1
|
Grent-'t-Jong T, Gajwani R, Gross J, Gumley AI, Lawrie SM, Schwannauer M, Schultze-Lutter F, Williams SR, Uhlhaas PJ. MR-Spectroscopy of GABA and Glutamate/Glutamine Concentrations in Auditory Cortex in Clinical High-Risk for Psychosis Individuals. Front Psychiatry 2022; 13:859322. [PMID: 35422722 PMCID: PMC9002006 DOI: 10.3389/fpsyt.2022.859322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022] Open
Abstract
Psychosis involves changes in GABAergic and glutamatergic neurotransmission in auditory cortex that could be important for understanding sensory deficits and symptoms of psychosis. However, it is currently unclear whether such deficits are present in participants at clinical high-risk for psychosis (CHR-P) and whether they are associated with clinical outcomes. Magnetic Resonance Spectroscopy (MEGAPRESS, 1H-MRS at 3 Tesla) was used to estimate GABA, glutamate, and glutamate-plus-glutamine (Glx) levels in auditory cortex in a large sample of CHR-P (n = 99), CHR-N (clinical high-risk negative, n = 32), and 45 healthy controls. Examined were group differences in metabolite concentrations as well as relationships with clinical symptoms, general cognition, and 1-year follow-up clinical and general functioning in the CHR-P group. Results showed a marginal (p = 0.039) main group effect only for Glx, but not for GABA and glutamate concentrations, and only in left, not right, auditory cortex. This effect did not survive multiple comparison correction, however. Exploratory post-hoc tests revealed that there were significantly lower Glx levels (p = 0.029, uncorrected) in the CHR-P compared to the CHR-N group, but not relative to healthy controls (p = 0.058, uncorrected). Glx levels correlated with the severity of perceptual abnormalities and disorganized speech scores. However, in the CHR-P group, Glx levels did not predict clinical or functional outcomes. Accordingly, the findings from the present study suggest that MRS-measured GABA, glutamate and Glx levels in auditory cortex of CHR-P individuals are largely intact.
Collapse
Affiliation(s)
- Tineke Grent-'t-Jong
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom.,Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ruchika Gajwani
- Mental Health and Wellbeing, Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom.,Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Andrew I Gumley
- Mental Health and Wellbeing, Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Stephen M Lawrie
- Department of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthias Schwannauer
- Department of Clinical Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,Department of Psychology, Faculty of Psychology, Airlangga University, Surabaya, Indonesia.,University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Stephen R Williams
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom.,Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Wang Y, Braam EE, Wannan CMJ, Van Rheenen TE, Chan RCK, Nelson B, McGorry PD, Yung AR, Lin A, Brewer WJ, Koutsogiannis J, Wood SJ, Velakoulis D, Pantelis C, Cropley VL. Investigation of structural brain correlates of neurological soft signs in individuals at ultra-high risk for psychosis. Eur Arch Psychiatry Clin Neurosci 2021; 271:1475-1485. [PMID: 34467451 DOI: 10.1007/s00406-021-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/04/2021] [Indexed: 11/30/2022]
Abstract
Increased severity of neurological soft signs (NSS) in schizophrenia have been associated with abnormal brain morphology in cerebello-thalamo-cortical structures, but it is unclear whether similar structures underlie NSS prior to the onset of psychosis. The present study investigated the relationship between severity of NSS and grey matter volume (GMV) in individuals at ultra-high risk for psychosis (UHR) stratified for later conversion to psychosis. Structural T1-weighted MRI scans were obtained from 56 antipsychotic-naïve UHR individuals and 35 healthy controls (HC). The UHR individuals had follow-up data (mean follow-up: 5.2 years) to ascertain clinical outcome. Using whole-brain voxel-based morphometry, the relationship between NSS and GMV at baseline was assessed in UHR, HC, as well as individuals who later transitioned (UHR-P, n = 25) and did not transition (UHR-NP, n = 31) to psychosis. NSS total and subscale scores except motor coordination were significantly higher in UHR compared to HC. Higher signs were also found in UHR-P, but not UHR-NP. Total NSS was not associated with GMV in the whole sample or in each group. However, in UHR-P individuals, greater deficits in sensory integration was associated with lower GMV in the left cerebellum, right insula, and right middle frontal gyrus. In conclusion, NSS are present in UHR individuals, particularly those who later transitioned to a psychotic disorder. While these signs show little overall variation with GMV, the association of sensory integration deficits with lower GMV in UHR-P suggests that certain brain areas may be implicated in the development of specific neurological abnormalities in the psychosis prodrome.
Collapse
Affiliation(s)
- Ya Wang
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia.,Neuropsychology and Applied Cognitive Neuroscience Lab, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Esmee E Braam
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia
| | - Cassandra M J Wannan
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia.,Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Lab, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Barnaby Nelson
- Orygen, Melbourne, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Patrick D McGorry
- Orygen, Melbourne, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Alison R Yung
- Orygen, Melbourne, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia.,School of Health Sciences, University of Manchester, Manchester, UK.,Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Ashleigh Lin
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Warrick J Brewer
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - John Koutsogiannis
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Stephen J Wood
- Orygen, Melbourne, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia.,School of Psychology, University of Birmingham, Edgbaston, UK
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia.,Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Health, Melbourne, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia. .,Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia.
| |
Collapse
|
3
|
Takahashi T, Sasabayashi D, Takayanagi Y, Furuichi A, Kido M, Nakamura M, Pham TV, Kobayashi H, Noguchi K, Suzuki M. Altered Heschl's gyrus duplication pattern in first-episode schizophrenia. Schizophr Res 2021; 237:174-181. [PMID: 34536751 DOI: 10.1016/j.schres.2021.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Reduced gray matter volumes in the superior temporal gyrus and its subregions, such as Heschl's gyrus (HG) and the planum temporale (PT), have been reported in schizophrenia (Sz). However, it remains unclear whether patients exhibit an altered sulcogyral pattern on the superior temporal plane. METHODS This magnetic resonance imaging study examined the distribution of HG duplication patterns [i.e., single HG, common stem duplication (CSD), or complete posterior duplication (CPD)] and their relationships with clinical variables and gray matter volumes in the HG and PT of 64 first-episode (FE) patients with Sz and 64 healthy controls. RESULTS The prevalence of duplicated HG patterns was significantly higher and gray matter volumes in the HG and PT of both hemispheres were smaller in FESz patients than in healthy controls. The right CPD pattern in the FESz group was associated with less severe positive symptoms. In the FESz and control groups, CSD and CPD patterns correlated with larger volumes in the HG and PT, respectively. CONCLUSION The present results revealed an altered HG duplication pattern at the earliest phase of Sz, which may reflect early neurodevelopmental anomalies. However, reduced HG and PT volumes in the FESz were not explained by this sulcogyral pattern only, supporting the complex superior temporal pathology of Sz.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Arisawabashi Hospital, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Tien Viet Pham
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Haruko Kobayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
4
|
Xie Y, Guan M, Wang Z, Ma Z, Wang H, Fang P, Yin H. rTMS Induces Brain Functional and Structural Alternations in Schizophrenia Patient With Auditory Verbal Hallucination. Front Neurosci 2021; 15:722894. [PMID: 34539338 PMCID: PMC8441019 DOI: 10.3389/fnins.2021.722894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/12/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Low-frequency transcranial magnetic stimulation (rTMS) over the left temporoparietal cortex reduces the auditory verbal hallucination (AVH) in schizophrenia. However, the underlying neural basis of the rTMS treatment effect for schizophrenia remains not well understood. This study investigates the rTMS induced brain functional and structural alternations and their associations with clinical as well as neurocognitive profiles in schizophrenia patients with AVH. METHODS Thirty schizophrenia patients with AVH and thirty-three matched healthy controls were enrolled. The patients were administered by 15 days of 1 Hz rTMS delivering to the left temporoparietal junction (TPJ) area. Clinical symptoms and neurocognitive measurements were assessed at pre- and post-rTMS treatment. The functional (amplitude of low-frequency fluctuation, ALFF) and structural (gray matter volume, GMV) alternations were compared, and they were then used to related to the clinical and neurocognitive measurements after rTMS treatment. RESULTS The results showed that the positive symptoms, including AVH, were relieved, and certain neurocognitive measurements, including visual learning (VisLearn) and verbal learning (VerbLearn), were improved after the rTMS treatment in the patient group. Furthermore, the rTMS treatment induced brain functional and structural alternations in patients, such as enhanced ALFF in the left superior frontal gyrus and larger GMV in the right inferior temporal cortex. The baseline ALFF and GMV values in certain brain areas (e.g., the inferior parietal lobule and superior temporal gyrus) could be associated with the clinical symptoms (e.g., positive symptoms) and neurocognitive performances (e.g., VerbLearn and VisLearn) after rTMS treatment in patients. CONCLUSION The low-frequency rTMS over the left TPJ area is an efficacious treatment for schizophrenia patients with AVH and could selectively modulate the neural basis underlying psychiatric symptoms and neurocognitive domains in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Muzhen Guan
- Department of Mental Health, Xi’an Medical University, Xi’an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhujing Ma
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi’an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Peng Fang
- Department of Military Medical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi’an, China,*Correspondence: Peng Fang,
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China,Hong Yin,
| |
Collapse
|
5
|
Takahashi T, Sasabayashi D, Takayanagi Y, Higuchi Y, Mizukami Y, Nishiyama S, Furuichi A, Kido M, Pham TV, Kobayashi H, Noguchi K, Suzuki M. Heschl's Gyrus Duplication Pattern in Individuals at Risk of Developing Psychosis and Patients With Schizophrenia. Front Behav Neurosci 2021; 15:647069. [PMID: 33958991 PMCID: PMC8093503 DOI: 10.3389/fnbeh.2021.647069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
An increased prevalence of duplicated Heschl’s gyrus (HG), which may reflect an early neurodevelopmental pathology, has been reported in schizophrenia (Sz). However, it currently remains unclear whether individuals at risk of psychosis exhibit similar brain morphological characteristics. This magnetic resonance imaging study investigated the distribution of HG gyrification patterns [i.e., single HG, common stem duplication (CSD), and complete posterior duplication (CPD)] and their relationship with clinical characteristics in 57 individuals with an at-risk mental state (ARMS) [of whom 5 (8.8%) later developed Sz], 63 patients with Sz, and 61 healthy comparisons. The prevalence of duplicated HG patterns (i.e., CSD or CPD) bilaterally was significantly higher in the ARMS and Sz groups than in the controls, whereas no significant differences were observed in HG patterns between these groups. The left CSD pattern, particularly in the Sz group, was associated with a verbal fluency deficit. In the ARMS group, left CSD pattern was related to a more severe general psychopathology. The present results suggest that an altered gyrification pattern on the superior temporal plane reflects vulnerability factors associated with Sz, which may also contribute to the clinical features of high-risk individuals, even without the onset of psychosis.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Arisawabashi Hospital, Toyama, Japan
| | - Yuko Higuchi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yuko Mizukami
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shimako Nishiyama
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Health Administration Center, Faculty of Education and Research Promotion, Academic Assembly, University of Toyama, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Tien Viet Pham
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Haruko Kobayashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
6
|
Zhou C, Xue C, Chen J, Amdanee N, Tang X, Zhang H, Zhang F, Zhang X, Zhang C. Altered Functional Connectivity of the Nucleus Accumbens Network Between Deficit and Non-deficit Schizophrenia. Front Psychiatry 2021; 12:704631. [PMID: 34658949 PMCID: PMC8514672 DOI: 10.3389/fpsyt.2021.704631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
