1
|
Endo Y, Sasaki K, Ikewaki K. Bridging the Gap Between the Bench and Bedside: Clinical Applications of High-density Lipoprotein Function. J Atheroscler Thromb 2024; 31:1239-1248. [PMID: 38925924 PMCID: PMC11374562 DOI: 10.5551/jat.rv22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Decades of research have reshaped our understanding of high-density lipoprotein (HDL) , shifting our focus from cholesterol (C) levels to multifaceted functionalities. Epidemiological studies initially suggested an association between HDL-C levels and cardiovascular disease (CVD) risk; however, such a simple association has not been indicated by recent studies. Notably, genome-wide studies have highlighted discrepancies between HDL-C levels and CVD outcomes, urging a deeper exploration of the role of HDL. The key to this shift lies in elucidating the role of HDL in reverse cholesterol transport (RCT), which is a fundamental anti-atherosclerotic mechanism. Understanding RCT has led to the identification of therapeutic targets and novel interventions for atherosclerosis. However, clinical trials have underscored the limitations of HDL-C as a therapeutic target, prompting the re-evaluation of the role of HDL in disease prevention. Further investigations have revealed the involvement of HDL composition in various diseases other than CVD, including chronic kidney disease, Alzheimer's disease, and autoimmune diseases. The anti-inflammatory, antioxidative, and anti-infectious properties of HDL have emerged as crucial aspects of its protective function, opening new avenues for novel biomarkers and therapeutic targets. Omics technologies have provided insights into the diverse composition of HDL, revealing disease-specific alterations in the HDL proteome and lipidome. In addition, combining cell-based and cell-free assays has facilitated the evaluation of the HDL functionality across diverse populations, offering the potential for personalized medicine. Overall, a comprehensive understanding of HDL multifunctionality leads to promising prospects for future clinical applications and therapeutic developments, extending beyond cardiovascular health.
Collapse
Affiliation(s)
- Yasuhiro Endo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
- Division of Environmental Medicine, National Defense Medical College Research Institute, Saitama, Japan
| | - Kei Sasaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Katsunori Ikewaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
2
|
Xia W, Fang X, Gao Y, Wu W, Han Y, Liu R, Yang H, Chen H, Gao H. Advances of stable isotope technology in food safety analysis and nutrient metabolism research. Food Chem 2023; 408:135191. [PMID: 36527919 DOI: 10.1016/j.foodchem.2022.135191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Food quality, safety, and the regulatory metabolism of food nutrients in cells are primary factors in determining human health. However, residues of undesirable or hazardous compounds in food products and dysregulation in the nutrient metabolism inevitably occur occasionally. For years, chromatography-mass spectrometry technology has been recognized as an essential research tool in food analysis and nutrient metabolism research, and it is more accurate and robust when coupled with stable isotopes. In this study, we summarize the applications of stable isotope technology in the quantification of contaminant residues (pesticides, veterinary drugs, mycotoxins, polycyclic aromatic hydrocarbons, and other hazardous compounds) in foods and in the nutrients (glucose, lipids, amino acids and proteins) metabolism research. The aim of this review was to serve as a reference for providing effective analysis techniques for protecting food quality and human health, and to pave the way for the broader application of stable isotope technology.
Collapse
Affiliation(s)
- Wei Xia
- Key Laboratory of Post-Harvest Handing of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Xiangjun Fang
- Key Laboratory of Post-Harvest Handing of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Yuan Gao
- Key Laboratory of Post-Harvest Handing of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Weijie Wu
- Key Laboratory of Post-Harvest Handing of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Yanchao Han
- Key Laboratory of Post-Harvest Handing of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Ruiling Liu
- Key Laboratory of Post-Harvest Handing of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Hailong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Hangjun Chen
- Key Laboratory of Post-Harvest Handing of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China.
