1
|
Wulfridge P, Davidovich A, Salvador AC, Manno GC, Tryggvadottir R, Idrizi A, Huda MN, Bennett BJ, Adams LG, Hansen KD, Threadgill DW, Feinberg AP. Precision pharmacological reversal of strain-specific diet-induced metabolic syndrome in mice informed by epigenetic and transcriptional regulation. PLoS Genet 2023; 19:e1010997. [PMID: 37871105 PMCID: PMC10621921 DOI: 10.1371/journal.pgen.1010997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/02/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023] Open
Abstract
Diet-related metabolic syndrome is the largest contributor to adverse health in the United States. However, the study of gene-environment interactions and their epigenomic and transcriptomic integration is complicated by the lack of environmental and genetic control in humans that is possible in mouse models. Here we exposed three mouse strains, C57BL/6J (BL6), A/J, and NOD/ShiLtJ (NOD), to a high-fat, high-carbohydrate diet, leading to varying degrees of metabolic syndrome. We then performed transcriptomic and genome-wide DNA methylation analyses for each strain and found overlapping but also highly divergent changes in gene expression and methylation upstream of the discordant metabolic phenotypes. Strain-specific pathway analysis of dietary effects revealed a dysregulation of cholesterol biosynthesis common to all three strains but distinct regulatory networks driving this dysregulation. This suggests a strategy for strain-specific targeted pharmacologic intervention of these upstream regulators informed by epigenetic and transcriptional regulation. As a pilot study, we administered the drug GW4064 to target one of these genotype-dependent networks, the farnesoid X receptor pathway, and found that GW4064 exerts strain-specific protection against dietary effects in BL6, as predicted by our transcriptomic analysis. Furthermore, GW4064 treatment induced inflammatory-related gene expression changes in NOD, indicating a strain-specific effect in its associated toxicities as well as its therapeutic efficacy. This pilot study demonstrates the potential efficacy of precision therapeutics for genotype-informed dietary metabolic intervention and a mouse platform for guiding this approach.
Collapse
Affiliation(s)
- Phillip Wulfridge
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Adam Davidovich
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anna C. Salvador
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, United States of America
- Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - Gabrielle C. Manno
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Rakel Tryggvadottir
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - M. Nazmul Huda
- Department of Nutrition, University of California, Davis, California, United States of America
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, United States of America
| | - Brian J. Bennett
- Department of Nutrition, University of California, Davis, California, United States of America
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, California, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Kasper D. Hansen
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - David W. Threadgill
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, United States of America
- Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Andrew P. Feinberg
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
2
|
Wulfridge P, Davidovich A, Salvador AC, Manno GC, Tryggvadottir R, Idrizi A, Huda MN, Bennett BJ, Adams LG, Hansen KD, Threadgill DW, Feinberg AP. Precision pharmacological reversal of genotype-specific diet-induced metabolic syndrome in mice informed by transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538156. [PMID: 37163127 PMCID: PMC10168252 DOI: 10.1101/2023.04.25.538156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Diet-related metabolic syndrome is the largest contributor to adverse health in the United States. However, the study of gene-environment interactions and their epigenomic and transcriptomic integration is complicated by the lack of environmental and genetic control in humans that is possible in mouse models. Here we exposed three mouse strains, C57BL/6J (BL6), A/J, and NOD/ShiLtJ (NOD), to a high-fat high-carbohydrate diet, leading to varying degrees of metabolic syndrome. We then performed transcriptomic and genomic DNA methylation analyses and found overlapping but also highly divergent changes in gene expression and methylation upstream of the discordant metabolic phenotypes. Strain-specific pathway analysis of dietary effects reveals a dysregulation of cholesterol biosynthesis common to all three strains but distinct regulatory networks driving this dysregulation. This suggests a strategy for strain-specific targeted pharmacologic intervention of these upstream regulators informed by transcriptional regulation. As a pilot study, we administered the drug GW4064 to target one of these genotype-dependent networks, the Farnesoid X receptor pathway, and found that GW4064 exerts genotype-specific protection against dietary effects in BL6, as predicted by our transcriptomic analysis, as well as increased inflammatory-related gene expression changes in NOD. This pilot study demonstrates the potential efficacy of precision therapeutics for genotype-informed dietary metabolic intervention, and a mouse platform for guiding this approach.
Collapse
|
3
|
St Pierre CL, Macias-Velasco JF, Wayhart JP, Yin L, Semenkovich CF, Lawson HA. Genetic, epigenetic, and environmental mechanisms govern allele-specific gene expression. Genome Res 2022; 32:1042-1057. [PMID: 35501130 PMCID: PMC9248887 DOI: 10.1101/gr.276193.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/14/2022] [Indexed: 12/03/2022]
Abstract
Allele-specific expression (ASE) is a phenomenon in which one allele is preferentially expressed over the other. Genetic and epigenetic factors cause ASE by altering the final composition of a gene's product, leading to expression imbalances that can have functional consequences on phenotypes. Environmental signals also impact allele-specific expression, but how they contribute to this cross talk remains understudied. Here, we explored how genotype, parent-of-origin, tissue, sex, and dietary fat simultaneously influence ASE biases. Male and female mice from a F1 reciprocal cross of the LG/J and SM/J strains were fed a high or low fat diet. We harnessed strain-specific variants to distinguish between two ASE classes: parent-of-origin-dependent (unequal expression based on parental origin) and sequence-dependent (unequal expression based on nucleotide identity). We present a comprehensive map of ASE patterns in 2853 genes across three tissues and nine environmental contexts. We found that both ASE classes are highly dependent on tissue and environmental context. They vary across metabolically relevant tissues, between males and females, and in response to dietary fat. We also found 45 genes with inconsistent ASE biases that switched direction across tissues and/or environments. Finally, we integrated ASE and QTL data from published intercrosses of the LG/J and SM/J strains. Our ASE genes are often enriched in QTLs for metabolic and musculoskeletal traits, highlighting how this orthogonal approach can prioritize candidate genes. Together, our results provide novel insights into how genetic, epigenetic, and environmental mechanisms govern allele-specific expression, which is an essential step toward deciphering the genotype-to-phenotype map.