Deficit schizophrenia (DS), which is marked by stable negative symptoms, is regarded as a homogeneous subgroup of schizophrenia. While DS patients have structurally altered nucleus accumbens (NAcc) compared to non-deficit schizophrenia (NDS) patients and healthy individuals, the investigation of NAcc functional connectivity (FC) with negative symptoms and neurocognition could provide insights into the pathophysiology of schizophrenia. 58 DS, 93 NDS, and 113 healthy controls (HCs) underwent resting-state functional magnetic resonance (rsfMRI). The right and left NAcc were respectively used as seed points to construct the functional NAcc network in whole-brain FC analysis. ANCOVA compared the differences in NAcc network FC and partial correlation analysis explored the relationships between altered FC of NAcc, negative symptoms and neurocognition. Compared to HCs, both DS and NDS patients showed decreased FC between the left NAcc (LNAcc) and bilateral middle cingulate gyrus, and between the right NAcc (RNAcc) and right middle frontal gyrus (RMFG), as well as increased FC between bilateral NAcc and bilateral lingual gyrus. Moreover, the FC between the LNAcc and bilateral calcarine gyrus (CAL) was lower in the DS group compared to NDS patients. Correlation analysis indicated that FC value of LNAcc-CAL was negatively correlated to negative symptoms. Furthermore, aberrant FC values within the NAcc network were correlated with severity of clinical symptoms and neurocognitive impairments in DS and NDS patients. This study demonstrated abnormal patterns of FC in the NAcc network between DS and NDS. The presence of altered LNAcc-CAL FC might be involved in the pathogenesis of negative symptoms in schizophrenia.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Nousayhah Amdanee
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaowei Tang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, China
| | - Hongying Zhang
- Department of Radiology, Subei People's Hospital of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Fuquan Zhang
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Caiyi Zhang
- Department of Psychiatry, Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Koshiyama D, Miyakoshi M, Joshi YB, Molina JL, Tanaka-Koshiyama K, Sprock J, Braff DL, Swerdlow NR, Light GA. A distributed frontotemporal network underlies gamma-band synchronization impairments in schizophrenia patients. Neuropsychopharmacology 2020; 45:2198-2206. [PMID: 32829382 PMCID: PMC7784692 DOI: 10.1038/s41386-020-00806-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/02/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
Synaptic interactions between parvalbumin-positive γ-aminobutyric acid (GABA)-ergic interneurons and pyramidal neurons evoke cortical gamma oscillations, which are known to be abnormal in schizophrenia. These cortical gamma oscillations can be indexed by the gamma-band auditory steady-state response (ASSR), a robust electroencephalographic (EEG) biomarker that is increasingly used to advance the development of novel therapeutics for schizophrenia, and other related brain disorders. Despite promise of ASSR, the neural substrates of ASSR have not yet been characterized. This study investigated the sources underlying ASSR in healthy subjects and schizophrenia patients. In this study, a novel method for noninvasively characterizing source locations was developed and applied to EEG recordings obtained from 293 healthy subjects and 427 schizophrenia patients who underwent ASSR testing. Results revealed a distributed network of temporal and frontal sources in both healthy subjects and schizophrenia patients. In both groups, primary contributing ASSR sources were identified in the right superior temporal cortex and the orbitofrontal cortex. In conjunction with normal activity in these areas, schizophrenia patients showed significantly reduced source dipole density of gamma-band ASSR (ITC > 0.25) in the left superior temporal cortex, orbitofrontal cortex, and left superior frontal cortex. In conclusion, a distributed network of temporal and frontal brain regions supports gamma phase synchronization. We demonstrated that failure to mount a coherent physiologic response to simple 40-Hz stimulation reflects disorganized network function in schizophrenia patients. Future translational studies are needed to more fully understand the neural mechanisms underlying gamma-band ASSR network abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Daisuke Koshiyama
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Makoto Miyakoshi
- Swartz Center for Neural Computation, University of California San Diego, La Jolla, CA, USA.
| | - Yash B Joshi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
| | - Juan L Molina
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - David L Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Neal R Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Gregory A Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
8
|
Metzak PD, Devoe DJ, Iwaschuk A, Braun A, Addington J. Brain changes associated with negative symptoms in clinical high risk for psychosis: A systematic review. Neurosci Biobehav Rev 2020; 118:367-383. [PMID: 32768487 DOI: 10.1016/j.neubiorev.2020.07.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 02/05/2023]
Abstract
The negative symptoms of schizophrenia are linked to poorer functional outcomes and decreases in quality of life, and are often the first to develop in individuals who are at clinical high risk (CHR) for psychosis. However, the accompanying neurobiological changes are poorly understood. Therefore, we conducted a systematic review of the studies that have examined the brain metrics associated with negative symptoms in those at CHR. Electronic databases were searched from inception to August 2019. Studies were selected if they mentioned negative symptoms in youth at CHR for psychosis, and brain imaging. Of 261 citations, 43 studies with 2144 CHR participants met inclusion criteria. Too few studies were focused on the same brain regions using similar neuroimaging methods to perform a meta-analysis, however, the results of this systematic review suggest a relationship between negative symptom increases and decreases in grey matter. The paucity of studies linking changes in brain structure and function with negative symptoms in those at CHR suggests that future work should focus on examining these relationships.
Collapse
Affiliation(s)
- Paul D Metzak
- Hotchkiss Brain Institute, Department of Psychiatry, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada; Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| | - Daniel J Devoe
- Hotchkiss Brain Institute, Department of Psychiatry, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada; Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| | - Amanda Iwaschuk
- Hotchkiss Brain Institute, Department of Psychiatry, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada; Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| | - Amy Braun
- Hotchkiss Brain Institute, Department of Psychiatry, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada; Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| | - Jean Addington
- Hotchkiss Brain Institute, Department of Psychiatry, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada; Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
9
|
Bobilev AM, Perez JM, Tamminga CA. Molecular alterations in the medial temporal lobe in schizophrenia. Schizophr Res 2020; 217:71-85. [PMID: 31227207 DOI: 10.1016/j.schres.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 11/30/2022]
Abstract
The medial temporal lobe (MTL) and its individual structures have been extensively implicated in schizophrenia pathophysiology, with considerable efforts aimed at identifying structural and functional differences in this brain region. The major structures of the MTL for which prominent differences have been revealed include the hippocampus, the amygdala and the superior temporal gyrus (STG). The different functions of each of these regions have been comprehensively characterized, and likely contribute differently to schizophrenia. While neuroimaging studies provide an essential framework for understanding the role of these MTL structures in various aspects of the disease, ongoing efforts have sought to employ molecular measurements in order to elucidate the biology underlying these macroscopic differences. This review provides a summary of the molecular findings in three major MTL structures, and discusses convergent findings in cellular architecture and inter-and intra-cellular networks. The findings of this effort have uncovered cell-type, network and gene-level specificity largely unique to each brain region, indicating distinct molecular origins of disease etiology. Future studies should test the functional implications of these molecular changes at the circuit level, and leverage new advances in sequencing technology to further refine our understanding of the differential contribution of MTL structures to schizophrenia.
Collapse
Affiliation(s)
- Anastasia M Bobilev
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Jessica M Perez
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| |
Collapse
|
10
|
Takayanagi Y, Kulason S, Sasabayashi D, Takahashi T, Katagiri N, Sakuma A, Ohmuro N, Katsura M, Nishiyama S, Nakamura M, Kido M, Furuichi A, Noguchi K, Matsumoto K, Mizuno M, Ratnanather JT, Suzuki M. Structural MRI Study of the Planum Temporale in Individuals With an At-Risk Mental State Using Labeled Cortical Distance Mapping. Front Psychiatry 2020; 11:593952. [PMID: 33329144 PMCID: PMC7732500 DOI: 10.3389/fpsyt.2020.593952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Recent studies have demonstrated brain structural changes that predate or accompany the onset of frank psychosis, such as schizophrenia, among individuals with an at-risk mental state (ARMS). The planum temporale (PT) is a brain region involved in language processing. In schizophrenia patients, gray matter volume reduction and lack of normal asymmetry (left > right) of PT have repeatedly been reported. Some studies showed progressive gray matter reduction of PT in first-episode schizophrenia patients, and in ARMS subjects during their development of psychosis. Methods: MRI scans (1.5 T field strength) were obtained from 73 ARMS subjects and 74 gender- and age-matched healthy controls at three sites (University of Toyama, Toho University and Tohoku University). Participants with ARMS were clinically monitored for at least 2 years to confirm whether they subsequently developed frank psychosis. Cortical thickness, gray matter volume, and surface area of PT were estimated using FreeSurfer-initiated labeled cortical distance mapping (FSLCDM). PT measures were compared among healthy controls, ARMS subjects who later developed overt psychosis (ARMS-P), and those who did not (ARMS-NP). In each statistical model, age, sex, intracranial volume, and scanning sites were treated as nuisance covariates. Results: Of 73 ARMS subjects, 18 developed overt psychosis (12 schizophrenia and 6 other psychoses) within the follow-up period. There were no significant group differences of PT measures. In addition, significant asymmetries of PT volume and surface area (left > right) were found in all diagnostic groups. PT measures did not correlate with the neurocognitive performance of ARMS subjects. Discussion: Our results suggest that the previously-reported gray matter reduction and lack of normal anatomical asymmetry of PT in schizophrenia patients may not emerge during the prodromal stage of psychosis; taken together with previous longitudinal findings, such PT structural changes may occur just before or during the onset of psychosis.
Collapse
Affiliation(s)
- Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Arisawabashi Hospital, Toyama, Japan
| | - Sue Kulason
- Center for Imaging Science and Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Atsushi Sakuma
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Noriyuki Ohmuro
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.,Osaki Citizen Hospital, Sendai, Japan
| | - Masahiro Katsura
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Shimako Nishiyama
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Health Administration Center, University of Toyama, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kazunori Matsumoto
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.,Kokoro no Clinic OASIS, Sendai, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - J Tilak Ratnanather
- Center for Imaging Science and Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
11
|
Lyall AE, Savadjiev P, del Re EC, Seitz J, O’Donnell LJ, Westin CF, Mesholam-Gately RI, Petryshen T, Wojcik JD, Nestor P, Niznikiewicz M, Goldstein J, Seidman LJ, McCarley RW, Shenton ME, Kubicki M. Utilizing Mutual Information Analysis to Explore the Relationship Between Gray and White Matter Structural Pathologies in Schizophrenia. Schizophr Bull 2019; 45:386-395. [PMID: 29618096 PMCID: PMC6403063 DOI: 10.1093/schbul/sby028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Schizophrenia has been characterized as a neurodevelopmental disorder, with structural brain abnormalities reported at all stages. However, at present, it remains unclear whether gray and white matter abnormalities represent related or independent pathologies in schizophrenia. In this study, we present findings from an integrative analysis exploring the morphological relationship between gray and white matter in 45 schizophrenia participants and 49 healthy controls. We utilized mutual information (MI), a measure of how much information two variables share, to assess the morphological dependence between gray and white matter in three segments of the corpus callsoum, and the gray matter regions these segments connect: (1) the genu and the left and right rostral middle frontal gyrus (rMFG), (2) the isthmus and the left and right superior temporal gyrus (STG), (3) the splenium and the left and right lateral occipital gyrus (LOG). We report significantly reduced MI between white matter tract dispersion of the right hemispheric callosal connections to the STG and both cortical thickness and area in the right STG in schizophrenia patients, despite a lack of group differences in cortical thickness, surface area, or dispersion. We believe that this reduction in morphological dependence between gray and white matter may reflect a possible decoupling of the developmental processes that shape morphological features of white and gray matter early in life. The present study also demonstrates the importance of studying the relationship between gray and white matter measures, as opposed to restricting analyses to gray and white matter measures independently.
