at David Geffen School of Medicine, UCLA, Los Angeles (Irwin)
| | - T Kent Teague
- Laureate Institute for Brain Research, Tulsa, OK (Savitz, Figueroa-Hall, Zheng, Kuplicki, Burrows, El-Sabbagh, Ewers, Guinjoan, Khalsa, Paulus); Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK (Savitz, Guinjoan, Khalsa, Paulus); Department of Surgery (Teague, Guinjoan) and Department of Psychiatry (Guinjoan), University of Oklahoma School of Community Medicine, Tulsa, OK; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK (Teague); Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Kansas City, MO (Yeh); School of Medicine, University of Missouri-Kansas City, Kansas City, MO (Yeh); University of Oklahoma School of Medicine, Oklahoma City (Thomas); Department of Neurology, University of Minnesota School of Medicine, Minneapolis (Cha); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles (Khalsa); Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience at UCLA, and Department of Psychiatry and Biobehavioral Sciences at David Geffen School of Medicine, UCLA, Los Angeles (Irwin)
| | - Hung-Wen Yeh
- Laureate Institute for Brain Research, Tulsa, OK (Savitz, Figueroa-Hall, Zheng, Kuplicki, Burrows, El-Sabbagh, Ewers, Guinjoan, Khalsa, Paulus); Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK (Savitz, Guinjoan, Khalsa, Paulus); Department of Surgery (Teague, Guinjoan) and Department of Psychiatry (Guinjoan), University of Oklahoma School of Community Medicine, Tulsa, OK; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK (Teague); Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Kansas City, MO (Yeh); School of Medicine, University of Missouri-Kansas City, Kansas City, MO (Yeh); University of Oklahoma School of Medicine, Oklahoma City (Thomas); Department of Neurology, University of Minnesota School of Medicine, Minneapolis (Cha); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles (Khalsa); Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience at UCLA, and Department of Psychiatry and Biobehavioral Sciences at David Geffen School of Medicine, UCLA, Los Angeles (Irwin)
| | - Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK (Savitz, Figueroa-Hall, Zheng, Kuplicki, Burrows, El-Sabbagh, Ewers, Guinjoan, Khalsa, Paulus); Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK (Savitz, Guinjoan, Khalsa, Paulus); Department of Surgery (Teague, Guinjoan) and Department of Psychiatry (Guinjoan), University of Oklahoma School of Community Medicine, Tulsa, OK; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK (Teague); Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Kansas City, MO (Yeh); School of Medicine, University of Missouri-Kansas City, Kansas City, MO (Yeh); University of Oklahoma School of Medicine, Oklahoma City (Thomas); Department of Neurology, University of Minnesota School of Medicine, Minneapolis (Cha); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles (Khalsa); Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience at UCLA, and Department of Psychiatry and Biobehavioral Sciences at David Geffen School of Medicine, UCLA, Los Angeles (Irwin)
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, Tulsa, OK (Savitz, Figueroa-Hall, Zheng, Kuplicki, Burrows, El-Sabbagh, Ewers, Guinjoan, Khalsa, Paulus); Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK (Savitz, Guinjoan, Khalsa, Paulus); Department of Surgery (Teague, Guinjoan) and Department of Psychiatry (Guinjoan), University of Oklahoma School of Community Medicine, Tulsa, OK; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK (Teague); Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Kansas City, MO (Yeh); School of Medicine, University of Missouri-Kansas City, Kansas City, MO (Yeh); University of Oklahoma School of Medicine, Oklahoma City (Thomas); Department of Neurology, University of Minnesota School of Medicine, Minneapolis (Cha); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles (Khalsa); Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience at UCLA, and Department of Psychiatry and Biobehavioral Sciences at David Geffen School of Medicine, UCLA, Los Angeles (Irwin)
| | - Kaiping Burrows
- Laureate Institute for Brain Research, Tulsa, OK (Savitz, Figueroa-Hall, Zheng, Kuplicki, Burrows, El-Sabbagh, Ewers, Guinjoan, Khalsa, Paulus); Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK (Savitz, Guinjoan, Khalsa, Paulus); Department of Surgery (Teague, Guinjoan) and Department of Psychiatry (Guinjoan), University of Oklahoma School of Community Medicine, Tulsa, OK; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK (Teague); Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Kansas City, MO (Yeh); School of Medicine, University of Missouri-Kansas City, Kansas City, MO (Yeh); University of Oklahoma School of Medicine, Oklahoma City (Thomas); Department of Neurology, University of Minnesota School of Medicine, Minneapolis (Cha); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles (Khalsa); Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience at UCLA, and Department of Psychiatry and Biobehavioral Sciences at David Geffen School of Medicine, UCLA, Los Angeles (Irwin)
| | - Nour El-Sabbagh
- Laureate Institute for Brain Research, Tulsa, OK (Savitz, Figueroa-Hall, Zheng, Kuplicki, Burrows, El-Sabbagh, Ewers, Guinjoan, Khalsa, Paulus); Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK (Savitz, Guinjoan, Khalsa, Paulus); Department of Surgery (Teague, Guinjoan) and Department of Psychiatry (Guinjoan), University of Oklahoma School of Community Medicine, Tulsa, OK; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK (Teague); Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Kansas City, MO (Yeh); School of Medicine, University of Missouri-Kansas City, Kansas City, MO (Yeh); University of Oklahoma School of Medicine, Oklahoma City (Thomas); Department of Neurology, University of Minnesota School of Medicine, Minneapolis (Cha); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles (Khalsa); Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience at UCLA, and Department of Psychiatry and Biobehavioral Sciences at David Geffen School of Medicine, UCLA, Los Angeles (Irwin)
| | - MacGregor Thomas
- Laureate Institute for Brain Research, Tulsa, OK (Savitz, Figueroa-Hall, Zheng, Kuplicki, Burrows, El-Sabbagh, Ewers, Guinjoan, Khalsa, Paulus); Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK (Savitz, Guinjoan, Khalsa, Paulus); Department of Surgery (Teague, Guinjoan) and Department of Psychiatry (Guinjoan), University of Oklahoma School of Community Medicine, Tulsa, OK; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK (Teague); Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Kansas City, MO (Yeh); School of Medicine, University of Missouri-Kansas City, Kansas City, MO (Yeh); University of Oklahoma School of Medicine, Oklahoma City (Thomas); Department of Neurology, University of Minnesota School of Medicine, Minneapolis (Cha); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles (Khalsa); Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience at UCLA, and Department of Psychiatry and Biobehavioral Sciences at David Geffen School of Medicine, UCLA, Los Angeles (Irwin)
| | - Isaac Ewers
- Laureate Institute for Brain Research, Tulsa, OK (Savitz, Figueroa-Hall, Zheng, Kuplicki, Burrows, El-Sabbagh, Ewers, Guinjoan, Khalsa, Paulus); Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK (Savitz, Guinjoan, Khalsa, Paulus); Department of Surgery (Teague, Guinjoan) and Department of Psychiatry (Guinjoan), University of Oklahoma School of Community Medicine, Tulsa, OK; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK (Teague); Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Kansas City, MO (Yeh); School of Medicine, University of Missouri-Kansas City, Kansas City, MO (Yeh); University of Oklahoma School of Medicine, Oklahoma City (Thomas); Department of Neurology, University of Minnesota School of Medicine, Minneapolis (Cha); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles (Khalsa); Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience at UCLA, and Department of Psychiatry and Biobehavioral Sciences at David Geffen School of Medicine, UCLA, Los Angeles (Irwin)
| | - Yoon-Hee Cha
- Laureate Institute for Brain Research, Tulsa, OK (Savitz, Figueroa-Hall, Zheng, Kuplicki, Burrows, El-Sabbagh, Ewers, Guinjoan, Khalsa, Paulus); Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK (Savitz, Guinjoan, Khalsa, Paulus); Department of Surgery (Teague, Guinjoan) and Department of Psychiatry (Guinjoan), University of Oklahoma School of Community Medicine, Tulsa, OK; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK (Teague); Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Kansas City, MO (Yeh); School of Medicine, University of Missouri-Kansas City, Kansas City, MO (Yeh); University of Oklahoma School of Medicine, Oklahoma City (Thomas); Department of Neurology, University of Minnesota School of Medicine, Minneapolis (Cha); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles (Khalsa); Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience at UCLA, and Department of Psychiatry and Biobehavioral Sciences at David Geffen School of Medicine, UCLA, Los Angeles (Irwin)
| | - Salvador Guinjoan
- Laureate Institute for Brain Research, Tulsa, OK (Savitz, Figueroa-Hall, Zheng, Kuplicki, Burrows, El-Sabbagh, Ewers, Guinjoan, Khalsa, Paulus); Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK (Savitz, Guinjoan, Khalsa, Paulus); Department of Surgery (Teague, Guinjoan) and Department of Psychiatry (Guinjoan), University of Oklahoma School of Community Medicine, Tulsa, OK; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK (Teague); Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Kansas City, MO (Yeh); School of Medicine, University of Missouri-Kansas City, Kansas City, MO (Yeh); University of Oklahoma School of Medicine, Oklahoma City (Thomas); Department of Neurology, University of Minnesota School of Medicine, Minneapolis (Cha); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles (Khalsa); Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience at UCLA, and Department of Psychiatry and Biobehavioral Sciences at David Geffen School of Medicine, UCLA, Los Angeles (Irwin)
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK (Savitz, Figueroa-Hall, Zheng, Kuplicki, Burrows, El-Sabbagh, Ewers, Guinjoan, Khalsa, Paulus); Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK (Savitz, Guinjoan, Khalsa, Paulus); Department of Surgery (Teague, Guinjoan) and Department of Psychiatry (Guinjoan), University of Oklahoma School of Community Medicine, Tulsa, OK; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK (Teague); Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Kansas City, MO (Yeh); School of Medicine, University of Missouri-Kansas City, Kansas City, MO (Yeh); University of Oklahoma School of Medicine, Oklahoma City (Thomas); Department of Neurology, University of Minnesota School of Medicine, Minneapolis (Cha); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles (Khalsa); Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience at UCLA, and Department of Psychiatry and Biobehavioral Sciences at David Geffen School of Medicine, UCLA, Los Angeles (Irwin)
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK (Savitz, Figueroa-Hall, Zheng, Kuplicki, Burrows, El-Sabbagh, Ewers, Guinjoan, Khalsa, Paulus); Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK (Savitz, Guinjoan, Khalsa, Paulus); Department of Surgery (Teague, Guinjoan) and Department of Psychiatry (Guinjoan), University of Oklahoma School of Community Medicine, Tulsa, OK; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK (Teague); Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Kansas City, MO (Yeh); School of Medicine, University of Missouri-Kansas City, Kansas City, MO (Yeh); University of Oklahoma School of Medicine, Oklahoma City (Thomas); Department of Neurology, University of Minnesota School of Medicine, Minneapolis (Cha); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles (Khalsa); Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience at UCLA, and Department of Psychiatry and Biobehavioral Sciences at David Geffen School of Medicine, UCLA, Los Angeles (Irwin)
| | - Michael R Irwin
- Laureate Institute for Brain Research, Tulsa, OK (Savitz, Figueroa-Hall, Zheng, Kuplicki, Burrows, El-Sabbagh, Ewers, Guinjoan, Khalsa, Paulus); Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK (Savitz, Guinjoan, Khalsa, Paulus); Department of Surgery (Teague, Guinjoan) and Department of Psychiatry (Guinjoan), University of Oklahoma School of Community Medicine, Tulsa, OK; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK (Teague); Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Kansas City, MO (Yeh); School of Medicine, University of Missouri-Kansas City, Kansas City, MO (Yeh); University of Oklahoma School of Medicine, Oklahoma City (Thomas); Department of Neurology, University of Minnesota School of Medicine, Minneapolis (Cha); Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles (Khalsa); Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience at UCLA, and Department of Psychiatry and Biobehavioral Sciences at David Geffen School of Medicine, UCLA, Los Angeles (Irwin)
| |
Collapse
|
3
|
Lu JH, Zhong WW, Tan YL, Zhuo L, Luo GZ. Associations of dietary and plasma lutein + zeaxanthin with depression in US adults: findings from NHANES. Asia Pac J Clin Nutr 2025; 34:153-164. [PMID: 40134054 PMCID: PMC11937491 DOI: 10.6133/apjcn.202504_34(2).0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 08/25/2024] [Indexed: 03/27/2025]
Abstract
BACKGROUND AND OBJECTIVES Evidence regarding the relationship between dietary and plasma lutein + zeaxanthin (L + Z) levels and the risk of depression is scarce. This study aimed to investigate the associations of dietary consumption of L + Z and plasma L + Z level with risk of depression in adult of United States by using data from National Health and Nutrition Examination Survey (NHANES). METHODS AND STUDY DESIGN A total of 7,829 and 7,324 individuals aged ≥ 20 years were included from the NHANES to analyze the relationship between dietary L + Z and depression, as well as plasma L+ Z levels with the risk of depression, separately. Multivariable logistic regression analyses were used. Subsequently, the dose-response relationships were conducted using restricted cubic splines. RESULTS In the multivariable model, the highest quartile of dietary L + Z intake was associated with a significantly lower risk of depression compared to the lowest quartile (OR = 0.68, 95%CI: 0.52, 0.89, p < 0.01). Similarly, the highest quartile of plasma L + Z levels was linked to a reduced risk of depression compared to the lowest quartile (OR = 0.58, 95%CI: 0.44, 0.76, p < 0.001). CONCLUSIONS This study suggests that an appropriate increase in dietary L + Z intake and higher plasma L + Z levels are associated with a lower risk of depression. These results should be confirmed by randomized controlled trial (RCTs) to explore the effects of supplementing L + Z on depression.