Collapse
Affiliation(s)
| | | | | | - Li Yin
- Washington University in Saint Louis
| | | | | |
Collapse
|
4
|
Macias-Velasco JF, St Pierre CL, Wayhart JP, Yin L, Spears L, Miranda MA, Carson C, Funai K, Cheverud JM, Semenkovich CF, Lawson HA. Parent-of-origin effects propagate through networks to shape metabolic traits. eLife 2022; 11:e72989. [PMID: 35356864 PMCID: PMC9075957 DOI: 10.7554/elife.72989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Parent-of-origin effects are unexpectedly common in complex traits, including metabolic and neurological traits. Parent-of-origin effects can be modified by the environment, but the architecture of these gene-by-environmental effects on phenotypes remains to be unraveled. Previously, quantitative trait loci (QTL) showing context-specific parent-of-origin effects on metabolic traits were mapped in the F16 generation of an advanced intercross between LG/J and SM/J inbred mice. However, these QTL were not enriched for known imprinted genes, suggesting another mechanism is needed to explain these parent-of-origin effects phenomena. We propose that non-imprinted genes can generate complex parent-of-origin effects on metabolic traits through interactions with imprinted genes. Here, we employ data from mouse populations at different levels of intercrossing (F0, F1, F2, F16) of the LG/J and SM/J inbred mouse lines to test this hypothesis. Using multiple populations and incorporating genetic, genomic, and physiological data, we leverage orthogonal evidence to identify networks of genes through which parent-of-origin effects propagate. We identify a network comprised of three imprinted and six non-imprinted genes that show parent-of-origin effects. This epistatic network forms a nutritional responsive pathway and the genes comprising it jointly serve cellular functions associated with growth. We focus on two genes, Nnat and F2r, whose interaction associates with serum glucose levels across generations in high-fat-fed females. Single-cell RNAseq reveals that Nnat expression increases and F2r expression decreases in pre-adipocytes along an adipogenic trajectory, a result that is consistent with our observations in bulk white adipose tissue.
Collapse
Affiliation(s)
- Juan F Macias-Velasco
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Celine L St Pierre
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Jessica P Wayhart
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Li Yin
- Department of Medicine, Washington University School of MedicineSaint LouisUnited States
| | - Larry Spears
- Department of Medicine, Washington University School of MedicineSaint LouisUnited States
| | - Mario A Miranda
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Caryn Carson
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
| | | | - Clay F Semenkovich
- Department of Medicine, Washington University School of MedicineSaint LouisUnited States
| | - Heather A Lawson
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| |
Collapse
|
5
|
Carson C, Macias-Velasco JF, Gunawardana S, Miranda MA, Oyama S, St Pierre CL, Schmidt H, Wayhart JP, Lawson HA. Brown Adipose Expansion and Remission of Glycemic Dysfunction in Obese SM/J Mice. Cell Rep 2020; 33:108237. [PMID: 33027654 PMCID: PMC7594587 DOI: 10.1016/j.celrep.2020.108237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/09/2020] [Accepted: 09/15/2020] [Indexed: 12/27/2022] Open
Abstract
We leverage the SM/J mouse to understand glycemic control in obesity. High-fat-fed SM/J mice initially develop poor glucose homeostasis relative to controls. Strikingly, their glycemic dysfunction resolves by 30 weeks of age despite persistent obesity. The mice dramatically expand their brown adipose depots as they resolve glycemic dysfunction. This occurs naturally and spontaneously on a high-fat diet, with no temperature or genetic manipulation. Removal of the brown adipose depot impairs insulin sensitivity, indicating that the expanded tissue is functioning as an insulin-stimulated glucose sink. We describe morphological, physiological, and transcriptomic changes that occur during the brown adipose expansion and remission of glycemic dysfunction, and focus on Sfrp1 (secreted frizzled-related protein 1) as a compelling candidate that may underlie this phenomenon. Understanding how the expanded brown adipose contributes to glycemic control in SM/J mice will open the door for innovative therapies aimed at improving metabolic complications in obesity.
Collapse
Affiliation(s)
- Caryn Carson
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA
| | - Juan F Macias-Velasco
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA
| | - Subhadra Gunawardana
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA
| | - Mario A Miranda
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA
| | - Sakura Oyama
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA
| | - Celine L St Pierre
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA
| | - Heather Schmidt
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA
| | - Jessica P Wayhart
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA.
