1
|
Charoensuk L, Thongpon P, Sitthirach C, Chaidee A, Intuyod K, Pairojkul C, Khin EHH, Jantawong C, Thumanu K, Pinlaor P, Hongsrichan N, Pinlaor S. High-fat/high-fructose diet and Opisthorchis viverrini infection promote metabolic dysfunction-associated steatotic liver disease via inflammation, fibrogenesis, and metabolic dysfunction. Acta Trop 2025; 261:107491. [PMID: 39643028 DOI: 10.1016/j.actatropica.2024.107491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and opisthorchiasis, caused by Opisthorchis viverrini (O. viverrini) infection, frequently co-exist in Northeast Thailand. However, the underlying pathophysiology remains unknown. We aimed to investigate the effect of a high-fat/high-fructose (HFF) diet combined with O. viverrini infection on MASLD. Four groups each of ten male golden hamsters were established: normal controls (NC), O. viverrini-infected (OV), HFF-fed, and HFF-fed plus O. viverrini infection (HFF+OV). After four months of treatment, histopathological study indicated substantial hepatic damage in groups given the HFF diet. In particular, the HFF+OV group demonstrated marked lipid-droplet accumulation, hepatocyte ballooning, inflammatory-cell clustering, and widespread fibrosis. Biochemical tests indicated that the HFF+OV group had the highest concentrations of alanine aminotransferase and triglycerides, but cholesterol and low-density lipoprotein levels had increased in both HFF groups. Increased expression of Tgf-β1 and α-SMA, indicative of greater fibrosis, was demonstrated by picrosirius-red staining in the HFF+OV group. There was a significant increase in levels of inflammatory markers (HMGB-1, p65, and F4/80) and expression of genes related to the synthesis of fatty acids and glucose. FTIR microspectroscopy revealed distinct changes in fatty acids and proteins, associated with the more pronounced histopathology and impaired liver function in the HFF+OV group. The findings indicate that the interplay of a HFF diet and O. viverrini infection aggravates the progression of MASLD by augmenting liver damage, inflammation, fibrogenesis, and metabolic dysfunction. This study highlights the significance of incorporating both nutritional and infection factors into the management of liver disorders, especially in areas where opisthorchiasis is common.
Collapse
Affiliation(s)
- Lakhanawan Charoensuk
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand
| | - Phonpilas Thongpon
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand
| | - Chutima Sitthirach
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand
| | - Apisit Chaidee
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand
| | - Kitti Intuyod
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand
| | - Ei Htet Htet Khin
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand
| | - Chanakan Jantawong
- Department of Medical Technology, Faculty of Allied Health Science, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand
| | - Nuttanan Hongsrichan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand.
| |
Collapse
|
2
|
Lyons SA, McClelland GB. Commentary: Tracing the fate of metabolic substrates during changes in whole-body energy expenditure in mice. Comp Biochem Physiol B Biochem Mol Biol 2024; 274:111008. [PMID: 39059702 DOI: 10.1016/j.cbpb.2024.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
For small mammals, such as mice, cannulation procedures can be quite challenging, limiting research associated with tracing isotopically labelled substrates at the whole-animal level. When cannulation in mice is possible, assessment of substrate use is further limited to when mice are either under anesthesia or are at rest, as there are no studies directly quantifying substrate use during exercise in mice. The use of isotopic tracer techniques has greatly advanced our knowledge in understanding how metabolic substrates (carbohydrates, amino acids, and fatty acids) contribute to whole-body metabolism. However, research regarding tissue-specific fuel use contributions to whole-body energy expenditure in mice at varying metabolic intensities (i.e., exercise) is lacking, despite the popularity of using mice in a variety of metabolic models. In this commentary, we briefly discuss the methodologies, advantages, and disadvantages of using radiolabelled, positron emission, and stable isotopes with a specific focus on fatty acids. We highlight recent mouse studies that have used creative experimental designs employing the use of isotopic tracer techniques and we briefly discuss how these methodologies can be further pursued to deepen our understanding of substrate use during exercise. Lastly, we show findings of a recent study we performed using a radiolabelled fatty acid tracer (14C-bromopalmitic acid) to determine fatty acid uptake in 16 muscles, two brown and two white adipose tissue depots during submaximal exercise in deer mice.