Collapse
Affiliation(s)
- Jin-Hong Lu
- Department of General Surgery, Zhu Jiang Hospital of Southern Medical University, Guangzhou, China
| | - Wen-Wen Zhong
- Department of General Surgery, Zhu Jiang Hospital of Southern Medical University, Guangzhou, China
| | - Yu-Lei Tan
- Department of General Surgery, Zhu Jiang Hospital of Southern Medical University, Guangzhou, China
| | - Li Zhuo
- Department of General Surgery, Zhu Jiang Hospital of Southern Medical University, Guangzhou, China
| | - Gui-Zhi Luo
- Department of General Surgery, Zhu Jiang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Sforzini L, Marizzoni M, Bottanelli C, Kunšteková V, Zonca V, Saleri S, Kose M, Lombardo G, Mariani N, Nettis MA, Nikkheslat N, Worrell C, Zajkowska Z, Pointon L, Cowen PJ, Cavanagh J, Harrison NA, Riva MA, Mondelli V, Bullmore ET, Cattaneo A, Pariante CM. Transcriptomic profiles in major depressive disorder: the role of immunometabolic and cell-cycle-related pathways in depression with different levels of inflammation. Mol Psychiatry 2025; 30:1308-1318. [PMID: 39271754 PMCID: PMC11919688 DOI: 10.1038/s41380-024-02736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Transcriptomic profiles are important indicators for molecular mechanisms and pathways involved in major depressive disorder (MDD) and its different phenotypes, such as immunometabolic depression. We performed whole-transcriptome and pathway analyses on 139 individuals from the observational, case-control, BIOmarkers in DEPression (BIODEP) study, 105 with MDD and 34 controls. We divided MDD participants based on levels of inflammation, as measured by serum high-sensitivity C-reactive protein (CRP), in n = 39 'not inflamed' (CRP < 1 mg/L), n = 31 with 'elevated CRP' (1-3 mg/L), and n = 35 with 'low-grade inflammation' (>3 mg/L). We performed whole-blood RNA sequencing using Illumina NextSeq 550 and statistical analyses with the Deseq2 package for R statistics (RUV-corrected) and subsequent pathway analyses with Ingenuity Pathway Analysis. Immunometabolic pathways were activated in individuals with CRP > 1 mg/L, although surprisingly the CRP 1-3 group showed stronger immune activation than the CRP > 3 group. The main pathways identified in the comparison between CRP < 1 group and controls were cell-cycle-related, which may be protective against immunometabolic abnormalities in this 'non-inflamed' depressed group. We further divided MDD participants based on exposure and response to antidepressants (n = 47 non-responders, n = 37 responders, and n = 22 unmedicated), and identified specific immunomodulatory and neuroprotective pathways in responders (especially vs. non-responders), which could be relevant to treatment response. In further subgroup analyses, we found that the specific transcriptional profile of responders is independent of CRP levels, and that the inhibition of cell-cycle-related pathways in MDD with CRP < 1 mg/L is present only in those who are currently depressed, and not in the responders. The present study demonstrates immunometabolic and cell-cycle-related transcriptomic pathways associated with MDD and different (CRP-based and treatment-based) MDD phenotypes, while shedding light on potential molecular mechanisms that could prevent or facilitate an individual's trajectory toward immunometabolic depression and/or treatment-non-responsive depression. The recognition and integration of these mechanisms will facilitate a precision-medicine approach in MDD.
Collapse
Affiliation(s)
- Luca Sforzini
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK.
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| | - Moira Marizzoni
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Chiara Bottanelli
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, 20133, Italy
| | - Veronika Kunšteková
- Institute of Biology, Faculty of Medicine, Slovak Medical University, Limbova 14, 833 03, Bratislava, Slovakia
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Valentina Zonca
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, 20133, Italy
| | - Samantha Saleri
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Melisa Kose
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Giulia Lombardo
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Nicole Mariani
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Maria A Nettis
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Naghmeh Nikkheslat
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Courtney Worrell
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Zuzanna Zajkowska
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
| | - Linda Pointon
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Philip J Cowen
- University of Oxford Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Jonathan Cavanagh
- Centre for Immunobiology, School of Infection & Immunity, University of Glasgow, Glasgow, G12 8TF, UK
| | - Neil A Harrison
- School of Medicine, School of Psychology, Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Marco A Riva
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, 20133, Italy
| | - Valeria Mondelli
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Annamaria Cattaneo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, 20133, Italy
| | - Carmine M Pariante
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RT, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
5
|
von Knebel K, Staab J, Gregus A, Remling L, Wirths O, Spitzer C, Herrmann-Lingen C, Reichardt HM, Meyer T. Social inhibition in depressed patients is associated with an altered activation profile of the interleukin-6-inducible transcription factor STAT3. Brain Behav Immun Health 2025; 44:100968. [PMID: 40115872 PMCID: PMC11925098 DOI: 10.1016/j.bbih.2025.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 03/23/2025] Open
Abstract
Objective Numerous studies have described the role of STAT3 (signal transducer and activator of transcription 3) in infections, but little is known on whether this transcription factor is linked to negative affectivity (NA) and social inhibition (SI), leading to social withdrawal as a typical symptom of various infections. Methods In this study, we isolated peripheral blood mononuclear cells (PBMCs) from 63 consecutive depressed patients (mean age 41.4 ± 16.1 years; 40 females) before and after psychotherapeutic intervention and measured STAT3 tyrosine phosphorylation (pSTAT3) with and without in vitro interleukin-6 (IL-6) stimulation of these cells using flow cytometry. In addition, all study participants were assessed for NA and SI using the German version of the Type D Scale-14 (DS-14) questionnaire with a cut-off level of ≥10 for each subscale. Results While NA was unrelated to STAT3 activity, PBMCs from SI-positive patients had an increased baseline STAT3 activation level, which made the cells less sensitive to in vitro IL-6 stimulation (11.5% vs. 9.1%, p = 0.036). The stimulatory capacity, defined as the difference in pSTAT3 levels from IL-6-stimulated to unstimulated cells during hospitalization, was significantly lower in PBMCs from SI-positive than from SI-negative patients (-1.7% vs. 6.6%, p = 0.007). The sensitivity of PBMCs to IL-6 stimulation was negatively correlated with the SI score (r = -0.295, p = 0.019). Of note, the altered sensitivity to STAT3 phosphorylation remained stable, when adjusted for clinically relevant confounders in multivariate analysis (Exp(β) = 0.891, 95%-confidence interval = 0.804-0.988, p = 0.029). Conclusion These findings point towards a possible relationship between STAT3 signaling and social inhibition in depressed patients.
Collapse
Affiliation(s)
- Katharina von Knebel
- Department of Psychosomatic Medicine and Psychotherapy, Georg-August University, Göttingen, Germany
| | - Julia Staab
- Department of Psychosomatic Medicine and Psychotherapy, Georg-August University, Göttingen, Germany
| | - Anke Gregus
- Department of Psychosomatic Medicine and Psychotherapy, Georg-August University, Göttingen, Germany
| | - Linus Remling
- Department of Psychosomatic Medicine and Psychotherapy, Georg-August University, Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, Georg-August University, Göttingen, Germany
| | - Carsten Spitzer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | | | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, Georg-August University, Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, Georg-August University, Göttingen, Germany
| |
Collapse
|
6
|
Dellink A, Vanderhaegen G, Coppens V, Ryan KM, McLoughlin DM, Kruse J, van Exel E, van Diermen L, Belge JB, Aarsland TIM, Morrens M. Inflammatory markers associated with electroconvulsive therapy response in patients with depression: A meta-analysis. Neurosci Biobehav Rev 2025; 170:106060. [PMID: 39938607 DOI: 10.1016/j.neubiorev.2025.106060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/24/2024] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Electroconvulsive therapy (ECT) is an effective intervention for severe unipolar and bipolar depression, yet its drawbacks often lead to its underutilization. Accurate prediction of ECT outcomes is crucial for optimizing patient care and increasing remission rates. This study synthesized existing evidence on the relationship between baseline inflammatory markers and ECT outcomes. Additionally, we explored whether changes in these markers during ECT correlated with symptom improvement. A correlation meta-analysis was conducted according to the PRISMA statement, including a total of fourteen studies (n = 556 patients). The analyses revealed that higher baseline CRP and IL-6 levels were significantly associated with greater depressive symptom reduction post-ECT. Additionally, our findings suggested that increases in kynurenine metabolites and IL-8 during treatment correlated with improved depressive symptoms, offering insights into the mechanistic aspects of depression and ECT. In conclusion, peripheral inflammation in depression, as measured by CRP and IL-6, is associated with better ECT outcomes and may guide treatment stratification. Further research on a broader range of cytokines and kynurenine metabolites is needed to confirm these findings.
Collapse
Affiliation(s)
- Annelies Dellink
- Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| | - Gertjan Vanderhaegen
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Violette Coppens
- Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Jennifer Kruse
- The Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA and the Department of Psychiatry & Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Eric van Exel
- Department of Psychiatry, Amsterdam UMC, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Linda van Diermen
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Psychiatric Center Bethanië, Zoersel, Belgium
| | - Jean-Baptiste Belge
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | - Manuel Morrens
- Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Nie W, Hu J. The Relationship Between Grip Strength and Cognitive Impairment: Evidence From NHANES 2011-2014. Brain Behav 2025; 15:e70381. [PMID: 40103203 PMCID: PMC11919747 DOI: 10.1002/brb3.70381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Prior research has consistently shown an association between muscle strength and various metabolic diseases. However, the relationship between muscle strength and cognitive impairment remains elusive. METHODS Using data from the 2011-2014 National Health and Nutrition Examination Survey (NHANES), we investigated the association between muscle strength and cognitive impairment. We used multivariate logistic regression, restricted cubic spline regression (RCS), and threshold effects to investigate the impact of muscle strength on cognitive function. In addition, we analyzed the correlation between muscle strength and cognitive impairment in subgroups of age, gender, race, education, smoking status, drinking status, hypertension, diabetes, and heart disease. RESULTS 2124 participants were ultimately included for further analysis. Multivariate logistic regression, trend testing, and RCS analysis showed a non-linear negative correlation between muscle strength and cognitive impairment. Threshold effect analysis suggests that when muscle strength reaches a certain value, this relationship undergoes significant changes. In the three cognitive function scoring tests, interaction was only observed in the racial subgroup. CONCLUSION This study suggests a negative correlation between muscle strength and cognitive function, which may have a threshold effect. Further longitudinal studies are needed to elucidate its potential mechanisms.
Collapse
Affiliation(s)
- Wenyi Nie
- Department of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jingqing Hu
- Department of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Dyall SC, Malau IA, Su KP. Omega-3 polyunsaturated fatty acids in depression: insights from recent clinical trials. Curr Opin Clin Nutr Metab Care 2025; 28:66-74. [PMID: 39912390 DOI: 10.1097/mco.0000000000001077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
PURPOSE OF REVIEW This review examines evidence from recent clinical trials on the therapeutic potential of omega-3 polyunsaturated fatty acids (PUFAs) in major depressive disorder (MDD). We focus on the effects in MDD with comorbidities, younger populations, and high-inflammation presentations. RECENT FINDINGS PubMed, Cochrane, and Embase databases were systematically searched for studies published between May 2022 and May 2024. The search was conducted on randomized controlled trials using omega-3 PUFAs with participants with a clinical diagnosis of depression.Higher doses of eicosapentaenoic acid (EPA) (>1 g/day) improved measures of depression, particularly in MDD with elevated inflammation markers, comorbid cardiovascular diseases, late-life onset, and children and adolescent populations. Improvements in depressive symptoms were associated with increases in omega-3 PUFA-derived anti-inflammatory and proresolving lipid mediators. As adjuvant treatments, omega-3 PUFAs have potential benefits in mood, cognitive and metabolic functions, kynurenine and serotonin pathways, and alterations in corticolimbic functional connectivity. SUMMARY While evidence suggests promise, particularly for high-dose EPA and in inflammatory MDD subtypes, more research is needed to establish optimal dosing regimens, treatment duration, and patient subgroups most likely to benefit. Future studies should focus on sex differences, long-term effects, and potential synergies with other treatments.
Collapse
Affiliation(s)
- Simon C Dyall
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Ikbal A Malau
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung
- An-Nan Hospital, College of Medicine, China Medical University, Tainan, Taiwan
| |
Collapse
|
9
|
Almheiri RT, Hajjar B, Alkhaaldi SMI, Rabeh N, Aljoudi S, Abd-Elrahman KS, Hamdan H. Beyond weight loss: exploring the neurological ramifications of altered gut microbiota post-bariatric surgery. J Transl Med 2025; 23:223. [PMID: 39994634 PMCID: PMC11852891 DOI: 10.1186/s12967-025-06201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
This review discusses findings related to neurological disorders, gut microbiota, and bariatric surgery, focusing on neurotransmitters, neuroendocrine, the pathophysiology of bacteria contributing to disorders, and possible therapeutic interventions. Research on neurotransmitters suggests that their levels are heavily influenced by gut microbiota, which may link them to neurological disorders such as Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Depression, and Autism spectrum disorder. The pathophysiology of bacteria that reach and influence the central nervous system has been documented. Trends in microbiota are often observed in specific neurological disorders, with a prominence of pro-inflammatory bacteria and a reduction in anti-inflammatory types. Furthermore, bariatric surgery has been shown to alter microbiota profiles similar to those observed in neurological disorders. Therapeutic interventions, including fecal microbiota transplants and probiotics, have shown potential to alleviate neurological symptoms. We suggest a framework for future studies that integrates knowledge from diverse research areas, employs rigorous methodologies, and includes long-trial clinical control groups.
Collapse
Affiliation(s)
- Rashed T Almheiri
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Baraa Hajjar
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Nadia Rabeh
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Sara Aljoudi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Medical Sciences, College of Medicine and Health Science, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Hamdan Hamdan
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group (HEIG), Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
10
|
Lucido MJ, Dunlop BW. Emerging Medications for Treatment-Resistant Depression: A Review with Perspective on Mechanisms and Challenges. Brain Sci 2025; 15:161. [PMID: 40002494 PMCID: PMC11853532 DOI: 10.3390/brainsci15020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Non-response to initial treatment options for major depressive disorder (MDD) is a common clinical challenge with profound deleterious impacts for affected patients. Few treatments have received regulatory approval for treatment-resistant depression (TRD). Methods: A systematic search of United States and European Union clinical trials registries was conducted to identify Phase II, III, or IV clinical trials, with a last update posted on or after 1 January 2020, that were evaluating medications for TRD. For both the US and EU registries, the condition term "treatment resistant depression" and associated lower-level terms (per registry search protocol) were used. For the US registry, a secondary search using the condition term "depressive disorders" and the modifying term "inadequate" was also performed to capture registrations not tagged as TRD. Two additional searches were also conducted in the US registry for the terms "suicide" and "anhedonia" as transdiagnostic targets of investigational medications. Trials were categorized based on the primary mechanism of action of the trial's investigational medication. Results: Fifty clinical trials for TRD, 20 for anhedonia, and 25 for suicide were identified. Glutamate system modulation was the mechanism currently with the most compounds in development, including antagonists and allosteric modulators of NMDA receptors, AMPA receptors, metabotropic type 2/3 glutamate receptors, and intracellular effector molecules downstream of glutamate signaling. Psychedelics have seen the greatest surge among mechanistic targets in the past 5 years, however, with psilocybin in particular garnering significant attention. Other mechanisms included GABA modulators, monoamine modulators, anti-inflammatory/immune-modulating agents, and an orexin type 2 receptor antagonist. Conclusions: These investigations offer substantial promise for more efficacious and potentially personalized medication approaches for TRD. Challenges for detecting efficacy in TRD include the heterogeneity within the TRD population stemming from the presumed variety of biological dysfunctions underlying the disorder, comorbid disorders, chronic psychosocial stressors, and enduring effects of prior serotonergic antidepressant medication treatments.
