1
|
Metz M, O'Hare J, Cheng B, Puchowicz M, Buettner C, Scherer T. Brain insulin signaling suppresses lipolysis in the absence of peripheral insulin receptors and requires the MAPK pathway. Mol Metab 2023; 73:101723. [PMID: 37100238 DOI: 10.1016/j.molmet.2023.101723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
OBJECTIVES Insulin's ability to counterbalance catecholamine-induced lipolysis defines insulin action in adipose tissue. Insulin suppresses lipolysis directly at the level of the adipocyte and indirectly through signaling in the brain. Here, we further characterized the role of brain insulin signaling in regulating lipolysis and defined the intracellular insulin signaling pathway required for brain insulin to suppress lipolysis. METHODS We used hyperinsulinemic clamp studies coupled with tracer dilution techniques to assess insulin's ability to suppress lipolysis in two different mouse models with inducible insulin receptor depletion in all tissues (IRΔWB) or restricted to peripheral tissues excluding the brain (IRΔPER). To identify the underlying signaling pathway required for brain insulin to inhibit lipolysis, we continuously infused insulin +/- a PI3K or MAPK inhibitor into the mediobasal hypothalamus of male Sprague Dawley rats and assessed lipolysis during clamps. RESULTS Genetic insulin receptor deletion induced marked hyperglycemia and insulin resistance in both IRΔPER and IRΔWB mice. However, the ability of insulin to suppress lipolysis was largely preserved in IRΔPER, but completely obliterated in IRΔWB mice indicating that insulin is still able to suppress lipolysis as long as brain insulin receptors are present. Blocking the MAPK, but not the PI3K pathway impaired the inhibition of lipolysis by brain insulin signaling. CONCLUSION Brain insulin is required for insulin to suppress adipose tissue lipolysis and depends on intact hypothalamic MAPK signaling.
Collapse
Affiliation(s)
- Matthäus Metz
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, 1090 Austria
| | - James O'Hare
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - Bob Cheng
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA
| | - Michelle Puchowicz
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106 USA
| | - Christoph Buettner
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA; Department of Medicine, Rutgers University, New Brunswick, NJ, 08901 USA.
| | - Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, 1090 Austria; Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA.
| |
Collapse
|
2
|
Scherer T, Sakamoto K, Buettner C. Brain insulin signalling in metabolic homeostasis and disease. Nat Rev Endocrinol 2021; 17:468-483. [PMID: 34108679 DOI: 10.1038/s41574-021-00498-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Insulin signalling in the central nervous system regulates energy homeostasis by controlling metabolism in several organs and by coordinating organ crosstalk. Studies performed in rodents, non-human primates and humans over more than five decades using intracerebroventricular, direct hypothalamic or intranasal application of insulin provide evidence that brain insulin action might reduce food intake and, more importantly, regulates energy homeostasis by orchestrating nutrient partitioning. This Review discusses the metabolic pathways that are under the control of brain insulin action and explains how brain insulin resistance contributes to metabolic disease in obesity, the metabolic syndrome and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Kenichi Sakamoto
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Christoph Buettner
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
3
|
Dodd GT, Tiganis T. Insulin action in the brain: Roles in energy and glucose homeostasis. J Neuroendocrinol 2017; 29. [PMID: 28758251 DOI: 10.1111/jne.12513] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/05/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
A growing body of evidence from research in rodents and humans has identified insulin as an important neuoregulatory peptide in the brain, where it coordinates diverse aspects of energy balance and peripheral glucose homeostasis. This review discusses where and how insulin interacts within the brain and evaluates the physiological and pathophysiological consequences of central insulin signalling in metabolism, obesity and type 2 diabetes.