Collapse
Affiliation(s)
- Sulayman A Lyons
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
3
|
Song X, Fan C, Wei C, Yu W, Tang J, Ma F, Chen Y, Wu B. Mitochondria fission accentuates oxidative stress in hyperglycemia-induced H9c2 cardiomyoblasts in vitro by regulating fatty acid oxidation. Cell Biol Int 2024; 48:1378-1391. [PMID: 38922770 DOI: 10.1002/cbin.12204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/14/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Oxidative stress plays a pivotal role in the development of diabetic cardiomyopathy (DCM). Previous studies have revealed that inhibition of mitochondrial fission suppressed oxidative stress and alleviated mitochondrial dysfunction and cardiac dysfunction in diabetic mice. However, no research has confirmed whether mitochondria fission accentuates hyperglycemia-induced cardiomyoblast oxidative stress through regulating fatty acid oxidation (FAO). We used H9c2 cardiomyoblasts exposed to high glucose (HG) 33 mM to simulate DCM in vitro. Excessive mitochondrial fission, poor cell viability, and lipid accumulation were observed in hyperglycemia-induced H9c2 cardiomyoblasts. Also, the cells were led to oxidative stress injury, lower adenosine triphosphate (ATP) levels, and apoptosis. Dynamin-related protein 1 (Drp1) short interfering RNA (siRNA) decreased targeted marker expression, inhibited mitochondrial fragmentation and lipid accumulation, suppressed oxidative stress, reduced cardiomyoblast apoptosis, and improved cell viability and ATP levels in HG-exposed H9c2 cardiomyoblasts, but not in carnitine palmitoyltransferase 1 (CPT1) inhibitor etomoxir treatment cells. We also found subcellular localization of CPT1 on the mitochondrial membrane, FAO, and levels of nicotinamide adenine dinucleotide phosphate (NADPH) were suppressed after exposure to HG treatment, whereas Drp1 siRNA normalized mitochondrial CPT1, FAO, and NADPH. However, the blockade of FAO with etomoxir abolished the above effects of Drp1 siRNA in hyperglycemia-induced H9c2 cardiomyoblasts. The preservation of mitochondrial function through the Drp1/CPT1/FAO pathway is the potential mechanism of inhibited mitochondria fission in attenuating oxidative stress injury of hyperglycemia-induced H9c2 cardiomyoblasts.
Collapse
Affiliation(s)
- Xiaogang Song
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu, China
- Department of Cardiology, Xi'an Central Hospital, Xi'an, Shaanxi, China
- Department of Cardiology, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chongxi Fan
- Department of Gastroenterology, Air Force Medical Center, Beijing, China
| | - Chao Wei
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wuhan Yu
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jichao Tang
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu, China
| | - Feng Ma
- Department of Cardiology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Yongqing Chen
- Department of Cardiology, Gansu Provincial Central Hospital, Lanzhou, Gansu, China
| | - Bing Wu
- Department of Geriatrics, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Langer HT, Rohm M, Goncalves MD, Sylow L. AMPK as a mediator of tissue preservation: time for a shift in dogma? Nat Rev Endocrinol 2024:10.1038/s41574-024-00992-y. [PMID: 38760482 DOI: 10.1038/s41574-024-00992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
Ground-breaking discoveries have established 5'-AMP-activated protein kinase (AMPK) as a central sensor of metabolic stress in cells and tissues. AMPK is activated through cellular starvation, exercise and drugs by either directly or indirectly affecting the intracellular AMP (or ADP) to ATP ratio. In turn, AMPK regulates multiple processes of cell metabolism, such as the maintenance of cellular ATP levels, via the regulation of fatty acid oxidation, glucose uptake, glycolysis, autophagy, mitochondrial biogenesis and degradation, and insulin sensitivity. Moreover, AMPK inhibits anabolic processes, such as lipogenesis and protein synthesis. These findings support the notion that AMPK is a crucial regulator of cell catabolism. However, studies have revealed that AMPK's role in cell homeostasis might not be as unidirectional as originally thought. This Review explores emerging evidence for AMPK as a promoter of cell survival and an enhancer of anabolic capacity in skeletal muscle and adipose tissue during catabolic crises. We discuss AMPK-activating interventions for tissue preservation during tissue wasting in cancer-associated cachexia and explore the clinical potential of AMPK activation in wasting conditions. Overall, we provide arguments that call for a shift in the current dogma of AMPK as a mere regulator of cell catabolism, concluding that AMPK has an unexpected role in tissue preservation.
Collapse
Affiliation(s)
- Henning Tim Langer
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marcus DaSilva Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lykke Sylow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Lyons SA, McClelland GB. Highland deer mice support increased thermogenesis in response to chronic cold hypoxia by shifting uptake of circulating fatty acids from muscles to brown adipose tissue. J Exp Biol 2024; 227:jeb247340. [PMID: 38506250 PMCID: PMC11057874 DOI: 10.1242/jeb.247340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
During maximal cold challenge (cold-induced V̇O2,max) in hypoxia, highland deer mice (Peromyscus maniculatus) show higher rates of circulatory fatty acid delivery compared with lowland deer mice. Fatty acid delivery also increases with acclimation to cold hypoxia (CH) and probably plays a major role in supporting the high rates of thermogenesis observed in highland deer mice. However, it is unknown which tissues take up these fatty acids and their relative contribution to thermogenesis. The goal of this study was to determine the uptake of circulating fatty acids into 24 different tissues during hypoxic cold-induced V̇O2,max, by using [1-14C]2-bromopalmitic acid. To uncover evolved and environment-induced changes in fatty acid uptake, we compared lab-born and -raised highland and lowland deer mice, acclimated to either thermoneutral (30°C, 21 kPa O2) or CH (5°C, 12 kPa O2) conditions. During hypoxic cold-induced V̇O2,max, CH-acclimated highlanders decreased muscle fatty acid uptake and increased uptake into brown adipose tissue (BAT) relative to thermoneutral highlanders, a response that was absent in lowlanders. CH acclimation was also associated with increased activities of enzymes citrate synthase and β-hydroxyacyl-CoA dehydrogenase in the BAT of highlanders, and higher levels of fatty acid translocase CD36 (FAT/CD36) in both populations. This is the first study to show that cold-induced fatty acid uptake is distributed across a wide range of tissues. Highland deer mice show plasticity in this fatty acid distribution in response to chronic cold hypoxia, and combined with higher rates of tissue delivery, this contributes to their survival in the cold high alpine environment.