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handing of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China.
| |
Collapse
|
3
|
Xie B, Njoroge W, Dowling LM, Sulé-Suso J, Cinque G, Yang Y. Detection of lipid efflux from foam cell models using a label-free infrared method. Analyst 2022; 147:5372-5385. [DOI: 10.1039/d2an01041k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synchrotron-based microFTIR spectroscopy was used to study the process of lipid efflux in a foam cell model. The anti-atherosclerotic drug, atorvastatin, removed low-density lipoprotein from the foam cells in a dose, and time dependent manner.
Collapse
Affiliation(s)
- Bowen Xie
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Wanjiku Njoroge
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Lewis M. Dowling
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Josep Sulé-Suso
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK
- Oncology Department, Cancer Centre, University Hospitals of North Midlands, Stoke-on-Trent, ST4 6QG, UK
| | - Gianfelice Cinque
- MIRIAM beamline B22, Diamond Light Source, Harwell Science and Innovation Campus, Chilton-Didcot OX11 0DE, UK
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK
| |
Collapse
|
4
|
Yubero-Serrano EM, Alcalá-Diaz JF, Gutierrez-Mariscal FM, Arenas-de Larriva AP, Peña-Orihuela PJ, Blanco-Rojo R, Martinez-Botas J, Torres-Peña JD, Perez-Martinez P, Ordovas JM, Delgado-Lista J, Gómez-Coronado D, Lopez-Miranda J. Association between cholesterol efflux capacity and peripheral artery disease in coronary heart disease patients with and without type 2 diabetes: from the CORDIOPREV study. Cardiovasc Diabetol 2021; 20:72. [PMID: 33766036 PMCID: PMC7993540 DOI: 10.1186/s12933-021-01260-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/13/2021] [Indexed: 01/09/2023] Open
Abstract
Background Peripheral artery disease (PAD) is recognized as a significant predictor of mortality and adverse cardiovascular outcomes in patients with coronary heart disease (CHD). In fact, coexisting PAD and CHD is strongly associated with a greater coronary event recurrence compared with either one of them alone. High-density lipoprotein (HDL)-mediated cholesterol efflux capacity (CEC) is found to be inversely associated with an increased risk of incident CHD. However, this association is not established in patients with PAD in the context of secondary prevention. In this sense, our main aim was to evaluate the association between CEC and PAD in patients with CHD and whether the concurrent presence of PAD and T2DM influences this association. Methods CHD patients (n = 1002) from the CORDIOPREV study were classified according to the presence or absence of PAD (ankle-brachial index, ABI ≤ 0.9 and ABI > 0.9 and < 1.4, respectively) and T2DM status. CEC was quantified by incubation of cholesterol-loaded THP-1 cells with the participants' apoB-depleted plasma was performed. Results The presence of PAD determined low CEC in non-T2DM and newly-diagnosed T2DM patients. Coexisting PAD and newly-diagnosed T2DM provided and additive effect providing an impaired CEC compared to non-T2DM patients with PAD. In established T2DM patients, the presence of PAD did not determine differences in CEC, compared to those without PAD, which may be restored by glucose-lowering treatment. Conclusions Our findings suggest an inverse relationship between CEC and PAD in CHD patients. These results support the importance of identifying underlying mechanisms of PAD, in the context of secondary prevention, that provide potential therapeutic targets, that is the case of CEC, and establishing strategies to prevent or reduce the high risk of cardiovascular events of these patients. Trial registrationhttps://clinicaltrials.gov/ct2/show/NCT00924937. Unique Identifier: NCT00924937![]()
Collapse
Affiliation(s)
- Elena M Yubero-Serrano
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain. .,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.