| |
Collapse
|
6
|
Miranda MA, Carson C, St. Pierre CL, Macias‐Velasco JF, Hughes JW, Kunzmann M, Schmidt H, Wayhart JP, Lawson HA. Spontaneous restoration of functional β-cell mass in obese SM/J mice. Physiol Rep 2020; 8:e14573. [PMID: 33113267 PMCID: PMC7592878 DOI: 10.14814/phy2.14573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/23/2022] Open
Abstract
Maintenance of functional β-cell mass is critical to preventing diabetes, but the physiological mechanisms that cause β-cell populations to thrive or fail in the context of obesity are unknown. High fat-fed SM/J mice spontaneously transition from hyperglycemic-obese to normoglycemic-obese with age, providing a unique opportunity to study β-cell adaptation. Here, we characterize insulin homeostasis, islet morphology, and β-cell function during SM/J's diabetic remission. As they resolve hyperglycemia, obese SM/J mice dramatically increase circulating and pancreatic insulin levels while improving insulin sensitivity. Immunostaining of pancreatic sections reveals that obese SM/J mice selectively increase β-cell mass but not α-cell mass. Obese SM/J mice do not show elevated β-cell mitotic index, but rather elevated α-cell mitotic index. Functional assessment of isolated islets reveals that obese SM/J mice increase glucose-stimulated insulin secretion, decrease basal insulin secretion, and increase islet insulin content. These results establish that β-cell mass expansion and improved β-cell function underlie the resolution of hyperglycemia, indicating that obese SM/J mice are a valuable tool for exploring how functional β-cell mass can be recovered in the context of obesity.
Collapse
Affiliation(s)
- Mario A. Miranda
- Department of GeneticsWashington University School of MedicineSaint LouisMOUSA
| | - Caryn Carson
- Department of GeneticsWashington University School of MedicineSaint LouisMOUSA
| | | | | | - Jing W. Hughes
- Department of MedicineWashington University School of MedicineSaint LouisMOUSA
| | - Marcus Kunzmann
- Department of GeneticsWashington University School of MedicineSaint LouisMOUSA
| | - Heather Schmidt
- Department of GeneticsWashington University School of MedicineSaint LouisMOUSA
| | - Jessica P. Wayhart
- Department of GeneticsWashington University School of MedicineSaint LouisMOUSA
| | - Heather A. Lawson
- Department of GeneticsWashington University School of MedicineSaint LouisMOUSA
| |
Collapse
|
7
|
Carson C, Lawson HA. Genetic background and diet affect brown adipose gene coexpression networks associated with metabolic phenotypes. Physiol Genomics 2020; 52:223-233. [PMID: 32338175 PMCID: PMC7311675 DOI: 10.1152/physiolgenomics.00003.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 01/10/2023] Open
Abstract
Adipose is a dynamic endocrine organ that is critical for regulating metabolism and is highly responsive to nutritional environment. Brown adipose tissue is an exciting potential therapeutic target; however, there are no systematic studies of gene-by-environment interactions affecting function of this organ. We leveraged a weighted gene coexpression network analysis to identify transcriptional networks in brown adipose tissue from LG/J and SM/J inbred mice fed high- or low-fat diets and correlate these networks with metabolic phenotypes. We identified eight primary gene network modules associated with variation in obesity and diabetes-related traits. Four modules were enriched for metabolically relevant processes such as immune and cytokine response, cell division, peroxisome functions, and organic molecule metabolic processes. The relative expression of genes in these modules is highly dependent on both genetic background and dietary environment. Genes in the immune/cytokine response and cell division modules are particularly highly expressed in high fat-fed SM/J mice, which show unique brown adipose-dependent remission of diabetes. The interconnectivity of genes in these modules is also heavily dependent on diet and strain, with most genes showing both higher expression and coexpression under the same context. We highlight several genes of interest, Col28a1, Cyp26b1, Bmp8b, and Ngef, that have distinct expression patterns among strain-by-diet contexts and fall under metabolic quantitative trait loci previously mapped in an F16 generation of an advanced intercross between LG/J and SM/J. Each of these genes have some connection to obesity and diabetes-related traits, but have not been studied in brown adipose tissue. Our results provide important insights into the relationship between brown adipose and systemic metabolism by being the first gene-by-environment study of brown adipose transcriptional networks.
Collapse
Affiliation(s)
- Caryn Carson
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
8
|
Abstract
In this chapter we will review both the rationale and experimental design for using Heterogeneous Stock (HS) populations for fine-mapping of complex traits in mice and rats. We define an HS as an outbred population derived from an intercross between two or more inbred strains. HS have been used to perform genome-wide association studies (GWAS) for multiple behavioral, physiological, and gene expression traits. GWAS using HS require four key steps, which we review: selection of an appropriate HS population, phenotyping, genotyping, and statistical analysis. We provide advice on the selection of an HS, comment on key issues related to phenotyping, discuss genotyping methods relevant to these populations, and describe statistical genetic analyses that are applicable to genetic analyses that use HS.
Collapse
|
9
|
Lawson HA, Zayed M, Wayhart JP, Fabbrini E, Love-Gregory L, Klein S, Semenkovich CF. Physiologic and genetic evidence links hemopexin to triglycerides in mice and humans. Int J Obes (Lond) 2017; 41:631-638. [PMID: 28119529 DOI: 10.1038/ijo.2017.19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/21/2016] [Accepted: 01/11/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND/OBJECTIVES Elevated triglycerides predict insulin resistance and vascular disease in obesity, but how the inert triglyceride molecule is related to development of metabolic disease is unknown. To pursue novel potential mediators of triglyceride-associated metabolic disease, we used a forward genetics approach involving inbred mice and translated our findings to human subjects. SUBJECTS/METHODS Hemopexin (HPX) was identified as a differentially expressed gene within a quantitative trait locus associated with serum triglycerides in an F16 advanced intercross between the LG/J and SM/J strains of mice. Hpx expression was evaluated in both the reproductive fat pads and livers of mice representing three strains, LG/J (n=25), SM/J (n=27) and C57Bl/6J (n=19), on high- and low-fat diets. The effect of altered Hpx expression on adipogenesis was studied in 3T3-L1 cells. Circulating HPX protein along with HPX expression were characterized in subcutaneous white adipose tissue samples obtained from a cohort of metabolically abnormal (n=18) and of metabolically normal (n=24) obese human subjects. We further examined the relationship between HPX and triglycerides in human atherosclerotic plaques (n=18). RESULTS HPX expression in mouse adipose tissue, but not in liver, was regulated by dietary fat regardless of genetic background. HPX increased in concert with adipogenesis in 3T3-L1 cells, and disruption of its expression impaired adipocyte differentiation. RNAseq data from the adipose tissue of obese humans showed differential expression of HPX based on metabolic disease status (P<0.05), and circulating HPX levels were correlated with serum triglycerides in these subjects (r=0.33; P=0.03). HPX was also found in an unbiased proteomic screen of human atherosclerotic plaques and shown to display differential abundance based on the extent of disease and triglyceride content (P<0.05). CONCLUSIONS Our findings suggest that HPX is associated with triglycerides and provide a framework for understanding mechanisms underlying lipid metabolism and metabolic disease.