Collapse
Affiliation(s)
| | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA;
| |
Collapse
|
11
|
Eiff B, Bullmore ET, Clatworthy MR, Fryer TD, Pariante CM, Mondelli V, Maccioni L, Hadjikhani N, Loggia ML, Moskowitz MA, Bruner E, Veronese M, Turkheimer FE, Schubert JJ. Extra-axial inflammatory signal and its relationship to peripheral and central immunity in depression. Brain 2025; 148:635-646. [PMID: 39657983 PMCID: PMC11788198 DOI: 10.1093/brain/awae343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/13/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024] Open
Abstract
Although both central and peripheral inflammation have been observed consistently in depression, the relationship between the two remains obscure. Extra-axial immune cells may play a role in mediating the connection between central and peripheral immunity. This study investigates the potential roles of calvarial bone marrow and parameningeal spaces in mediating interactions between central and peripheral immunity in depression. PET was used to measure regional TSPO expression in the skull and parameninges as a marker of inflammatory activity. This measure was correlated with brain TSPO expression and peripheral cytokine concentrations in a cohort enriched for heightened peripheral and central immunity comprising 51 individuals with depression and 25 healthy controls. The findings reveal a complex relationship between regional skull TSPO expression and both peripheral and central immunity. Facial and parietal skull bone TSPO expression showed significant associations with both peripheral and central immunity. TSPO expression in the confluence of sinuses was also linked to both central and peripheral immune markers. Group-dependent elevations in TSPO expression within the occipital skull bone marrow were also found to be significantly associated with central inflammation. Significant associations between immune activity within the skull, parameninges, parenchyma and periphery highlight the role of the skull bone marrow and venous sinuses as pivotal sites for peripheral and central immune interactions.
Collapse
Affiliation(s)
- Brandi Eiff
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Lucia Maccioni
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Nouchine Hadjikhani
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael A Moskowitz
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Emiliano Bruner
- Department of Paleobiology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
- Alzheimer Center Reina Sofía, CIEN Foundation, ISCIII, 28031 Madrid, Spain
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Julia J Schubert
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| |
Collapse
|
12
|
Siemsen BM, Franco D, Lobo MK. Corticostriatal contributions to dysregulated motivated behaviors in stress, depression, and substance use disorders. Neurosci Res 2025; 211:37-48. [PMID: 36565858 DOI: 10.1016/j.neures.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Coordinated network activity, particularly in circuits arising from the prefrontal cortex innervating the ventral striatum, is crucial for normal processing of reward-related information which is perturbed in several psychiatric disorders characterized by dysregulated reward-related behaviors. Stress-induced depression and substance use disorders (SUDs) both share this common underlying pathology, manifested as deficits in perceived reward in depression, and increased attribution of positive valence to drug-predictive stimuli and dysfunctional cognition in SUDs. Here we review preclinical and clinical data that support dysregulation of motivated and reward-related behaviors as a core phenotype shared between these two disorders. We posit that altered processing of reward-related stimuli arises from dysregulated control of subcortical circuits by upstream regions implicated in executive control. Although multiple circuits are directly involved in reward processing, here we focus specifically on the role of corticostriatal circuit dysregulation. Moreover, we highlight the growing body of evidence indicating that such abnormalities may be due to heightened neuroimmune signaling by microglia, and that targeting the neuroimmune system may be a viable approach to treating this shared symptom.
Collapse
Affiliation(s)
| | - Daniela Franco
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Tezcan ME, Ekici F, Ugur C, Can Ü, Karatoprak S, Sağlıyan GA, Uçak EF, Güleç A, Erbasan V, Sen B, Simsek F, Atas AE. Do specific myelin autoantibodies and increased cerebral dopamine neurotrophic factor in the context of inflammation predict the diagnosis of attention deficit hyperactivity disorder in medication-free children? Brain Behav Immun 2025; 124:125-136. [PMID: 39617068 DOI: 10.1016/j.bbi.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 11/22/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND The aim of this study was to investigate the serum levels of anti-myelin basic protein (anti-MBP), anti-myelin oligodentrocyte glycoprotein (anti-MOG), myelin-associated glycoprotein (MAG), high-sensitivity C-reactive protein (hs-CRP), cerebral dopamine neurotrophic factor (CDNF), cerebellin-1, and reelin and their relationships with clinical severity and irritability behaviours in children with attention deficit (AD) hyperactivity disorder (ADHD) and typically developing (TD) healthy controls. METHODS In this study, 141 children with ADHD between the ages of 8 and 14 years who were medication-free and 135 TD healthy controls were included. The serum levels of anti-MBP, anti-MOG, MAG, CDNF, hs-CRP, cerebellin, and reelin were measured using enzyme-linked immunosorbent assay kits. The Turgay Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV)-based Screening and Evaluation Scale for Attention Deficit and Disruptive Behavior Disorders-Parent Form (TDSM-IV-O) and the affective reactivity index (ARI) scale were used to assess clinical severity and irritability behaviours in the children. RESULTS The MAG, CDNF, hs-CRP, reelin, and cerebellin levels were significantly higher in the ADHD group than in the control group, but no significant differences in anti-MBP and anti-MOG levels were found between the groups. Compared with the controls, the patients with ADHD showed significantly higher scores on the ARI self- and parent-report scales. The reelin, hs-CRP, and MAG levels were significantly associated with the TDSM-IV-O AD scores, AD and oppositional defiant (OD) disorder scores and hyperactivity, and OD and conduct disorder scores, respectively. Hs-CRP was significantly associated with anti-MBP and cerebellin levels. In an analysis of covariance, the results were unchanged even after controlling for potential confounders such as age, body mass index, and sex. CONCLUSION This study demonstrates that MAG, CDNF, hs-CRP, reelin, and cerebellin levels may play a potential role in the pathogenesis of ADHD.
Collapse
Affiliation(s)
- Mustafa Esad Tezcan
- Department of Child and Adolescent Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | - Fatih Ekici
- Department of Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | - Cüneyt Ugur
- Department of Pediatrics, Konya City Health Application and Research, University of Health Sciences Turkey, Karatay-Konya 42020, Turkey.
| | - Ümmügülsüm Can
- Department of Medical Biochemistry, Konya City Health Application and Research, University of Health Sciences Turkey, Karatay-Konya 42020, Turkey.
| | - Serdar Karatoprak
- Department of Child and Adolescent Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | | | - Ekrem Furkan Uçak
- Department of Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | - Ahmet Güleç
- Department of Child and Adolescent Psychiatry, Balıkesir City Hospital, Altıeylül, Balıkesir, Turkey.
| | - Vefa Erbasan
- Department of Psychiatry, İzmir City Hospital, Bayraklı, 35540 Izmir, Turkey.
| | - Barıs Sen
- Department of Psychiatry, Manavgat State Hospital, Manavgat-Antalya, Turkey.
| | - Fulya Simsek
- Department of Child and Adolescent Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | - Abdullah Enes Atas
- Department of Radiology, Konya City Hospital, Karatay-Konya 42020, Turkey.
| |
Collapse
|
14
|
Yan B, Liao P, Han Z, Zhao J, Gao H, Liu Y, Chen F, Lei P. Association of aging related genes and immune microenvironment with major depressive disorder. J Affect Disord 2025; 369:706-717. [PMID: 39419187 DOI: 10.1016/j.jad.2024.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE To study the relationship between aging related genes (ARGs) and Major Depressive Disorder (MDD). METHODS The datasets GSE98793, GSE52790 and GSE39653 for MDD were obtained from the GEO database, and ARGs were obtained from the Human Aging Genome Resources database. Differential expression genes (DEGs) screening and GO, KEGG enrichment analysis were performed to uncover the underlying mechanisms. To identify key ARGs associated with MDD (key ARG-DEGs), we employed machine learning methods such as LASSO, SVM, and Random Forest, as well as the plug-ins CytoHubba-MCC and MCODE methods. SsGSEA was used to analyze the immune infiltration of MDD and healthy controls. Furthermore, we created risk prediction nomograms model and ROC curves to assess not only the ability of key ARG-DEGs to diagnose MDD, but also predicted miRNAs and transcription factors (TFs) that might interact. Finally, a two-sample Mendelian randomization (MR) study was performed to confirm the association of identified key ARG-DEGs with depression. RESULTS DEGs of ARGs between MDD and healthy controls led to the identification of eight ARG-DEGs. GO and KEGG analysis revealed that the pathways associated with these eight ARG-DEGs were primarily concentrated in Foxo pathway, JAK-STAT pathway, Pl3K-AKT pathway, and metabolic diseases. A comprehensive analysis further narrowed down the 8 ARG-DEGs to 4 key ARG-DEGs: MMP9, IL7R, S100B, and EGF. Immune infiltration analysis indicated significant differences in CD8(+) T cells, macrophages, neutrophils, Th2 cells, and TIL cells between MDD and control groups, correlating with these four key ARG-DEGs. Based on these four key ARG-DEGs, a risk prediction model for MDD was developed. The miRNA-TF-mRNA interaction network of the key ARG-DEGs highlights the complexity of the regulatory process, providing valuable insights for future related research. The MR study suggested a potential causal relationship between MMP9 and the risk of depression. CONCLUSION The process of aging, immune dysregulation, and MDD are closely interconnected. MMP9, IL7R, S100B, and EGF may be used as novel diagnostic biomarkers and potential therapeutic targets for MDD, especially MMP9.
Collapse
Affiliation(s)
- Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Pan Liao
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; School of Medicine, Nankai University, Tianjin 300192, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Jing Zhao
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Han Gao
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Yuan Liu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Fanglian Chen
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China.
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; School of Medicine, Nankai University, Tianjin 300192, China.
| |
Collapse
|
15
|
Facal F, Costas J. Shared polygenic susceptibility to treatment response in severe affective and psychotic disorders: Evidence from GWAS data sets. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111183. [PMID: 39490915 DOI: 10.1016/j.pnpbp.2024.111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
While schizophrenia (SCZ), bipolar disorder (BD) and major depressive disorder (MDD) genetically correlate, the pleiotropy underlying response/resistance to drugs used in these disorders has not been investigated. The aim of this study is to analyze the genetic relationship between treatment-resistant schizophrenia (TRS), response to lithium in BD (respLi) and response to antidepressants in MDD (respAD) using the conditional/conjunctional false discovery rate (cond/conjFDR) methodology, based on the hypothesis that shared mechanisms related to a common psychopathology factor underlie these phenotypes. A cross-trait polygenic enrichment for TRS conditioned on associations with respLi was observed. The conjFDR analysis identified rs11631065 (chr15:66654304) as a shared locus between them. One of the genes at this locus is MAP2K1, previously reported as associated with TRS after conditioning on body mass index genome-wide association study (GWAS). The set of genes at TRS-respLi conjFDR < 0.95 showed enrichment in response to psychotropic drugs in severe mental disorders from GWAS Catalog as well as in neurodevelopment and synaptic pathways. In conclusion, our study constitutes the first evidence of a transdiagnostic genetic signal associated with response to different pharmacological treatments in psychotic and affective disorders. It is necessary to confirm these results when larger GWAS of these phenotypes are available.
Collapse
Affiliation(s)
- Fernando Facal
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain.
| | - Javier Costas
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
16
|
Hagenberg J, Brückl TM, Erhart M, Kopf-Beck J, Ködel M, Rehawi G, Röh-Karamihalev S, Sauer S, Yusupov N, Rex-Haffner M, Spoormaker VI, Sämann P, Binder E, Knauer-Arloth J. Dissecting depression symptoms: Multi-omics clustering uncovers immune-related subgroups and cell-type specific dysregulation. Brain Behav Immun 2025; 123:353-369. [PMID: 39303816 DOI: 10.1016/j.bbi.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
In a subset of patients with mental disorders, such as depression, low-grade inflammation and altered immune marker concentrations are observed. However, these immune alterations are often assessed by only one data type and small marker panels. Here, we used a transdiagnostic approach and combined data from two cohorts to define subgroups of depression symptoms across the diagnostic spectrum through a large-scale multi-omics clustering approach in 237 individuals. The method incorporated age, body mass index (BMI), 43 plasma immune markers and RNA-seq data from peripheral mononuclear blood cells (PBMCs). Our initial clustering revealed four clusters, including two immune-related depression symptom clusters characterized by elevated BMI, higher depression severity and elevated levels of immune markers such as interleukin-1 receptor antagonist (IL-1RA), C-reactive protein (CRP) and C-C motif chemokine 2 (CCL2 or MCP-1). In contrast, the RNA-seq data mostly differentiated a cluster with low depression severity, enriched in brain related gene sets. This cluster was also distinguished by electrocardiography data, while structural imaging data revealed differences in ventricle volumes across the clusters. Incorporating predicted cell type proportions into the clustering resulted in three clusters, with one showing elevated immune marker concentrations. The cell type proportion and genes related to cell types were most pronounced in an intermediate depression symptoms cluster, suggesting that RNA-seq and immune markers measure different aspects of immune dysregulation. Lastly, we found a dysregulation of the SERPINF1/VEGF-A pathway that was specific to dendritic cells by integrating immune marker and RNA-seq data. This shows the advantages of combining different data modalities and highlights possible markers for further stratification research of depression symptoms.
Collapse
Affiliation(s)
- Jonas Hagenberg
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry, 80804 Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Tanja M Brückl
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | - Mira Erhart
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry, 80804 Munich, Germany.
| | - Johannes Kopf-Beck
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; Department of Psychology, LMU Munich, Leopoldstr. 13, 80802 Munich, Germany.
| | - Maik Ködel
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | - Ghalia Rehawi
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | | | - Susann Sauer
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | - Natan Yusupov
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry, 80804 Munich, Germany.
| | - Monika Rex-Haffner
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | - Victor I Spoormaker
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | - Philipp Sämann
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| | - Elisabeth Binder
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 100 Woodruff Circle, Atlanta GA 30322, USA.
| | - Janine Knauer-Arloth
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
17
|
Yontar G, Mutlu EA. Neutrophil-to-lymphocyte, platelet-to-lymphocyte ratios and systemic immune-inflammation index in patients with post-traumatic stress disorder. BMC Psychiatry 2024; 24:966. [PMID: 39741243 DOI: 10.1186/s12888-024-06439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Low-grade systemic inflammation has been reported in many psychiatric diseases and is described as a non-severe state of the inflammatory response. Post-traumatic stress disorder (PTSD) is a chronic psychiatric disorder characterized by symptoms of avoidance, re-experiencing and hyperarousal that develop secondary to a serious traumatic event. The trauma itself creates psychological and biological changes in the individual, apart from PTSD. This complex situation has still not been clarified and researchers have tended to research on inflammatory processes. Systemic immune inflammation index (SII), as a new index related to inflammation, is a comprehensive value based on peripheral lymphocyte, neutrophil and platelet counts. SII has been used as a marker of subclinical inflammation and prognosis in various studies. Although the presence of inflammation in PTSD was tried to be demonstrated through cytokines, inflammatory variables such as neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR) and SII, which are low-cost and easily shown in routine examinations, have not been studied before. METHOD We compared PTSD patients with healthy controls. 160 subjects (80 PTSD and 80 controls) were enrolled for study. All patients were evaluated with Structured clinical study form for DSM-V Axis 1 disorders. Exclusion criteria were as follows: presence of PTSD symptoms shorter than one month, presence of psychiatric comorbidity, being diagnosed with psychotic disorder, bipolar disorder, autism spectrum disorder, presence of mental retardation, being under psychotropic drug treatment, presence of a neurological disease that may cause serious disability (epilepsy, cerebrovascular disease), migraine, presence of organic brain damage, smoking, alcohol and substance use disorder, presence of a chronic disease such as diabetes mellitus, hypertension, hyperlipidemia, chronic lung diseases, being in pregnancy and breastfeeding, presence of heart disease were determined as exclusion criteria. Additionally, patients with diseases that could affect the leukocyte count (hematopoietic disease, malignancy, acute infection, acute or chronic renal failure, liver failure) and medication use (chemotherapy, history of glucocorticoid use in the last three months) were not included in the study. Patients who smoked more than fifteen cigarettes per day and had a body mass index > 30 were also excluded. SII is calculated as follows; SII = platelet count x neutrophil count / lymphocyte count. RESULTS Sociodemographic data were comparable among groups. Neutrophil and platelet levels of PTSD patients were significantly higher than controls although both groups' values were in normal range. Moreover, NLR, PLR and SII were significantly higher in PTSD group. CONCLUSION We found that NLR, PLR and SII values, which are easily calculable and cost-effective markers of systemic inflammation, were significantly higher in PTSD patients than in the control group. These values may be considered to identify patients who may benefit from adjuvant anti-inflammatory pharmacological treatment on top of psychotherapeutic treatment.