Collapse
Affiliation(s)
- G T Dodd
- Metabolic Disease and Obesity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - T Tiganis
- Metabolic Disease and Obesity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Edgerton DS, Kraft G, Smith M, Farmer B, Williams PE, Coate KC, Printz RL, O'Brien RM, Cherrington AD. Insulin's direct hepatic effect explains the inhibition of glucose production caused by insulin secretion. JCI Insight 2017; 2:e91863. [PMID: 28352665 DOI: 10.1172/jci.insight.91863] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Insulin can inhibit hepatic glucose production (HGP) by acting directly on the liver as well as indirectly through effects on adipose tissue, pancreas, and brain. While insulin's indirect effects are indisputable, their physiologic role in the suppression of HGP seen in response to increased insulin secretion is not clear. Likewise, the mechanisms by which insulin suppresses lipolysis and pancreatic α cell secretion under physiologic circumstances are also debated. In this study, insulin was infused into the hepatic portal vein to mimic increased insulin secretion, and insulin's indirect liver effects were blocked either individually or collectively. During physiologic hyperinsulinemia, plasma free fatty acid (FFA) and glucagon levels were clamped at basal values and brain insulin action was blocked, but insulin's direct effects on the liver were left intact. Insulin was equally effective at suppressing HGP when its indirect effects were absent as when they were present. In addition, the inhibition of lipolysis, as well as glucagon and insulin secretion, did not require CNS insulin action or decreased plasma FFA. This indicates that the rapid suppression of HGP is attributable to insulin's direct effect on the liver and that its indirect effects are redundant in the context of a physiologic increase in insulin secretion.
Collapse
Affiliation(s)
- Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Marta Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Phillip E Williams
- Division of Surgical Research, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Katie C Coate
- Samford University, Department of Nutrition and Dietetics, Birmingham, Alabama, USA
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Zarrin M, Grossen-Rösti L, Bruckmaier R, Gross J. Elevation of blood β-hydroxybutyrate concentration affects glucose metabolism in dairy cows before and after parturition. J Dairy Sci 2017; 100:2323-2333. [DOI: 10.3168/jds.2016-11714] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/07/2016] [Indexed: 11/19/2022]
|
6
|
Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiol Rev 2016; 96:1169-209. [PMID: 27489306 DOI: 10.1152/physrev.00032.2015] [Citation(s) in RCA: 391] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Manfred Hallschmid
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Tübingen, Germany; Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; and Department of Pharmacy and Biochemistry, Faculty of Science, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Scherer T, Lindtner C, O'Hare J, Hackl M, Zielinski E, Freudenthaler A, Baumgartner-Parzer S, Tödter K, Heeren J, Krššák M, Scheja L, Fürnsinn C, Buettner C. Insulin Regulates Hepatic Triglyceride Secretion and Lipid Content via Signaling in the Brain. Diabetes 2016; 65:1511-20. [PMID: 26861781 PMCID: PMC4878422 DOI: 10.2337/db15-1552] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/04/2016] [Indexed: 12/22/2022]
Abstract
Hepatic steatosis is common in obesity and insulin resistance and results from a net retention of lipids in the liver. A key mechanism to prevent steatosis is to increase secretion of triglycerides (TG) packaged as VLDLs. Insulin controls nutrient partitioning via signaling through its cognate receptor in peripheral target organs such as liver, muscle, and adipose tissue and via signaling in the central nervous system (CNS) to orchestrate organ cross talk. While hepatic insulin signaling is known to suppress VLDL production from the liver, it is unknown whether brain insulin signaling independently regulates hepatic VLDL secretion. Here, we show that in conscious, unrestrained male Sprague Dawley rats the infusion of insulin into the third ventricle acutely increased hepatic TG secretion. Chronic infusion of insulin into the CNS via osmotic minipumps reduced the hepatic lipid content as assessed by noninvasive (1)H-MRS and lipid profiling independent of changes in hepatic de novo lipogenesis and food intake. In mice that lack the insulin receptor in the brain, hepatic TG secretion was reduced compared with wild-type littermate controls. These studies identify brain insulin as an important permissive factor in hepatic VLDL secretion that protects against hepatic steatosis.