Collapse
Affiliation(s)
- H A Lawson
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - M Zayed
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - J P Wayhart
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - E Fabbrini
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - L Love-Gregory
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - S Klein
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - C F Semenkovich
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
10
|
Abstract
Although disproportionately affected by increasing rates of type 2 diabetes and dyslipidemias, Hispanic populations are underrepresented in efforts to understand genetic susceptibility to these disorders. Where research has been undertaken, these populations have provided substantial insight into identification of novel risk-associated genes and have aided in the ability to fine map previously described risk loci. Genome-wide analyses in Hispanic and trans-ethnic populations have resulted in identification of more than 40 replicated or novel genes with significant effects for type 2 diabetes or lipid traits. Initial investigations into rare variant effects have identified new risk-associated variants private to Hispanic populations, and preliminary results suggest metagenomic approaches in Hispanic populations, such as characterizing the gut microbiome, will enable the development of new predictive tools and therapeutic targets for type 2 diabetes. Future genome-wide studies in expanded cohorts of Hispanics are likely to result in new insights into the genetic etiology of metabolic health.
Collapse
Affiliation(s)
- Jennifer E Below
- The Human Genetics Center, University of Texas School of Public Health, Houston, TX, USA.
| | - Esteban J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, Canada
| |
Collapse
|
11
|
Nikolskiy I, Conrad DF, Chun S, Fay JC, Cheverud JM, Lawson HA. Using whole-genome sequences of the LG/J and SM/J inbred mouse strains to prioritize quantitative trait genes and nucleotides. BMC Genomics 2015; 16:415. [PMID: 26016481 PMCID: PMC4445795 DOI: 10.1186/s12864-015-1592-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/28/2015] [Indexed: 12/04/2022] Open
Abstract
Background The laboratory mouse is the most commonly used model for studying variation in complex traits relevant to human disease. Here we present the whole-genome sequences of two inbred strains, LG/J and SM/J, which are frequently used to study variation in complex traits as diverse as aging, bone-growth, adiposity, maternal behavior, and methamphetamine sensitivity. Results We identified small nucleotide variants (SNVs) and structural variants (SVs) in the LG/J and SM/J strains relative to the reference genome and discovered novel variants in these two strains by comparing their sequences to other mouse genomes. We find that 39% of the LG/J and SM/J genomes are identical-by-descent (IBD). We characterized amino-acid changing mutations using three algorithms: LRT, PolyPhen-2 and SIFT. We also identified polymorphisms between LG/J and SM/J that fall in regulatory regions and highly informative transcription factor binding sites (TFBS). We intersected these functional predictions with quantitative trait loci (QTL) mapped in advanced intercrosses of these two strains. We find that QTL are both over-represented in non-IBD regions and highly enriched for variants predicted to have a functional impact. Variants in QTL associated with metabolic (231 QTL identified in an F16 generation) and developmental (41 QTL identified in an F34 generation) traits were interrogated and we highlight candidate quantitative trait genes (QTG) and nucleotides (QTN) in a QTL on chr13 associated with variation in basal glucose levels and in a QTL on chr6 associated with variation in tibia length. Conclusions We show how integrating genomic sequence with QTL reduces the QTL search space and helps researchers prioritize candidate genes and nucleotides for experimental follow-up. Additionally, given the LG/J and SM/J phylogenetic context among inbred strains, these data contribute important information to the genomic landscape of the laboratory mouse. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1592-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Igor Nikolskiy
- Department of Genetics, Washington University School of Medicine, Campus Box 8108, 660 S Euclid Ave, St Louis, MO, 63110, USA.
| | - Donald F Conrad
- Department of Genetics, Washington University School of Medicine, Campus Box 8108, 660 S Euclid Ave, St Louis, MO, 63110, USA.
| | - Sung Chun
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Justin C Fay
- Department of Genetics, Washington University School of Medicine, Campus Box 8108, 660 S Euclid Ave, St Louis, MO, 63110, USA.
| | | | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, Campus Box 8108, 660 S Euclid Ave, St Louis, MO, 63110, USA.