Collapse
Affiliation(s)
- Gözde Yontar
- Samsun Training and Research Hospital, Psychiatry Clinic, Samsun, Turkey.
| | | |
Collapse
|
18
|
Sun W, Baranova A, Liu D, Cao H, Zhang X, Zhang F. Phenome-wide investigation of bidirectional causal relationships between major depressive disorder and common human diseases. Transl Psychiatry 2024; 14:506. [PMID: 39730323 PMCID: PMC11680865 DOI: 10.1038/s41398-024-03216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024] Open
Abstract
The high comorbidity of major depressive disorder (MDD) with other diseases has been well-documented. However, the pairwise causal connections for MDD comorbid networks are poorly characterized. We performed Phenome-wide Mendelian randomization (MR) analyses to explore bidirectional causal associations between MDD (N = 807,553) and 877 common diseases from FinnGen datasets (N = 377,277). The inverse variance weighting method was the primary technique, and other methods (weighted median and MR-Egger) were used for sensitivity analyses. Our MR analyses showed that the genetic liability to MDD is causally associated with the risks of 324 disease phenotypes (average b: 0.339), including 46 psychiatric and behavioral disorders (average b: 0.618), 18 neurological diseases (average b: 0.348), 44 respiratory diseases (average b: 0.345), 40 digestive diseases (average b: 0.281), 18 circulatory diseases (average b: 0.237), 37 genitourinary diseases (average b: 0.271), 66 musculoskeletal and connective diseases (average b: 0.326), 22 endocrine diseases (average b: 0.302), and others. In a reverse analysis, a total of 51 genetic components predisposing to various diseases were causally associated with MDD risk (average b: 0.086), including 5 infectious diseases (average b: 0.056), 11 neurological diseases (average b: 0.106), 14 oncological diseases (average b: 0.108), and 5 psychiatric and behavioral disorders (average b: 0.114). Bidirectional causal associations were identified between MDD and 15 diseases. For most MR analyses, little evidence of heterogeneity and pleiotropy was detected. Our findings confirmed the extensive and significant causal role of genetic predisposition to MDD in contributing to human disease phenotypes, which were more pronounced than those seen in the reverse analysis of the causal influences of other diseases on MDD.
Collapse
Affiliation(s)
- Wenxi Sun
- Suzhou Guangji Hospital, Suzhou, Jiangsu Province; Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, USA
- Research Centre for Medical Genetics, Moscow, Russia
| | - Dongming Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Xiaobin Zhang
- Suzhou Guangji Hospital, Suzhou, Jiangsu Province; Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
19
|
Milasauskiene E, Burkauskas J, Jesmanas S, Gleizniene R, Borutaite V, Skemiene K, Vaitkiene P, Adomaitiene V, Lukosevicius S, Gradauskiene B, Brown G, Steibliene V. The links between neuroinflammation, brain structure and depressive disorder: A cross-sectional study protocol. PLoS One 2024; 19:e0311218. [PMID: 39565757 PMCID: PMC11578540 DOI: 10.1371/journal.pone.0311218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/12/2024] [Indexed: 11/22/2024] Open
Abstract
INTRODUCTION It is known that symptoms of major depressive disorder (MDD) are associated with neurodegeneration, that lipopolysaccharide (LPS) can induce symptoms of MDD, and that blood LPS levels are elevated in neurodegeneration. However, it is not known whether blood LPS and cytokine levels correlate with MDD, cognition and brain structure, and this is tested in this study. METHODS AND ANALYSIS This cross-sectional study includes individuals with MDD (n = 100) and a control group of individuals with no one-year history of a mental disorder (n = 50). A comprehensive evaluation is performed, including the collection of basic sociodemographic information, data on smoking status, body mass index, course of MDD, past treatment, comorbid diseases, and current use of medications. Diagnosis of MDD is performed according to the WHO's [2019] International Classification of Diseases and related health problems by psychiatrist and severity of MDD is evaluated using the Montgomery-Åsberg Depression Scale. The Cambridge Neuropsychological Test Automated Battery is used to evaluate cognitive functioning. Venous blood samples are taken to measure genetic and inflammatory markers, and multiparametric brain magnetic resonance imaging is performed to evaluate for blood-brain barrier permeability, structural and neurometabolic brain changes. Descriptive and inferential statistics, including linear and logistic regression, will be used to analyse relationships between blood plasma LPS and inflammatory cytokine concentrations in MDD patients and controls. The proposed sample sizes are suitable for identifying significant differences between the groups, according to a power analysis. ADMINISTRATIVE INFORMATION Trial registration: Clinicaltrials.gov NCT06203015.
Collapse
Affiliation(s)
- Egle Milasauskiene
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Julius Burkauskas
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Simonas Jesmanas
- Department of Radiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rymante Gleizniene
- Department of Radiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vilmante Borutaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kristina Skemiene
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Paulina Vaitkiene
- Laboratory of Molecular Neurobiology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Saulius Lukosevicius
- Department of Radiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Brigita Gradauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Guy Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Vesta Steibliene
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Psychiatry Clinic, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
20
|
Métivier L, Vivien D, Goy R, Agin V, Bui E, Benbrika S. Plasminogen Activator Inhibitor-1 in the Pathophysiology of Late Life Depression. Int J Geriatr Psychiatry 2024; 39:e70015. [PMID: 39578639 DOI: 10.1002/gps.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024]
Abstract
INTRODUCTION Late life depression (LLD) is characterized by specific clinical features including a high frequency of vascular form and frequent antidepressant treatment resistance. The expression and functions of the serine protease inhibitor, Plasminogen Activator Inhibitor-1 (PAI-1) is known to be altered by aging, vascular damage, insulin levels associated with a sedentary lifestyle, chronic stress leading to hypercortisolemia, and inflammatory changes linked to stress responses. These phenomena would be implicated in LLD like vascular depression. This article thus aims to review the existing literature regarding the association between LLD and plasmatic levels of PAI-1, a marker of hypofibrinolysis. We hypothesize that increased age would be associated with changes in PAI-1 plasma level and function which influence LLD pathogenesis and its treatment. RESULTS Although a large number of studies on PAI-1 changes in the elderly exist, studies about its implications in LLD are sparse. Despite heterogeneous findings regarding the direction of variation in plasmatic PAI-1 levels among elderly participants with LLD, all studies demonstrated an association between PAI-1 levels and current or remitted depressive symptoms. Moreover, disruptions in the concentrations of other biological markers influencing PAI-1 expression, such as cytokines or adipokines, were also observed, notably an increase in the levels of interleukins 6 and 8. DISCUSSION LLD genesis appears to be influenced by PAI-1 regulatory loops which are implicated in senescence or cell death. The resistance to antidepressant treatment appears to be linked to distinct biological profiles involving inflammatory and fibrinolytic factors. Taken together these data suggest that PAI-1 pathway may be a promising target of treatment development efforts for LLD, and depression in general.
Collapse
Affiliation(s)
- L Métivier
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
| | - D Vivien
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - R Goy
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
| | - V Agin
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - E Bui
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
- CHU de CAEN Normandie, Service de Psychiatrie, Centre Esquirol, Caen, France
| | - S Benbrika
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, UNICAEN, Caen, France
- Fédération Hospitalo-Universitaire (FHU A2M2P), GIP Cyceron, Normandie Univ, UNICAEN, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
- CHU de CAEN Normandie, Service de Psychiatrie, Centre Esquirol, Caen, France
| |
Collapse
|
21
|
Fellows E, Jones BDM, Hodsoll J, Husain N, Khoso AB, Young AH, Chaudhry IB, Husain MI. Associations between C-reactive protein and individual symptoms of depression in a lower-middle income country. BJPsych Open 2024; 10:e169. [PMID: 39359158 PMCID: PMC11536211 DOI: 10.1192/bjo.2024.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Data on associations between inflammation and depressive symptoms largely originate from high income population settings, despite the greatest disease burden in major depressive disorder being attributed to populations in lower-middle income countries (LMICs). AIMS We assessed the prevalence of low-grade inflammation in adults with treatment-resistant depression (TRD) in Pakistan, an LMIC, and investigated associations between peripheral C-reactive protein (CRP) levels and depressive symptoms. METHOD This is a secondary analysis of two randomised controlled trials investigating adjunctive immunomodulatory agents (minocycline and simvastatin) for Pakistani adults with TRD (n = 191). Logistic regression models were built to assess the relationship between pre-treatment CRP (≥ or <3 mg/L) and individual depressive symptoms measured using the Hamilton Depression Rating Scale. Descriptive statistics and regression were used to assess treatment response for inflammation-associated symptoms. RESULTS High plasma CRP (≥3 mg/L) was detected in 87% (n = 146) of participants. Early night insomnia (odds ratio 2.33, 95% CI 1.16-5.25), early morning waking (odds ratio 2.65, 95% CI 1.29-6.38) and psychic anxiety (odds ratio 3.79, 95% CI 1.39-21.7) were positively associated, while gastrointestinal (odds ratio 0.38, 95% CI 0.14-0.86) and general somatic symptoms (odds ratio 0.34, 95% CI 0.14-0.74) were negatively associated with inflammation. Minocycline, but not simvastatin, improved symptoms positively associated with inflammation. CONCLUSIONS The prevalence of inflammation in this LMIC sample with TRD was higher than that reported in high income countries. Insomnia and anxiety symptoms may represent possible targets for personalised treatment with immunomodulatory agents in people with elevated CRP. These findings require replication in independent clinical samples.
Collapse
Affiliation(s)
- Elise Fellows
- University of Toronto Temerty Faculty of Medicine, Institute of Medical Science, Toronto, Canada
- Centre for Addiction and Mental Health, Mood Disorders, Toronto, Canada
| | - Brett D. M. Jones
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - John Hodsoll
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Nusrat Husain
- Lancashire & South Cumbria NHS Foundation Trust, London, UK; and Division of Psychology and Mental Health, University of Manchester, UK
| | - Ameer B. Khoso
- Pakistan Institute of Living and Learning, Karachi, Pakistan
| | - Allan H. Young
- Centre for Affective Disorders, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK
| | - Imran B. Chaudhry
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Dow University of Health Sciences, Karachi, Pakistan; and Ziauddin University Hospital, Karachi, Pakistan
| | - M. Ishrat Husain
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| |
Collapse
|
22
|
Jarkas DA, Villeneuve AH, Daneshmend AZB, Villeneuve PJ, McQuaid RJ. Sex differences in the inflammation-depression link: A systematic review and meta-analysis. Brain Behav Immun 2024; 121:257-268. [PMID: 39089535 DOI: 10.1016/j.bbi.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
Major Depressive Disorder (MDD) is a heterogeneous disorder that affects twice as many women than men. Precluding advances in more tailored and efficacious treatments for depression is the lack of reliable biomarkers. While depression is linked to elevations in inflammatory immune system functioning, this relationship is not evident among all individuals with depression and may vary based on symptom subtypes and/or sex. This systematic review and meta-analysis examined whether inflammatory immune peripheral markers of depression are sex-specific. PRISMA guidelines were followed for the systematic review, and a comprehensive search strategy that identified studies from PubMed and PsycInfo was applied. Studies were included if they reported C-reactive protein (CRP), interleukin (IL)-6, tumor necrosis factor (TNF)-α and/or IL-1β for males and/or females among depressed and healthy adults. We identified 23 studies that satisfied these inclusion criteria. Random-effects meta-analysis models were fit, and measures of association were summarized between levels of circulating markers of inflammation in depressed and healthy males and females. Sex-based analyses revealed elevated levels of CRP among females with depression (Cohen's d = 0.19) relative to their healthy counterparts (p = 0.02), an effect not apparent among males (Cohen's d = -0.01). Similarly, levels of IL-6 were increased among females with depression compared to healthy controls (Cohen's d = 0.51; p = 0.04), but once again this was not found among males (Cohen's d = 0.16). While TNF-α levels were elevated among individuals with depression compared to controls (p = 0.01), no statistically significant sex differences were found. The meta-analysis for IL-1β resulted in only three articles, and thus, results are presented in the supplemental section. This meta-analysis advances our understanding of the unique involvement of inflammatory biomarkers in depression among men and women, which may help inform more tailored sex-specific treatment approaches in the future.
Collapse
Affiliation(s)
- Dana A Jarkas
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.
| | - Ally H Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Ayeila Z B Daneshmend
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Paul J Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Robyn J McQuaid
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Calagua-Bedoya EA, Rajasekaran V, De Witte L, Perez-Rodriguez MM. The Role of Inflammation in Depression and Beyond: A Primer for Clinicians. Curr Psychiatry Rep 2024; 26:514-529. [PMID: 39187612 DOI: 10.1007/s11920-024-01526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE OF REVIEW We evaluate available evidence for the role of inflammation in depression. We reappraise literature involving systemic inflammation, neuroinflammation and neurotransmission and their association with depression. We review the connection between depression, autoimmunity and infectious diseases. We revise anti-inflammatory treatments used in depression. RECENT FINDINGS Peripheral inflammatory markers are present in a subset of patients with depression and can alter common neurotransmitters in this population but there is no clear causality between depression and systemic inflammation. Infectious conditions and autoimmune illnesses do not have a clear correlation with depression. Certain medications have positive evidence as adjunctive treatments in depression but studies are heterogenic, hence they are sparsely used in clinical settings. The current evidence does not fully support inflammation, infections or autoimmunity as possible etiologies of depression. The available studies have numerous confounders that obscure the findings. Anti-inflammatory agents may have potential for treatment of depression, but further research is needed to clarify their usefulness in routine clinical practice.