| | - Juan F Alcalá-Diaz
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Francisco M Gutierrez-Mariscal
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Antonio P Arenas-de Larriva
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Patricia J Peña-Orihuela
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Ruth Blanco-Rojo
- Research and Development Department, Biosearch Life, Granada, Spain
| | - Javier Martinez-Botas
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Biochemistry-Research, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigacion Sanitaria (IRyCIS), Madrid, Spain
| | - Jose D Torres-Peña
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Jose M Ordovas
- Jean Mayer US Department of Agriculture Human Nutrition Research Center On Aging, Tufts University School of Medicine, Boston, MA, USA.,IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Diego Gómez-Coronado
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Biochemistry-Research, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigacion Sanitaria (IRyCIS), Madrid, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit. Servicio de Medicina Interna, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research in Córdoba, University of Córdoba, Córdoba, Spain. .,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Xie B, He J, Liu Y, Liu T, Liu C. A meta-analysis of HDL cholesterol efflux capacity and concentration in patients with rheumatoid arthritis. Lipids Health Dis 2021; 20:18. [PMID: 33612101 PMCID: PMC7897392 DOI: 10.1186/s12944-021-01444-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/03/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Poor cholesterol efflux capacity (CEC) has been proposed to be an independent risk factor for cardiovascular diseases. However, current evidence is inconsistent, especially in rheumatoid arthritis (RA) patients. This meta-analysis aims to identify whether CEC is impaired or altered by drug therapy in RA. METHODS The PubMed/MEDLINE, Embase, Cochrane Library and ClinicalTrials.gov databases were browsed to identify studies on CEC in RA patients. The searches mainly focused on studies in human subjects that were published before November 14, 2020, without any language restrictions. The effect size was pooled by the standardized mean differences and mean differences (SMD & MD) as well as the corresponding 95% confidence intervals (CIs) in a random or fixed effect model. Heterogeneity across the studies was tested using Cochran's Q test and I2 statistic. Newcastle-Ottawa Scale and the Downs and Black scale (D&B) were applied to evaluate the quality of included studies. The GRADE-system with its 4-grade evidence scale was used to assess the quality of evidence. RESULTS A total of 11 eligible articles, including 6 observational and 5 interventional studies, were retrieved. The pooled results showed that in patients with RA, CEC was not significantly different than in healthy controls (SMD: -0.34, 95% CI: - 0.83 to 0.14), whereas the plasma HDL-C levels was significantly lower (MD: -3.91, 95% CI: - 7.15 to - 0.68). Furthermore, in the before-after studies, the CEC of RA patients (SMD: 0.20, 95% CI: 0.02 to 0.37) increased, but the plasma HDL-C levels (MD: 3.63, 95% CI: - 0.13 to 7.39) remained at a comparable quantity after anti-rheumatic treatment comparing with the baseline. In addition, the funnel plot of included studies displayed a lightly asymmetry, while Egger's and Begg's test did not suggest the existence of publication bias. The quality of evidence was rated according to GRADE as moderate to very low. CONCLUSION The current meta-analysis demonstrated that HDL-mediated CEC can be improved by the early control of inflammation and anti-rheumatic treatment in RA patients, which is independent of the plasma HDL-C levels. However, the results should be interpreted with caution because of low-quality and limited quantity of evidence. Future randomized controlled trials are needed to determine whether therapeutic strategies to enhance CEC in RA patients have beneficial effects for preventing CVD.