| |
Collapse
|
12
|
Ruhrmann S, Stridh P, Kular L, Jagodic M. Genomic imprinting: A missing piece of the Multiple Sclerosis puzzle? Int J Biochem Cell Biol 2015; 67:49-57. [PMID: 26002250 DOI: 10.1016/j.biocel.2015.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
Evidence for parent-of-origin effects in complex diseases such as Multiple Sclerosis (MS) strongly suggests a role for epigenetic mechanisms in their pathogenesis. In this review, we describe the importance of accounting for parent-of-origin when identifying new risk variants for complex diseases and discuss how genomic imprinting, one of the best-characterized epigenetic mechanisms causing parent-of-origin effects, may impact etiology of complex diseases. While the role of imprinted genes in growth and development is well established, the contribution and molecular mechanisms underlying the impact of genomic imprinting in immune functions and inflammatory diseases are still largely unknown. Here we discuss emerging roles of imprinted genes in the regulation of inflammatory responses with a particular focus on the Dlk1 cluster that has been implicated in etiology of experimental MS-like disease and Type 1 Diabetes. Moreover, we speculate on the potential wider impact of imprinting via the action of imprinted microRNAs, which are abundantly present in the Dlk1 locus and predicted to fine-tune important immune functions. Finally, we reflect on how unrelated imprinted genes or imprinted genes together with non-imprinted genes can interact in so-called imprinted gene networks (IGN) and suggest that IGNs could partly explain observed parent-of-origin effects in complex diseases. Unveiling the mechanisms of parent-of-origin effects is therefore likely to teach us not only about the etiology of complex diseases but also about the unknown roles of this fascinating phenomenon underlying uneven genetic contribution from our parents. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Sabrina Ruhrmann
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Castelló A, Quintanilla R, Melo C, Gallardo D, Zidi A, Manunza A, Noguera JL, Tibau J, Jordana J, Pena RN, Amills M. Associations between pig adiponectin (ADIPOQ) genotype and serum lipid levels are modulated by age-specific modifiers. J Anim Sci 2014; 92:5367-73. [PMID: 25367522 DOI: 10.2527/jas.2014-8029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The adiponectin (ADIPOQ) locus is a positional and functional candidate gene for 2 porcine chromosome 13 (SSC13) QTL influencing cholesterol (CHOL) and low-density lipoprotein (LDL) concentrations in 190-d-old pigs. By sequencing 2.37 kb of the pig ADIPOQ cDNA, we have identified 1 c.*1512G>T 3' untranslated region polymorphism that has been genotyped in a Duroc pig commercial population with records for serum lipid levels at 45 and 190 d of age. Statistical analysis of the data have revealed significant associations between the ADIPOQ genotype and CHOL (P=0.0040) and LDL (P=0.0011) concentrations at 190 d but not at 45 d. In family 3, most of the SSC13 QTL effects on LDL levels at 190 d were explained by the ADIPOQ genotype. We also found an association with triglyceride levels at 45 d (P=0.0060) but not at 190 d. Measurement of allelic mRNA imbalance demonstrated that the G and T alleles are expressed at very similar levels in muscle and fat tissues, indicating that the c.*1512G>T polymorphism does not affect transcript abundance. As a whole, results obtained in the current work as well as previous data gathered in humans and pigs provide evidence that the magnitude of associations between blood lipid phenotypes and candidate loci genotypes may vary depending on the age of the individual, therefore suggesting the existence of dynamic genotype×environment interactions changing on a temporal scale.
Collapse
Affiliation(s)
- A Castelló
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
| | - R Quintanilla
- IRTA, Genètica i Millora Animal, Torre Marimon, 08140 Caldes de Montbui, Spain
| | - C Melo
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
| | - D Gallardo
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
| | - A Zidi
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
| | - A Manunza
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
| | - J L Noguera
- IRTA, Genètica i Millora Animal, Torre Marimon, 08140 Caldes de Montbui, Spain
| | - J Tibau
- IRTA, Genètica i Millora Animal, Torre Marimon, 08140 Caldes de Montbui, Spain
| | - J Jordana
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
| | - R N Pena
- Department of Animal Production, University of Lleida-Agrotecnio Center, 25198, Lleida, Spain
| | - M Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
| |
Collapse
|
14
|
Wing MR, Ramezani A, Gill HS, Devaney JM, Raj DS. Epigenetics of progression of chronic kidney disease: fact or fantasy? Semin Nephrol 2014; 33:363-74. [PMID: 24011578 DOI: 10.1016/j.semnephrol.2013.05.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Epigenetic modifications are important in the normal functioning of the cell, from regulating dynamic expression of essential genes and associated proteins to repressing those that are unneeded. Epigenetic changes are essential for development and functioning of the kidney, and aberrant methylation, histone modifications, and expression of microRNA could lead to chronic kidney disease (CKD). Here, epigenetic modifications modulate transforming growth factor β signaling, inflammation, profibrotic genes, and the epithelial-to-mesenchymal transition, promoting renal fibrosis and progression of CKD. Identification of these epigenetic changes is important because they are potentially reversible and may serve as therapeutic targets in the future to prevent subsequent renal fibrosis and CKD. In this review we discuss the different types of epigenetic control, methods to study epigenetic modifications, and how epigenetics promotes progression of CKD.
Collapse
Affiliation(s)
- Maria R Wing
- Division of Renal Disease and Hypertension, The George Washington University, Washington, DC
| | | | | | | | | |
Collapse
|
15
|
Gonzales NM, Palmer AA. Fine-mapping QTLs in advanced intercross lines and other outbred populations. Mamm Genome 2014; 25:271-92. [PMID: 24906874 DOI: 10.1007/s00335-014-9523-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/25/2014] [Indexed: 12/16/2022]
Abstract
Quantitative genetic studies in model organisms, particularly in mice, have been extremely successful in identifying chromosomal regions that are associated with a wide variety of behavioral and other traits. However, it is now widely understood that identification of the underlying genes will be far more challenging. In the last few years, a variety of populations have been utilized in an effort to more finely map these chromosomal regions with the goal of identifying specific genes. The common property of these newer populations is that linkage disequilibrium spans relatively short distances, which permits fine-scale mapping resolution. This review focuses on advanced intercross lines (AILs) which are the simplest such population. As originally proposed in 1995 by Darvasi and Soller, an AIL is the product of intercrossing two inbred strains beyond the F2 generation. Unlike recombinant inbred strains, AILs are maintained as outbred populations; brother-sister matings are specifically avoided. Each generation of intercrossing beyond the F2 further degrades linkage disequilibrium between adjacent makers, which allows for fine-scale mapping of quantitative trait loci (QTLs). Advances in genotyping technology and techniques for the statistical analysis of AILs have permitted rapid advances in the application of AILs. We review some of the analytical issues and available software, including QTLRel, EMMA, EMMAX, GEMMA, TASSEL, GRAMMAR, WOMBAT, Mendel, and others.