Collapse
Affiliation(s)
- Amanda E Lyall
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA,To whom correspondence should be addressed; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, US; tel: (617)-525-6129, fax: (617)-525-6150, e-mail:
| | - Peter Savadjiev
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Laboratory of Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Elisabetta C del Re
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,VA Boston Healthcare System, Brockton, MA
| | - Johanna Seitz
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Lauren J O’Donnell
- Laboratory of Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, MA
| | - Carl-Fredrik Westin
- Laboratory of Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, MA
| | - Raquelle I Mesholam-Gately
- Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tracey Petryshen
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Stanley Center of Psychiatry Research, Broad Institute MIT and Harvard, Boston, MA,Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Joanne D Wojcik
- Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Paul Nestor
- Research and Development, VA Boston Healthcare System, Boston, MA,Department of Psychology, University of Massachussetts, Boston, MA
| | - Margaret Niznikiewicz
- Clinical Neuroscience Division, Laboratory of Neuroscience, VA Boston Healthcare System, Brockton, MA
| | - Jill Goldstein
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Larry J Seidman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Robert W McCarley
- Clinical Neuroscience Division, Laboratory of Neuroscience, VA Boston Healthcare System, Brockton, MA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,VA Boston Healthcare System, Brockton, MA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Takahashi T, Suzuki M. Brain morphologic changes in early stages of psychosis: Implications for clinical application and early intervention. Psychiatry Clin Neurosci 2018; 72:556-571. [PMID: 29717522 DOI: 10.1111/pcn.12670] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
To date, a large number of magnetic resonance imaging (MRI) studies have been conducted in schizophrenia, which generally demonstrate gray matter reduction, predominantly in the frontal and temporo-limbic regions, as well as gross brain abnormalities (e.g., a deviated sulcogyral pattern). Although the causes as well as timing and course of these findings remain elusive, these morphologic changes (especially gross brain abnormalities and medial temporal lobe atrophy) are likely present at illness onset, possibly reflecting early neurodevelopmental abnormalities. In addition, longitudinal MRI studies suggest that patients with schizophrenia and related psychoses also have progressive gray matter reduction during the transition period from prodrome to overt psychosis, as well as initial periods after psychosis onset, while such changes may become almost stable in the chronic stage. These active brain changes during the early phases seem to be relevant to the development of clinical symptoms in a region-specific manner (e.g., superior temporal gyrus atrophy and positive psychotic symptoms), but may be at least partly ameliorated by antipsychotic medication. Recently, increasing evidence from MRI findings in individuals at risk for developing psychosis has suggested that those who subsequently develop psychosis have baseline brain changes, which could be at least partly predictive of later transition into psychosis. In this article, we selectively review previous MRI findings during the course of psychosis and also refer to the possible clinical applicability of these neuroimaging research findings, especially in the diagnosis of schizophrenia and early intervention for psychosis.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
13
|
Bartholomeusz CF, Cropley VL, Wannan C, Di Biase M, McGorry PD, Pantelis C. Structural neuroimaging across early-stage psychosis: Aberrations in neurobiological trajectories and implications for the staging model. Aust N Z J Psychiatry 2017; 51:455-476. [PMID: 27733710 DOI: 10.1177/0004867416670522] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This review critically examines the structural neuroimaging evidence in psychotic illness, with a focus on longitudinal imaging across the first-episode psychosis and ultra-high-risk of psychosis illness stages. METHODS A thorough search of the literature involving specifically longitudinal neuroimaging in early illness stages of psychosis was conducted. The evidence supporting abnormalities in brain morphology and altered neurodevelopmental trajectories is discussed in the context of a clinical staging model. RESULTS In general, grey matter (and, to a lesser extent, white matter) declines across multiple frontal, temporal (especially superior regions), insular and parietal regions during the first episode of psychosis, which has a steeper trajectory than that of age-matched healthy counterparts. Although the ultra-high-risk of psychosis literature is considerably mixed, evidence indicates that certain volumetric structural aberrations predate psychotic illness onset (e.g. prefrontal cortex thinning), while other abnormalities present in ultra-high-risk of psychosis populations are potentially non-psychosis-specific (e.g. hippocampal volume reductions). CONCLUSION We highlight the advantages of longitudinal designs, discuss the implications such studies have on clinical staging and provide directions for future research.
Collapse
Affiliation(s)
- Cali F Bartholomeusz
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- 2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Vanessa L Cropley
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Cassandra Wannan
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- 2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Maria Di Biase
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Patrick D McGorry
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- 2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Christos Pantelis
- 3 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- 4 Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton South, VIC, Australia
| |
Collapse
|
14
|
Wang S, Wang G, Lv H, Wu R, Zhao J, Guo W. Abnormal regional homogeneity as potential imaging biomarker for psychosis risk syndrome: a resting-state fMRI study and support vector machine analysis. Sci Rep 2016; 6:27619. [PMID: 27272341 PMCID: PMC4897690 DOI: 10.1038/srep27619] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/23/2016] [Indexed: 11/23/2022] Open
Abstract
Subjects with psychosis risk syndrome (PRS) have structural and functional abnormalities in several brain regions. However, regional functional synchronization of PRS has not been clarified. We recruited 34 PRS subjects and 37 healthy controls. Regional homogeneity (ReHo) of resting-state functional magnetic resonance scans was employed to analyze regional functional synchronization in these participants. Receiver operating characteristic curves and support vector machines were used to detect whether abnormal regional functional synchronization could be utilized to separate PRS subjects from healthy controls. We observed that PRS subjects showed significant ReHo decreases in the left inferior temporal gyrus and increases in the right inferior frontal gyrus and right putamen compared with the controls. No correlations between abnormal regional functional synchronization in these brain regions and clinical characteristics existed. A combination of the ReHo values in the three brain regions showed sensitivity, specificity, and accuracy of 88.24%, 91.89%, and 90.14%, respectively, for discriminating PRS subjects from healthy controls. We inferred that abnormal regional functional synchronization exists in the cerebrum of PRS subjects, and a combination of ReHo values in these abnormal regions could be applied as potential image biomarker to identify PRS subjects from healthy controls.
Collapse
Affiliation(s)
- Shuai Wang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha 410011, China
| | - Guodong Wang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha 410011, China
| | - Hailong Lv
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha 410011, China
| | - Renrong Wu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha 410011, China
| | - Jingping Zhao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha 410011, China.,Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
| | - Wenbin Guo
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha 410011, China
| |
Collapse
|
15
|
Ohi K, Matsuda Y, Shimada T, Yasuyama T, Oshima K, Sawai K, Kihara H, Nitta Y, Okubo H, Uehara T, Kawasaki Y. Structural alterations of the superior temporal gyrus in schizophrenia: Detailed subregional differences. Eur Psychiatry 2016; 35:25-31. [PMID: 27061374 DOI: 10.1016/j.eurpsy.2016.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Reduced gray matter volumes in the superior temporal gyrus (STG) have been reported in patients with schizophrenia. Such volumetric abnormalities might denote alterations in cortical thickness, surface area, local gyrification or all of these factors. The STG can be anatomically divided into five subregions using automatic parcellation in FreeSurfer: lateral aspect of the STG, anterior transverse temporal gyrus of Heschl gyrus (HG), planum polare (PP) of the STG, planum temporale (PT) of the STG and transverse temporal sulcus. METHODS We acquired magnetic resonance imaging (MRI) 3T scans from 40 age- and sex-matched patients with schizophrenia and 40 healthy subjects, and the scans were automatically processed using FreeSurfer. General linear models were used to assess group differences in regional volumes and detailed thickness, surface area and local gyrification. RESULTS As expected, patients with schizophrenia had significantly smaller bilateral STG volumes than healthy subjects. Of the five subregions in the STG, patients with schizophrenia showed significantly and marginally reduced volumes in the lateral aspect of the STG and PT of the STG bilaterally compared with healthy subjects. The volumetric alteration in bilateral lateral STG was derived from both the cortical thickness and surface area but not local gyrification. There was no significant laterality of the alteration in the lateral STG between patients and controls and no correlation among the structures and clinical characteristics. CONCLUSIONS These findings suggest that of five anatomical subregions in the STG, the lateral STG is one of the most meaningful regions for brain pathophysiology in schizophrenia.
Collapse
Affiliation(s)
- K Ohi
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan.
| | - Y Matsuda
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan; Project Research Center, Kanazawa Medical University, Ishikawa, Japan.
| | - T Shimada
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - T Yasuyama
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - K Oshima
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - K Sawai
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - H Kihara
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - Y Nitta
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - H Okubo
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - T Uehara
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - Y Kawasaki
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
16
|
Abstract
This article reviews the results of longitudinal studies on frontal brain volume reduction in patients with schizophrenia spectrum disorders and focuses on the relationship with antipsychotic treatment. Based on a systematic literature search all studies were included in which results on changes of brain volumes over a longer period of time were correlated with antipsychotic treatment dose and disease severity. The findings indicate that there is evidence for grey and white matter volume changes of the frontal brain, which cannot be explained by the severity of the disease alone but are also very likely a manifestation of long-term effects of antipsychotics. Whether second generation antipsychotics have an advantage compared to first generation antipsychotics is currently unclear. Considering the contribution of antipsychotics to the changes in brain structure, which seem to depend on cumulative dosage and can exert adverse effects on neurocognition, negative and positive symptoms and psychosocial functioning, the guidelines for antipsychotic long-term drug treatment should be reconsidered. This is the reason why we and others recommend prescribing the lowest dose necessary to control symptoms. In non-schizophrenic psychiatric disorders, antipsychotics should be used only with great caution after a careful risk-benefit assessment. Moreover, treatment approaches which can help to minimize antipsychotic medication or even administer them only selectively are of increasing importance.
Collapse
|
17
|
Liu J, Julnes PS, Chen J, Ehrlich S, Walton E, Calhoun VD. The association of DNA methylation and brain volume in healthy individuals and schizophrenia patients. Schizophr Res 2015; 169:447-452. [PMID: 26381449 PMCID: PMC4681600 DOI: 10.1016/j.schres.2015.08.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 12/12/2022]
Abstract
Both methylation and brain volume patterns hold important biological information for the development and prognosis of schizophrenia (SZ). A combined study to probe the association between them provides a new perspective to understanding SZ. Genomic methylation of peripheral blood and regional brain volumes derived from magnetic resonance imaging were analyzed using parallel independent component analyses in this study. Nine methylation components and five brain volumetric components were extracted for 94 SZ patients and 106 healthy controls. After controlling for age, sex, race, and substance use, a component comprised primarily of bilateral cerebellar volumes was significantly correlated to a methylation component from 14 CpG sites in 13 genes. Both patients and healthy controls demonstrated similar associations, but patients had significantly smaller cerebellar volumes and dysmethylation in the associated epigenetic component compared to controls. The 13 genes are enriched in cellular growth and proliferation with some genes involved in neuronal growth and cerebellum development (GATA4, ADRA1D, EPHA3, and KCNK10), and these genes are prominently associated with neurological and psychological disorders. Such findings suggest that the methylation pattern of the genes coding for cellular growth may influence the cerebellar development through regulating gene expression, and the alteration in the methylation of these genes in SZ patients may contribute to the cerebellar volume reduction observed in patients.
