1
|
Seidita I, Ziegler A, Qalaj A, Winkler MS, Nierhaus A, Kluge S, Levkau B, Gräler MH. Rapid determination of sphingosine 1-phosphate association with carrier molecules by flow-induced dispersion analysis to predict sepsis outcome. iScience 2024; 27:111168. [PMID: 39524325 PMCID: PMC11544382 DOI: 10.1016/j.isci.2024.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/26/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Flow-induced dispersion analysis (FIDA) was used to investigate the association of fluorescein isothiocyanate-labeled signaling lipid sphingosine 1-phosphate (S1P) with its carrier molecules human serum albumin (HSA) and high-density lipoprotein (HDL). Associations were measured in plasma samples of patients after surgery, with sepsis or septic shock. All patients demonstrated a significant shift between the carrier binding: decrease of S1P bound to HSA with a concomitant increase of S1P bound to HDL. The molecular sizes of binding complexes correlated well with the relative amounts of S1P bound to HSA and HDL detected by liquid chromatography-tandem mass spectrometry. Very low complex formation of S1P with HDL was observed in several septic shock patients and correlated with the need for mechanical ventilation and intensive care unit (ICU) mortality. Determination of S1P binding to HSA and HDL by FIDA could therefore be useful in the clinical setting to predict disease progression, severity, and outcome.
Collapse
Affiliation(s)
- Isabelle Seidita
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| | - Anke Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| | - Auron Qalaj
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| | - Martin Sebastian Winkler
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Axel Nierhaus
- Department of Intensive Care, Universitätsklinikum Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care, Universitätsklinikum Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Markus H. Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07740 Jena, Germany
| |
Collapse
|
2
|
Kuo A, Hla T. Regulation of cellular and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol 2024; 25:802-821. [PMID: 38890457 PMCID: PMC12034107 DOI: 10.1038/s41580-024-00742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
One hundred and fifty years ago, Johann Thudichum described sphingolipids as unusual "Sphinx-like" lipids from the brain. Today, we know that thousands of sphingolipid molecules mediate many essential functions in embryonic development and normal physiology. In addition, sphingolipid metabolism and signalling pathways are dysregulated in a wide range of pathologies, and therapeutic agents that target sphingolipids are now used to treat several human diseases. However, our understanding of sphingolipid regulation at cellular and organismal levels and their functions in developmental, physiological and pathological settings is rudimentary. In this Review, we discuss recent advances in sphingolipid pathways in different organelles, how secreted sphingolipid mediators modulate physiology and disease, progress in sphingolipid-targeted therapeutic and diagnostic research, and the trans-cellular sphingolipid metabolic networks between microbiota and mammals. Advances in sphingolipid biology have led to a deeper understanding of mammalian physiology and may lead to progress in the management of many diseases.
Collapse
Affiliation(s)
- Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Cerutis DR, Weston MD, Miyamoto T. Entering, Linked with the Sphinx: Lysophosphatidic Acids Everywhere, All at Once, in the Oral System and Cancer. Int J Mol Sci 2023; 24:10278. [PMID: 37373424 PMCID: PMC10299546 DOI: 10.3390/ijms241210278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Oral health is crucial to overall health, and periodontal disease (PDD) is a chronic inflammatory disease. Over the past decade, PDD has been recognized as a significant contributor to systemic inflammation. Here, we relate our seminal work defining the role of lysophosphatidic acid (LPA) and its receptors (LPARs) in the oral system with findings and parallels relevant to cancer. We discuss the largely unexplored fine-tuning potential of LPA species for biological control of complex immune responses and suggest approaches for the areas where we believe more research should be undertaken to advance our understanding of signaling at the level of the cellular microenvironment in biological processes where LPA is a key player so we can better treat diseases such as PDD, cancer, and emerging diseases.