Collapse
Affiliation(s)
- Thomas Scherer
- Departments of Medicine and Neuroscience, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Claudia Lindtner
- Departments of Medicine and Neuroscience, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - James O'Hare
- Departments of Medicine and Neuroscience, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Martina Hackl
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Elizabeth Zielinski
- Departments of Medicine and Neuroscience, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Angelika Freudenthaler
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sabina Baumgartner-Parzer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Klaus Tödter
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens Fürnsinn
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christoph Buettner
- Departments of Medicine and Neuroscience, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
8
|
Heni M, Kullmann S, Preissl H, Fritsche A, Häring HU. Impaired insulin action in the human brain: causes and metabolic consequences. Nat Rev Endocrinol 2015; 11:701-11. [PMID: 26460339 DOI: 10.1038/nrendo.2015.173] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past few years, evidence has accumulated that the human brain is an insulin-sensitive organ. Insulin regulates activity in a limited number of specific brain areas that are important for memory, reward, eating behaviour and the regulation of whole-body metabolism. Accordingly, insulin in the brain modulates cognition, food intake and body weight as well as whole-body glucose, energy and lipid metabolism. However, brain imaging studies have revealed that not everybody responds equally to insulin and that a substantial number of people are brain insulin resistant. In this Review, we provide an overview of the effects of insulin in the brain in humans and the relevance of the effects for physiology. We present emerging evidence for insulin resistance of the human brain. Factors associated with brain insulin resistance such as obesity and increasing age, as well as possible pathogenic factors such as visceral fat, saturated fatty acids, alterations at the blood-brain barrier and certain genetic polymorphisms, are reviewed. In particular, the metabolic consequences of brain insulin resistance are discussed and possible future approaches to overcome brain insulin resistance and thereby prevent or treat obesity and type 2 diabetes mellitus are outlined.
Collapse
Affiliation(s)
- Martin Heni
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University, Partners in the German Centre for Diabetes Research (DZD), Otfried-Müller-Street 10, 72076 Tübingen, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Partners in the German Centre for Diabetes Research (DZD), Otfried-Müller-Street 10, 72076 Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Partners in the German Centre for Diabetes Research (DZD), Otfried-Müller-Street 10, 72076 Tübingen, Germany
| | - Andreas Fritsche
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University, Partners in the German Centre for Diabetes Research (DZD), Otfried-Müller-Street 10, 72076 Tübingen, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University, Partners in the German Centre for Diabetes Research (DZD), Otfried-Müller-Street 10, 72076 Tübingen, Germany
| |
Collapse
|
9
|
Yin X, Huang Y, Jung DW, Chung HC, Choung SY, Shim JH, Kang IJ. Anti-Diabetic Effect of Aster sphathulifolius in C57BL/KsJ-db/db Mice. J Med Food 2015; 18:987-98. [PMID: 25961463 DOI: 10.1089/jmf.2014.3416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we investigated the anti-diabetic effect of Aster sphathulifolius (AS) extract in C57BL/KsJ-db/db mice. The db/db mice were orally administered with AS 50% ethanol extract at concentrations of 50, 100, and 200 mg/kg/day (db/db-AS50, db/db-AS100, and db/db-AS200, respectively) for 10 weeks. Food and water intake, fasting blood glucose concentrations, blood glycosylated hemoglobin levels, and plasma insulin levels were significantly lower in the db/db-AS200 group than in the vehicle-treated db/db group; whereas glucose tolerance was significantly improved in the db/db-AS200 group. Moreover, AS dose dependently increased both insulin receptor substrate 1 and glucose transporter type 4 expression in skeletal muscle, significantly increased glucokinase expression, and decreased glucose 6-phosphatase and phosphoenolpyruvate carboxykinase expressions in the liver. The expressions of transcription factors, such as sterol-regulatory element-binding protein, peroxisome proliferator-activated receptor γ, and adipocyte protein 2, were upregulated in adipose tissue. Furthermore, immunohistochemical analysis showed that AS upregulated insulin production by increasing pancreatic β-cell mass. In summary, AS extract normalized hyperglycemia by multiple mechanisms: inhibition of glyconeogenesis, acceleration of glucose metabolism and lipid metabolism, and increase of glucose uptake. Using in vivo assays, this study has shown the potential of AS as a medicinal food and suggests the efficacy of AS for the use of prevention of diabetes.