Collapse
Affiliation(s)
- Eduardo Andres Calagua-Bedoya
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766, USA.
| | | | - Lotje De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | |
Collapse
|
24
|
Okada N, Oshima K, Maruko A, Sekine M, Ito N, Wakasugi A, Mori E, Odaguchi H, Kobayashi Y. Intron retention as an excellent marker for diagnosing depression and for discovering new potential pathways for drug intervention. Front Psychiatry 2024; 15:1450708. [PMID: 39364384 PMCID: PMC11446786 DOI: 10.3389/fpsyt.2024.1450708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Background Peripheral inflammation is often associated with depressive disorders, and immunological biomarkers of depression remain a focus of investigation. Methods We performed RNA-seq analysis of RNA transcripts of human peripheral blood mononuclear cells from a case-control study including subjects with self-reported depression in the pre-symptomatic state of major depressive disorder and analyzed differentially expressed genes (DEGs) and the frequency of intron retention (IR) using rMATS. Results Among the statistically significant DEGs identified, the 651 upregulated DEGs were particularly enriched in the term "bacterial infection and phagocytosis", whereas the 820 downregulated DEGs were enriched in the terms "antigen presentation" and "T-cell proliferation and maturation". We also analyzed 158 genes for which the IR was increased (IncIR) and 211 genes for which the IR was decreased (DecIR) in the depressed subjects. Although the Gene Ontology terms associated with IncIR and DecIR were very similar to those of the up- and downregulated genes, respectively, IR genes appeared to be particularly enriched in genes with sensor functions, with a preponderance of the term "ciliary assembly and function". The observation that IR genes specifically interact with innate immunity genes suggests that immune-related genes, as well as cilia-related genes, may be excellent markers of depression. Re-analysis of previously published RNA-seq data from patients with MDD showed that common IR genes, particularly our predicted immune- and cilia-related genes, are commonly detected in populations with different levels of depression, providing validity for using IR to detect depression. Conclusion Depression was found to be associated with activation of the innate immune response and relative inactivation of T-cell signaling. The DEGs we identified reflect physiological demands that are controlled at the transcriptional level, whereas the IR results reflect a more direct mechanism for monitoring protein homeostasis. Accordingly, an alteration in IR, namely IncIR or DecIR, is a stress response, and intron-retained transcripts are sensors of the physiological state of the cytoplasm. The results demonstrate the potential of relative IR as a biomarker for the immunological stratification of depressed patients and the utility of IR for the discovery of novel pathways involved in recovery from depression.
Collapse
Affiliation(s)
- Norihiro Okada
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Kenshiro Oshima
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Akiko Maruko
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Mariko Sekine
- Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Naoki Ito
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Akino Wakasugi
- Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Eiko Mori
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hiroshi Odaguchi
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
25
|
Wang F, Zhu D, Cao L, Wang S, Tong Y, Xie F, Zhang X, Su P, Wang G. Peripheral CD4 + T helper lymphocytes alterations in major depressive disorder: A systematic review and meta-analysis. Neuroscience 2024; 555:145-155. [PMID: 39059741 DOI: 10.1016/j.neuroscience.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Previous research has shown that patients with major depressive disorder (MDD) develop immune dysfunction. However, the exact alterations of cluster of differentiation (CD)4+ T helper (Th) lymphocytes in MDD remains unclear. This meta-analysis aimed to examine the specific changes in CD4+ Th cells. A comprehensive search of PubMed, EMBASE, Web of Science, and PsycINFO databases was conducted to identify studies investigating CD4+ Th, Th1, Th2, Th17, and T regulatory (Treg) cell counts in the peripheral blood of MDD patients and healthy controls (HCs), covering the period up to June 22, 2024. Our findings revealed that patients with MDD might exhibit higher CD4+ Th cells (SMD=0.26, 95 %CI, 0.02 to 0.50), CD4+/CD8+ cell ratios (SMD=0.51, 95 %CI, 0.14 to 0.89), Th1/Th2 cell ratios (SMD=0.15, 95 %CI, 0.01 to 0.30) and lower Th1 (SMD=-0.17, 95 %CI, -0.30 to -0.03), Th2 (SMD=-0.25, 95 %CI, -0.40 to -0.11), and Treg cells (SMD=-0.69, 95 %CI, -1.27 to -0.11). However, no significant difference was observed in terms of Th17 cells and Th17/Treg cell ratios between MDD patients and the HCs. Heterogeneity was large (I2:18.1-95.2 %), and possible sources of heterogeneity were explored (e.g., age, depression scale, country, and antidepressant use). Our findings indicate that peripheral CD4+ T cells in depressed patients exhibit features of adaptive immune dysfunction, as evidenced by increased CD4+ Th cells and CD4+/CD8+ and decreased Treg cells. These findings offer insights into the underlying mechanism of MDD.
Collapse
Affiliation(s)
- Fan Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Dongxue Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Leilei Cao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Shaojie Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Yingying Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Faliang Xie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Xueying Zhang
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA; Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Puyu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Gengfu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
26
|
Bertollo AG, Galvan ACL, Dallagnol C, Cortez AD, Ignácio ZM. Early Life Stress and Major Depressive Disorder-An Update on Molecular Mechanisms and Synaptic Impairments. Mol Neurobiol 2024; 61:6469-6483. [PMID: 38307968 DOI: 10.1007/s12035-024-03983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Early life stress (ELS), characterized as abuse, neglect, and abandonment, can cause several adverse consequences in the lives of affected individuals. ELS experiences can affect an individual's development in variable ways, persisting in the long term and promoting lasting impacts, considering that early exposure to stressors can be biologically incorporated, as prolonged stimulation of stress response systems affects the development of the brain structure and other body systems, increasing the risk of diseases associated with stress and cognitive impairment. This type of stress increases the risk of developing major depressive disorder (MDD) in a severe form that does not respond adequately to traditional antidepressant treatments. Several alterations are studied as mechanisms that relate ELS with MDD, such as epigenetic alterations, neurotransmitters, and neuronal signaling. This review discusses research that brings evidence about the ELS mechanisms involved in synaptic impairments and MDD. The processes involved in epigenetic changes and the HPA axis are highlighted, as well as changes in neurotransmitters and neuronal signaling mechanisms.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Agatha Carina Leite Galvan
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Claudia Dallagnol
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Arthur Dellazeri Cortez
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
27
|
Yin Y, Ju T, Zeng D, Duan F, Zhu Y, Liu J, Li Y, Lu W. "Inflamed" depression: A review of the interactions between depression and inflammation and current anti-inflammatory strategies for depression. Pharmacol Res 2024; 207:107322. [PMID: 39038630 DOI: 10.1016/j.phrs.2024.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Depression is a common mental disorder, the effective treatment of which remains a challenging issue worldwide. The clinical pathogenesis of depression has been deeply explored, leading to the formulation of various pathogenic hypotheses. Among these, the monoamine neurotransmitter hypothesis holds a prominent position, yet it has significant limitations as more than one-third of patients do not respond to conventional treatments targeting monoamine transmission disturbances. Over the past few decades, a growing body of research has highlighted the link between inflammation and depression as a potential key factor in the pathophysiology of depression. In this review, we first summarize the relationship between inflammation and depression, with a focus on the pathophysiological changes mediated by inflammation in depression. The mechanisms linking inflammation to depression as well as multiple anti-inflammatory strategies are also discussed, and their efficacy and safety are assessed. This review broadens the perspective on specific aspects of using anti-inflammatory strategies for treating depression, laying the groundwork for advancing precision medicine for individuals suffering from "inflamed" depression.
Collapse
Affiliation(s)
- Yishu Yin
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Ting Ju
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Deyong Zeng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Fangyuan Duan
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Yuanbing Zhu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Junlian Liu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing 100094, China.
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| |
Collapse
|
28
|
Gan X, Li X, Cai Y, Yin B, Pan Q, Teng T, He Y, Tang H, Wang T, Li J, Zhu Z, Zhou X, Li J. Metabolic features of adolescent major depressive disorder: A comparative study between treatment-resistant depression and first-episode drug-naive depression. Psychoneuroendocrinology 2024; 167:107086. [PMID: 38824765 DOI: 10.1016/j.psyneuen.2024.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Major depressive disorder (MDD) is a psychiatric illness that can jeopardize the normal growth and development of adolescents. Approximately 40% of adolescent patients with MDD exhibit resistance to conventional antidepressants, leading to the development of Treatment-Resistant Depression (TRD). TRD is associated with severe impairments in social functioning and learning ability and an elevated risk of suicide, thereby imposing an additional societal burden. In this study, we conducted plasma metabolomic analysis on 53 adolescents diagnosed with first-episode drug-naïve MDD (FEDN-MDD), 53 adolescents with TRD, and 56 healthy controls (HCs) using hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) and reversed-phase liquid chromatography-mass spectrometry (RPLC-MS). We established a diagnostic model by identifying differentially expressed metabolites and applying cluster analysis, metabolic pathway analysis, and multivariate linear support vector machine (SVM) algorithms. Our findings suggest that adolescent TRD shares similarities with FEDN-MDD in five amino acid metabolic pathways and exhibits distinct metabolic characteristics, particularly tyrosine and glycerophospholipid metabolism. Furthermore, through multivariate receiver operating characteristic (ROC) analysis, we optimized the area under the curve (AUC) and achieved the highest predictive accuracy, obtaining an AUC of 0.903 when comparing FEDN-MDD patients with HCs and an AUC of 0.968 when comparing TRD patients with HCs. This study provides new evidence for the identification of adolescent TRD and sheds light on different pathophysiologies by delineating the distinct plasma metabolic profiles of adolescent TRD and FEDN-MDD.
Collapse
Affiliation(s)
- Xieyu Gan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiyuan Pan
- The First People's Hospital of Zaoyang City, Hubei, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqian He
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Tang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Wang
- Department of Psychology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jinfang Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
29
|
Dong T, Yu C, Mao Q, Han F, Yang Z, Yang Z, Pires N, Wei X, Jing W, Lin Q, Hu F, Hu X, Zhao L, Jiang Z. Advances in biosensors for major depressive disorder diagnostic biomarkers. Biosens Bioelectron 2024; 258:116291. [PMID: 38735080 DOI: 10.1016/j.bios.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Depression is one of the most common mental disorders and is mainly characterized by low mood or lack of interest and pleasure. It can be accompanied by varying degrees of cognitive and behavioral changes and may lead to suicide risk in severe cases. Due to the subjectivity of diagnostic methods and the complexity of patients' conditions, the diagnosis of major depressive disorder (MDD) has always been a difficult problem in psychiatry. With the discovery of more diagnostic biomarkers associated with MDD in recent years, especially emerging non-coding RNAs (ncRNAs), it is possible to quantify the condition of patients with mental illness based on biomarker levels. Point-of-care biosensors have emerged due to their advantages of convenient sampling, rapid detection, miniaturization, and portability. After summarizing the pathogenesis of MDD, representative biomarkers, including proteins, hormones, and RNAs, are discussed. Furthermore, we analyzed recent advances in biosensors for detecting various types of biomarkers of MDD, highlighting representative electrochemical sensors. Future trends in terms of new biomarkers, new sample processing methods, and new detection modalities are expected to provide a complete reference for psychiatrists and biomedical engineers.
Collapse
Affiliation(s)
- Tao Dong
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Chenghui Yu
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Qi Mao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Han
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenwei Yang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Pires
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Hu
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiao Hu
- Engineering Research Center of Ministry of Education for Smart Justice, School of Criminal Investigation, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Libo Zhao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
30
|
Eder J, Pfeiffer L, Wichert SP, Keeser B, Simon MS, Popovic D, Glocker C, Brunoni AR, Schneider A, Gensichen J, Schmitt A, Musil R, Falkai P. Deconstructing depression by machine learning: the POKAL-PSY study. Eur Arch Psychiatry Clin Neurosci 2024; 274:1153-1165. [PMID: 38091084 PMCID: PMC11226486 DOI: 10.1007/s00406-023-01720-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/04/2023] [Indexed: 07/06/2024]
Abstract
Unipolar depression is a prevalent and disabling condition, often left untreated. In the outpatient setting, general practitioners fail to recognize depression in about 50% of cases mainly due to somatic comorbidities. Given the significant economic, social, and interpersonal impact of depression and its increasing prevalence, there is a need to improve its diagnosis and treatment in outpatient care. Various efforts have been made to isolate individual biological markers for depression to streamline diagnostic and therapeutic approaches. However, the intricate and dynamic interplay between neuroinflammation, metabolic abnormalities, and relevant neurobiological correlates of depression is not yet fully understood. To address this issue, we propose a naturalistic prospective study involving outpatients with unipolar depression, individuals without depression or comorbidities, and healthy controls. In addition to clinical assessments, cardiovascular parameters, metabolic factors, and inflammatory parameters are collected. For analysis we will use conventional statistics as well as machine learning algorithms. We aim to detect relevant participant subgroups by data-driven cluster algorithms and their impact on the subjects' long-term prognosis. The POKAL-PSY study is a subproject of the research network POKAL (Predictors and Clinical Outcomes in Depressive Disorders; GRK 2621).
Collapse
Affiliation(s)
- Julia Eder
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.
- Graduate Program "POKAL - Predictors and Outcomes in Primary Care" (DFG-GrK 2621, Munich, Germany.
| | - Lisa Pfeiffer
- Graduate Program "POKAL - Predictors and Outcomes in Primary Care" (DFG-GrK 2621, Munich, Germany
| | - Sven P Wichert
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Benjamin Keeser
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Maria S Simon
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - David Popovic
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Max-Planck Institute of Psychiatry, Munich, Germany
| | - Catherine Glocker
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Andre R Brunoni
- Department of Psychiatry, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo, SP, Brasil
| | - Antonius Schneider
- Graduate Program "POKAL - Predictors and Outcomes in Primary Care" (DFG-GrK 2621, Munich, Germany
- Institute of General Practice and Health Services Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Jochen Gensichen
- Graduate Program "POKAL - Predictors and Outcomes in Primary Care" (DFG-GrK 2621, Munich, Germany
- Institute of General Practice and Family Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
- Oberberg Specialist Clinic Bad Tölz, Bad Tölz, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
- Graduate Program "POKAL - Predictors and Outcomes in Primary Care" (DFG-GrK 2621, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Max-Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
31
|
Wu Q, Huang H, Wang X, Tao X. The Correlation between Depression during Pregnancy and Metabolic Syndrome. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:519-525. [PMID: 39129684 PMCID: PMC11319762 DOI: 10.62641/aep.v52i4.1700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
BACKGROUND In recent years, the incidence of depression during pregnancy has gradually increased, and the disorder of lipid metabolism in patients with depression is an important research direction. Therefore, this study aimed to explore the correlation between depression during pregnancy and metabolic syndrome (MS). METHODS A total of 113 pregnant women diagnosed as depression during pregnancy from November 2019 to January 2022 were selected as the observation group. After excluding 3 cases, 110 cases were finally included. And 102 pregnant women who were not diagnosed as depression during pregnancy in the same period were selected as the control group. After excluding 2 cases, 100 cases were finally included for comparative study. The levels of various parameters, including serum triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), fasting plasma glucose (FPG), C-reactive protein (CRP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) were compared between the two groups. Furthermore, the Edinburgh Postnatal Depression Scale (EPDS) was used to evaluate the depression scores of postpartum women. Additionally, the correlation between EPDS scores and clinical indexes was assessed in patients with depression during pregnancy. RESULTS We observed that the body weight, EPDS score, the proportion of hyperglycemia, hypertension, and dyslipidemia were significantly higher in the observation group compared to the control group (p < 0.001). Furthermore, the observation group exhibited significantly higher levels of TG, TC, HDL-C, LDL-C, FPG, CRP, SBP, and DBP than the control group (p < 0.001). Pearson linear correlation analysis revealed that TG, TC, HDL-C, LDL-C, FPG, CRP, SBP, and DBP levels were positively correlated with EPDS scores (p < 0.001). CONCLUSION This study indicates a specific correlation between MS and depression during pregnancy, and MS-related indicators are positively correlated with EPDS scores among these individuals.