Collapse
Affiliation(s)
- D. Roselyn Cerutis
- Department of Oral Biology, Creighton University School of Dentistry, Omaha, NE 68178, USA;
| | - Michael D. Weston
- Department of Oral Biology, Creighton University School of Dentistry, Omaha, NE 68178, USA;
| | - Takanari Miyamoto
- Department of Periodontics, Creighton University School of Dentistry, Omaha, NE 68178, USA;
| |
Collapse
|
4
|
Salgado-Polo F, Borza R, Matsoukas MT, Marsais F, Jagerschmidt C, Waeckel L, Moolenaar WH, Ford P, Heckmann B, Perrakis A. Autotaxin facilitates selective LPA receptor signaling. Cell Chem Biol 2023; 30:69-84.e14. [PMID: 36640760 DOI: 10.1016/j.chembiol.2022.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/27/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
Autotaxin (ATX; ENPP2) produces the lipid mediator lysophosphatidic acid (LPA) that signals through disparate EDG (LPA1-3) and P2Y (LPA4-6) G protein-coupled receptors. ATX/LPA promotes several (patho)physiological processes, including in pulmonary fibrosis, thus serving as an attractive drug target. However, it remains unclear if clinical outcome depends on how different types of ATX inhibitors modulate the ATX/LPA signaling axis. Here, we show that the ATX "tunnel" is crucial for conferring key aspects of ATX/LPA signaling and dictates cellular responses independent of ATX catalytic activity, with a preference for activation of P2Y LPA receptors. The efficacy of the ATX/LPA signaling responses are abrogated more efficiently by tunnel-binding inhibitors, such as ziritaxestat (GLPG1690), compared with inhibitors that exclusively target the active site, as shown in primary lung fibroblasts and a murine model of radiation-induced pulmonary fibrosis. Our results uncover a receptor-selective signaling mechanism for ATX, implying clinical benefit for tunnel-targeting ATX inhibitors.
Collapse
Affiliation(s)
- Fernando Salgado-Polo
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Razvan Borza
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | | | - Florence Marsais
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | | | - Ludovic Waeckel
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Wouter H Moolenaar
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Paul Ford
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Bertrand Heckmann
- Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France
| | - Anastassis Perrakis
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
5
|
Levesque MV, Hla T. Signal Transduction and Gene Regulation in the Endothelium. Cold Spring Harb Perspect Med 2023; 13:a041153. [PMID: 35667710 PMCID: PMC9722983 DOI: 10.1101/cshperspect.a041153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Extracellular signals act on G-protein-coupled receptors (GPCRs) to regulate homeostasis and adapt to stress. This involves rapid intracellular post-translational responses and long-lasting gene-expression changes that ultimately determine cellular phenotype and fate changes. The lipid mediator sphingosine 1-phosphate (S1P) and its receptors (S1PRs) are examples of well-studied GPCR signaling axis essential for vascular development, homeostasis, and diseases. The biochemical cascades involved in rapid S1P signaling are well understood. However, gene-expression regulation by S1PRs are less understood. In this review, we focus our attention to how S1PRs regulate nuclear chromatin changes and gene transcription to modulate vascular and lymphatic endothelial phenotypic changes during embryonic development and adult homeostasis. Because S1PR-targeted drugs approved for use in the treatment of autoimmune diseases cause substantial vascular-related adverse events, these findings are critical not only for general understanding of stimulus-evoked gene regulation in the vascular endothelium, but also for therapeutic development of drugs for autoimmune and perhaps vascular diseases.
Collapse
Affiliation(s)
- Michel V Levesque
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Kuo A, Checa A, Niaudet C, Jung B, Fu Z, Wheelock CE, Singh SA, Aikawa M, Smith LE, Proia RL, Hla T. Murine endothelial serine palmitoyltransferase 1 (SPTLC1) is required for vascular development and systemic sphingolipid homeostasis. eLife 2022; 11:78861. [PMID: 36197001 PMCID: PMC9578713 DOI: 10.7554/elife.78861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/04/2022] [Indexed: 02/04/2023] Open
Abstract
Serine palmitoyl transferase (SPT), the rate-limiting enzyme in the de novo synthesis of sphingolipids (SL), is needed for embryonic development, physiological homeostasis, and response to stress. The functions of de novo SL synthesis in vascular endothelial cells (EC), which line the entire circulatory system, are not well understood. Here, we show that the de novo SL synthesis in EC not only regulates vascular development but also maintains circulatory and peripheral organ SL levels. Mice with an endothelial-specific gene knockout of SPTLC1 (Sptlc1 ECKO), an essential subunit of the SPT complex, exhibited reduced EC proliferation and tip/stalk cell differentiation, resulting in delayed retinal vascular development. In addition, Sptlc1 ECKO mice had reduced retinal neovascularization in the oxygen-induced retinopathy model. Mechanistic studies suggest that EC SL produced from the de novo pathway are needed for lipid raft formation and efficient VEGF signaling. Post-natal deletion of the EC Sptlc1 also showed rapid reduction of several SL metabolites in plasma, red blood cells, and peripheral organs (lung and liver) but not in the retina, part of the central nervous system (CNS). In the liver, EC de novo SL synthesis was important for acetaminophen-induced rapid ceramide elevation and hepatotoxicity. These results suggest that EC-derived SL metabolites are in constant flux between the vasculature, circulatory elements, and parenchymal cells of non-CNS organs. Taken together, our data point to the central role of the endothelial SL biosynthesis in maintaining vascular development, neovascular proliferation, non-CNS tissue metabolic homeostasis, and hepatocyte response to stress.