Collapse
Affiliation(s)
- Sulayman A. Lyons
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | | |
Collapse
|
6
|
Jiang HY, Gao HY, Li J, Zhou TY, Wang ST, Yang JB, Hao RR, Pang F, Wei F, Liu ZG, Kuang L, Ma SC, He JM, Jin HT. Integrated spatially resolved metabolomics and network toxicology to investigate the hepatotoxicity mechanisms of component D of Polygonum multiflorum Thunb. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115630. [PMID: 35987407 DOI: 10.1016/j.jep.2022.115630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/25/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The liver toxicity of Reynoutria multiflora (Thunb.) Moldenke. (Polygonaceae) (Polygonum multiflorum Thunb, PM) has always attracted much attention, but the related toxicity materials and mechanisms have not been elucidated due to multi-component and multi-target characteristics. In previous hepatotoxicity screening, different components of PM were first evaluated and the hepatotoxicity of component D [95% ethanol (EtOH) elution] in a 70% EtOH extract of PM (PM-D) showed the highest hepatotoxicity. Furthermore, the main components of PM-D were identified and their hepatotoxicity was evaluated based on a zebrafish embryo model. However, the hepatotoxicity mechanism of PM-D is unknown. AIM OF THE STUDY This work is to explore the hepatotoxicity mechanisms of PM-D by integrating network toxicology and spatially resolved metabolomics strategy. MATERIALS AND METHODS A hepatotoxicity interaction network of PM-D was constructed based on toxicity target prediction for eight key toxic ingredients and a hepatotoxicity target collection. Then the key signaling pathways were enriched, and molecular docking verification was implemented to evaluate the ability of toxic ingredients to bind to the core targets. The pathological changes of liver tissues and serum biochemical assays of mice were used to evaluate the liver injury effect of mice with oral administration of PM-D. Furthermore, spatially resolved metabolomics was used to visualize significant differences in metabolic profiles in mice after drug administration, to screen hepatotoxicity-related biomarkers and analyze metabolic pathways. RESULTS The contents of four key toxic compounds in PM-D were detected. Network toxicology identified 30 potential targets of liver toxicity of PM-D. GO and KEGG enrichment analyses indicated that the hepatotoxicity of PM-D involved multiple biological activities, including cellular response to endogenous stimulus, organonitrogen compound metabolic process, regulation of the apoptotic process, regulation of kinase, regulation of reactive oxygen species metabolic process and signaling pathways including PI3K-Akt, AMPK, MAPK, mTOR, Ras and HIF-1. The molecular docking confirmed the high binding activity of 8 key toxic ingredients with 10 core targets, including mTOR, PIK3CA, AKT1, and EGFR. The high distribution of metabolites of PM-D in the liver of administrated mice was recognized by mass spectrometry imaging. Spatially resolved metabolomics results revealed significant changes in metabolic profiles after PM-D administration, and metabolites such as taurine, taurocholic acid, adenosine, and acyl-carnitines were associated with PM-D-induced liver injury. Enrichment analyses of metabolic pathways revealed tht linolenic acid and linoleic acid metabolism, carnitine synthesis, oxidation of branched-chain fatty acids, and six other metabolic pathways were significantly changed. Comprehensive analysis revealed that the hepatotoxicity caused by PM-D was closely related to cholestasis, mitochondrial damage, oxidative stress and energy metabolism, and lipid metabolism disorders. CONCLUSIONS In this study, the hepatotoxicity mechanisms of PM-D were comprehensively identified through an integrated spatially resolved metabolomics and network toxicology strategy, providing a theoretical foundation for the toxicity mechanisms of PM and its safe clinical application.