Collapse
Affiliation(s)
- Jingyu Liu
- The Mind Research Network, Albuquerque, NM, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA.
| | | | - Jiayu Chen
- The Mind Research Network, Albuquerque, NM, USA
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry, TU-Dresden, Faculty of Medicine, Germany,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Esther Walton
- Department of Child and Adolescent Psychiatry, TU-Dresden, Faculty of Medicine, Germany
| | - Vince D. Calhoun
- The Mind Research Network, Albuquerque, NM, USA,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
18
|
Bartholomeusz CF, Ganella EP, Labuschagne I, Bousman C, Pantelis C. Effects of oxytocin and genetic variants on brain and behaviour: Implications for treatment in schizophrenia. Schizophr Res 2015; 168:614-27. [PMID: 26123171 DOI: 10.1016/j.schres.2015.06.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/25/2015] [Accepted: 06/07/2015] [Indexed: 12/13/2022]
Abstract
Impairments in social cognition and poor social functioning are core features of schizophrenia-spectrum disorders. In recent years, there has been a move towards developing new treatment strategies that specifically target social cognitive and social behavioural deficits. Oxytocin (OXT) is one such strategy that has gained increasing attention. There is a strong rationale for studying OXT in psychosis, from both an evolutionary perspective and neurodevelopmental-cognitive model of schizophrenia. Thus, the aim of this review was to critique and examine the observational and clinical oxytocin trial literature in schizophrenia-spectrum disorders. A handful of clinical trials suggest that OXT treatment may be beneficial for remediating social cognitive impairments, psychiatric symptoms, and improving social outcomes. However, inconsistencies exist in this literature, which may be explained by individual differences in the underlying neural response to OXT treatment and/or variation in the oxytocin and oxytocin receptor genes. Therefore, we additionally reviewed the evidence for structural and functional neural intermediate phenotypes in humans that link genetic variants to social behaviour/thinking, and discuss the implications of such interactions in the context of dysfunctional brain networks in schizophrenia. Factors that pose challenges for future OXT clinical research include the impact of age, sex, and ancestry, task-specific effects, bioavailability and pharmacokinetics, as well as neurotransmitter and drug interactions. While initial findings from OXT single dose/clinical trial studies are promising, more interdisciplinary research in both healthy and psychiatric populations is needed before determining whether OXT is a viable treatment option/adjunct for addressing poor illness outcomes in psychotic disorders.
Collapse
Affiliation(s)
- Cali F Bartholomeusz
- Orygen, The National Centre of Excellence in Youth Mental Health and the Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton South, Victoria, Australia.
| | - Eleni P Ganella
- Orygen, The National Centre of Excellence in Youth Mental Health and the Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton South, Victoria, Australia
| | - Izelle Labuschagne
- School of Psychology, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Chad Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton South, Victoria, Australia; Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton South, Victoria, Australia; Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Heinze K, Reniers RLEP, Nelson B, Yung AR, Lin A, Harrison BJ, Pantelis C, Velakoulis D, McGorry PD, Wood SJ. Discrete alterations of brain network structural covariance in individuals at ultra-high risk for psychosis. Biol Psychiatry 2015; 77:989-96. [PMID: 25524754 DOI: 10.1016/j.biopsych.2014.10.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Investigation of aberrant large-scale brain networks offers novel insight into the role these networks play in diverse psychiatric disorders such as schizophrenia. Although studies report altered functional brain connectivity in participants at ultra-high risk (UHR) for psychosis, it is unclear whether these alterations extend to structural brain networks. METHODS Whole-brain structural covariance patterns of 133 participants at UHR for psychosis (51 of whom subsequently developed psychosis) and 65 healthy control (HC) subjects were studied. Following data preprocessing (using VBM8 toolbox), the mean signal in seed regions relating to specific networks (visual, auditory, motor, speech, semantic, executive control, salience, and default-mode) were extracted, and voxel-wise analyses of covariance were conducted to compare the association between whole-brain signal and each seed region for UHR and HC individuals. The UHR participants who transitioned to psychosis were compared with the UHR participants who did not. RESULTS Significantly reduced structural covariance was observed in the UHR sample compared with the HC sample for the default-mode network, and increased covariance was observed for the motor and executive control networks. When the UHR participants who transitioned to psychosis were compared with the UHR participants who did not, aberrant structural covariance was observed in the salience, executive control, auditory, and motor networks. CONCLUSIONS Whole-brain structural covariance analyses revealed subtle changes of connectivity of the default-mode, executive control, salience, motor, and auditory networks in UHR individuals for psychosis. Although we found significant differences, these are small changes and tend to reflect largely intact structural networks.
Collapse
Affiliation(s)
- Kareen Heinze
- School of Psychology, University of Birmingham, Birmingham, United Kingdom.
| | | | - Barnaby Nelson
- Orygen Youth Health Research Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Alison R Yung
- Orygen Youth Health Research Centre, University of Melbourne, Melbourne, Victoria, Australia; Institute of Brain, Behavior and Mental Health, University of Manchester, Manchester, United Kingdom
| | - Ashleigh Lin
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Patrick D McGorry
- Orygen Youth Health Research Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J Wood
- School of Psychology, University of Birmingham, Birmingham, United Kingdom; Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| |
Collapse
|
20
|
Bernasconi R, Smieskova R, Schmidt A, Harrisberger F, Raschle NM, Lenz C, Walter A, Simon A, Riecher-Rössler A, Radue EW, Lang UE, Fusar-Poli P, Borgwardt SJ. Hippocampal volume correlates with attenuated negative psychotic symptoms irrespective of antidepressant medication. NEUROIMAGE-CLINICAL 2015; 8:230-7. [PMID: 26110110 PMCID: PMC4473852 DOI: 10.1016/j.nicl.2015.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 12/18/2022]
Abstract
Background Individuals with at-risk mental state for psychosis (ARMS) often suffer from depressive and anxiety symptoms, which are clinically similar to the negative symptomatology described for psychosis. Thus, many ARMS individuals are already being treated with antidepressant medication. Objectives To investigate clinical and structural differences between psychosis high-risk individuals with or without antidepressants. Methods We compared ARMS individuals currently receiving antidepressants (ARMS-AD; n = 18), ARMS individuals not receiving antidepressants (ARMS-nonAD; n = 31) and healthy subjects (HC; n = 24), in terms of brain structure abnormalities, using voxel-based morphometry. We also performed region of interest analysis for the hippocampus, anterior cingulate cortex, amygdala and precuneus. Results The ARMS-AD had higher ‘depression’ and lower ‘motor hyperactivity’ scores than the ARMS-nonAD. Compared to HC, there was significantly less GMV in the middle frontal gyrus in the whole ARMS cohort and in the superior frontal gyrus in the ARMS-AD subgroup. Compared to ARMS-nonAD, the ARMS-AD group showed more gray matter volume (GMV) in the left superior parietal lobe, but less GMV in the left hippocampus and the right precuneus. We found a significant negative correlation between attenuated negative symptoms and hippocampal volume in the whole ARMS cohort. Conclusion Reduced GMV in the hippocampus and precuneus is associated with short-term antidepressant medication and more severe depressive symptoms. Hippocampal volume is further negatively correlated with attenuated negative psychotic symptoms. Longitudinal studies are needed to distinguish whether hippocampal volume deficits in the ARMS are related to attenuated negative psychotic symptoms or to antidepressant action. We compared brain structure in high-risk patients with/without antidepressants (AD). We found attenuated negative psychotic symptoms (ANS) irrespective of AD. We found a significant correlation between ANS and hippocampal volume. Results indicate relevance of ANS for clinical high-risk studies.
Collapse
Affiliation(s)
- Raffaele Bernasconi
- Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, Basel, Switzerland
| | - Renata Smieskova
- Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, Basel, Switzerland
| | - André Schmidt
- Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, Basel, Switzerland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Nora Maria Raschle
- Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, Basel, Switzerland
| | - Claudia Lenz
- Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, Basel, Switzerland
| | - Anna Walter
- Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, Basel, Switzerland
| | - Andor Simon
- Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, Basel, Switzerland
| | | | | | - Undine E. Lang
- Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, Basel, Switzerland
| | - Paolo Fusar-Poli
- Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, Basel, Switzerland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Stefan J. Borgwardt
- Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, Basel, Switzerland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Image Analysis Centre, University Hospital, Basel, Switzerland
- Correspondence to: Department of Psychiatry (UPK), University of Basel, Wilhelm Klein-strasse 27, Basel 4056, Switzerland. Tel.: +41 (0)61 325 81 87; fax: +41 (0)61 325 81 80.
| |
Collapse
|
21
|
del Re EC, Spencer KM, Oribe N, Mesholam-Gately RI, Goldstein J, Shenton ME, Petryshen T, Seidman LJ, McCarley RW, Niznikiewicz MA. Clinical high risk and first episode schizophrenia: auditory event-related potentials. Psychiatry Res 2015; 231:126-33. [PMID: 25557063 PMCID: PMC4314407 DOI: 10.1016/j.pscychresns.2014.11.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 01/15/2023]
Abstract
The clinical high risk (CHR) period is a phase denoting a risk for overt psychosis during which subacute symptoms often appear, and cognitive functions may deteriorate. To compare biological indices during this phase with those during first episode schizophrenia, we cross-sectionally examined sex- and age-matched clinical high risk (CHR, n=21), first episode schizophrenia patients (FESZ, n=20) and matched healthy controls (HC, n=25) on oddball and novelty paradigms and assessed the N100, P200, P3a and P3b as indices of perceptual, attentional and working memory processes. To our knowledge, this is the only such comparison using all of these event-related potentials (ERPs) in two paradigms. We hypothesized that the ERPs would differentiate between the three groups and allow prediction of a diagnostic group. The majority of ERPs were significantly affected in CHR and FESZ compared with controls, with similar effect sizes. Nonetheless, in logistic regression, only the P3a and N100 distinguished CHR and FESZ from healthy controls, suggesting that ERPs not associated with an overt task might be more sensitive to prediction of group membership.
Collapse
Affiliation(s)
- Elisabetta C del Re
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry and Department of Radiology, Brigham and Women׳s Hospital, Harvard Medical School, Boston, MA, USA.
| | - Kevin M Spencer
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Naoya Oribe
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Raquelle I Mesholam-Gately
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Harvard Medical School, Massachusetts Mental Health Center Division of Public Psychiatry, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jill Goldstein
- Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Brigham and Women׳s Hospital, Connors Center for Women׳s Health and Gender Biology, Boston, MA, USA; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry and Department of Radiology, Brigham and Women׳s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracey Petryshen
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Larry J Seidman
- Harvard Medical School, Massachusetts Mental Health Center Division of Public Psychiatry, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Robert W McCarley
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Margaret A Niznikiewicz
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Dutt A, Tseng HH, Fonville L, Drakesmith M, Su L, Evans J, Zammit S, Jones D, Lewis G, David AS. Exploring neural dysfunction in 'clinical high risk' for psychosis: a quantitative review of fMRI studies. J Psychiatr Res 2015; 61:122-34. [PMID: 25479766 DOI: 10.1016/j.jpsychires.2014.08.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 08/06/2014] [Accepted: 08/26/2014] [Indexed: 01/10/2023]
Abstract
Individuals at clinical high risk (CHR) of developing psychosis present with widespread functional abnormalities in the brain. Cognitive deficits, including working memory (WM) problems, as commonly elicited by n-back tasks, are observed in CHR individuals. However, functional MRI (fMRI) studies, comprising a heterogeneous cluster of general and social cognition paradigms, have not necessarily demonstrated consistent and conclusive results in this population. Hence, a comprehensive review of fMRI studies, spanning almost one decade, was carried out to observe for general trends with respect to brain regions and cognitive systems most likely to be dysfunctional in CHR individuals. 32 studies were included for this review, out of which 22 met the criteria for quantitative analysis using activation likelihood estimation (ALE). Task related contrast activations were firstly analysed by comparing CHR and healthy control participants in the total pooled sample, followed by a comparison of general cognitive function studies (excluding social cognition paradigms), and finally by only looking at n-back working memory task based studies. Findings from the ALE implicated four key dysfunctional and distinct neural regions in the CHR group, namely the right inferior parietal lobule (rIPL), the left medial frontal gyrus (lmFG), the left superior temporal gyrus (lSTG) and the right fronto-polar cortex (rFPC) of the superior frontal gyrus (SFG). Narrowing down to relatively few significant dysfunctional neural regions is a step forward in reducing the apparent ambiguity of overall findings, which would help to target specific neural regions and pathways of interest for future research in CHR populations.