Collapse
Affiliation(s)
- Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical SchoolBostonUnited States
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska InstituteStockholmSweden
| | - Colin Niaudet
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical SchoolBostonUnited States
| | - Bongnam Jung
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical SchoolBostonUnited States
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska InstituteStockholmSweden,Department of Respiratory Medicine and Allergy, Karolinska University HospitalStockholmSweden,Gunma University Initiative for Advanced Research, Gunma UniversityMaebashiJapan
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Lois E Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Richard L Proia
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
7
|
Ziegler AC, Müller T, Gräler MH. Sphingosine 1-phosphate in sepsis and beyond: Its role in disease tolerance and host defense and the impact of carrier molecules. Cell Signal 2020; 78:109849. [PMID: 33249088 DOI: 10.1016/j.cellsig.2020.109849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022]
Abstract
Sphingosine 1-phosphate (S1P) is an important immune modulator responsible for physiological cellular responses like lymphocyte development and function, positioning and emigration of T and B cells and cytokine secretion. Recent reports indicate that S1P does not only regulate immunity, but can also protect the function of organs by inducing disease tolerance. S1P also influences the replication of certain pathogens, and sphingolipids are also involved in pathogen recognition and killing. Certain carrier molecules for S1P like serum albumin and high density lipoproteins contribute to the regulation of S1P effects. They are able to associate with S1P and modulate its signaling properties. Similar to S1P, both carrier molecules are also decreased in sepsis patients and likely contribute to sepsis pathology and severity. In this review, we will introduce the concept of disease tolerance and the involvement of S1P. We will also discuss the contribution of S1P and its precursor sphingosine to host defense mechanisms against pathogens. Finally, we will summarize current data demonstrating the influence of carrier molecules for differential S1P signaling. The presented data may lead to new strategies for the prevention and containment of sepsis.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Tina Müller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07740 Jena, Germany.
| |
Collapse
|
8
|
Guy AT, Kamiguchi H. Lipids as new players in axon guidance and circuit development. Curr Opin Neurobiol 2020; 66:22-29. [PMID: 33039927 DOI: 10.1016/j.conb.2020.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/27/2020] [Accepted: 09/01/2020] [Indexed: 11/24/2022]
Abstract
The formation of functional neuronal circuitry depends on axon guidance, in which extracellular chemotropic cues provide directional instructions to developing axons in the embryonic nervous system. Recently lipids, in particular lysolipids, are being appraised as a new class of axon guidance cues. Most lysolipids are formed by enzymatic hydrolysis of membrane phospholipids, and signal via a wide variety of mechanisms including specific G protein-coupled receptors. For example, lysophosphatidylglucoside released from a specific type of glia activates neuronal GPR55 to regulate axon tract patterning. However, demonstrating the in vivo mechanisms of lysolipid axon guidance is often challenging and complex. Here we will review in detail lysolipids that have been identified or proposed as axon guidance cues in the developing nervous system.
Collapse
Affiliation(s)
- Adam T Guy
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako City, Saitama, 351-0198 Japan
| | - Hiroyuki Kamiguchi
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako City, Saitama, 351-0198 Japan.
| |
Collapse
|
9
|
Daum G, Winkler M, Moritz E, Müller T, Geffken M, von Lucadou M, Haddad M, Peine S, Böger RH, Larena-Avellaneda A, Debus ES, Gräler M, Schwedhelm E. Determinants of Serum- and Plasma Sphingosine-1-Phosphate Concentrations in a Healthy Study Group. TH OPEN 2020; 4:e12-e19. [PMID: 31984305 PMCID: PMC6978167 DOI: 10.1055/s-0040-1701205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022] Open
Abstract
Introduction
To correctly interpret plasma- or serum-sphingosine-1-phosphate (S1P) concentrations measured in clinical studies it is critical to understand all major determinants in healthy controls.