Collapse
Affiliation(s)
- Hai-Yan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui-Yu Gao
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tian-Yu Zhou
- College of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Shu-Ting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian-Bo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Rui-Rui Hao
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fei Pang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Zhi-Gang Liu
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lian Kuang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuang-Cheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China.
| | - Jiu-Ming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, China.
| | - Hong-Tao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, China.
| |
Collapse
|
7
|
Han Z, Ma K, Tao H, Liu H, Zhang J, Sai X, Li Y, Chi M, Nian Q, Song L, Liu C. A Deep Insight Into Regulatory T Cell Metabolism in Renal Disease: Facts and Perspectives. Front Immunol 2022; 13:826732. [PMID: 35251009 PMCID: PMC8892604 DOI: 10.3389/fimmu.2022.826732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Kidney disease encompasses a complex set of diseases that can aggravate or start systemic pathophysiological processes through their complex metabolic mechanisms and effects on body homoeostasis. The prevalence of kidney disease has increased dramatically over the last two decades. CD4+CD25+ regulatory T (Treg) cells that express the transcription factor forkhead box protein 3 (Foxp3) are critical for maintaining immune homeostasis and preventing autoimmune disease and tissue damage caused by excessive or unnecessary immune activation, including autoimmune kidney diseases. Recent studies have highlighted the critical role of metabolic reprogramming in controlling the plasticity, stability, and function of Treg cells. They are also likely to play a vital role in limiting kidney transplant rejection and potentially promoting transplant tolerance. Metabolic pathways, such as mitochondrial function, glycolysis, lipid synthesis, glutaminolysis, and mammalian target of rapamycin (mTOR) activation, are involved in the development of renal diseases by modulating the function and proliferation of Treg cells. Targeting metabolic pathways to alter Treg cells can offer a promising method for renal disease therapy. In this review, we provide a new perspective on the role of Treg cell metabolism in renal diseases by presenting the renal microenvironment、relevant metabolites of Treg cell metabolism, and the role of Treg cell metabolism in various kidney diseases.
Collapse
Affiliation(s)
- Zhongyu Han
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hongxia Tao
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongli Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiyalatu Sai
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Blood Transfusion Sicuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
8
|
Yang Y, Xu NJ, Li JH, Zeng LF, Liang GH, Zhang F, Luo MH, Pan JK, Huang HT, Han YH, Zhao JL, Xiao X, Ma C, Liu H, Yang Y, Yang WY, Liu J. Exercise or Dietotherapy Is Not Better than Returning to a Regular Diet to Rebuild Lipid Homeostasis of Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3047437. [PMID: 34631878 PMCID: PMC8500750 DOI: 10.1155/2021/3047437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Our aim was to explore the effects of dietary and behavior interventions on lipometabolism caused by an unhealthy high-fat diet and the best method to rebuild lipid homeostasis of this lifestyle. Apart from normal diet rats, 34 rats were fed with high-fat emulsion for 4 weeks and then intervened for another 4 weeks. Eight of them were classified into high-fat control group, and 9 were sorted into high-fat diet with rice vinegar group. Meanwhile, 10 were put into high-fat diet in swimming group, and 7 were just for refeeding normal diet group. Then, the data of body weight was recorded and analyzed. Indexes of serum samples were tested by kits. AMPKα, HNF1α, and CTRP6 in pancreas, liver, cardiac, and epididymis adipose tissues were detected by western blot. According to our experiments, swimming and refeeding groups reflected a better regulation on lipid homeostasis mainly by upregulating the expression of pancreas AMPKα. To be more specific, the refeeding rats showed lower T-CHO (P < 0.001) and LDL-C (P < 0.05), but higher weight gain (P < 0.001), insulin level (P < 0.01), and pancreas AMPKα (P < 0.01) than high-fat control rats. Compared with rats intervened by swimming or rice vinegar, they showed higher weight gain (P < 0.001), insulin level (P < 0.01), and HNF1α, but lower of CTRP6. In summary, refeeding diet functioned better in regulating the lipometabolic level after high-fat diet. Whatever approach mentioned above we adopted to intervene, the best policy to keep the balance of lipid homeostasis is to maintain a healthy diet.