Collapse
Affiliation(s)
- Anirban Dutt
- Institute of Psychiatry, King's College London, London, UK.
| | | | - Leon Fonville
- Institute of Psychiatry, King's College London, London, UK
| | - Mark Drakesmith
- Cardiff University Brain Research Imaging Centre, Cardiff, UK
| | - Liang Su
- Institute of Psychiatry, King's College London, London, UK
| | - John Evans
- Cardiff University Brain Research Imaging Centre, Cardiff, UK
| | - Stanley Zammit
- Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Derek Jones
- Cardiff University Brain Research Imaging Centre, Cardiff, UK
| | - Glyn Lewis
- Division of Psychiatry, University College London, London, UK
| | | |
Collapse
|
23
|
Scanlon C, Anderson-Schmidt H, Kilmartin L, McInerney S, Kenney J, McFarland J, Waldron M, Ambati S, Fullard A, Logan S, Hallahan B, Barker GJ, Elliott MA, McCarthy P, Cannon DM, McDonald C. Cortical thinning and caudate abnormalities in first episode psychosis and their association with clinical outcome. Schizophr Res 2014; 159:36-42. [PMID: 25124520 DOI: 10.1016/j.schres.2014.07.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 07/06/2014] [Accepted: 07/14/2014] [Indexed: 12/26/2022]
Abstract
First episode psychosis (FEP) has been associated with structural brain changes, largely identified by volumetric analyses. Advances in neuroimaging processing have made it possible to measure geometric properties that may identify subtle structural changes not appreciated by a measure of volume alone. In this study we adopt complementary methods of assessing the structural integrity of grey matter in FEP patients and assess whether these relate to patient clinical and functional outcome at 3 year follow-up. 1.5 Tesla T1-weighted Magnetic Resonance (MR) images were acquired for 46 patients experiencing their first episode of psychosis and 46 healthy controls. Cerebral cortical thickness and local gyrification index (LGI) were investigated using FreeSurfer software. Volume and shape of the hippocampus, caudate and lateral ventricles were assessed using manual tracing and spherical harmonics applied for shape description. A cluster of cortical thinning was identified in FEP compared to controls; this was located in the right superior temporal gyrus, sulcus, extended into the middle temporal gyrus (lateral temporal cortex - LTC). Bilateral caudate volumes were significantly lower in FEP relative to controls and the right caudate also displayed regions of shape deflation in the FEP group. No significant structural abnormalities were identified in cortical LGI or hippocampal or lateral ventricle volume/shape. Neither LTC nor caudate abnormalities were related to change in symptom severity or global functioning 3 years later. LTC and caudate abnormalities are present at the first episode of psychosis but do not appear to directly affect clinical or functional outcome.
Collapse
Affiliation(s)
- Cathy Scanlon
- Clinical Neuroimaging Laboratory, Department of Psychiatry and Anatomy, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; NCBES Galway Neuroscience Center, National University of Ireland Galway, Galway, Ireland
| | - Heike Anderson-Schmidt
- Clinical Neuroimaging Laboratory, Department of Psychiatry and Anatomy, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; Department of Psychiatry and Psychotherapy, Section of Psychiatric Genetics, University Medical Centre Goettingen, Georg-August University, Goettingen, Germany
| | - Liam Kilmartin
- College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - Shane McInerney
- Clinical Neuroimaging Laboratory, Department of Psychiatry and Anatomy, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Joanne Kenney
- Clinical Neuroimaging Laboratory, Department of Psychiatry and Anatomy, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; NCBES Galway Neuroscience Center, National University of Ireland Galway, Galway, Ireland
| | - John McFarland
- Clinical Neuroimaging Laboratory, Department of Psychiatry and Anatomy, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Mairead Waldron
- Clinical Neuroimaging Laboratory, Department of Psychiatry and Anatomy, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; NCBES Galway Neuroscience Center, National University of Ireland Galway, Galway, Ireland
| | - Srinath Ambati
- Clinical Neuroimaging Laboratory, Department of Psychiatry and Anatomy, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; NCBES Galway Neuroscience Center, National University of Ireland Galway, Galway, Ireland
| | - Anna Fullard
- Clinical Neuroimaging Laboratory, Department of Psychiatry and Anatomy, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sam Logan
- Clinical Neuroimaging Laboratory, Department of Psychiatry and Anatomy, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Brian Hallahan
- Clinical Neuroimaging Laboratory, Department of Psychiatry and Anatomy, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Gareth J Barker
- King's College London, Institute of Psychiatry, Department of Clinical Neuroscience, Centre for Neuroimaging Sciences, London, UK
| | - Mark A Elliott
- School of Psychology, National University of Ireland Galway, Galway, Ireland; NCBES Galway Neuroscience Center, National University of Ireland Galway, Galway, Ireland
| | - Peter McCarthy
- Department of Radiology, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Dara M Cannon
- Clinical Neuroimaging Laboratory, Department of Psychiatry and Anatomy, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; NCBES Galway Neuroscience Center, National University of Ireland Galway, Galway, Ireland
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Department of Psychiatry and Anatomy, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; NCBES Galway Neuroscience Center, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
24
|
Cropley VL, Pantelis C. Using longitudinal imaging to map the 'relapse signature' of schizophrenia and other psychoses. Epidemiol Psychiatr Sci 2014; 23:219-25. [PMID: 24849668 PMCID: PMC6998274 DOI: 10.1017/s2045796014000341] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Brain imaging studies in schizophrenia have typically involved single assessment and cross-sectional designs, while longitudinal studies rarely incorporate more than two time points. While informative, these studies do not adequately capture potential trajectories of neurobiological change, particularly in the context of a changing clinical picture. We propose that the analysis of brain trajectories using multiple time points may inform our understanding of the illness and the effect of treatment. This paper makes the case for frequent serial neuroimaging across the course of schizophrenia psychoses and its application to active illness epsiodes to provide a detailed examination of psychosis relapse and remission.
Collapse
Affiliation(s)
- V. L. Cropley
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - C. Pantelis
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
| |
Collapse
|
25
|
Todd J, Whitson L, Smith E, Michie PT, Schall U, Ward PB. What's intact and what's not within the mismatch negativity system in schizophrenia. Psychophysiology 2014; 51:337-47. [PMID: 24611871 DOI: 10.1111/psyp.12181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 11/13/2013] [Indexed: 11/30/2022]
Abstract
Repetitive patterning facilitates inferences about likely properties of sound to follow. Mismatch negativity (MMN) occurs when sound fails to match an inference. Smaller MMN in schizophrenia indexes deficient gain control (difference in utilizing a limited dynamic range). Although it is clear that this group has a lower limit to MMN size, this study addressed whether smaller MMN indicates impaired perceptual inference. MMN was elicited to four deviants in two sequences: one in which occurrence was random and one in which it was paired. Despite smaller MMN, persons with schizophrenia are equally able to reduce MMN size evoked by a deviant when its occurrence is cued. Results also expose alterations in the evoked response to repeated sounds that appear to be exacerbations of age-related amplitude decline. Since these anomalies impact the computed MMN, they highlight the need to identify all contributions to limits in gain control in schizophrenia.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychology, University of Newcastle, Callaghan, Australia; Priority Research Centre, Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, Australia; Schizophrenia Research Institute, Darlinghurst, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Tognin S, Riecher-Rössler A, Meisenzahl EM, Wood SJ, Hutton C, Borgwardt SJ, Koutsouleris N, Yung AR, Allen P, Phillips LJ, McGorry PD, Valli I, Velakoulis D, Nelson B, Woolley J, Pantelis C, McGuire P, Mechelli A. Reduced parahippocampal cortical thickness in subjects at ultra-high risk for psychosis. Psychol Med 2014; 44:489-498. [PMID: 23659473 PMCID: PMC3880065 DOI: 10.1017/s0033291713000998] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 04/06/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Grey matter volume and cortical thickness represent two complementary aspects of brain structure. Several studies have described reductions in grey matter volume in people at ultra-high risk (UHR) of psychosis; however, little is known about cortical thickness in this group. The aim of the present study was to investigate cortical thickness alterations in UHR subjects and compare individuals who subsequently did and did not develop psychosis. METHOD We examined magnetic resonance imaging data collected at four different scanning sites. The UHR subjects were followed up for at least 2 years. Subsequent to scanning, 50 UHR subjects developed psychosis and 117 did not. Cortical thickness was examined in regions previously identified as sites of neuroanatomical alterations in UHR subjects, using voxel-based cortical thickness. RESULTS At baseline UHR subjects, compared with controls, showed reduced cortical thickness in the right parahippocampal gyrus (p < 0.05, familywise error corrected). There were no significant differences in cortical thickness between the UHR subjects who later developed psychosis and those who did not. CONCLUSIONS These data suggest that UHR symptomatology is characterized by alterations in the thickness of the medial temporal cortex. We did not find evidence that the later progression to psychosis was linked to additional alterations in cortical thickness, although we cannot exclude the possibility that the study lacked sufficient power to detect such differences.
Collapse
Affiliation(s)
- S. Tognin
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK
| | - A. Riecher-Rössler
- Center for Gender Research and Early Detection, University of Basel Psychiatric Clinics, c/o University Hospital Basel, Petersgraben, Basel, Switzerland
| | - E. M. Meisenzahl
- Departments of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - S. J. Wood
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
- School of Psychology, University of Birmingham, Birmingham, UK
| | - C. Hutton
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, UK
| | - S. J. Borgwardt
- Center for Gender Research and Early Detection, University of Basel Psychiatric Clinics, c/o University Hospital Basel, Petersgraben, Basel, Switzerland
| | - N. Koutsouleris
- Departments of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - A. R. Yung
- Orygen Research Centre, University of Melbourne, Victoria, Australia
| | - P. Allen
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK
| | - L. J. Phillips
- Psychological Sciences, University of Melbourne, Victoria, Australia
| | - P. D. McGorry
- Orygen Research Centre, University of Melbourne, Victoria, Australia
| | - I. Valli
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK
| | - D. Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
| | - B. Nelson
- Orygen Research Centre, University of Melbourne, Victoria, Australia
| | - J. Woolley
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK
| | - C. Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
| | - P. McGuire
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK
| | - A. Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK
| |
Collapse
|
27
|
Cooper D, Barker V, Radua J, Fusar-Poli P, Lawrie SM. Multimodal voxel-based meta-analysis of structural and functional magnetic resonance imaging studies in those at elevated genetic risk of developing schizophrenia. Psychiatry Res 2014; 221:69-77. [PMID: 24239093 DOI: 10.1016/j.pscychresns.2013.07.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 07/03/2013] [Accepted: 07/25/2013] [Indexed: 01/03/2023]
Abstract
Computational brain-imaging studies of individuals at familial high risk for psychosis have provided interesting results, but interpreting these findings can be a challenge due to a number of factors. We searched the literature for studies reporting whole brain voxel-based morphometry (VBM) or functional magnetic resonance imaging (fMRI) findings in people at familial high risk for schizophrenia compared with a control group. A voxel-wise meta-analysis with the effect-size version of Signed Differential Mapping (ES-SDM) identified regional abnormalities of functional brain response. Similarly, an ES-SDM meta-analysis was conducted on VBM studies. A multi-modal imaging meta-analysis was used to highlight brain regions with both structural and functional abnormalities. Nineteen studies met the inclusion criteria, in which a total of 815 familial high-risk individuals were compared to 685 controls. Our fMRI results revealed a number of regions of altered activation. VBM findings demonstrated both increases and decreases in grey matter density of relatives in a variety of brain regions. The multimodal analysis revealed relatives had decreased grey matter with hyper-activation in the left inferior frontal gyrus/amygdala, and decreased grey matter with hypo-activation in the thalamus. We found several regions of altered activation or structure in familial high-risk individuals. Reliable fMRI findings in the right posterior superior temporal gyrus further confirm that alteration in this area is a potential marker of risk.