Collapse
Affiliation(s)
- Natalia M Gonzales
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | | |
Collapse
|
16
|
Partridge CG, Fawcett GL, Wang B, Semenkovich CF, Cheverud JM. The effect of dietary fat intake on hepatic gene expression in LG/J AND SM/J mice. BMC Genomics 2014; 15:99. [PMID: 24499025 PMCID: PMC4028868 DOI: 10.1186/1471-2164-15-99] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 01/15/2014] [Indexed: 12/17/2022] Open
Abstract
Background The liver plays a major role in regulating metabolic homeostasis and is vital for nutrient metabolism. Identifying the genetic factors regulating these processes could lead to a greater understanding of how liver function responds to a high-fat diet and how that response may influence susceptibilities to obesity and metabolic syndrome. In this study we examine differences in hepatic gene expression between the LG/J and SM/J inbred mouse strains and how gene expression in these strains is affected by high-fat diet. LG/J and SM/J are known to differ in their responses to a high-fat diet for a variety of obesity- and diabetes-related traits, with the SM/J strain exhibiting a stronger phenotypic response to diet. Results Dietary intake had a significant effect on gene expression in both inbred lines. Genes up-regulated by a high-fat diet were involved in biological processes such as lipid and carbohydrate metabolism; protein and amino acid metabolic processes were down regulated on a high-fat diet. A total of 259 unique transcripts exhibited a significant diet-by-strain interaction. These genes tended to be associated with immune function. In addition, genes involved in biochemical processes related to non-alcoholic fatty liver disease (NAFLD) manifested different responses to diet between the two strains. For most of these genes, SM/J had a stronger response to the high-fat diet than LG/J. Conclusions These data show that dietary fat impacts gene expression levels in SM/J relative to LG/J, with SM/J exhibiting a stronger response. This supports previous data showing that SM/J has a stronger phenotypic response to high-fat diet. Based upon these findings, we suggest that SM/J and its cross with the LG/J strain provide a good model for examining non-alcoholic fatty liver disease and its role in metabolic syndrome.
Collapse
Affiliation(s)
- Charlyn G Partridge
- Department of Anatomy and Neurobiology, Washington University in St, Louis, St, Louis, MO, USA.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Parent-of-origin effects occur when the phenotypic effect of an allele depends on whether it is inherited from the mother or the father. Several phenomena can cause parent-of-origin effects, but the best characterized is parent-of-origin-dependent gene expression associated with genomic imprinting. The development of new mapping approaches applied to the growing abundance of genomic data has demonstrated that imprinted genes can be important contributors to complex trait variation. Therefore, to understand the genetic architecture and evolution of complex traits, including complex diseases and traits of agricultural importance, it is crucial to account for these parent-of-origin effects. Here, we discuss patterns of phenotypic variation associated with imprinting, evidence supporting its role in complex trait variation and approaches for identifying its molecular signatures.
Collapse
|
18
|
Tétard-Jones C, Kertesz MA, Preziosi RF. Identification of plant quantitative trait loci modulating a rhizobacteria-aphid indirect effect. PLoS One 2012; 7:e41524. [PMID: 22844487 PMCID: PMC3406024 DOI: 10.1371/journal.pone.0041524] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/21/2012] [Indexed: 11/19/2022] Open
Abstract
Plants simultaneously interact with a plethora of species both belowground and aboveground, which can result in indirect effects mediated by plants. Studies incorporating plant genetic variation indicate that indirect effects mediated by plants may be a significant factor influencing the ecology and evolution of species within a community. Here, we present findings of a Quantitative Trait Locus (QTL) mapping study, where we mapped a rhizobacteria-aphid indirect effect onto the barley genome. We measured the size of aphid populations on barley when the barley rhizosphere either was or was not supplemented with a rhizobacterial species. Using a QTL mapping subset, we located five regions of the barley genome associated with the rhizobacteria-aphid indirect effect. Rhizobacterial supplementation led to an increase in aphid population size (mapped to three barley QTL), or a decrease in aphid population size (mapped to two barley QTL). One QTL associated with plant resistance to aphids was affected by a significant QTL-by-environment interaction, because it was not expressed when rhizobacteria was supplemented. Our results indicated that rhizobacterial supplementation of barley roots led to either increased or reduced aphid population size depending on plant genotype at five barley QTL. This indicates that the direction of a rhizobacteria-aphid indirect effect could influence the selection pressure on plants, when considering species that affect plant fitness. Further research may build on the findings presented here, to identify genes within QTL regions that are involved in the indirect interaction.