Collapse
Affiliation(s)
- Yuan Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nan-Jun Xu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Hui Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling-Feng Zeng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gui-Hong Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Feng Zhang
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Ming-Hui Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jian-Ke Pan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - He-Tao Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Hong Han
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin-Long Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao Xiao
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Chunlian Ma
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Hua Liu
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Wei-Yi Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jun Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Kutz LC, Cui X, Xie JX, Mukherji ST, Terrell KC, Huang M, Wang X, Wang J, Martin AJ, Pessoa MT, Cai L, Zhu H, Heiny JA, Shapiro JI, Blanco G, Xie Z, Pierre SV. The Na/K-ATPase α1/Src interaction regulates metabolic reserve and Western diet intolerance. Acta Physiol (Oxf) 2021; 232:e13652. [PMID: 33752256 PMCID: PMC8570534 DOI: 10.1111/apha.13652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
AIM Highly prevalent diseases such as insulin resistance and heart failure are characterized by reduced metabolic flexibility and reserve. We tested whether Na/K-ATPase (NKA)-mediated regulation of Src kinase, which requires two NKA sequences specific to the α1 isoform, is a regulator of metabolic capacity that can be targeted pharmacologically. METHODS Metabolic capacity was challenged functionally by Seahorse metabolic flux analyses and glucose deprivation in LLC-PK1-derived cells expressing Src binding rat NKA α1, non-Src-binding rat NKA α2 (the most abundant NKA isoform in the skeletal muscle), and Src binding gain-of-function mutant rat NKA α2. Mice with skeletal muscle-specific ablation of NKA α1 (skα1-/-) were generated using a MyoD:Cre-Lox approach and were subjected to treadmill testing and Western diet. C57/Bl6 mice were subjected to Western diet with or without pharmacological inhibition of NKA α1/Src modulation by treatment with pNaKtide, a cell-permeable peptide designed by mapping one of the sites of NKA α1/Src interaction. RESULTS Metabolic studies in mutant cell lines revealed that the Src binding regions of NKA α1 are required to maintain metabolic reserve and flexibility. Skα1-/- mice had decreased exercise endurance and mitochondrial Complex I dysfunction. However, skα1-/- mice were resistant to Western diet-induced insulin resistance and glucose intolerance, a protection phenocopied by pharmacological inhibition of NKA α1-mediated Src regulation with pNaKtide. CONCLUSIONS These results suggest that NKA α1/Src regulatory function may be targeted in metabolic diseases. Because Src regulatory capability by NKA α1 is exclusive to endotherms, it may link the aerobic scope hypothesis of endothermy evolution to metabolic dysfunction.
Collapse
Affiliation(s)
- Laura C Kutz
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Jeffrey X. Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Shreya T Mukherji
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Kayleigh C Terrell
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Minqi Huang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Jiayan Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Adam J Martin
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Marco T Pessoa
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Hua Zhu
- Department of Surgery, Wexner Medical Center, Ohio State University, Columbus, OH
| | - Judith A Heiny
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| |
Collapse
|
10
|
Benitez-Amaro A, Revuelta-López E, Bornachea O, Cedó L, Vea À, Herrero L, Roglans N, Soler-Botija C, de Gonzalo-Calvo D, Nasarre L, Camino-López S, García E, Mato E, Blanco-Vaca F, Bayes-Genis A, Sebastian D, Laguna JC, Serra D, Zorzano A, Escola-Gil JC, Llorente-Cortes V. Low-density lipoprotein receptor-related protein 1 deficiency in cardiomyocytes reduces susceptibility to insulin resistance and obesity. Metabolism 2020; 106:154191. [PMID: 32112822 DOI: 10.1016/j.metabol.2020.154191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 1 (LRP1) plays a key role in fatty acid metabolism and glucose homeostasis. In the context of dyslipemia, LRP1 is upregulated in the heart. Our aim was to evaluate the impact of cardiomyocyte LRP1 deficiency on high fat diet (HFD)-induced cardiac and metabolic alterations, and to explore the potential mechanisms involved. METHODS We used TnT-iCre transgenic mice with thoroughly tested suitability to delete genes exclusively in cardiomyocytes to generate an experimental mouse model with conditional Lrp1 deficiency in cardiomyocytes (TNT-iCre+-LRP1flox/flox). FINDINGS Mice with Lrp1-deficient cardiomyocytes (cm-Lrp1-/-) have a normal cardiac function combined with a favorable metabolic phenotype against HFD-induced glucose intolerance and obesity. Glucose intolerance protection was linked to higher hepatic fatty acid oxidation (FAO), lower liver steatosis and increased whole-body energy expenditure. Proteomic studies of the heart revealed decreased levels of cardiac pro-atrial natriuretic peptide (pro-ANP), which was parallel to higher ANP circulating levels. cm-Lrp1-/- mice showed ANP signaling activation that was linked to increased fatty acid (FA) uptake and increased AMPK/ ACC phosphorylation in the liver. Natriuretic peptide receptor A (NPR-A) antagonist completely abolished ANP signaling and metabolic protection in cm-Lrp1-/- mice. CONCLUSIONS These results indicate that an ANP-dependent axis controlled by cardiac LRP1 levels modulates AMPK activity in the liver, energy homeostasis and whole-body metabolism.