Collapse
Affiliation(s)
- Qunli Wu
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 318000 Taizhou, Zhejiang, China
| | - Haiyan Huang
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 318000 Taizhou, Zhejiang, China
| | - Xiaojun Wang
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 318000 Taizhou, Zhejiang, China
| | - Xiaoling Tao
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 318000 Taizhou, Zhejiang, China
| |
Collapse
|
32
|
Beer C, Rae F, Semmler A, Voisey J. Biomarkers in the Diagnosis and Prediction of Medication Response in Depression and the Role of Nutraceuticals. Int J Mol Sci 2024; 25:7992. [PMID: 39063234 PMCID: PMC11277518 DOI: 10.3390/ijms25147992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Depression continues to be a significant and growing public health concern. In clinical practice, it involves a clinical diagnosis. There is currently no defined or agreed upon biomarker/s for depression that can be readily tested. A biomarker is defined as a biological indicator of normal physiological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention that can be objectively measured and evaluated. Thus, as there is no such marker for depression, there is no objective measure of depression in clinical practice. The discovery of such a biomarker/s would greatly assist clinical practice and potentially lead to an earlier diagnosis of depression and therefore treatment. A biomarker for depression may also assist in determining response to medication. This is of particular importance as not all patients prescribed with medication will respond, which is referred to as medication resistance. The advent of pharmacogenomics in recent years holds promise to target treatment in depression, particularly in cases of medication resistance. The role of pharmacogenomics in routine depression management within clinical practice remains to be fully established. Equally so, the use of pharmaceutical grade nutrients known as nutraceuticals in the treatment of depression in the clinical practice setting is largely unknown, albeit frequently self-prescribed by patients. Whether nutraceuticals have a role in not only depression treatment but also in potentially modifying the biomarkers of depression has yet to be proven. The aim of this review is to highlight the potential biomarkers for the diagnosis, prediction, and medication response of depression.
Collapse
Affiliation(s)
- Cristina Beer
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| | - Fiona Rae
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| | - Annalese Semmler
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Joanne Voisey
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (C.B.); (F.R.)
| |
Collapse
|
33
|
Kölblinger F, Schönthaler EMD, Baranyi A, Stross T, Fellendorf FT, von Lewinski D, Queissner R, Reininghaus EZ, Dalkner N. Better understanding of c-reactive protein and leukocytes in psychiatric inpatients with affective disorders: A biopsychosocial approach. World J Clin Cases 2024; 12:3824-3836. [PMID: 38994278 PMCID: PMC11235465 DOI: 10.12998/wjcc.v12.i19.3824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Affective disorders (AD) have been linked to inflammatory processes, although the underlying mechanisms of this relationship are still not fully elucidated. It is hypothesized that demographic, somatic, lifestyle, and personality variables predict inflammatory parameters in AD. AIM To identify biopsychosocial factors contributing to inflammation in AD measured with two parameters, C-reactive protein (CRP) and leukocytes. METHODS This observational study investigated 186 hospital inpatients diagnosed with AD using demographic parameters, serum inflammatory markers, somatic variables, psychological questionnaires, and lifestyle parameters. Hierarchical regression analyses were used to predict inflammatory markers from demographic, somatic, lifestyle, and personality variables. RESULTS Analyses showed that 33.8% of the variance of CRP was explained by body mass index and other somatic medication (e.g. anti-diabetics), age and education, and age of affective disorder diagnosis. For leukocytes, 20.1% of the variance was explained by smoking, diet, metabolic syndrome (MetS), and anti-inflammatory medication (e.g. non-steroidal anti-inflammatory drugs). Other psychiatric or behavioural variables did not reach significance. CONCLUSION Metabolic components seem important, with mounting evidence for a metabolic affective disorder subtype. Lifestyle modifications and psychoeducation should be employed to prevent or treat MetS in AD.
Collapse
Affiliation(s)
- Felix Kölblinger
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz 8036, Austria
| | - Elena MD Schönthaler
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz 8036, Austria
| | - Andreas Baranyi
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz 8036, Austria
| | - Tatjana Stross
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz 8036, Austria
| | - Frederike T Fellendorf
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz 8036, Austria
| | - Dirk von Lewinski
- Clinical Department of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Robert Queissner
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz 8036, Austria
| | - Eva Z Reininghaus
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz 8036, Austria
| | - Nina Dalkner
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz 8036, Austria
| |
Collapse
|
34
|
Tassone VK, Wu M, Meshkat S, Duffy SF, Baig S, Jung H, Lou W, Bhat V. The association between depressive symptoms and high-sensitivity C-reactive protein: Is body mass index a moderator? Brain Behav Immun Health 2024; 38:100773. [PMID: 38698915 PMCID: PMC11063595 DOI: 10.1016/j.bbih.2024.100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Objective Depression and obesity are highly comorbid conditions with shared biological mechanisms. It remains unclear how depressive symptoms and body mass index (BMI) interact in relation to inflammation. This cross-sectional study investigated the independent associations of depressive symptoms and BMI with high sensitivity C-reactive protein (hs-CRP), as well as the moderating role of BMI on the depressive symptoms-hs-CRP association. Methods Participants (n = 8827) from the 2015-2018 National Health and Nutrition Examination Surveys were aged ≥20 with a BMI ≥18.5 kg/m2, completed the Depression Screener, and had hs-CRP data. Multivariable linear regression was used to analyze hs-CRP in relation to depressive symptoms and BMI. An interaction term was included to examine whether the depressive symptoms-hs-CRP relationship differs depending on BMI. Results There was a slight, albeit non-significant, increase in hs-CRP levels with each one-point increase in depressive symptoms (aCoef.Estm. = 0.01, 95% CI = -0.05, 0.06, p = 0.754). Participants with overweight (aCoef.Estm. = 1.07, 95% CI = 0.61, 1.53, p < 0.001) or obese (aCoef.Estm. = 3.51, 95% CI = 3.04, 3.98, p < 0.001) BMIs had higher mean hs-CRP levels than those with a healthy BMI. There were no significant interactions between depressive symptoms and overweight (aCoef.Estm. = 0.04, 95% CI = -0.04, 0.13, p = 0.278) or obese (aCoef.Estm. = 0.11, 95% CI = -0.01, 0.22, p = 0.066) BMI indicating a lack of difference in the depressive symptoms-hs-CRP association across participants in the healthy versus overweight and obese ranges. Conclusions This study suggests that BMI might not act as a moderator in the association between depressive symptoms and hs-CRP. Results should be replicated in larger samples. Further research is warranted to understand underlying mechanisms.
Collapse
Affiliation(s)
- Vanessa K. Tassone
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, M5B 1M4, Canada
| | - Michelle Wu
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, M5B 1M4, Canada
| | - Shakila Meshkat
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, M5B 1M4, Canada
| | - Sophie F. Duffy
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, M5B 1M4, Canada
| | - Smia Baig
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, M5B 1M4, Canada
| | - Hyejung Jung
- Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada
| | - Wendy Lou
- Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, M5B 1M4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Mental Health and Addictions Services, St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| |
Collapse
|
35
|
Lombardo G, Mondelli V, Worrell C, Sforzini L, Mariani N, Nikkheslat N, Nettis MA, Kose M, Zajkowska Z, Cattaneo A, Pointon L, Turner L, Cowen PJ, Drevets WC, Cavanagh J, Harrison NA, Bullmore ET, Dazzan P, Pariante CM. Disturbed sex hormone milieu in males and females with major depressive disorder and low-grade inflammation. J Affect Disord 2024; 356:167-176. [PMID: 38494137 DOI: 10.1016/j.jad.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Sex hormones have biological effects on inflammation, and these might contribute to the sex-specific features of depression. C-reactive protein (CRP) is the most widely used inflammatory biomarker and consistent evidence shows a significant proportion (20-30 %) of patients with major depressive disorder (MDD) have CRP levels above 3 mg/L, a threshold indicating at least low-grade inflammation. Here, we investigate the interplay between sex hormones and CRP in the cross-sectional, observational Biomarkers in Depression Study. We measured serum high-sensitivity (hs-)CRP, in 64 healthy controls and 178 MDD patients, subdivided into those with hs-CRP below 3 mg/L (low-CRP; 53 males, 72 females) and with hs-CRP above 3 mg/L (high-CRP; 19 males, 34 females). We also measured interleukin-6, testosterone, 17-β-estradiol (E2), progesterone, sex-hormone binding globulin (SHBG), follicle-stimulating and luteinising hormones, and calculated testosterone-to-E2 ratio (T/E2), free androgen and estradiol indexes (FAI, FEI), and testosterone secretion index. In males, high-CRP patients had lower testosterone than controls (p = 0.001), and lower testosterone (p = 0.013), T/E2 (p < 0.001), and higher FEI (p = 0.015) than low-CRP patients. In females, high-CRP patients showed lower SHGB levels than controls (p = 0.033) and low-CRP patients (p = 0.034). The differences in testosterone, T/E2 ratio, and FEI levels in males survived the Benjamini-Hochberg FDR correction. In linear regression analyses, testosterone (β = -1.069 p = 0.033) predicted CRP concentrations (R2 = 0.252 p = 0.002) in male patients, and SHBG predicted CRP levels (β = -0.628 p = 0.009, R2 = 0.172 p = 0.003) in female patients. These findings may guide future research investigating interactions between gonadal and immune systems in depression, and the potential of hormonal therapies in MDD with inflammation.
Collapse
Affiliation(s)
- Giulia Lombardo
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, UK.
| | - Valeria Mondelli
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, UK; National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London
| | - Courtney Worrell
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, UK
| | - Luca Sforzini
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, UK; National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London
| | - Nicole Mariani
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, UK
| | - Naghmeh Nikkheslat
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, UK
| | - Maria A Nettis
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, UK; South London and Maudsley NHS Foundation Trust, UK
| | - Melisa Kose
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, UK
| | - Zuzanna Zajkowska
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, UK
| | - Annamaria Cattaneo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Linda Pointon
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Lorinda Turner
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Philip J Cowen
- University of Oxford Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK
| | - Wayne C Drevets
- Janssen Research & Development, Neuroscience Therapeutic Area, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Jonathan Cavanagh
- Centre for Immunobiology, University of Glasgow and Sackler Institute of Psychobiological Research, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Neil A Harrison
- School of Medicine, School of Psychology, Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff CF24 4HQ, UK
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Paola Dazzan
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, UK; National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London
| | - Carmine M Pariante
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT, UK; National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London
| |
Collapse
|
36
|
Stewart JL, Burrows K, May AC, McNaughton BA, Smith R, Kuplicki R, Paulus MP, Figueroa-Hall L. C-reactive protein concentrations diverge as a function of substance use disorder: A pre-registered replication in a clinical sample. Drug Alcohol Depend 2024; 260:111323. [PMID: 38733735 PMCID: PMC11179960 DOI: 10.1016/j.drugalcdep.2024.111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Inflammatory biomarkers may differentiate clinical disorders, which could lead to more targeted interventions. Analyses within a clinical sample (May et al., 2021) revealed that females with substance use disorders (SUD) exhibited lower C-reactive protein (CRP) and higher interleukin (IL)-8 and -10 concentrations than females without SUD who met criteria for mood/anxiety disorders. We aimed to replicate these findings in a new sample. METHODS Hypotheses and analyses were preregistered. Treatment-seeking individuals with mood/anxiety disorders and/or SUD (N = 184) completed a blood draw, clinical interview, and questionnaires. Participants were categorized as SUD+ (45F, 43M) and SUD- (78F, 18M). Principal component analysis (PCA) of questionnaire data resulted in two factors reflecting appetitive and aversive emotional states. SUD group and nuisance covariates (PCA factors, age, body mass index [BMI], medication, nicotine [and hormones in females]) predicted biomarker concentrations (CRP, IL-8, and IL-10) in regressions. RESULTS In females, the omnibus CRP model [F(8, 114) = 8.02, p <.001, R²-adjusted =.32] indicated that SUD+ exhibited lower CRP concentrations than SUD- (β = -.33, t = -3.09, p =.002, 95% CI [-.54, -.12]) and greater BMI was associated with higher CRP levels (β =.58, t = 7.17, p <.001, 95% CI [.42,.74]). SUD+ exhibited higher IL-8 levels than SUD- in simple but not omnibus regression models. CONCLUSION Findings across two samples bolster confidence that females with SUD show attenuated CRP-indexed inflammation. As SUD+ comorbidity was high, replication is warranted with respect to specific SUD classes (i.e., stimulants versus cannabis).
Collapse
Affiliation(s)
- Jennifer L Stewart
- Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA.
| | | | - April C May
- School of Medicine, Stanford University, Palo Alto, CA, USA
| | | | - Ryan Smith
- Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | | | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Leandra Figueroa-Hall
- Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
37
|
Moix S, Sadler MC, Kutalik Z, Auwerx C. Breaking down causes, consequences, and mediating effects of telomere length variation on human health. Genome Biol 2024; 25:125. [PMID: 38760657 PMCID: PMC11101352 DOI: 10.1186/s13059-024-03269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Telomeres form repeated DNA sequences at the ends of chromosomes, which shorten with each cell division. Yet, factors modulating telomere attrition and the health consequences thereof are not fully understood. To address this, we leveraged data from 326,363 unrelated UK Biobank participants of European ancestry. RESULTS Using linear regression and bidirectional univariable and multivariable Mendelian randomization (MR), we elucidate the relationships between leukocyte telomere length (LTL) and 142 complex traits, including diseases, biomarkers, and lifestyle factors. We confirm that telomeres shorten with age and show a stronger decline in males than in females, with these factors contributing to the majority of the 5.4% of LTL variance explained by the phenome. MR reveals 23 traits modulating LTL. Smoking cessation and high educational attainment associate with longer LTL, while weekly alcohol intake, body mass index, urate levels, and female reproductive events, such as childbirth, associate with shorter LTL. We also identify 24 traits affected by LTL, with risk for cardiovascular, pulmonary, and some autoimmune diseases being increased by short LTL, while longer LTL increased risk for other autoimmune conditions and cancers. Through multivariable MR, we show that LTL may partially mediate the impact of educational attainment, body mass index, and female age at childbirth on proxied lifespan. CONCLUSIONS Our study sheds light on the modulators, consequences, and the mediatory role of telomeres, portraying an intricate relationship between LTL, diseases, lifestyle, and socio-economic factors.
Collapse
Affiliation(s)
- Samuel Moix
- Department of Computational Biology, UNIL, Lausanne, 1015, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.
| | - Marie C Sadler
- Department of Computational Biology, UNIL, Lausanne, 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
- University Center for Primary Care and Public Health, Lausanne, 1015, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, UNIL, Lausanne, 1015, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.
- University Center for Primary Care and Public Health, Lausanne, 1015, Switzerland.
| | - Chiara Auwerx
- Department of Computational Biology, UNIL, Lausanne, 1015, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.
- University Center for Primary Care and Public Health, Lausanne, 1015, Switzerland.