Collapse
Affiliation(s)
- Xingfu Yin
- 1 Department of Food Science and Nutrition, Hallym University , Gwangwon, Korea
| | - Yuhua Huang
- 1 Department of Food Science and Nutrition, Hallym University , Gwangwon, Korea
| | - Da-Woon Jung
- 1 Department of Food Science and Nutrition, Hallym University , Gwangwon, Korea
| | | | - Se Young Choung
- 3 Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University , Seoul, Korea
| | - Jae-Hoon Shim
- 1 Department of Food Science and Nutrition, Hallym University , Gwangwon, Korea
| | - Il-Jun Kang
- 1 Department of Food Science and Nutrition, Hallym University , Gwangwon, Korea
| |
Collapse
|
10
|
Yue JTY, Abraham MA, LaPierre MP, Mighiu PI, Light PE, Filippi BM, Lam TKT. A fatty acid-dependent hypothalamic–DVC neurocircuitry that regulates hepatic secretion of triglyceride-rich lipoproteins. Nat Commun 2015; 6:5970. [DOI: 10.1038/ncomms6970] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/26/2014] [Indexed: 12/31/2022] Open
|
11
|
Bisschop PH, Fliers E, Kalsbeek A. Autonomic Regulation of Hepatic Glucose Production. Compr Physiol 2014; 5:147-65. [DOI: 10.1002/cphy.c140009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Coomans CP, Geerling JJ, van den Berg SAA, van Diepen HC, Garcia-Tardón N, Thomas A, Schröder-van der Elst JP, Ouwens DM, Pijl H, Rensen PCN, Havekes LM, Guigas B, Romijn JA. The insulin sensitizing effect of topiramate involves KATP channel activation in the central nervous system. Br J Pharmacol 2014; 170:908-18. [PMID: 23957854 DOI: 10.1111/bph.12338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 08/01/2013] [Accepted: 08/11/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Topiramate improves insulin sensitivity, in addition to its antiepileptic action. However, the underlying mechanism is unknown. Therefore, the present study was aimed at investigating the mechanism of the insulin-sensitizing effect of topiramate both in vivo and in vitro. EXPERIMENTAL APPROACH Male C57Bl/6J mice were fed a run-in high-fat diet for 6 weeks, before receiving topiramate or vehicle mixed in high-fat diet for an additional 6 weeks. Insulin sensitivity was assessed by hyperinsulinaemic-euglycaemic clamp. The extent to which the insulin sensitizing effects of topiramate were mediated through the CNS were determined by concomitant i.c.v. infusion of vehicle or tolbutamide, an inhibitor of ATP-sensitive potassium channels in neurons. The direct effects of topiramate on insulin signalling and glucose uptake were assessed in vivo and in cultured muscle cells. KEY RESULTS In hyperinsulinaemic-euglycaemic clamp conditions, therapeutic plasma concentrations of topiramate (∼4 μg·mL(-1) ) improved insulin sensitivity (glucose infusion rate + 58%). Using 2-deoxy-D-[(3) H]glucose, we established that topiramate improved the insulin-mediated glucose uptake by heart (+92%), muscle (+116%) and adipose tissue (+586%). Upon i.c.v. tolbutamide, the insulin-sensitizing effect of topiramate was completely abrogated. Topiramate did not directly affect glucose uptake or insulin signalling neither in vivo nor in cultured muscle cells. CONCLUSION AND IMPLICATIONS In conclusion, topiramate stimulates insulin-mediated glucose uptake in vivo through the CNS. These observations illustrate the possibility of pharmacological modulation of peripheral insulin resistance through a target in the CNS.
Collapse
Affiliation(s)
- C P Coomans
- Department of Endocrinology and Metabolic Disorders, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Geerling JJ, Boon MR, van der Zon GC, van den Berg SAA, van den Hoek AM, Lombès M, Princen HMG, Havekes LM, Rensen PCN, Guigas B. Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice. Diabetes 2014; 63:880-91. [PMID: 24270984 DOI: 10.2337/db13-0194] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metformin is the first-line drug for the treatment of type 2 diabetes. Besides its well-characterized antihyperglycemic properties, metformin also lowers plasma VLDL triglyceride (TG). In this study, we investigated the underlying mechanisms in APOE*3-Leiden.CETP mice, a well-established model for human-like lipoprotein metabolism. We found that metformin markedly lowered plasma total cholesterol and TG levels, an effect mostly due to a decrease in VLDL-TG, whereas HDL was slightly increased. Strikingly, metformin did not affect hepatic VLDL-TG production, VLDL particle composition, and hepatic lipid composition but selectively enhanced clearance of glycerol tri[(3)H]oleate-labeled VLDL-like emulsion particles into brown adipose tissue (BAT). BAT mass and lipid droplet content were reduced in metformin-treated mice, pointing to increased BAT activation. In addition, both AMP-activated protein kinase α1 (AMPKα1) expression and activity and HSL and mitochondrial content were increased in BAT. Furthermore, therapeutic concentrations of metformin increased AMPK and HSL activities and promoted lipolysis in T37i differentiated brown adipocytes. Collectively, our results identify BAT as an important player in the TG-lowering effect of metformin by enhancing VLDL-TG uptake, intracellular TG lipolysis, and subsequent mitochondrial fatty acid oxidation. Targeting BAT might therefore be considered as a future therapeutic strategy for the treatment of dyslipidemia.