Collapse
Affiliation(s)
- Aleyda Benitez-Amaro
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Elena Revuelta-López
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Bornachea
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Lídia Cedó
- Metabolic Basis of Cardiovascular Risk, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Àngela Vea
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Roglans
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Spain
| | - Carolina Soler-Botija
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Nasarre
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
| | - Sandra Camino-López
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
| | - Eduardo García
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Eugenia Mato
- CIBER Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Blanco-Vaca
- Metabolic Basis of Cardiovascular Risk, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica, Biología Molecular i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Bayes-Genis
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Cardiology Service and Heart Failure Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Spain, Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - David Sebastian
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joan Carles Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Zorzano
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joan Carles Escola-Gil
- Metabolic Basis of Cardiovascular Risk, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Vicenta Llorente-Cortes
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Li Y, Xiong Z, Yan W, Gao E, Cheng H, Wu G, Liu Y, Zhang L, Li C, Wang S, Fan M, Zhao H, Zhang F, Tao L. Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation. Theranostics 2020; 10:5623-5640. [PMID: 32373236 PMCID: PMC7196282 DOI: 10.7150/thno.44836] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Rationale: Myocardial vulnerability to ischemia/reperfusion (I/R) injury is strictly regulated by energy substrate metabolism. Branched chain amino acids (BCAA), consisting of valine, leucine and isoleucine, are a group of essential amino acids that are highly oxidized in the heart. Elevated levels of BCAA have been implicated in the development of cardiovascular diseases; however, the role of BCAA in I/R process is not fully understood. The present study aims to determine how BCAA influence myocardial energy substrate metabolism and to further clarify the pathophysiological significance during cardiac I/R injury. Methods: Parameters of glucose and fatty acid metabolism were measured by seahorse metabolic flux analyzer in adult mouse cardiac myocytes with or without BCAA incubation. Chronic accumulation of BCAA was induced in mice receiving oral BCAA administration. A genetic mouse model with defective BCAA catabolism was also utilized. Mice were subjected to MI/R and the injury was assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. Results: We confirmed that chronic accumulation of BCAA enhanced glycolysis and fatty acid oxidation (FAO) but suppressed glucose oxidation in adult mouse ventricular cardiomyocytes. Oral gavage of BCAA enhanced FAO in cardiac tissues, exacerbated lipid peroxidation toxicity and worsened myocardial vulnerability to I/R injury. Etomoxir, a specific inhibitor of FAO, rescued the deleterious effects of BCAA on I/R injury. Mechanistically, valine, leucine and their corresponding branched chain α-keto acid (BCKA) derivatives, but not isoleucine and its BCKA derivative, transcriptionally upregulated peroxisome proliferation-activated receptor alpha (PPAR-α). BCAA/BCKA induced PPAR-α upregulation through the general control nonderepresible-2 (GCN2)/ activating transcription factor-6 (ATF6) pathway. Finally, in a genetic mouse model with BCAA catabolic defects, chronic accumulation of BCAA increased FAO in myocardial tissues and sensitized the heart to I/R injury, which could be reversed by adenovirus-mediated PPAR-α silencing. Conclusions: We identify BCAA as an important nutrition regulator of myocardial fatty acid metabolism through transcriptional upregulation of PPAR-α. Chronic accumulation of BCAA, caused by either dietary or genetic factors, renders the heart vulnerable to I/R injury via exacerbating lipid peroxidation toxicity. These data support the notion that BCAA lowering methods might be potentially effective cardioprotective strategies, especially among patients with diseases characterized by elevated levels of BCAA, such as obesity and diabetes.
Collapse
|
12
|
Gu W, Yang M, Bi Q, Zeng LX, Wang X, Dong JC, Li FJ, Yang XX, Li JP, Yu J. Water extract from processed Polygonum multiflorum modulate gut microbiota and glucose metabolism on insulin resistant rats. BMC Complement Med Ther 2020; 20:107. [PMID: 32248799 PMCID: PMC7132990 DOI: 10.1186/s12906-020-02897-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 03/17/2020] [Indexed: 12/20/2022] Open
Abstract
Background The incidence of insulin resistance (IR) has rapidly increased worldwide over the last 20 years, no perfect solution has yet been identified. Finding new therapeutic drugs will help improve this situation. As a traditional Chinese medicine, PPM (processed Polygonum multiflorum) has widely been used in the clinic. Recently, other clinical functions of PPM have been widely analyzed. Results Administration of the water extract from PPM decreased the level of FBG, TC, and TG, and increased the level of FGC, thereby reducing the IR index and improving IR. Furthermore, Western blot analysis revealed that PPM significantly increased GPR43 and AMPK expression when compared with the MOD group, and GPR43, AMPK were known as glucose metabolism-related proteins. In addition, treatment with PPM can restore the balance of gut microbiota by adjusting the relative abundance of bacteria both at the phylum and genus level, and these changes have been reported to be related to IR. Methods Sprague Dawley (SD) rats were fed a high-fat diet and were gavaged daily with either normal saline solution or PPM for 12 weeks. Major biochemical indexes, such as fasting blood glucose (FBG), fasting glucagon (FGC), total cholesterol (TC), and triglyceride (TG) were measured. Then the protein expression of adenosine 5′-monophosphate -activated protein kinase (AMPK) and G protein-coupled receptor 43 (GPR43) was evaluated by using Western blot analysis. Moreover, the composition of gut microbiota was assessed by analyzing 16S rRNA sequences. Conclusions Our findings showed that PPM reversed the increasing of FBG and the decreasing of IRI, PPM accelerated the expression of glucose metabolism-related proteins and regulated the intestinal microecological balance. Therefore, we hold the opinion that PPM may be an effective option for treating IR.