Methods
Serum- and plasma-S1P from 174 healthy blood donors was measured by liquid chromatography-tandem mass spectrometry and correlated to clinical laboratory data. Selected plasma samples, 10 with high and 10 with low S1P concentrations, were fractionated into very low-density lipoprotein (VLDL)-, low density lipoprotein (LDL)-, high density lipoprotein (HDL)-, and lipoprotein-free fractions. S1P was then measured in each fraction to determine its distribution.
Results
The mean S1P concentration in serum (1.04 ± 0.24 nmol/mL) was found 39% higher compared with plasma (0.75 ± 0.16 nmol/mL) and overall was not different between men and women. Only when stratified for age and gender, older women were found to exhibit higher circulatory S1P levels than men. In plasma, S1P levels correlate to red blood cell (RBC) counts but not to platelet counts. Conversely, serum-S1P correlates to platelet counts but not to RBC counts. In addition, eosinophil counts are strongly associated with serum-S1P concentrations. Both serum- and plasma-S1P correlate to total cholesterol but not to HDL-C. The distribution of S1P between VLDL-, LDL-, HDL-, and lipoprotein-free fractions is independent of total plasma-S1P concentrations. S1P concentrations in HDL but not in LDL are highly variable.
Conclusion
These data indicate S1P concentrations in plasma and serum to be differentially associated with cell counts and S1P carrier proteins. Besides platelets, eosinophil counts are identified as a novel determinant for serum-S1P concentrations further suggesting a role for S1P in eosinophil pathologies.
Collapse
Affiliation(s)
- Günter Daum
- Clinic and Polyclinic for Vascular Medicine, University Heart and Vascular Center, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck (GD, ES, MvL) and Greifswald (EM), Berlin, Germany
| | - Martin Winkler
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Anesthesiology and Intensive Care Medicine, University Medicine, Göttingen, Germany
| | - Eileen Moritz
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck (GD, ES, MvL) and Greifswald (EM), Berlin, Germany.,Institute for Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pharmacology, Department of General Pharmacology, University Medicine, Greifswald, Germany
| | - Tina Müller
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and the Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| | - Maria Geffken
- Institute for Transfusion Medicine, University Medical Center Hamburg, Eppendorf, Germany
| | - Mirjam von Lucadou
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck (GD, ES, MvL) and Greifswald (EM), Berlin, Germany.,Institute for Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Munif Haddad
- Institute for Clinical Chemistry, University Medical Center Hamburg, Eppendorf, Germany
| | - Sven Peine
- Institute for Transfusion Medicine, University Medical Center Hamburg, Eppendorf, Germany
| | - Rainer H Böger
- Institute for Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Larena-Avellaneda
- Clinic and Polyclinic for Vascular Medicine, University Heart and Vascular Center, Hamburg, Germany
| | - Eike Sebastian Debus
- Clinic and Polyclinic for Vascular Medicine, University Heart and Vascular Center, Hamburg, Germany
| | - Markus Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and the Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| | - Edzard Schwedhelm
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck (GD, ES, MvL) and Greifswald (EM), Berlin, Germany.,Institute for Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Xu Y. Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside. Cancers (Basel) 2019; 11:E1523. [PMID: 31658655 PMCID: PMC6826372 DOI: 10.3390/cancers11101523] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Since the clear demonstration of lysophosphatidic acid (LPA)'s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications.