Collapse
Affiliation(s)
- Deborah Cooper
- Division of Psychiatry, School of Clinical Sciences, Kennedy Tower, Royal Edinburgh Hospital, Morningside, Edinburgh, EH10 5HF, UK.
| | - Victoria Barker
- Division of Psychiatry, School of Clinical Sciences, Kennedy Tower, Royal Edinburgh Hospital, Morningside, Edinburgh, EH10 5HF, UK
| | - Joaquim Radua
- Institute of Psychiatry, King's College London, London, UK; FIDMAG Research Unit, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
| | | | - Stephen M Lawrie
- Division of Psychiatry, School of Clinical Sciences, Kennedy Tower, Royal Edinburgh Hospital, Morningside, Edinburgh, EH10 5HF, UK
| |
Collapse
|
28
|
Todd J, Harms L, Schall U, Michie PT. Mismatch negativity: translating the potential. Front Psychiatry 2013; 4:171. [PMID: 24391602 PMCID: PMC3866657 DOI: 10.3389/fpsyt.2013.00171] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/04/2013] [Indexed: 02/05/2023] Open
Abstract
The mismatch negativity (MMN) component of the auditory event-related potential has become a valuable tool in cognitive neuroscience. Its reduced size in persons with schizophrenia is of unknown origin but theories proposed include links to problems in experience-dependent plasticity reliant on N-methyl-d-aspartate glutamate receptors. In this review we address the utility of this tool in revealing the nature and time course of problems in perceptual inference in this illness together with its potential for use in translational research testing animal models of schizophrenia-related phenotypes. Specifically, we review the reasons for interest in MMN in schizophrenia, issues pertaining to the measurement of MMN, its use as a vulnerability index for the development of schizophrenia, the pharmacological sensitivity of MMN and the progress in developing animal models of MMN. Within this process we highlight the challenges posed by knowledge gaps pertaining to the tool and the pharmacology of the underlying system.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lauren Harms
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ulrich Schall
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Patricia T. Michie
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
29
|
Ratnanather JT, Poynton CB, Pisano DV, Crocker B, Postell E, Cebron S, Ceyhan E, Honeycutt NA, Mahon PB, Barta PE. Morphometry of superior temporal gyrus and planum temporale in schizophrenia and psychotic bipolar disorder. Schizophr Res 2013; 150:476-83. [PMID: 24012458 PMCID: PMC3825771 DOI: 10.1016/j.schres.2013.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 11/30/2022]
Abstract
Structural abnormalities in temporal lobe, including the superior temporal gyrus (STG) and planum temporale (PT), have been reported in schizophrenia (SCZ) and bipolar disorder (BPD) patients. While most MRI studies have suggested gray matter volume and surface area reduction in temporal lobe regions, few have explored changes in laminar thickness in PT and STG in SCZ and BPD. ROI subvolumes of the STG from 94 subjects were used to yield gray matter volume, gray/white surface area and laminar thickness for STG and PT cortical regions. Morphometric analysis suggests that there may be gender and laterality effects on the size and shape of the PT in BPD (n=36) and SCZ (n=31) with reduced laterality in PT in subjects with SCZ but not in BPD. In addition, PT surface area was seen to be larger in males, and asymmetry in PT surface area was larger in BPD. Subjects with SCZ had reduced thickness and smaller asymmetry in PT volume. Thus, the PT probably plays a more sensitive role than the STG in structural abnormalities seen in SCZ.
Collapse
Affiliation(s)
- J. Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218,Institute for Computational Medicine, Johns Hopkins University, Baltimore MD 21218,Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD 21218
| | - Clare B. Poynton
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218
| | - Dominic V. Pisano
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218
| | - Britni Crocker
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218
| | - Elizabeth Postell
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218
| | - Shannon Cebron
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218
| | - Elvan Ceyhan
- Dept of Mathematics, Koc University, Istanbul, Turkey
| | - Nancy A. Honeycutt
- Dept. of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Pamela B. Mahon
- Dept. of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD 21205
| | - Patrick E. Barta
- Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218,Institute for Computational Medicine, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
30
|
Cullen AE, De Brito SA, Gregory SL, Murray RM, Williams SCR, Hodgins S, Laurens KR. Temporal lobe volume abnormalities precede the prodrome: a study of children presenting antecedents of schizophrenia. Schizophr Bull 2013; 39:1318-27. [PMID: 23135906 PMCID: PMC3796075 DOI: 10.1093/schbul/sbs128] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Distributed abnormalities of gray matter (GM) and white matter (WM) volume characterize individuals experiencing their first episode of schizophrenia. Regions of abnormality are present already, albeit less extensively, during the prodromal phase of illness. This study aimed to determine whether putatively at-risk children, aged 9-12 years, who present multiple antecedents of schizophrenia (ASz), display GM and WM volume abnormalities relative to typically developing (TD) children presenting no antecedents. Structural magnetic resonance images were acquired for 20 ASz children and 20 TD children matched on age, sex, and IQ. Whole-brain differences in GM and WM volume were determined using voxel-based morphometry. Relative to the TD group, ASz children showed significantly decreased GM volume in the right middle temporal gyrus (MTG) and increased GM volume in the left superior-middle temporal gyri (P < 0.05, cluster correction). WM volume was significantly increased in ASz children relative to TD children in a cluster encompassing the left inferior parietal lobe, occipital lobe, and superior temporal gyrus. Post-hoc analyses indicated that these abnormalities were not limited to ASz children who self-reported auditory hallucinations on questionnaire. Our findings suggest that children aged 9-12 years who present multiple ASz are characterized by abnormalities of GM and WM volume in the temporal lobes, comprising a subset of the regions affected in first-episode schizophrenia and in the prodromal phase of illness. These preliminary findings indicate that structural brain abnormalities associated with schizophrenia may be detected in putatively at-risk, preprodromal children. Prospective studies following the brain development of at-risk children are needed.
Collapse
Affiliation(s)
- Alexis E. Cullen
- Department of Forensic and Neurodevelopmental Sciences; ,To whom correspondence should be addressed; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Box P023, De Crespigny Park, London, SE5 8AF; tel: +44 20 7848 5678, fax: +44 (0)20 7848 0754, e-mail:
| | | | | | | | - Steven C. R. Williams
- Centre for Neuroimaging Sciences, Institute of Psychiatry, King’s College London, London, UK
| | - Sheilagh Hodgins
- Department of Forensic and Neurodevelopmental Sciences; ,Département de Psychiatrie, Université de Montréal, Montréal, Canada
| | - Kristin R. Laurens
- Department of Forensic and Neurodevelopmental Sciences; ,Research Unit for Schizophrenia Epidemiology, School of Psychiatry, University of New South Wales, Sydney, Australia;,Schizophrenia Research Institute, Sydney, Australia
| |
Collapse
|
31
|
Brent BK, Thermenos HW, Keshavan MS, Seidman LJ. Gray Matter Alterations in Schizophrenia High-Risk Youth and Early-Onset Schizophrenia: A Review of Structural MRI Findings. Child Adolesc Psychiatr Clin N Am 2013; 22:689-714. [PMID: 24012081 PMCID: PMC3767930 DOI: 10.1016/j.chc.2013.06.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the literature on structural magnetic resonance imaging findings in pediatric and young adult populations at clinical or genetic high-risk for schizophrenia and early-onset schizophrenia. The implications of this research are discussed for understanding the pathophysiology of schizophrenia and for early intervention strategies. The evidence linking brain structural changes in prepsychosis development and early-onset schizophrenia with disruptions of normal neurodevelopmental processes during childhood or adolescence is described. Future directions are outlined for research to address knowledge gaps regarding the neurobiological basis of brain structural abnormalities in schizophrenia and to improve the usefulness of these abnormalities for preventative interventions.
Collapse
Affiliation(s)
- Benjamin K Brent
- Harvard Medical School, Boston, MA 02115, USA; Division of Public Psychiatry, Massachusetts Mental Health Center, 75 Fenwood Road, Boston, MA 02115, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
32
|
Lunsford-Avery JR, Mittal VA. Sleep dysfunction prior to the onset of schizophrenia: A review and neurodevelopmental diathesis–stress conceptualization. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/cpsp.12041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Zugman A, Pan PM, Gadelha A, Mansur RB, Asevedo E, Cunha GR, Silva PFR, Brietzke E, Bressan RA. Brain tumor in a patient with attenuated psychosis syndrome. Schizophr Res 2013; 144:151-2. [PMID: 23302302 DOI: 10.1016/j.schres.2012.11.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 11/26/2022]
|
34
|
Wood SJ, Reniers RLEP, Heinze K. Neuroimaging findings in the at-risk mental state: a review of recent literature. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2013; 58:13-8. [PMID: 23327751 DOI: 10.1177/070674371305800104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The at-risk mental state (ARMS) has been the subject of much interest during the past 15 years. A great deal of effort has been expended to identify neuroimaging markers that can inform our understanding of the risk state and to help predict who will transition to frank psychotic illness. Recently, there has been an explosion of neuroimaging literature from people with an ARMS, which has meant that reviews and meta-analyses lack currency. Here we review papers published in the past 2 years, and contrast their findings with previous reports. While it is clear that people in the ARMS do show brain alterations when compared with healthy control subjects, there is an overall lack of consistency as to which of these alterations predict the development of psychosis. This problem arises because of variations in methodology (in patient recruitment, region of interest, method of analysis, and functional task employed), but there has also been too little effort put into replicating previous research. Nonetheless, there are areas of promise, notably that activation of the stress system and increased striatal dopamine synthesis seem to mark out patients in the ARMS most at risk for later transition. Future studies should focus on these areas, and on network-level analysis, incorporating graph theoretical approaches and intrinsic connectivity networks.
Collapse
Affiliation(s)
- Stephen J Wood
- Professor of Adolescent Brain Development and Mental Health, School of Psychology, University of Birmingham, Edgbaston, England.
| | | | | |
Collapse
|
35
|
Han HJ, Jung WH, Jang JH, Hwang JY, Kim SN, Byun MS, Lee YJ, Choi CH, Kwon JS. Reduced volume in the anterior internal capsule but its maintained correlation with the frontal gray matter in subjects at ultra-high risk for psychosis. Psychiatry Res 2012; 204:82-90. [PMID: 23217576 DOI: 10.1016/j.pscychresns.2012.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/31/2012] [Accepted: 09/28/2012] [Indexed: 01/13/2023]
Abstract
The anterior limb of the internal capsule (ALIC), which interconnects with the frontal cortex and thalamus, is volumetrically altered in schizophrenia patients. However, it is unclear whether an abnormal ALIC volume is apparent prior to the onset of schizophrenia and whether this aberrant ALIC volume is related to the frontal gray matter in individuals at ultra-high risk (UHR) for psychosis. We used magnetic resonance imaging of 43 UHR subjects, 36 schizophrenia patients, and 42 healthy controls to investigate manually traced ALIC volumes. Additionally, we evaluated the correlation between the ALIC volume and the frontal gray matter. Significantly reduced ALIC volumes were observed in the UHR and schizophrenia groups compared to the healthy controls. However, the volume of the frontal gray matter was decreased only in the schizophrenia group. A positive correlation between the volumes in the ALIC and frontal gray matter found in healthy controls was maintained only in UHR subjects. In addition, a negative correlation between the total scores on the Positive and Negative Syndrome Scale and the ALIC volumes was observed only in schizophrenia patients. An aberrant ALIC volume but its maintained correlation with the interconnecting frontal lobe was present prior to the onset of full psychosis, indicating the prodromal phase of psychosis.