Collapse
Affiliation(s)
- Wen Gu
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Min Yang
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Qian Bi
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Lin-Xi Zeng
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Xi Wang
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Jin-Cai Dong
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Feng-Jiao Li
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Xing-Xin Yang
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Jing-Ping Li
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China.
| |
Collapse
|
13
|
Han X, Raun SH, Carlsson M, Sjøberg KA, Henriquez-Olguín C, Ali M, Lundsgaard AM, Fritzen AM, Møller LLV, Li Z, Li J, Jensen TE, Kiens B, Sylow L. Cancer causes metabolic perturbations associated with reduced insulin-stimulated glucose uptake in peripheral tissues and impaired muscle microvascular perfusion. Metabolism 2020; 105:154169. [PMID: 31987858 DOI: 10.1016/j.metabol.2020.154169] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/28/2019] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Redirecting glucose from skeletal muscle and adipose tissue, likely benefits the tumor's energy demand to support tumor growth, as cancer patients with type 2 diabetes have 30% increased mortality rates. The aim of this study was to elucidate tissue-specific contributions and molecular mechanisms underlying cancer-induced metabolic perturbations. METHODS Glucose uptake in skeletal muscle and white adipose tissue (WAT), as well as hepatic glucose production, were determined in control and Lewis lung carcinoma (LLC) tumor-bearing C57BL/6 mice using isotopic tracers. Skeletal muscle microvascular perfusion was analyzed via a real-time contrast-enhanced ultrasound technique. Finally, the role of fatty acid turnover on glycemic control was determined by treating tumor-bearing insulin-resistant mice with nicotinic acid or etomoxir. RESULTS LLC tumor-bearing mice displayed reduced insulin-induced blood-glucose-lowering and glucose intolerance, which was restored by etomoxir or nicotinic acid. Insulin-stimulated glucose uptake was 30-40% reduced in skeletal muscle and WAT of mice carrying large tumors. Despite compromised glucose uptake, tumor-bearing mice displayed upregulated insulin-stimulated phosphorylation of TBC1D4Thr642 (+18%), AKTSer474 (+65%), and AKTThr309 (+86%) in muscle. Insulin caused a 70% increase in muscle microvascular perfusion in control mice, which was abolished in tumor-bearing mice. Additionally, tumor-bearing mice displayed increased (+45%) basal (not insulin-stimulated) hepatic glucose production. CONCLUSIONS Cancer can result in marked perturbations on at least six metabolically essential functions; i) insulin's blood-glucose-lowering effect, ii) glucose tolerance, iii) skeletal muscle and WAT insulin-stimulated glucose uptake, iv) intramyocellular insulin signaling, v) muscle microvascular perfusion, and vi) basal hepatic glucose production in mice. The mechanism causing cancer-induced insulin resistance may relate to fatty acid metabolism.
Collapse
Affiliation(s)
- Xiuqing Han
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Steffen H Raun
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Michala Carlsson
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Kim A Sjøberg
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Carlos Henriquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Mona Ali
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Andreas M Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Lisbeth L V Møller
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Zhen Li
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Jinwen Li
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Lykke Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Denmark.
| |
Collapse
|
14
|
Lundsgaard AM, Fritzen AM, Nicolaisen TS, Carl CS, Sjøberg KA, Raun SH, Klein AB, Sanchez-Quant E, Langer J, Ørskov C, Clemmensen C, Tschöp MH, Richter EA, Kiens B, Kleinert M. Glucometabolic consequences of acute and prolonged inhibition of fatty acid oxidation. J Lipid Res 2020; 61:10-19. [PMID: 31719103 PMCID: PMC6939602 DOI: 10.1194/jlr.ra119000177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/20/2019] [Indexed: 12/22/2022] Open
Abstract
Excessive circulating FAs have been proposed to promote insulin resistance (IR) of glucose metabolism by increasing the oxidation of FAs over glucose. Therefore, inhibition of FA oxidation (FAOX) has been suggested to ameliorate IR. However, prolonged inhibition of FAOX would presumably cause lipid accumulation and thereby promote lipotoxicity. To understand the glycemic consequences of acute and prolonged FAOX inhibition, we treated mice with the carnitine palmitoyltransferase 1 (CPT-1) inhibitor, etomoxir (eto), in combination with short-term 45% high fat diet feeding to increase FA availability. Eto acutely increased glucose oxidation and peripheral glucose disposal, and lowered circulating glucose, but this was associated with increased circulating FAs and triacylglycerol accumulation in the liver and heart within hours. Several days of FAOX inhibition by daily eto administration induced hepatic steatosis and glucose intolerance, specific to CPT-1 inhibition by eto. Lower whole-body insulin sensitivity was accompanied by reduction in brown adipose tissue (BAT) uncoupling protein 1 (UCP1) protein content, diminished BAT glucose clearance, and increased hepatic glucose production. Collectively, these data suggest that pharmacological inhibition of FAOX is not a viable strategy to treat IR, and that sufficient rates of FAOX are required for maintaining liver and BAT metabolic function.