Collapse
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
Activation of sphingosine kinase by lipopolysaccharide promotes prostate cancer cell invasion and metastasis via SphK1/S1PR4/matriptase. Oncogene 2019; 38:5580-5598. [DOI: 10.1038/s41388-019-0833-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
|
12
|
Winkler MS, Märtz KB, Nierhaus A, Daum G, Schwedhelm E, Kluge S, Gräler MH. Loss of sphingosine 1-phosphate (S1P) in septic shock is predominantly caused by decreased levels of high-density lipoproteins (HDL). J Intensive Care 2019; 7:23. [PMID: 31019718 PMCID: PMC6472014 DOI: 10.1186/s40560-019-0376-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022] Open
Abstract
Background Sphingosine 1-phosphate (S1P) is a signaling lipid essential in regulating processes involved in sepsis pathophysiology, including endothelial permeability and vascular tone. Serum S1P is progressively reduced in sepsis patients with increasing severity. S1P function depends on binding to its carriers: serum albumin (SA) and high-density lipoproteins (HDL). The aim of this single-center prospective observational study was to determine the contribution of SA- and HDL-associated S1P (SA-S1P and HDL-S1P) to sepsis-induced S1P depletion in plasma with regard to identify future strategies to supplement vasoprotective S1P. Methods Sequential precipitation of lipoproteins was performed with plasma samples obtained from 100 ICU patients: surgical trauma (n = 20), sepsis (n = 63), and septic shock (n = 17) together with healthy controls (n = 7). Resultant fractions with HDL and SA were analyzed by liquid chromatography coupled to triple-quadrupole mass spectrometry (LC-MS/MS) for their S1P content. Results Plasma S1P levels significantly decreased with sepsis severity and showed a strong negative correlation with increased organ failure, quantified by the Sequential Organ Failure Assessment (SOFA) score (rho - 0.59, P < 0.001). In controls, total plasma S1P levels were 208 μg/L (187-216 μg/L). In trauma patients, we observed an early loss of SA-S1P (- 70%) with a concurrent increase of HDL-S1P (+ 20%), resulting in unaltered total plasma S1P with 210 μg/L (143-257 μg/L). The decrease of plasma S1P levels with increasing SOFA score in sepsis patients with 180.2 μg/L (123.3-253.0 μg/L) and in septic shock patients with 99.5 μg/L (80.2-127.2 μg/L) was mainly dependent on equivalent reductions of HDL and not SA as carrier protein. Thus, HDL-S1P contributed most to total plasma S1P in patients and progressively dropped with increasing SOFA score. Conclusions Reduced plasma S1P was associated with sepsis-induced organ failure. A constant plasma S1P level during the acute phase after surgery was maintained with increased HDL-S1P and decreased SA-S1P, suggesting the redistribution of plasma S1P from SA to HDL. The decrease of plasma S1P levels in patients with increasing sepsis severity was mainly caused by decreasing HDL and HDL-S1P. Therefore, strategies to reconstitute HDL-S1P rather than SA-S1P should be considered for sepsis patients.
Collapse
Affiliation(s)
- Martin Sebastian Winkler
- 1Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246 Germany.,6Department of Anesthesiology and Intensive Care Medicine, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Konstantin B Märtz
- 2Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and the Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Axel Nierhaus
- 3Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246 Germany
| | - Günter Daum
- 4Clinic and Polyclinic for Vascular Medicine, University Heart Center, Martinistrasse 52, 20246 Hamburg, Germany
| | - Edzard Schwedhelm
- 5Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246 Germany
| | - Stefan Kluge
- 3Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246 Germany
| | - Markus H Gräler
- 2Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and the Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, 07745 Jena, Germany
| |
Collapse
|
13
|
Lei L, Su J, Chen J, Chen W, Chen X, Peng C. The role of lysophosphatidic acid in the physiology and pathology of the skin. Life Sci 2018; 220:194-200. [PMID: 30584899 DOI: 10.1016/j.lfs.2018.12.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/25/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Lysophosphatidic acid (LPA) is the simplest phospholipid found in nature. LPA is mainly biosynthesized in tissues and cells by autotoxin and PA-PLA1α/PA-PLA1β and is degraded by lipid phosphate phosphatases (LPPs). It is an important component of biofilm, an extracellular signal transmitter and intracellular second messenger. After targeting to endothelial differentiation gene (Edg) family LPA receptors (LPA1, LPA2, LPA3) and non-Edg family LPA receptors (LPA4, LPA5, LPA6), LPA mediates physiological and pathological processes such as embryonic development, angiogenesis, tumor progression, fibrogenesis, wound healing, ischemia/reperfusion injury, and inflammatory reactions. These processes are induced through signaling pathways including mitogen-activated protein kinase (MAPK), phosphatidylinositol-3-kinase (PI3K)/Akt, protein kinase C (PKC)-GSK3β-β-catenin, Rho, Stat, and hypoxia-inducible factor 1-alpha (HIF-1α). LPA is involved in multiple physiological and pathological processes in the skin. It not only regulates skin function but also plays an important role in hair follicle development, skin wound healing, pruritus, skin tumors, and scleroderma. Pharmacological inhibition of LPA synthesis or antagonization of LPA receptors is a new strategy for the treatment of various skin disorders. This review focuses on the current understanding of the pathophysiologic role of LPA in the skin.