Collapse
|
19
|
Carson EA, Kenney-Hunt JP, Pavlicev M, Bouckaert KA, Chinn AJ, Silva MJ, Cheverud JM. Weak genetic relationship between trabecular bone morphology and obesity in mice. Bone 2012; 51:46-53. [PMID: 22503703 PMCID: PMC3371175 DOI: 10.1016/j.bone.2012.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 03/27/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
Obesity, in addition to being associated with metabolic diseases, such as diabetes, has also been found to lower the risk of osteoporotic fractures. The relationship between obesity and bone trabecular structure is complex, involving responses to mechanical loading and the effects of adipocyte-derived hormones, both directly interacting with bone tissue and indirectly through central nervous system signaling. Here we examine the effects of sex, a high fat diet, and genetics on the trabecular density and structure of the lumbar and caudal vertebra and the proximal tibia along with body weight, fat pad weight, and serum leptin levels in a murine obesity model, the LGXSM recombinant inbred (RI) mouse strains. The sample included 481 mice from 16 RI strains. We found that vertebral trabecular density was higher in males while the females had higher tibial trabecular density. The high fat diet led to only slightly higher trabecular density in both sexes despite its extreme effects on obesity and serum leptin levels. Trait heritabilities are moderate to strong and genetic correlations among trabecular features are high. Most genetic variation contrasts strains with large numbers of thick, closely-spaced, highly interconnected, plate-like trabeculae with a high bone volume to total volume ratio against strains displaying small numbers of thin, widely-spaced, sparsely connected, rod-like trabeculae with a low bone volume to total volume ratio. Genetic correlations between trabecular and obesity-related traits were low and not statistically significant. We mapped trabecular properties to 20 genomic locations. Only one-quarter of these locations also had effects on obesity. In this population obesity has a relatively minor effect on trabecular bone morphology.
Collapse
Affiliation(s)
- E Ann Carson
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Bartnikas TB, Parker CC, Cheng R, Campagna DR, Lim JE, Palmer AA, Fleming MD. QTLs for murine red blood cell parameters in LG/J and SM/J F(2) and advanced intercross lines. Mamm Genome 2012; 23:356-66. [PMID: 22322356 PMCID: PMC3358495 DOI: 10.1007/s00335-012-9393-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
Red blood cells are essential for oxygen transport and other physiologic processes. Red cell characteristics are typically determined by complete blood counts which measure parameters such as hemoglobin levels and mean corpuscular volumes; these parameters reflect the quality and quantity of red cells in the circulation at any particular moment. To identify the genetic determinants of red cell parameters, we performed genome-wide association analysis on LG/J×SM/J F2 and F34 advanced intercross lines using single nucleotide polymorphism genotyping and a novel algorithm for mapping in the combined populations. We identified significant quantitative trait loci for red cell parameters on chromosomes 6, 7, 8, 10, 12, and 17; our use of advanced intercross lines reduced the quantitative trait loci interval width from 1.6- to 9.4-fold. Using the genomic sequences of LG/J and SM/J mice, we identified nonsynonymous coding single nucleotide polymorphisms in candidate genes residing within quantitative trait loci and performed sequence alignments and molecular modeling to gauge the potential impact of amino acid substitutions. These results should aid in the identification of genes critical for red cell physiology and metabolism and demonstrate the utility of advanced intercross lines in uncovering genetic determinants of inherited traits.
Collapse
Affiliation(s)
- Thomas B Bartnikas
- Department of Pathology, Children's Hospital, Enders 1110, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Leduc MS, Blair RH, Verdugo RA, Tsaih SW, Walsh K, Churchill GA, Paigen B. Using bioinformatics and systems genetics to dissect HDL-cholesterol genetics in an MRL/MpJ x SM/J intercross. J Lipid Res 2012; 53:1163-75. [PMID: 22498810 DOI: 10.1194/jlr.m025833] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A higher incidence of coronary artery disease is associated with a lower level of HDL-cholesterol. We searched for genetic loci influencing HDL-cholesterol in F2 mice from a cross between MRL/MpJ and SM/J mice. Quantitative trait loci (QTL) mapping revealed one significant HDL QTL (Apoa2 locus), four suggestive QTL on chromosomes 10, 11, 13, and 18 and four additional QTL on chromosomes 1 proximal, 3, 4, and 7 after adjusting HDL for the strong Apoa2 locus. A novel nonsynonymous polymorphism supports Lipg as the QTL gene for the chromosome 18 QTL, and a difference in Abca1 expression in liver tissue supports it as the QTL gene for the chromosome 4 QTL. Using weighted gene co-expression network analysis, we identified a module that after adjustment for Apoa2, correlated with HDL, was genetically determined by a QTL on chromosome 11, and overlapped with the HDL QTL. A combination of bioinformatics tools and systems genetics helped identify several candidate genes for both the chromosome 11 HDL and module QTL based on differential expression between the parental strains, cis regulation of expression, and causality modeling. We conclude that integrating systems genetics to a more-traditional genetics approach improves the power of complex trait gene identification.