Collapse
Affiliation(s)
- Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Trine S Nicolaisen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian S Carl
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Steffen H Raun
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Klein
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva Sanchez-Quant
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jakob Langer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg, Germany; Division of Metabolic Diseases, Technische Universität München, München, Germany
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| | - Maximilian Kleinert
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
15
|
Absence of Uncoupling Protein-3 at Thermoneutrality Impacts Lipid Handling and Energy Homeostasis in Mice. Cells 2019; 8:cells8080916. [PMID: 31426456 PMCID: PMC6721699 DOI: 10.3390/cells8080916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
The role of uncoupling protein-3 (UCP3) in energy and lipid metabolism was investigated. Male wild-type (WT) and UCP3-null (KO) mice that were housed at thermoneutrality (30 °C) were used as the animal model. In KO mice, the ability of skeletal muscle mitochondria to oxidize fatty acids (but not pyruvate or succinate) was reduced. At whole animal level, adult KO mice presented blunted resting metabolic rates, energy expenditure, food intake, and the use of lipids as metabolic substrates. When WT and KO mice were fed with a standard/low-fat diet for 80 days, since weaning, they showed similar weight gain and body composition. Interestingly, KO mice showed lower fat accumulation in visceral adipose tissue and higher ectopic fat accumulation in liver and skeletal muscle. When fed with a high-fat diet for 80 days, since weaning, KO mice showed enhanced energy efficiency and an increased lipid gain (thus leading to a change in body composition between the two genotypes). We conclude that UCP3 plays a role in energy and lipid homeostasis and in preserving lean tissues by lipotoxicity, in mice that were housed at thermoneutrality.
Collapse
|
16
|
Pence S, Zhu Q, Binne E, Liu M, Shi H, Lo CC. Reduced Diet-induced Thermogenesis in Apolipoprotein A-IV Deficient Mice. Int J Mol Sci 2019; 20:E3176. [PMID: 31261740 PMCID: PMC6651278 DOI: 10.3390/ijms20133176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022] Open
Abstract
In the presence of dietary lipids, both apolipoprotein A-IV (ApoA-IV) production and brown adipose tissue (BAT) thermogenesis are increased. The effect of dietary lipid-induced AproA-IV on BAT thermogenesis and energy expenditure remains unknown. In the present study, we hypothesized that ApoA-IV knockout (ApoA-IV-KO) mice exhibited decreased BAT thermogenesis to affect energy homeostasis. To test this hypothesis, BAT thermogenesis in wildtype (WT) and ApoA-IV-KO mice fed either a standard low-fat chow diet or a high-fat diet (HFD) was investigated. When fed a chow diet, energy expenditure and food intake were comparable between WT and ApoA-IV-KO mice. After 1 week of HFD consumption, ApoA-IV-KO mice had comparable energy intake but produced lower energy expenditure relative to their WT controls in the dark phase. After an acute feeding of dietary lipids or 1-week HFD feeding, ApoA-IV-KO mice produced lower levels of uncoupling protein 1 (UCP1) and exhibited reduced expression of thermogenic genes in the BAT compared with WT controls. In response to cold exposure, however, ApoA-IV-KO mice had comparable energy expenditure and BAT temperature relative to WT mice. Thus, ApoA-IV-KO mice exhibited reduced diet-induced BAT thermogenesis and energy expenditure.
Collapse
Affiliation(s)
- Sydney Pence
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Diabetes Institute and Honor Tutorial College, Ohio University, Athens, OH 45701, USA
| | - Qi Zhu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Erin Binne
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Diabetes Institute and Honor Tutorial College, Ohio University, Athens, OH 45701, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH 45215, USA
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Chunmin C Lo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Diabetes Institute and Honor Tutorial College, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
17
|
Apaijai N, Arinno A, Palee S, Pratchayasakul W, Kerdphoo S, Jaiwongkam T, Chunchai T, Chattipakorn SC, Chattipakorn N. High‐Saturated Fat High‐Sugar Diet Accelerates Left‐Ventricular Dysfunction Faster than High‐Saturated Fat Diet Alone via Increasing Oxidative Stress and Apoptosis in Obese‐Insulin Resistant Rats. Mol Nutr Food Res 2018; 63:e1800729. [DOI: 10.1002/mnfr.201800729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/24/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
- Cardiac Electrophysiology UnitDepartment of PhysiologyFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
| | - Wasana Pratchayasakul
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
- Cardiac Electrophysiology UnitDepartment of PhysiologyFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
- Cardiac Electrophysiology UnitDepartment of PhysiologyFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
- Department of Oral Biology and Diagnostic SciencesFaculty of DentistryChiang Mai University Chiang Mai 50200 Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University Chiang Mai 50200 Thailand
- Cardiac Electrophysiology UnitDepartment of PhysiologyFaculty of MedicineChiang Mai University Chiang Mai 50200 Thailand
| |
Collapse
|