Collapse
Affiliation(s)
- Li Lei
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Junchen Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wangqing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
14
|
Dihydro-sphingosine 1-phosphate interacts with carrier proteins in a manner distinct from that of sphingosine 1-phosphate. Biosci Rep 2018; 38:BSR20181288. [PMID: 30279204 PMCID: PMC6209608 DOI: 10.1042/bsr20181288] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 01/02/2023] Open
Abstract
Dihydro-sphingosine 1-phosphate (DH-S1P) is an analog of sphingosine 1-phosphate (S1P), which is a potent lysophospholipid mediator. DH-S1P has been proposed to exert physiological properties similar to S1P. Although S1P is known to be carried on HDL via apolipoprotein M (apoM), the association between DH-S1P and HDL/apoM has not been fully elucidated. Therefore, in the present study, we aimed to elucidate this association and to compare it with that of S1P and HDL/apoM. First, we investigated the distributions of S1P and DH-S1P among lipoproteins and lipoprotein-depleted fractions in human serum and plasma samples and observed that both S1P and DH-S1P were detected on HDL; furthermore, elevated amounts of DH-S1P in serum samples were distributed to the lipoprotein-depleted fraction to a greater degree than to the HDL fraction. Concordantly, a preference for HDL over albumin was only observed for S1P, and not for DH-S1P, when the molecules were secreted from platelets. Regarding the association with HDL, although both S1P and DH-S1P prefer to bind to HDL, HDL preferentially accepts S1P over DH-S1P. For the association with apoM, S1P was not detected on HDL obtained from apoM knockout mice, while DH-S1P was detected. Moreover, apoM retarded the degradation of S1P, but not of DH-S1P. These results suggest that S1P binds to HDL via apoM, while DH-S1P binds to HDL in a non-specific manner. Thus, DH-S1P is not a mere analog of S1P and might possess unique clinical significance.
Collapse
|
15
|
Sphingosine-1-Phosphate: A Potential Biomarker and Therapeutic Target for Endothelial Dysfunction and Sepsis? Shock 2018; 47:666-672. [PMID: 27922551 DOI: 10.1097/shk.0000000000000814] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sepsis is an acute life-threatening multiple organ failure caused by a dysregulated host response to infection. Endothelial dysfunction, particularly barrier disruption leading to increased vascular permeability, edema, and insufficient tissue oxygenation, is critical to sepsis pathogenesis. Sphingosine-1-phosphate (S1P) is a signaling lipid that regulates important pathophysiological processes including vascular endothelial cell permeability, inflammation, and coagulation. It is present at high concentrations in blood and lymph and at very low concentrations in tissues due to the activity of the S1P-degrading enzyme S1P-lyase in tissue cells. Recently, four preclinical observational studies determined S1P levels in serum or plasma of sepsis patients, and all found reduced S1P levels associated with the disease. Based on these findings, this review summarizes S1P-regulated processes pertaining to endothelial functions, discusses the possible use of S1P as a marker and possibilities how to manipulate S1P levels and S1P receptor activation to restore endothelial integrity, dampens the inflammatory host response, and improves organ function in sepsis.
Collapse
|
16
|
Brinck JW, Thomas A, Brulhart-Meynet MC, Lauer E, Frej C, Dahlbäck B, Stenvinkel P, James RW, Frias MA. High-density lipoprotein from end-stage renal disease patients exhibits superior cardioprotection and increase in sphingosine-1-phosphate. Eur J Clin Invest 2018; 48. [PMID: 29178180 DOI: 10.1111/eci.12866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) exacerbates the risk of death due to cardiovascular disease (CVD). Modifications to blood lipid metabolism which manifest as increases in circulating triglycerides and reductions in high-density lipoprotein (HDL) cholesterol are thought to contribute to increased risk. In CKD patients, higher HDL cholesterol levels were not associated with reduced mortality risk. Recent research has revealed numerous mechanisms by which HDL could favourably influence CVD risk. In this study, we compared plasma levels of sphingosine-1-phosphate (S1P), HDL-associated S1P (HDL-S1P) and HDL-mediated protection against oxidative stress between CKD and control patients. METHODS High-density lipoprotein was individually isolated from 20 CKD patients and 20 controls. Plasma S1P, apolipoprotein M (apoM) concentrations, HDL-S1P content and the capacity of HDL to protect cardiomyocytes against doxorubicin-induced oxidative stress in vitro were measured. RESULTS Chronic kidney disease patients showed a typical profile with significant reductions in plasma HDL cholesterol and albumin and an increase in triglycerides and pro-inflammatory cytokines (TNF-alpha and IL-6). Unexpectedly, HDL-S1P content (P = .001) and HDL cardioprotective capacity (P = .034) were increased significantly in CKD patients. Linear regression analysis of which factors could influence HDL-S1P content showed an independent, negative and positive association with plasma albumin and apoM levels, respectively. DISCUSSION The novel and unexpected observation in this study is that uremic HDL is more effective than control HDL for protecting cardiomyocytes against oxidative stress. It is explained by its higher S1P content which we previously demonstrated to be the determinant of HDL-mediated cardioprotective capacity. Interestingly, lower concentrations of albumin in CKD are associated with higher HDL-S1P.