- Center for Integrative Genetics, UNIL, Lausanne, 1015, Switzerland.
| |
Collapse
|
38
|
Guo F, Jing L, Xu Y, Zhang K, Li Y, Sun N, Liu P, Zhang H. Gut microbiota and inflammatory factor characteristics in major depressive disorder patients with anorexia. BMC Psychiatry 2024; 24:334. [PMID: 38698338 PMCID: PMC11067108 DOI: 10.1186/s12888-024-05778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND This study aimed to explore the gut microbiota and inflammatory factor characteristics in major depressive disorder (MDD) patients with anorexia and to analyze the correlation between gut microbiota and inflammatory factors, anorexia, and HAMD scores. METHODS 46 MDD patients and 46 healthy controls (HC) were included in the study. The 46 MDD patients were divided into two groups according to whether they had anorexia:20 MDD without anorexia (MDA0 group) and 26 MDD with anorexia (MDA1 group). We used the Hamilton Depression Scale-24 (HAMD-24) to evaluate the depression status of all participants and 16 S ribosomal RNA (16 S rRNA)sequencing to evaluate the composition of the gut microbiota. Inflammatory factors in peripheral blood such as C-reactive protein (CRP) were detected using enzyme-linked immunosorbent assay (ELISA). Spearman's correlation analysis was used to evaluate the correlation between gut microbiota and inflammatory factors, HAMD scores, and anorexia. RESULTS 1). CRP was significantly higher in the MDA0, MDA1, than HC. 2). An analysis of α-diversity shows: the Simpson and Pielou indices of the HC group are higher than the MDA1 group (P < 0.05). 3). The β-diversity analysis shows differences in the composition of microbial communities between the MDA0, MDA1, and HC group. 4). A correlation analysis showed that Blautia positively correlated with anorexia, HAMD scores, and CRP level, whereas Faecalibacterium, Bacteroides, Roseburia, and Parabacteroides negatively correlated with anorexia, HAMD scores, and CRP level. 5). The receiver operating characteristic (ROC) curve was drawn using the differential bacterial genera between MDD patients with or without anorexia as biomarkers to identify whether MDD patients were accompanied with anorexia, and its area under curve (AUC) was 0.85. The ROC curve was drawn using the differential bacterial genera between MDD patients with anorexia and healthy controls as biomarkers to diagnose MDD patients with anorexia, with its AUC was 0.97. CONCLUSION This study suggested that MDD patients with anorexia had a distinct gut microbiota compared to healthy individuals, with higher level of CRP. Blautia was more abundant in MDD patients with anorexia and positively correlated with CRP, HAMD scores, and anorexia. The gut microbiota might have influenced MDD and anorexia through the inflammatory factor CRP.
Collapse
Affiliation(s)
- Fengtao Guo
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Medical University, Taiyuan, 030001, China
- Yanhu District Branch, The First Hospital of Shanxi Medical University, Yuncheng, 044000, China
| | - Lin Jing
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Medical University, Taiyuan, 030001, China
| | - Yunfan Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Medical University, Taiyuan, 030001, China
| | - Kun Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Medical University, Taiyuan, 030001, China
| | - Ying Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Medical University, Taiyuan, 030001, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Medical University, Taiyuan, 030001, China.
| | - Huanhu Zhang
- Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| |
Collapse
|
39
|
Orellana SC, Bethlehem RAI, Simpson-Kent IL, van Harmelen AL, Vértes PE, Bullmore ET. Childhood maltreatment influences adult brain structure through its effects on immune, metabolic, and psychosocial factors. Proc Natl Acad Sci U S A 2024; 121:e2304704121. [PMID: 38593073 PMCID: PMC11032474 DOI: 10.1073/pnas.2304704121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/16/2024] [Indexed: 04/11/2024] Open
Abstract
Childhood maltreatment (CM) leads to a lifelong susceptibility to mental ill-health which might be reflected by its effects on adult brain structure, perhaps indirectly mediated by its effects on adult metabolic, immune, and psychosocial systems. Indexing these systemic factors via body mass index (BMI), C-reactive protein (CRP), and rates of adult trauma (AT), respectively, we tested three hypotheses: (H1) CM has direct or indirect effects on adult trauma, BMI, and CRP; (H2) adult trauma, BMI, and CRP are all independently related to adult brain structure; and (H3) childhood maltreatment has indirect effects on adult brain structure mediated in parallel by BMI, CRP, and AT. Using path analysis and data from N = 116,887 participants in UK Biobank, we find that CM is related to greater BMI and AT levels, and that these two variables mediate CM's effects on CRP [H1]. Regression analyses on the UKB MRI subsample (N = 21,738) revealed that greater CRP and BMI were both independently related to a spatially convergent pattern of cortical effects (Spearman's ρ = 0.87) characterized by fronto-occipital increases and temporo-parietal reductions in thickness. Subcortically, BMI was associated with greater volume, AT with lower volume and CPR with effects in both directions [H2]. Finally, path models indicated that CM has indirect effects in a subset of brain regions mediated through its direct effects on BMI and AT and indirect effects on CRP [H3]. Results provide evidence that childhood maltreatment can influence brain structure decades after exposure by increasing individual risk toward adult trauma, obesity, and inflammation.
Collapse
Affiliation(s)
- Sofia C. Orellana
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
| | - Richard A. I. Bethlehem
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
- Department of Psychology, University of Cambridge, CambridgeCB2 3EB, United Kingdom
| | - Ivan L. Simpson-Kent
- Institute of Psychology, Leiden University, Leiden2333AK, The Netherlands
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, CambridgeCB2 7EF, United Kingdom
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104-6241
| | - Anne-Laura van Harmelen
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
- Institute of Education and Child Studies, Leiden University, Leiden2333AK, The Netherlands
| | - Petra E. Vértes
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
| | - Edward T. Bullmore
- Department of Psychiatry, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
- Cambridgeshire & Peterborough NHS Foundation Trust, CambridgeCB21 5EF, United Kingdom
| |
Collapse
|
40
|
Fann LY, Wen YL, Huang YC, Cheng CC, Huang YC, Fang CC, Chen WT, Yu PY, Pan HY, Kao LT. Depressive disorder and elevated risk of bell's palsy: a nationwide propensity score-weighting study. BMC Psychiatry 2024; 24:284. [PMID: 38627723 PMCID: PMC11020612 DOI: 10.1186/s12888-024-05730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Prior studies have reported a potential relationship between depressive disorder (DD), immune function, and inflammatory response. Some studies have also confirmed the correlation between immune and inflammatory responses and Bell's palsy. Considering that the pathophysiology of these two diseases has several similarities, this study investigates if DD raises the risk of developing Bell's palsy. METHODS This nationwide propensity score-weighting cohort study utilized Taiwan National Health Insurance data. 44,198 patients with DD were identified as the DD cohort and 1,433,650 adult subjects without DD were identified as the comparison cohort. The inverse probability of treatment weighting (IPTW) strategy was used to balance the differences of covariates between two groups. The 5-year incidence of Bell's palsy was evaluated using the Cox proportional-hazard model, presenting results in terms of hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS The average age of DD patients was 48.3 ± 17.3 years, and 61.86% were female. After propensity score-weighting strategy, no significant demographic differences emerged between the DD and comparison cohort. The Cox proportional hazards model revealed a statistically significant adjusted IPTW-HR of 1.315 (95% CI: 1.168-1.481) for Bell's palsy in DD patients compared to comparison subjects. Further independent factors for Bell's palsy in this model were age (IPTW-HR: 1.012, 95% CI: 1.010-1.013, p < 0.0001), sex (IPTW-HR: 0.909, 95% CI: 0.869-0.952, p < 0.0001), hypertension (IPTW-HR: 1.268, 95% CI: 1.186-1.355, p < 0.0001), hyperlipidemia (IPTW-HR: 1.084, 95% CI: 1.001-1.173, p = 0.047), and diabetes (IPTW-HR: 1.513, 95% CI: 1.398-1.637, p < 0.0001) CONCLUSION: This Study confirmed that individuals with DD face an elevated risk of developing Bell's palsy. These findings hold significant implications for both clinicians and researchers, shedding light on the potential interplay between mental health and the risk of certain physical health outcomes.
Collapse
Affiliation(s)
- Li-Yun Fann
- Department of Nursing, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan
- Department of Nurse-Midwifery and Women Health, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Yuan-Liang Wen
- School of Pharmacy, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist, 114201, Taipei City, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chieh Huang
- Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan
| | - Chih-Chien Cheng
- University of Taipei, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Obstetrics/Gynecology, Taipei City Hospital, Taipei, Taiwan
| | - Ying-Che Huang
- Department of Anesthesia and Critical Care Medicine, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan
| | - Chih-Chia Fang
- Department of Nursing, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan
| | - Wan-Ting Chen
- Department of Nursing, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan
| | - Pei-Yeh Yu
- Department of Anesthesiology, Taipei City Hospital Ren Ai branch, Taipei, Taiwan
| | - Hsiang-Yi Pan
- Department of Pharmacy Practice, Tri-Service General Hospital, No.325, Sec.2, Chenggong Rd., Neihu District, 114202, Taipei City, Taiwan.
| | - Li-Ting Kao
- School of Pharmacy, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist, 114201, Taipei City, Taiwan.
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Department of Pharmacy Practice, Tri-Service General Hospital, No.325, Sec.2, Chenggong Rd., Neihu District, 114202, Taipei City, Taiwan.
| |
Collapse
|
41
|
Liu P, Liu Z, Wang J, Wang J, Gao M, Zhang Y, Yang C, Zhang A, Li G, Li X, Liu S, Liu L, Sun N, Zhang K. Immunoregulatory role of the gut microbiota in inflammatory depression. Nat Commun 2024; 15:3003. [PMID: 38589368 PMCID: PMC11001948 DOI: 10.1038/s41467-024-47273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Inflammatory depression is a treatment-resistant subtype of depression. A causal role of the gut microbiota as a source of low-grade inflammation remains unclear. Here, as part of an observational trial, we first analyze the gut microbiota composition in the stool, inflammatory factors and short-chain fatty acids (SCFAs) in plasma, and inflammatory and permeability markers in the intestinal mucosa of patients with inflammatory depression (ChiCTR1900025175). Gut microbiota of patients with inflammatory depression exhibits higher Bacteroides and lower Clostridium, with an increase in SCFA-producing species with abnormal butanoate metabolism. We then perform fecal microbiota transplantation (FMT) and probiotic supplementation in animal experiments to determine the causal role of the gut microbiota in inflammatory depression. After FMT, the gut microbiota of the inflammatory depression group shows increased peripheral and central inflammatory factors and intestinal mucosal permeability in recipient mice with depressive and anxiety-like behaviors. Clostridium butyricum administration normalizes the gut microbiota, decreases inflammatory factors, and displays antidepressant-like effects in a mouse model of inflammatory depression. These findings suggest that inflammatory processes derived from the gut microbiota can be involved in neuroinflammation of inflammatory depression.
Collapse
Affiliation(s)
- Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, 030001, PR China
| | - Jizhi Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Medical University, Taiyuan, 030001, PR China
| | - Junyan Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Medical University, Taiyuan, 030001, PR China
| | - Mingxue Gao
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Medical University, Taiyuan, 030001, PR China
| | - Yanyan Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Medical University, Taiyuan, 030001, PR China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Aixia Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Gaizhi Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Xinrong Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Sha Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Lixin Liu
- Experimental Center of Science and Research, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China.
- Shanxi Medical University, Taiyuan, 030001, PR China.
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China.
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China.
- Shanxi Medical University, Taiyuan, 030001, PR China.
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China.
| |
Collapse
|
42
|
Chen W, Wang X, Xia S. Increased C-Reactive Protein in Patients with Post-Stroke Depression: A Meta-analysis of Cohort Study. ALPHA PSYCHIATRY 2024; 25:124-131. [PMID: 38798800 PMCID: PMC11117418 DOI: 10.5152/alphapsychiatry.2024.231338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/20/2023] [Indexed: 05/29/2024]
Abstract
Background Pathophysiological mechanisms and related biological markers for post-stroke depression (PSD) are unknown. Some studies have noted that C-reactive protein (CRP) is activated in the serum of PSD patients. We aim to quantitatively summarize the concentrations of CRP in PSD patients compared to non-PSD patients. Methods Original studies evaluating the association between CRP and PSD were searched in 4 specific databases from the establishment of the databases to March 2023. RevMan 5.20 and Stata 11.0 statistical software were used for meta-analysis. Publication bias was tested by Egger's test. The CRP level were combined by standardized mean difference (SMD) with 95% confidence interval (CI). Results A total of 43 relevant literatures were retrieved, while 13 cohort studies were collected. The heterogeneity test result of the level of CRP in patients with PSD vs. non-PSD was (Q = 98.38, P < .001, I2 = 88%). The combined value of the estimated effect was [SMD = 0.34, 95% CI (0.12-0.56); P = .003]. Sensitivity analysis indicated that no study had a remarkable influence on the result of the pooled estimate. Egger's test was used to test the bias and the result was (Egger's test, P = .548), suggesting that there was no publication bias, and the results were credible. We found that different depression evaluation criteria (P = .035) and stroke types (P = .024) were considered as influencing factors for potential sources of heterogeneity. Conclusion In conclusion, compared to those without depressive symptoms, patients with post-stroke depression have higher concentrations of CRP in the blood.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Neurosurgery, Taizhou First People’s Hospital, Zhejiang, China
| | - Xiaohong Wang
- Department of Neurosurgery, Taizhou First People’s Hospital, Zhejiang, China
| | - Shanshan Xia
- Department of General Medicine, Taizhou First People’s Hospital, Zhejiang, China
| |
Collapse
|
43
|
TURHAN NÖZGEDİK, ARISOY Ö, ULAŞ F, BUĞDAYCI G, GÜLNER MALTINTAŞ. Vitamin D: An Overlooked Parameter in Studies of Depression Using Optic Coherence Tomography. Noro Psikiyatr Ars 2024; 61:66-72. [PMID: 38496230 PMCID: PMC10943944 DOI: 10.29399/npa.28369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/16/2023] [Indexed: 03/19/2024] Open
Abstract
Introduction The relationship between depression and inflammation and the resulting vascular/neuronal damage have been demonstrated in recent studies. In this study we aimed to investigate inflammation and the possible degeneration that can be caused by depression and accompanying vitamin D deficiency using a non-invasive imaging method of optical coherence tomography (OCT). Methods Twenty-four healthy controls and 42 drug free major depressive patients matched for age, sex and eye measurements were compared in terms of vitamin D, C Reactive Protein (CRP) and OCT parameters. The Hamilton Depression Rating Scale (HAM-D), The Clinical Global Impressions Scale (CGI) and Global Assessment of Functioning Scale (GAF) were used to assess disease severity. Results CRP level and choroidal thickness in the major depression group were significantly higher than the healthy controls. Vitamin D level and the ganglion cell layer (GCL) volume was significantly lower in the major depression group compared to healthy controls. Positive correlation was found between HAM-D and CRP in major depressive patients; a negative correlation was found between current attack duration and GCL volume. CGI was positively correlated with CRP and HAM-D. GAS was negatively correlated with CRP and HAM-D. Conclusion It has been shown that major depression might be an inflammatory disorder with possible degenerative processes observed with OCT and CRP measurements. But longitudinal follow up studies are needed to demonstrate a cause and effect relationship.