Collapse
Affiliation(s)
- Hyun Jung Han
- Department of Brain and Cognitive Sciences, World Class University Program, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Francis AN, Seidman LJ, Jabbar GA, Mesholam-Gately R, Thermenos HW, Juelich R, Proal AC, Shenton M, Kubicki M, Mathew I, Keshavan M, DeLisi LE. Alterations in brain structures underlying language function in young adults at high familial risk for schizophrenia. Schizophr Res 2012; 141:65-71. [PMID: 22892286 PMCID: PMC3466598 DOI: 10.1016/j.schres.2012.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Neuroanatomical and cognitive alterations typical of schizophrenia (SZ) patients are observed to a lesser extent in their adolescent and adult first-degree relatives, likely reflecting neurodevelopmental abnormalities associated with genetic risk for the illness. The anatomical pathways for language are hypothesized to be abnormal and to underlie the positive symptoms of schizophrenia. Examining non-psychotic relatives at high familial risk (FHR) for schizophrenia may clarify if these deficits represent trait markers associated with genetic vulnerability, rather than specific markers resulting from the pathological process underlying schizophrenia. METHODS T1 MRI scans from a 3T Siemens scanner of young adult FHR subjects (N=46) and controls with no family history of illness (i.e. at low genetic risk LRC; N=31) were processed using FreeSurfer 5.0. We explored volumetric and lateralization alterations in regions associated with language processing. An extensive neuropsychological battery of language measures was administered. RESULTS No significant differences were observed between groups on any language measures. Controlling intracranial volume, significantly smaller left pars triangularis (PT) (p<0.01) and right pars orbitalis (PO) (p<0.01) volumes and reversal of the L>R pars orbitalis (p<0.001) lateralization were observed in FHR subjects. In addition, the L pars triangularis and R pars orbitalis correlated with performance on tests of linguistic function in the FHR group. CONCLUSIONS Reduced volume and reversed structural asymmetry in language-related regions hypothesized to be altered in SZ are also found in first degree relatives at FHR, despite normal language performance. To clarify if these findings are endophenotypes for Sz, future studies would need to be performed of ill and well family members no longer within the age range of risk for illness to show these deficits segregate with schizophrenia within families. Moreover, measures of complex language need to be studied to determine if FHR individuals manifest impairments in some aspects of language function.
Collapse
Affiliation(s)
- Alan N. Francis
- Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, MA
| | - Larry J. Seidman
- Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, MA,Massachusetts General Hospital; Harvard Medical School, Boston, MA
| | - Gul A. Jabbar
- Veterans Affairs, Boston Healthcare System, Brockton, MA; Harvard Medical School, Boston, MA
| | | | - Heidi W. Thermenos
- Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, MA,Massachusetts General Hospital; Harvard Medical School, Boston, MA
| | - Richard Juelich
- Massachusetts General Hospital; Harvard Medical School, Boston, MA
| | - Ashley C. Proal
- Veterans Affairs, Boston Healthcare System, Brockton, MA; Harvard Medical School, Boston, MA
| | - Martha Shenton
- Brigham and Women’s Hospital; Harvard Medical School, Boston, MA,Veterans Affairs, Boston Healthcare System, Brockton, MA; Harvard Medical School, Boston, MA
| | - Marek Kubicki
- Brigham and Women’s Hospital; Harvard Medical School, Boston, MA,Veterans Affairs, Boston Healthcare System, Brockton, MA; Harvard Medical School, Boston, MA
| | - Ian Mathew
- Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, MA
| | - Matcheri Keshavan
- Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, MA
| | - Lynn E. DeLisi
- Veterans Affairs, Boston Healthcare System, Brockton, MA; Harvard Medical School, Boston, MA,Address all correspondence to: LE DeLisi, MD, Building 2 (2-2-B), The VA Boston Healthcare System, 940 Belmont Avenue, Brockton, Massachusetts.
| |
Collapse
|
37
|
Neuromagnetic auditory response and its relation to cortical thickness in ultra-high-risk for psychosis. Schizophr Res 2012; 140:93-8. [PMID: 22759440 DOI: 10.1016/j.schres.2012.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/16/2012] [Accepted: 06/08/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Higher cognitive dysfunction, lower perceptual disturbance and its relation to the structures that implicate such processes have been considered as key features in patients with schizophrenia. However, little is known about the relationship between perceptual processing and structural deficits in ultra-high-risk for psychosis. METHODS We investigated the dipole moment of M100 auditory evoked response using a magnetoencephalography in 18 patients with schizophrenia, 16 ultra-high-risk for psychosis and 16 healthy controls, and their relation to cortical thinning on Heschl's gyrus and planum temporale. RESULTS The auditory evoked M100 dipole moment was decreased in the ultra-high-risk subjects and in the patients with schizophrenia. Ultra-high-risk subjects showed impaired right M100 dipole magnitude, similar to patients with schizophrenia. Robust correlations between the cortical thickness of left Heschl's gyrus and the left M100 dipole moment were found in patients with schizophrenia. Moreover, correlations were also evident between right Heschl's gyrus and right M100 in subjects at ultra-high-risk for psychosis. CONCLUSIONS The primary feature of auditory perception in ultra-high-risk subjects and schizophrenia patients is an encoding deficit that manifests as a reduced M100 dipole moment. The relationship between abnormal M100, thinning of cortical generators and their symptomatology were shown to exist prior to the onset of overt psychosis and progressively worsen over time. Therefore, they may be a potential indicator of the development of schizophrenia.
Collapse
|
38
|
Chu EMY, Kolappan M, Barnes TR, Joyce EM, Ron MA. A window into the brain: an in vivo study of the retina in schizophrenia using optical coherence tomography. Psychiatry Res 2012; 203:89-94. [PMID: 22917503 PMCID: PMC4024658 DOI: 10.1016/j.pscychresns.2011.08.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 11/25/2022]
Abstract
Retinal nerve fibre layer (RNFL) thickness and macular volume (MV) can be measured in vivo using optical coherence tomography (OCT) providing a "window into the brain". RNFL and MV are promising biomarkers in neurological diseases. This study explores the potential of RNFL and MV to detect axonal abnormalities in vivo in schizophrenia and their correlations with clinical features. OCT was performed in 49 patients (38 schizophrenia, 11 schizoaffective disorder) and 40 healthy controls matched for age and gender. Group comparisons were made between whole retina and quadrant RNFL thickness and MV using multi-level analyses. In patients, associations were sought between RNFL and MV with symptom severity (positive/negative). Patients and controls had similar whole retina RNFL thickness (p=0.86) and MV (p=0.64), but RNFL in the right nasal quadrant of the schizoaffective group was thinner than in the schizophrenia group (p=0.02). In patients, positive symptom severity was associated with smaller MV (right β=-0.54, p=0.02; left β=-0.49, p=0.04). Normal MV and RNFL thickness suggests unmyelinated axons in patients with schizophrenia/schizoaffective disorder remain unaffected. Longitudinal studies using higher resolution OCT will clarify whether progressive RNFL and MV changes occur and whether they can be used as state or trait markers in schizophrenia.
Collapse
Affiliation(s)
- Elvina May-Yin Chu
- Department of Neuropsychiatry, University College London, Institute of Neurology, London, UK.
| | - Madhan Kolappan
- Department of Neuropsychiatry, University College London, Institute of Neurology, London, UK
| | | | - Eileen M. Joyce
- Department of Neuropsychiatry, University College London, Institute of Neurology, London, UK
| | - Maria A. Ron
- Department of Neuropsychiatry, University College London, Institute of Neurology, London, UK
| |
Collapse
|
39
|
Mizuno M, Nemoto T, Tsujino N, Funatogawa T, Takeshi K. Early psychosis in Asia: Insights from Japan. Asian J Psychiatr 2012; 5:93-7. [PMID: 26878953 DOI: 10.1016/j.ajp.2012.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/23/2012] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
The largest task for psychiatry in Japan today is the deinstitutionalization of patients with psychiatric disorders. In Japan, all citizens are covered by a national health plan, and about 70% of the total cost is covered by the national health insurance scheme. At present, however, there is still no category for early intervention in the national health reimbursement schedule. Recent research has shown that the mean duration of untreated psychosis (DUP) at seven university hospitals in Japan was 17.6 months. We present data using case vignettes suggesting that pharmacotherapy might be overused in prodromal cases. The concept of an At-Risk Mental State (ARMS)/prodromal state might not yet be widely recognized among Japanese psychiatrists. We outline early intervention initiatives in Japan; The Japanese Society for Prevention and Early Intervention in Psychiatry (JSEIP), and a representative early intervention facility for young people is the "Il Bosco" in Tokyo. There are several leading centers for early intervention research and practice in Japan. Most of them are driven by university departments of psychiatry with respect to both research and clinical activities. The development of services for early intervention is expected to reduce stigmatization, prevent suicide among young persons, and promote general knowledge about mental health. There are several common or similar issues among Asian countries, including service systems, community attitudes to psychiatric illness including stigma, and dependence on pharmacotherapy.
Collapse
Affiliation(s)
- Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, 6-11-1, Omori-Nishi, Ota-ku, Tokyo 143-8541, Japan
| | | | | | | | | |
Collapse
|
40
|
Koch K, Schultz CC, Wagner G, Schachtzabel C, Reichenbach JR, Sauer H, Schlösser RGM. Disrupted white matter connectivity is associated with reduced cortical thickness in the cingulate cortex in schizophrenia. Cortex 2012; 49:722-9. [PMID: 22402338 DOI: 10.1016/j.cortex.2012.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/21/2011] [Accepted: 02/02/2012] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Both impaired white matter connectivity and alterations in gray matter morphometry have repeatedly been reported in schizophrenia. Neurodevelopmental models propose a close linkage between gray matter alterations and white matter deficits. However, there are no studies investigating alterations in cortical thickness in relation to white matter connectivity changes. METHODS This combined diffusion tensor imaging (DTI) - surface based morphometry study examined a potential linkage between disruption in white matter connectivity and alterations in cortical thickness. Cortical thickness was analyzed using the FreeSurfer software package (version 4.0.5, http://surfer.nmr.harvard.edu) in a sample of 19 patients with schizophrenia and 20 healthy controls. RESULTS Whole brain node-by-node correlational analysis revealed a highly significant association ( r= -.8, p < .0001) between disturbed white matter connectivity in the superior temporal cortex and diminished cortical thickness in the posterior part of the cingulate cortex (Brodmann area 23/31). CONCLUSIONS This result indicates a significant linkage between disturbed white matter connectivity and reduced cortical thickness in a relevant node of the default mode network that is held to be of high pathophysiological relevance in schizophrenia. The result moreover provides support for the assumption of a neurodevelopmental pathogenesis of the disorder.