Collapse
Affiliation(s)
- Jonas W Brinck
- Division of Endocrinology, Diabetology, Hypertension and Nutrition, Department of Internal Medicine Specialities, Medical Faculty, Geneva University, Geneva, Switzerland.,Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, Molecular Nutrition Unit, Center for Innovative Medicine, Huddinge, Sweden.,KI/AZ Integrated CardioMetabolic Center, Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Sweden
| | - Aurélien Thomas
- Unit of Toxicology, University Centre of Legal Medicine, Lausanne, Geneva, Switzerland
| | - Marie-Claude Brulhart-Meynet
- Division of Endocrinology, Diabetology, Hypertension and Nutrition, Department of Internal Medicine Specialities, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Estelle Lauer
- Unit of Toxicology, University Centre of Legal Medicine, Lausanne, Geneva, Switzerland
| | - Cecilia Frej
- Department of Translational Medicine, Division of Clinical Chemistry, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Björn Dahlbäck
- Department of Translational Medicine, Division of Clinical Chemistry, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Richard W James
- Division of Endocrinology, Diabetology, Hypertension and Nutrition, Department of Internal Medicine Specialities, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Miguel A Frias
- Division of Endocrinology, Diabetology, Hypertension and Nutrition, Department of Internal Medicine Specialities, Medical Faculty, Geneva University, Geneva, Switzerland.,Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
17
|
Croyal M, Billon-Crossouard S, Goulitquer S, Aguesse A, León L, Fall F, Chétiveaux M, Moyon T, Blanchard V, Ouguerram K, Lambert G, Nobécourt E, Krempf M. Stable Isotope Kinetic Study of ApoM (Apolipoprotein M). Arterioscler Thromb Vasc Biol 2017; 38:255-261. [PMID: 29146748 DOI: 10.1161/atvbaha.117.310208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/30/2017] [Indexed: 01/31/2023]
Abstract
OBJECTIVE ApoM (apolipoprotein M) binds primarily to high-density lipoprotein before to be exchanged with apoB (apolipoprotein B)-containing lipoproteins. Low-density lipoprotein (LDL) receptor-mediated clearance of apoB-containing particles could influence plasma apoM kinetics and decrease its antiatherogenic properties. In humans, we aimed to describe the interaction of apoM kinetics with other components of lipid metabolism to better define its potential benefit on atherosclerosis. APPROACH AND RESULTS Fourteen male subjects received a primed infusion of 2H3-leucine for 14 hours, and analyses were performed by liquid chromatography-tandem mass spectrometry from the hourly plasma samples. Fractional catabolic rates and production rates within lipoproteins were calculated using compartmental models. ApoM was found not only in high-density lipoprotein (59%) and LDL (4%) but also in a non-lipoprotein-related compartment (37%). The apoM distribution was heterogeneous within LDL and non-lipoprotein-related compartments according to plasma triglycerides (r=0.86; P<0.001). The relationships between sphingosine-1-phosphate and apoM were confirmed in all compartments (r range, 0.55-0.89; P<0.05). ApoM fractional catabolic rates and production rates were 0.16±0.07 pool/d and 0.14±0.06 mg/kg per day in high-density lipoprotein and 0.56±0.10 pool/d and 0.03±0.01 mg/kg per day in LDL, respectively. Fractional catabolic rates of LDL-apoM and LDL-apoB100 were correlated (r=0.55; P=0.042). Significant correlations were found between triglycerides and production rates of LDL-apoM (r=0.73; P<0.004). CONCLUSIONS In humans, LDL kinetics play a key role in apoM turnover. Plasma triglycerides act on both apoM and sphingosine-1-phosphate distributions between lipoproteins. These results confirmed that apoM could be bound to high-density lipoprotein after secretion and then quickly exchanged with a non-lipoprotein-related compartment and to LDL to be slowly catabolized.