Collapse
Affiliation(s)
- Nur ÖZGEDİK TURHAN
- İzzet Baysal Mental Health and Diseases Hospital, Department of Psychiatry, Bolu, Turkey
| | - Özden ARISOY
- Bolu Abant İzzet Baysal Training and Research Hospital, Department of Psychiatry, Bolu, Turkey
| | - Fatih ULAŞ
- Bolu Abant İzzet Baysal Training and Research Hospital, Department of Ophthalmology, Bolu, Turkey
| | - Güler BUĞDAYCI
- Halic University Faculty of Medicine, Department of Biochemistry, Istanbul, Turkey
| | | |
Collapse
|
44
|
Madison AA, Bailey MT. Stressed to the Core: Inflammation and Intestinal Permeability Link Stress-Related Gut Microbiota Shifts to Mental Health Outcomes. Biol Psychiatry 2024; 95:339-347. [PMID: 38353184 PMCID: PMC10867428 DOI: 10.1016/j.biopsych.2023.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 02/16/2024]
Abstract
Stress levels are surging, alongside the incidence of stress-related psychiatric disorders. Perhaps a related phenomenon, especially in urban areas, the human gut contains fewer bacterial species than ever before. Although the functional implications of this absence are unclear, one consequence may be reduced stress resilience. Preclinical and clinical evidence has shown how stress exposure can alter the gut microbiota and their metabolites, affecting host physiology. Also, stress-related shifts in the gut microbiota jeopardize tight junctions of the gut barrier. In this context, bacteria and bacterial products can translocate from the gut to the bloodstream, lymph nodes, and other organs, thereby modifying systemic inflammatory responses. Heightened circulating inflammation can be an etiological factor in stress-related psychiatric disorders, including some cases of depression. In this review, we detail preclinical and clinical evidence that traces these brain-to-gut-to-brain pathways that underlie stress-related psychiatric disorders and potentially affect their responsivity to conventional psychiatric medications. We also review evidence for interventions that modulate the gut microbiota (e.g., antibiotics, probiotics, prebiotics) to reduce stress responses and psychiatric symptoms. Lastly, we discuss challenges to translation and opportunities for innovations that could impact future psychiatric clinical practice.
Collapse
Affiliation(s)
- Annelise A Madison
- Institute for Behavioral Medicine Research, Ohio State University College of Medicine, Columbus, Ohio; Department of Psychology, Ohio State University, Columbus, Ohio.
| | - Michael T Bailey
- Institute for Behavioral Medicine Research, Ohio State University College of Medicine, Columbus, Ohio; Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio; Center for Microbial Pathogenesis and the Oral and Gastrointestinal Microbiology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
45
|
Laaboub N, Locatelli I, Grosu C, Piras M, Ngoc TH, Ranjbar S, Preisig M, Elowe J, von Gunten A, Conus P, Eap CB. Metabolic disturbances are risk factors for readmission to psychiatric hospitals in non-smokers but not in smokers: results from a Swiss psychiatric cohort and in first-episode psychosis patients. Front Psychiatry 2024; 15:1256416. [PMID: 38414502 PMCID: PMC10896922 DOI: 10.3389/fpsyt.2024.1256416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Background Psychiatric patients are at high risk of readmission, and a high body mass index has previously been shown as a risk factor. We sought to replicate this finding and 1) to prospectively assess the association of metabolic syndrome and its five components with readmission in psychiatric hospitals and 2) to identify other clinical and sociodemographic predictors of readmission. Methods Between 2007 and 2019, data on 16727 admissions of 7786 adult and elderly patients admitted to the Department of Psychiatry of the Lausanne University Hospital, were collected. Metabolic syndrome was defined according to the International Diabetes Federation definition. Cox frailty models were used to investigate the associations between readmission and metabolic disturbances. Results A total of 2697 (35%) patients were readmitted to our psychiatric hospital. Novel risk factors for readmission in non-smokers were identified, including being overweight (HR=1.26; 95%CI=[1.05; 1.51]) or obese (HR=1.33; 95%CI=[1.08; 1.62]), displaying hypertriglyceridemia (HR=1.21; 95%CI=[1.04; 1.40]) and metabolic syndrome (HR=1.26; 95%CI=[1.02; 1.55]). Central obesity and hyperglycemia increased the risk of readmission when considering the Health of the Nation Outcome Scales variable. In first-episode psychosis patients, obesity (HR=2.23; 95%CI=[1.14; 4.30]) and high-density lipoprotein hypocholesterolemia (HR=1.90; 95%CI=[1.14; 3.20]) doubled the risk of readmission. Conclusion The observed interaction between smoking and metabolic variables are compatible with a ceiling effect; metabolic variables increase the risk of readmission in non-smokers but not in smokers who are already at higher risk. Future studies should determine whether better metabolic monitoring and treatment can reduce readmission risk.
Collapse
Affiliation(s)
- Nermine Laaboub
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Isabella Locatelli
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Claire Grosu
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Marianna Piras
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Tram Ho Ngoc
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Setareh Ranjbar
- Center for Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Martin Preisig
- Center for Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Julien Elowe
- Service of Adult Psychiatry North-West, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Chin B. Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|
46
|
Feng X, Ma X, Li J, Zhou Q, Liu Y, Song J, Liu J, Situ Q, Wang L, Zhang J, Lin F. Inflammatory Pathogenesis of Post-stroke Depression. Aging Dis 2024; 16:AD.2024.0203. [PMID: 38377025 PMCID: PMC11745428 DOI: 10.14336/ad.2024.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
Post-stroke depression (PSD) is a complex mood disorder that emerges in individuals following a stroke, characterized by the development of depressive symptoms. The pathogensis of PSD is diverse, with inflammation playing a vital role in its onset and progression. Emerging evidence suggests that microglial activation, astrocyte responses, nuclear factor κB(NF-κB) signaling, dysregulation of the hypothalamic pituitary adrenal (HPA) axis, alterations in brain-derived neurotrophic factor (BDNF) expression, neurotransmitter imbalances, adenosine triphosphate (ATP) and its receptors and oxidative stress are intricately linked to the pathogenesis of PSD. The involvement of inflammatory cytokines in these processes highlights the significance of the inflammatory pathway. Integrating these hypotheses, the inflammatory mechanism offers a novel perspective to expand therapeutic strategies for PSD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jingzhi Zhang
- School of Acupuncture and Tuina, School of Health and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Facai Lin
- School of Acupuncture and Tuina, School of Health and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
47
|
Nasab MG, Heidari A, Sedighi M, Shakerian N, Mirbeyk M, Saghazadeh A, Rezaei N. Dietary inflammatory index and neuropsychiatric disorders. Rev Neurosci 2024; 35:21-33. [PMID: 37459114 DOI: 10.1515/revneuro-2023-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/24/2023] [Indexed: 01/10/2024]
Abstract
Neuropsychiatric disorders (NPDs) are considered a potential threat to mental health. Inflammation predominantly plays a role in the pathophysiology of NPDs. Dietary patterns are widely postulated to be involved in the physiological response to inflammation. This review aims to discuss the literature on how dietary inflammatory index (DII) is related to inflammation and, consequently, NPDs. After comprehensive scrutiny in different databases, the articles that investigated the relation of DII score and various NPDs and psychological circumstances were included. The association between dietary patterns and mental disorders comprising depression, anxiety, and stress proved the role of a proinflammatory diet in these conditions' exacerbation. Aging is another condition closely associated with DII. The impact of proinflammatory and anti-inflammatory diet on sleep quality indicated related disorders like sleep latency and day dysfunctions among the different populations are in relation with the high DII score. The potential effects of genetic backgrounds, dietary patterns, and the gut microbiome on DII are discussed as well. To plan preventive or therapeutic interventions considering the DII, these factors, especially genetic variations, should be considered as there is a growing body of literature indicating the role of personalized medicine in different NPDs. To the best of our knowledge, there is a limited number of RCTs on this subject, so future research should evaluate the causality via RCTs and look for therapeutic interventions with an eye on personalized medicine using information about DII in NPDs.
Collapse
Affiliation(s)
- Mahsa Golshani Nasab
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Sedighi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Shakerian
- Student Research Committee, School of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Ahvaz, Iran
| | - Mona Mirbeyk
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Meta Cognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
48
|
Fisicaro F, Lanza G, Concerto C, Rodolico A, Di Napoli M, Mansueto G, Cortese K, Mogavero MP, Ferri R, Bella R, Pennisi M. COVID-19 and Mental Health: A "Pandemic Within a Pandemic". ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1458:1-18. [PMID: 39102186 DOI: 10.1007/978-3-031-61943-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The COVID-19 pandemic has brought significant changes in daily life for humanity and has had a profound impact on mental health. As widely acknowledged, the pandemic has led to notable increases in rates of anxiety, depression, distress, and other mental health-related issues, affecting both infected patients and non-infected individuals. COVID-19 patients and survivors face heightened risks for various neurological and psychiatric disorders and complications. Vulnerable populations, including those with pre-existing mental health conditions and individuals living in poverty or frailty, may encounter additional challenges. Tragically, suicide rates have also risen, particularly among young people, due to factors such as unemployment, financial crises, domestic violence, substance abuse, and social isolation. Efforts are underway to address these mental health issues, with healthcare professionals urged to regularly screen both COVID-19 and post-COVID-19 patients and survivors for psychological distress, ensuring rapid and appropriate interventions. Ongoing periodic follow-up and multidimensional, interdisciplinary approaches are essential for individuals experiencing long-term psychiatric sequelae. Preventive strategies must be developed to mitigate mental health problems during both the acute and recovery phases of COVID-19 infection. Vaccination efforts continue to prioritize vulnerable populations, including those with mental health conditions, to prevent future complications. Given the profound implications of mental health problems, including shorter life expectancy, diminished quality of life, heightened distress among caregivers, and substantial economic burden, it is imperative that political and health authorities prioritize the mental well-being of all individuals affected by COVID-19, including infected individuals, non-infected individuals, survivors, and caregivers.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 78, 94018, Troina, Italy.
| | - Carmen Concerto
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Via Santa Sofia 89, 95123, Catania, Italy
| | - Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Via Santa Sofia 89, 95123, Catania, Italy
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Viale Mazzini 100, 67039, Sulmona, L'Aquila, Italy
| | - Gelsomina Mansueto
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
- Clinical Department of Laboratory Services and Public Health-Legal Medicine Unit, University of Campania "Luigi Vanvitelli", Via Luciano Armanni 5, 80138, Naples, Italy
| | - Klizia Cortese
- Department of Educational Sciences, University of Catania, Via Teatro Greco 84, 95124, Catania, Italy
| | - Maria P Mogavero
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Via Stamira d'Ancona 20, 20127, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 78, 94018, Troina, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| |
Collapse
|
49
|
Yang CR, Liang R, Liu Y, Meng FJ, Zhou F, Zhang XY, Ning L, Wang ZQ, Liu S, Zhou XF. Upregulation of proBDNF/p75NTR signaling in immune cells and its correlation with inflammatory markers in patients with major depression. FASEB J 2024; 38:e23312. [PMID: 38161282 DOI: 10.1096/fj.202301140rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024]
Abstract
ProBDNF is the precursor protein of brain-derived neurotrophic factor (BDNF) expressed in the central nervous system and peripheral tissues. Previous studies showed that the blood levels of both proBDNF and p75 neurotrophic receptors (p75NTR) in major depressive disorder (MDD) were increased, but which blood cell types express proBDNF and its receptors is not known. Furthermore, the relationship between proBDNF/p75NTR and inflammatory cytokines in peripheral blood of MDD is unclear. Peripheral blood mononuclear cells (PBMCs) and serum were obtained from depressive patients (n = 32) and normal donors (n = 20). We examined the expression of proBDNF and inflammatory markers and their correlative relationship in patients with major depression. Using flow cytometry analysis, we examined which blood cells express proBDNF and its receptors. Finally, the role of proBDNF/p75NTR signal in inflammatory immune activity of PBMCs was verified in vitro experiments. Inflammatory cytokines in PBMC from MDD patients were increased and correlated with the major depression scores. The levels of IL-1β and IL-10 were also positively correlated with the major depression scores, while the levels of TNF-α and IL-6 were negatively correlated with the major depression scores. Intriguingly, the levels of sortilin were positively correlated with IL-1β. Q-PCR and Western blots showed proBDNF, p75NTR, and sortilin levels were significantly increased in PBMCs from MDD patients compared with that from the normal donors. Flow cytometry studies showed that proBDNF and p75NTR were present mainly in CD4+ and CD8+ T cells. The number of proBDNF and p75NTR positive CD4+ and CD8+ T cells from MDD patients was increased and subsequently reversed after therapeutic management. Exogenous proBDNF protein or p75ECD-Fc treatment of cultured PBMC affected the release of inflammatory cytokines in vitro. ProBDNF promoted the expression of inflammatory cytokines, while p75ECD-Fc inhibited the expression of inflammatory cytokines. Given there was an inflammatory response of lymphocytes to proBDNF, it is suggested that proBDNF/p75NTR signaling may upstream inflammatory cytokines in MDD. Our data suggest that proBDNF/p75NTR signaling may not only serve as biomarkers but also may be a potential therapeutic target for MDD.
Collapse
Affiliation(s)
- Chun-Rui Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, P. R. China
- Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin, P. R. China
| | - Rui Liang
- Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin, P. R. China
| | - Yuan Liu
- Tianjin Anding Hospital, Tianjin, P. R. China
| | - Fan-Jie Meng
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P. R. China
| | - Fiona Zhou
- Faculty of Health Sciences, School of Medicine, University of Adelaide, Adelaide, Australia
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW, Sydney, New South Wales, Australia
| | - Xiao-Yang Zhang
- Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin, P. R. China
| | - Li Ning
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, P. R. China
| | - Zhi-Qiang Wang
- Department of Anorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, P. R. China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, P. R. China
| | - Xin-Fu Zhou
- Faculty of Health Sciences, School of Medicine, University of Adelaide, Adelaide, Australia
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- Suzhou Auzone Biotech Ltd, Suzhou International Park, Suzhou, Jiangsu Province, P.R. China
| |
Collapse
|
50
|
Cavanagh JT. Anti-inflammatory Drugs in the Treatment of Depression. Curr Top Behav Neurosci 2024; 66:217-231. [PMID: 38112963 DOI: 10.1007/7854_2023_459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The last two decades have seen a flourishing of research into the immunobiology of psychiatric phenotypes, in particular major depressive disorder. Both preclinical and clinical data have highlighted pathways and possible mechanisms that might link changes in immunobiology, most especially inflammation, to clinically relevant behaviour. From a therapeutics perspective, a major impetus has been the action of Biologics, often monoclonal antibodies, that target specific cytokines acting as "molecular scalpels" helping to uncover the actions of those proteins. These interventions have been associated with improvements in mood and related symptoms. There are now enough studies and participants to permit meta-analytic analyses of the actions of these and other anti-inflammatory agents.In this chapter, the focus is on the evidence for the role of inflammation biology in depression and the meta-analytic data from trials. The putative mechanisms that might underpin the antidepressant effect of anti-inflammatory drugs are also explored. Lastly, I describe the more stubborn difficulties around heterogeneity, deep phenotyping and stratification as well as improved animal models and greater understanding of the biology that might be addressed by future studies.
Collapse
Affiliation(s)
- Jonathan T Cavanagh
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|