Collapse
|
22
|
Lawson HA, Cady JE, Partridge C, Wolf JB, Semenkovich CF, Cheverud JM. Genetic effects at pleiotropic loci are context-dependent with consequences for the maintenance of genetic variation in populations. PLoS Genet 2011; 7:e1002256. [PMID: 21931559 PMCID: PMC3169520 DOI: 10.1371/journal.pgen.1002256] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 07/08/2011] [Indexed: 02/06/2023] Open
Abstract
Context-dependent genetic effects, including genotype-by-environment and genotype-by-sex interactions, are a potential mechanism by which genetic variation of complex traits is maintained in populations. Pleiotropic genetic effects are also thought to play an important role in evolution, reflecting functional and developmental relationships among traits. We examine context-dependent genetic effects at pleiotropic loci associated with normal variation in multiple metabolic syndrome (MetS) components (obesity, dyslipidemia, and diabetes-related traits). MetS prevalence is increasing in Western societies and, while environmental in origin, presents substantial variation in individual response. We identify 23 pleiotropic MetS quantitative trait loci (QTL) in an F16 advanced intercross between the LG/J and SM/J inbred mouse strains (Wustl:LG,SM-G16; n = 1002). Half of each family was fed a high-fat diet and half fed a low-fat diet; and additive, dominance, and parent-of-origin imprinting genotypic effects were examined in animals partitioned into sex, diet, and sex-by-diet cohorts. We examine the context-dependency of the underlying additive, dominance, and imprinting genetic effects of the traits associated with these pleiotropic QTL. Further, we examine sequence polymorphisms (SNPs) between LG/J and SM/J as well as differential expression of positional candidate genes in these regions. We show that genetic associations are different in different sex, diet, and sex-by-diet settings. We also show that over- or underdominance and ecological cross-over interactions for single phenotypes may not be common, however multidimensional synthetic phenotypes at loci with pleiotropic effects can produce situations that favor the maintenance of genetic variation in populations. Our findings have important implications for evolution and the notion of personalized medicine. We look at gene-by-diet and gene-by-sex interactions underlying natural variation in multiple metabolic traits mapping to the same regions of the genome in a mouse model. We find that the underlying genetic architecture of these traits is different in different sex and diet contexts. We further use expression data and whole-genome polymorphism data to identify compelling candidates for experimental follow-up. We use these results to examine theoretical evolutionary predictions about how variation in populations can be maintained. There has been much discussion of late on how to use evolutionary theory to inform medical genomics. Mouse models may be especially appropriate for bridging the divide between evolutionary and biomedical research, because they allow the study of the effects of natural alleles on normal variation and because human-mouse homology is well defined. Our study is unique in examining quantitative trait loci from both evolutionary and biomedical perspectives, and we highlight the complex connections of the traits comprising the metabolic syndrome and the evolutionary implications of their underlying genetic architecture. This is important for understanding disease etiology and is relevant to personalized medicine.
Collapse
Affiliation(s)
- Heather A Lawson
- Washington University in St Louis, St Louis, Missouri, United States of America.
| | | | | | | | | | | |
Collapse
|
23
|
Lawson HA, Lee A, Fawcett GL, Wang B, Pletscher LS, Maxwell TJ, Ehrich TH, Kenney-Hunt JP, Wolf JB, Semenkovich CF, Cheverud JM. The importance of context to the genetic architecture of diabetes-related traits is revealed in a genome-wide scan of a LG/J × SM/J murine model. Mamm Genome 2011; 22:197-208. [PMID: 21210123 PMCID: PMC3650899 DOI: 10.1007/s00335-010-9313-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
Abstract
Variations in diabetic phenotypes are caused by complex interactions of genetic effects, environmental factors, and the interplay between the two. We tease apart these complex interactions by examining genome-wide genetic and epigenetic effects on diabetes-related traits among different sex, diet, and sex-by-diet cohorts in a Mus musculus model. We conducted a genome-wide scan for quantitative trait loci that affect serum glucose and insulin levels and response to glucose stress in an F(16) Advanced Intercross Line of the LG/J and SM/J intercross (Wustl:LG,SM-G16). Half of each sibship was fed a high-fat diet and half was fed a relatively low-fat diet. Context-dependent genetic (additive and dominance) and epigenetic (parent-of-origin imprinting) effects were characterized by partitioning animals into sex, diet, and sex-by-diet cohorts. We found that different cohorts often have unique genetic effects at the same loci, and that genetic signals can be masked or erroneously assigned to specific cohorts if they are not considered individually. Our data demonstrate that the effects of genes on complex trait variation are highly context-dependent and that the same genomic sequence can affect traits differently depending on an individual's sex and/or dietary environment. Our results have important implications for studies of complex traits in humans.
Collapse
Affiliation(s)
- Heather A Lawson
- Department of Anatomy & Neurobiology, Washington University School of Medicine, 3820 North Building, Campus Box 8108, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Signaling mechanisms in the restoration of impaired immune function due to diet-induced obesity. Proc Natl Acad Sci U S A 2011; 108:2867-72. [PMID: 21282635 DOI: 10.1073/pnas.1019270108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Our previous data have linked obesity with immune dysfunction. It is known that physical exercise with dietary control has beneficial effects on immune function and the comorbidities of obesity. However, the mechanisms underlying the improvement of immune function in obesity after physical exercise with dietary control remain unknown. Here we show that moderate daily exercise with dietary control restores the impaired cytokine responses in diet-induced obese (DIO) mice and improves the resolution of Porphyromonas gingivalis-induced periodontitis. This restoration of immune responses is related to the reduction of circulating free fatty acids (FFAs) and TNF. Both FFAs and TNF induce an Akt inhibitor, carboxyl-terminal modulator protein (CTMP). The expression of CTMP is also observed increased in bone marrow-derived macrophages (BMMΦ) from DIO mice and restored after moderate daily exercise with dietary control. Toll-like receptor 2 (TLR2), which increases CTMP induction by FFAs, is inhibited in BMMΦ from DIO mice or after either FFA or TNF treatment, but unexpectedly is not restored by moderate daily exercise with dietary control. Furthermore, BMMΦ from DIO mice display reduced histone H3 (Lys-9) acetylation and NF-κB recruitment to TNF, IL-10, and TLR2 promoters after P. gingivalis infection. However, moderate daily exercise with dietary control restores these defects at promoters for TNF and IL-10, but not for TLR2. Thus, metabolizing FFAs and TNF by moderate daily exercise with dietary control improves innate immune responses to infection in DIO mice via restoration of CTMP and chromatin modification.
Collapse
|