Collapse
Affiliation(s)
- Mikaël Croyal
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Stéphanie Billon-Crossouard
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Sophie Goulitquer
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Audrey Aguesse
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Luis León
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Fanta Fall
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Maud Chétiveaux
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Thomas Moyon
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Valentin Blanchard
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Khadija Ouguerram
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Gilles Lambert
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Estelle Nobécourt
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.)
| | - Michel Krempf
- From the INRA, UMR 1280, CHU Hôtel-Dieu, Faculty of Medicine, University of Nantes, France (M.C., S.B.-C., A.A., L.L., F.F., T.M., K.O., E.N., M.K.); CRNHO, West Human Nutrition Research Center, Nantes, France (M.C., S.B.-C., A.A., F.F., M.C., V.B., K.O., E.N., M.K.); INSERM-UBO, UMR 1078-ECLA, IBSAM, School of Medicine, University of Brest, France (S.G.); Biotechnology Program, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico (L.L.); INSERM UMR 1188 DéTROI, University of La Réunion, Sainte-Clotilde, France (G.L.); CHU de la Réunion, School of Medicine, University of la Réunion, Saint-Denis, France (E.N.); and Department of Endocrinology, Metabolic Diseases and Nutrition, G and R Laennec Hospital, Nantes, France (M.K.).
| |
Collapse
|
18
|
Hajny S, Christoffersen C. A Novel Perspective on the ApoM-S1P Axis, Highlighting the Metabolism of ApoM and Its Role in Liver Fibrosis and Neuroinflammation. Int J Mol Sci 2017; 18:ijms18081636. [PMID: 28749426 PMCID: PMC5578026 DOI: 10.3390/ijms18081636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocytes, renal proximal tubule cells as well as the highly specialized endothelium of the blood brain barrier (BBB) express and secrete apolipoprotein M (apoM). ApoM is a typical lipocalin containing a hydrophobic binding pocket predominantly carrying Sphingosine-1-Phosphate (S1P). The small signaling molecule S1P is associated with several physiological as well as pathological pathways whereas the role of apoM is less explored. Hepatic apoM acts as a chaperone to transport S1P through the circulation and kidney derived apoM seems to play a role in S1P recovery to prevent urinal loss. Finally, polarized endothelial cells constituting the lining of the BBB express apoM and secrete the protein to the brain as well as to the blood compartment. The review will provide novel insights on apoM and S1P, and its role in hepatic fibrosis, neuroinflammation and BBB integrity.
Collapse
Affiliation(s)
- Stefan Hajny
- Department of Clinical Biochemistry, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Science, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Christina Christoffersen
- Department of Clinical Biochemistry, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Science, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
- Department of Cardiology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|
19
|
Fleming JK, Wojciak JM. Measuring Sphingosine-1-Phosphate/Protein Interactions with the Kinetic Exclusion Assay. Methods Mol Biol 2017; 1697:1-8. [PMID: 28349502 DOI: 10.1007/7651_2017_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
By directly detecting the ligand-free binding sites in a sample, the kinetic exclusion assay (KinExA®) provides a compelling alternative to SPR-based techniques for determining equilibrium dissociation constants of protein-ligand interactions. It is especially useful for observing protein-lipid interactions, as binding of native lipids occurs entirely in solution, and monoclonal antibodies can be used to directly compete with a protein of interest for lipid binding. By measuring the antigen-free binding sites on the antibody and using competition affinity analysis, the K d for the lipid binding the protein and the antibody can be determined simultaneously. Herein, we describe this label-free approach for determining the K d for S1P-binding serum albumin, which chaperones ~30% of the S1P in human plasma.
Collapse
Affiliation(s)
- Jonathan K Fleming
- Lpath Incorporated, 4025 Sorrento Valley Blvd, San Diego, CA, 92121, USA
| | - Jonathan M Wojciak
- Lpath Incorporated, 4025 Sorrento Valley Blvd, San Diego, CA, 92121, USA.
| |
Collapse
|