Collapse
Affiliation(s)
- Kathrin Koch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jahnstr. 3, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Jung WH, Borgwardt S, Fusar-Poli P, Kwon JS. Gray matter volumetric abnormalities associated with the onset of psychosis. Front Psychiatry 2012; 3:101. [PMID: 23227013 PMCID: PMC3512053 DOI: 10.3389/fpsyt.2012.00101] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/06/2012] [Indexed: 01/15/2023] Open
Abstract
Patients with psychosis display structural brain abnormalities in multiple brain regions. The disorder is characterized by a putative prodromal period called ultra-high-risk (UHR) status, which precedes the onset of full-blown psychotic symptoms. Recent studies on psychosis have focused on this period. Neuroimaging studies of UHR individuals for psychosis have revealed that the structural brain changes observed during the established phases of the disorder are already evident prior to the onset of the illness. Moreover, certain brain regions show extremely dynamic changes during the transition to psychosis. These neurobiological features may be used as prognostic and predictive biomarkers for psychosis. With advances in neuroimaging techniques, neuroimaging studies focusing on gray matter abnormalities provide new insights into the pathophysiology of psychosis, as well as new treatment strategies. Some of these novel approaches involve antioxidants administration, because it is suggested that this treatment may delay the progression of UHR to a full-blown psychosis and prevent progressive structural changes. The present review includes an update on the most recent developments in early intervention strategies for psychosis and potential therapeutic treatments for schizophrenia. First, we provide the basic knowledge of the brain regions associated with structural abnormalities in individuals at UHR. Next, we discuss the feasibility on the use of magnetic resonance imaging (MRI)-biomarkers in clinical practice. Then, we describe potential etiopathological mechanisms underlying structural brain abnormalities in prodromal psychosis. Finally, we discuss the potentials and limitations related to neuroimaging studies in individuals at UHR.
Collapse
Affiliation(s)
- Wi Hoon Jung
- Interdisciplinary Program in Neuroscience, Seoul National University Seoul, South Korea ; Institute of Human Behavioral Medicine, Seoul National University-MRC Seoul, South Korea
| | | | | | | |
Collapse
|
42
|
Bennett M. Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Prog Neurobiol 2011; 95:275-300. [DOI: 10.1016/j.pneurobio.2011.08.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/01/2023]
|
43
|
Wood SJ, Yung AR, McGorry PD, Pantelis C. Neuroimaging and treatment evidence for clinical staging in psychotic disorders: from the at-risk mental state to chronic schizophrenia. Biol Psychiatry 2011; 70:619-25. [PMID: 21762875 DOI: 10.1016/j.biopsych.2011.05.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
A new approach to understanding severe mental disorders such as schizophrenia is to adopt a clinical staging model. Such a model defines the extent of the illness such that earlier and milder phenomena are distinguished from later, more impairing features. Specifically, a clinical staging model makes three key predictions. First, pathologic measures should be more abnormal in more severe stages. Second, patients who progress between the stages should show change in these same pathologic measures. Finally, treatment should be more effective in the earlier stages, as well as more benign. In this article, we review the evidence for these three predictions from studies of psychotic disorders, with a focus on neuroimaging data. For all three, the balance of evidence supports the predictions of the staging model. However, there are a number of alternative explanations for these findings, including the effects of medication and symptom heterogeneity.
Collapse
Affiliation(s)
- Stephen J Wood
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Australia.
| | | | | | | |
Collapse
|
44
|
Waters-Metenier S, Toulopoulou T. Putative structural neuroimaging endophenotypes in schizophrenia: a comprehensive review of the current evidence. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genetic contribution to schizophrenia etiopathogenesis is underscored by the fact that the best predictor of developing schizophrenia is having an affected first-degree relative, which increases lifetime risk by tenfold, as well as the observation that when both parents are affected, the risk of schizophrenia increases to approximately 50%, compared with 1% in the general population. The search to elucidate the complex genetic architecture of schizophrenia has employed various approaches, including twin and family studies to examine co-aggregation of brain abnormalities, studies on genetic linkage and studies using genome-wide association to identify genetic variations associated with schizophrenia. ‘Endophenotypes’, or ‘intermediate phenotypes’, are potentially narrower constructs of genetic risk. Hypothetically, they are intermediate in the pathway between genetic variation and clinical phenotypes and can supposedly be implemented to assist in the identification of genetic diathesis for schizophrenia and, possibly, in redefining clinical phenomenology.
Collapse
Affiliation(s)
- Sheena Waters-Metenier
- Department of Psychosis Studies, King’s College London, King’s Health Partners, Institute of Psychiatry, London, UK
| | | |
Collapse
|
45
|
Chow EW, Ho A, Wei C, Voormolen EH, Crawley AP, Bassett AS. Association of schizophrenia in 22q11.2 deletion syndrome and gray matter volumetric deficits in the superior temporal gyrus. Am J Psychiatry 2011; 168:522-9. [PMID: 21362743 PMCID: PMC3283577 DOI: 10.1176/appi.ajp.2010.10081230] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Individuals with 22q11.2 deletion syndrome are known to be at high risk of developing schizophrenia. Previous imaging studies have provided limited data on the relation of schizophrenia expression in 22q11.2 deletion syndrome to specific regional brain volumetric changes. The authors hypothesized that the main structural brain finding associated with schizophrenia expression in 22q11.2 deletion syndrome, as for schizophrenia in the general population, would be gray matter volumetric deficits, especially in the temporal lobes. METHOD MR brain images from 29 patients with 22q11.2 deletion syndrome and schizophrenia and 34 comparison subjects with 22q11.2 deletion syndrome and no history of psychosis were analyzed using a voxel-based morphometry method that also yielded volumes for related region-of-interest analyses. The authors compared data from the two groups using an analysis of covariance model correcting for total intracranial volume, age, sex, IQ, and history of congenital cardiac defects. The false discovery rate threshold was set at 0.05 to account for multiple comparisons. RESULTS Voxel-based morphometry analyses identified significant gray matter reductions in the left superior temporal gyrus (Brodmann's area 22) in the schizophrenia group. There were no significant between-group differences in white matter or CSF volumes. Region-of-interest analyses showed significant bilateral gray matter volume reductions in the temporal lobes and superior temporal gyri in the schizophrenia group. CONCLUSIONS The structural brain expression of schizophrenia associated with the highly penetrant 22q11.2 deletion involves lower gray matter volumes in temporal lobe regions. These structural MRI findings in a 22q11.2 deletion syndrome form of schizophrenia are consistent with those from studies involving schizophrenia samples from the general population. The results provide further support for 22q11.2 deletion syndrome as a genetic subtype and as a useful neurodevelopmental model of schizophrenia.
Collapse
|
46
|
Gogtay N, Vyas NS, Testa R, Wood SJ, Pantelis C. Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophr Bull 2011; 37:504-13. [PMID: 21505117 PMCID: PMC3080674 DOI: 10.1093/schbul/sbr030] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many of the major neuropsychiatric illnesses, including schizophrenia, have a typical age of onset in late adolescence. Late adolescence may reflect a critical period in brain development making it particularly vulnerable for the onset of psychopathology. Neuroimaging studies that focus on this age range may provide unique insights into the onset and course of psychosis. In this review, we examine the evidence from 2 unique longitudinal cohorts that span the ages from early childhood through young adulthood; a study of childhood-onset schizophrenia where patients and siblings are followed from ages 6 through to their early twenties, and an ultra-high risk study where subjects (mean age of 19 years) are studied before and after the onset of psychosis. From the available evidence, we make an argument that subtle, regionally specific, and genetically influenced alterations during developmental age windows influence the course of psychosis and the resultant brain phenotype. The importance of examining trajectories of development and the need for future combined approaches, using multimodal imaging together with molecular studies is discussed.
Collapse
Affiliation(s)
- Nitin Gogtay
- Child Psychiatry Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Nora S. Vyas
- Child Psychiatry Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Renee Testa
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia
| | - Stephen J. Wood
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia
| |
Collapse
|
47
|
Pantelis C, Wood SJ, Velakoulis D, Testa R, Fontenelle LF, Yücel M. Should we redefine the concept of endophenotype in schizophrenia? BRAZILIAN JOURNAL OF PSYCHIATRY 2011; 32:106-7. [PMID: 20658050 DOI: 10.1590/s1516-44462010000200003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Affiliation(s)
- William T Carpenter
- Maryland Psychiatric Research Center, and University of Maryland School of Medicine, Baltimore, MD 21228, USA.
| |
Collapse
|
49
|
Fusar-Poli P, Broome MR, Woolley JB, Johns LC, Tabraham P, Bramon E, Valmaggia L, Williams SC, McGuire P. Altered brain function directly related to structural abnormalities in people at ultra high risk of psychosis: longitudinal VBM-fMRI study. J Psychiatr Res 2011; 45:190-8. [PMID: 20580022 DOI: 10.1016/j.jpsychires.2010.05.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 05/09/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Several studies have indicated that people with prodromal signs of psychosis show alterations in the structure and function of the brain when they first present to clinical services. However, the longitudinal course of these abnormalities, and how they relate to subsequent clinical and functional outcome is relatively unclear. METHODS A cohort of subjects at ultra high risk of psychosis were studied using functional magnetic resonance imaging (fMRI) in conjunction with the N-Back task, and volumetric MRI at first clinical presentation and again after one year. Levels of psychopathology and global functioning were assessed at the same time points using the CAARMS, PANSS, and the GAF scale. RESULTS At baseline, the high risk group showed reduced activation during the task in the left middle frontal gyrus, supramarginal gyrus and inferior parietal lobule, and reduced gray matter volume in the left middle and medial frontal gyri, left insula and the right anterior cingulate gyrus. Within the high-risk group, there was a positive correlation between the magnitude of the functional and structural alterations in the left middle frontal gyrus. Between presentation and follow up, the severity of perceptual disorder and thought disorder (rated by the CAARMS), and of general psychopathology (rated by the PANSS general score) decreased, and the level of global functioning improved. This clinical and functional improvement was associated with a longitudinal increase in activation in the anterior cingulate and right parahippocampal gyrus. The change in anterior cingulate response was directly correlated with the improvement in the GAF score. CONCLUSIONS In subjects presenting with prodromal signs of psychosis, reduced prefrontal activation during a working memory task is associated with a reduction in gray matter volume in the same area. Changes in anterior cingulate activation were correlated with functional improvement in this group, consistent with the role of this region in multiple cognitive and social processes.
Collapse
Affiliation(s)
- P Fusar-Poli
- Department of Psychosis Studies, King's College London, King's Health Partners, Institute of Psychiatry, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jung WH, Jang JH, Byun MS, An SK, Kwon JS. Structural brain alterations in individuals at ultra-high risk for psychosis: a review of magnetic resonance imaging studies and future directions. J Korean Med Sci 2010; 25:1700-9. [PMID: 21165282 PMCID: PMC2995221 DOI: 10.3346/jkms.2010.25.12.1700] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 10/11/2010] [Indexed: 11/20/2022] Open
Abstract
Individuals at ultra-high-risk (UHR) for psychosis have become a major focus for research designed to explore markers for early detection of and clinical intervention in schizophrenia. In particular, structural magnetic resonance imaging studies in UHR individuals have provided important insight into the neurobiological basis of psychosis and have shown the brain changes associated with clinical risk factors. In this review, we describe the structural brain abnormalities in magnetic resonance images in UHR individuals. The current accumulated data demonstrate that abnormalities in the prefrontal and temporal cortex and anterior cingulate cortex occur before illness onset. These regions are compatible with the regions of structural deficits found in schizophrenia and first-episode patients. In addition, the burgeoning evidence suggests that such structural abnormalities are potential markers for the transition to psychosis. However, most findings to date are limited because they are from cross-sectional rather than longitudinal studies. Recently, researchers have emphasized neurodevelopmental considerations with respect to brain structural alterations in UHR individuals. Future studies should be conducted to characterize the differences in the brain developmental trajectory between UHR individuals and healthy controls using a longitudinal design. These new studies should contribute to early detection and management as well as provide more predictive markers of later psychosis.
Collapse
Affiliation(s)
- Wi Hoon Jung
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
- Clinical Cognitive Neuroscience Center, SNU-MRC, Seoul, Korea
| | - Joon Hwan Jang
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Suk Kyoon An
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Soo Kwon
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
- Clinical Cognitive Neuroscience Center, SNU-MRC, Seoul, Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Brain & Cognitive Sciences-WCU Program, Seoul National University College of Natural Sciences, Seoul, Korea
| |
Collapse
|