Collapse
Affiliation(s)
- Binbin Xie
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jiang He
- Department of Mathematics and Physics, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yong Liu
- Department of Laboratory Medicine, Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ting Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chaoqun Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
6
|
Sasaki M, Delawary M, Sakurai H, Kobayashi H, Nakao N, Tsuru H, Fukushima Y, Honzumi S, Moriyama S, Wada N, Kaneko T, Yamada K, Terasaka N, Kubota K. Novel LCAT (Lecithin:Cholesterol Acyltransferase) Activator DS-8190a Prevents the Progression of Plaque Accumulation in Atherosclerosis Models. Arterioscler Thromb Vasc Biol 2021; 41:360-376. [PMID: 33086872 DOI: 10.1161/atvbaha.120.314516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Enhancement of LCAT (lecithin:cholesterol acyltransferase) activity has possibility to be beneficial for atherosclerosis. To evaluate this concept, we characterized our novel, orally administered, small-molecule LCAT activator DS-8190a, which was created from high-throughput screening and subsequent derivatization. We also focused on its mechanism of LCAT activation and the therapeutic activity with improvement of HDL (high-density lipoprotein) functionality. Approach and Results: DS-8190a activated human and cynomolgus monkey but not mouse LCAT enzymes in vitro. DS-8190a was orally administered to cynomolgus monkeys and dose dependently increased LCAT activity (2.0-fold in 3 mg/kg group on day 7), resulting in HDL cholesterol elevation without drastic changes of non-HDL cholesterol. Atheroprotective effects were then evaluated using Ldl-r KO×hLcat Tg mice fed a Western diet for 8 weeks. DS-8190a treatment achieved significant reduction of atherosclerotic lesion area (48.3% reduction in 10 mg/kg treatment group). Furthermore, we conducted reverse cholesterol transport study using Ldl-r KO×hLcat Tg mice intraperitoneally injected with J774A.1 cells loaded with [3H]-cholesterol and confirmed significant increases of [3H] count in plasma (1.4-fold) and feces (1.4-fold on day 2 and 1.5-fold on day3) in the DS-8190a-treated group. With regard to the molecular mechanism involved, direct binding of DS-8190a to human LCAT protein was confirmed by 2 different approaches: affinity purification by DS-8190a-immobilized beads and thermal shift assay. In addition, the candidate binding site of DS-8190a in human LCAT protein was identified by photoaffinity labeling. CONCLUSIONS This study demonstrates the potential of DS-8190a as a novel therapeutic for atherosclerosis. In addition, this compound proves that a small-molecule direct LCAT activator can achieve HDL-C elevation in monkey and reduction of atherosclerotic lesion area with enhanced HDL function in rodent.
Collapse
Affiliation(s)
- Masato Sasaki
- Organic Synthesis Department (M.S., N.N.), Daiichi Sankyo RD Novare, Co, Ltd, Tokyo, Japan
| | - Mina Delawary
- Biological Research Laboratories (M.D., H.T., S.H., S.M., K.Y., N.T.), Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Hidetaka Sakurai
- Discovery Science and Technology Department (H.S., Y.F., N.W., K.K.), Daiichi Sankyo RD Novare, Co, Ltd, Tokyo, Japan
| | - Hideki Kobayashi
- Medicinal Chemistry Research Laboratories (H.K., T.K.), Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Naoki Nakao
- Organic Synthesis Department (M.S., N.N.), Daiichi Sankyo RD Novare, Co, Ltd, Tokyo, Japan
| | - Hiromi Tsuru
- Biological Research Laboratories (M.D., H.T., S.H., S.M., K.Y., N.T.), Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Yumiko Fukushima
- Discovery Science and Technology Department (H.S., Y.F., N.W., K.K.), Daiichi Sankyo RD Novare, Co, Ltd, Tokyo, Japan
| | - Shoko Honzumi
- Biological Research Laboratories (M.D., H.T., S.H., S.M., K.Y., N.T.), Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Sachiko Moriyama
- Biological Research Laboratories (M.D., H.T., S.H., S.M., K.Y., N.T.), Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Naoya Wada
- Discovery Science and Technology Department (H.S., Y.F., N.W., K.K.), Daiichi Sankyo RD Novare, Co, Ltd, Tokyo, Japan
| | - Toshio Kaneko
- Medicinal Chemistry Research Laboratories (H.K., T.K.), Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Keisuke Yamada
- Biological Research Laboratories (M.D., H.T., S.H., S.M., K.Y., N.T.), Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Naoki Terasaka
- Biological Research Laboratories (M.D., H.T., S.H., S.M., K.Y., N.T.), Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Kazuishi Kubota
- Discovery Science and Technology Department (H.S., Y.F., N.W., K.K.), Daiichi Sankyo RD Novare, Co, Ltd, Tokyo, Japan
| |
Collapse
|