Collapse
Affiliation(s)
- Janine J Geerling
- Department of General Internal Medicine, Endocrinology, and Metabolic Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Geerling JJ, Boon MR, Kooijman S, Parlevliet ET, Havekes LM, Romijn JA, Meurs IM, Rensen PCN. Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies. J Lipid Res 2014; 55:180-9. [PMID: 24285857 PMCID: PMC3886657 DOI: 10.1194/jlr.r045013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/27/2013] [Indexed: 12/16/2022] Open
Abstract
Important players in triglyceride (TG) metabolism include the liver (production), white adipose tissue (WAT) (storage), heart and skeletal muscle (combustion to generate ATP), and brown adipose tissue (BAT) (combustion toward heat), the collective action of which determine plasma TG levels. Interestingly, recent evidence points to a prominent role of the hypothalamus in TG metabolism through innervating the liver, WAT, and BAT mainly via sympathetic branches of the autonomic nervous system. Here, we review the recent findings in the area of sympathetic control of TG metabolism. Various neuronal populations, such as neuropeptide Y (NPY)-expressing neurons and melanocortin-expressing neurons, as well as peripherally produced hormones (i.e., GLP-1, leptin, and insulin), modulate sympathetic outflow from the hypothalamus toward target organs and thereby influence peripheral TG metabolism. We conclude that sympathetic stimulation in general increases lipolysis in WAT, enhances VLDL-TG production by the liver, and increases the activity of BAT with respect to lipolysis of TG, followed by combustion of fatty acids toward heat. Moreover, the increased knowledge about the involvement of the neuroendocrine system in TG metabolism presented in this review offers new therapeutic options to fight hypertriglyceridemia by specifically modulating sympathetic nervous system outflow toward liver, BAT, or WAT.
Collapse
Affiliation(s)
- Janine J. Geerling
- Departments of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R. Boon
- Departments of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Kooijman
- Departments of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Edwin T. Parlevliet
- Departments of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Louis M. Havekes
- Departments of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Gaubius Laboratory, Netherlands Organization for Applied Scientific Research - Metabolic Health Research, Leiden, The Netherlands
| | - Johannes A. Romijn
- Department of Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Illiana M. Meurs
- Departments of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C. N. Rensen
- Departments of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Eskens BJM, Leurgans TM, Vink H, Vanteeffelen JWGE. Early impairment of skeletal muscle endothelial glycocalyx barrier properties in diet-induced obesity in mice. Physiol Rep 2014; 2:e00194. [PMID: 24744873 PMCID: PMC3967677 DOI: 10.1002/phy2.194] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/03/2013] [Accepted: 12/08/2013] [Indexed: 01/05/2023] Open
Abstract
While previous studies have indicated an important role for the endothelial glycocalyx in regulation of microvascular function, it was recently shown that acute enzymatic glycocalyx degradation in rats was associated with an impaired insulin‐mediated glucose disposal. The aim of this study was to determine whether glycocalyx damage in skeletal muscle occurs at an early stage of diet‐induced obesity (DIO). The microcirculation of the hindlimb muscle of anesthetized C57Bl/6 mice, fed chow (CON) or a high‐fat diet (HFD) for 6 and 18 weeks (w), respectively, was visualized with a Sidestream Dark‐Field camera, and glycocalyx barrier properties were derived from the calculated perfused boundary region (PBR). Subsequently, an intraperitoneal glucose tolerance test was performed and the area under the curve (AUC) of blood glucose was calculated. Impairment of glycocalyx barrier properties was already apparent after 6 weeks of HFD and remained after 18 weeks of HFD (PBR [in μm]: 0.81 ± 0.03 in CON_6w vs. 0.97 ± 0.04 in HFD_6w and 1.02 ± 0.07 in HFD_18w [both P < 0.05]). Glucose intolerance appeared to develop more slowly (AUC [in mmol/L × 120 min]: 989 ± 61 in CON_6w vs. 1204 ± 89 in HFD_6w [P = 0.11] and 1468 ± 84 in HFD_18w [P < 0.05]) than the impairment of glycocalyx barrier properties. The data indicate that damage to the endothelial glycocalyx is an early event in DIO. It is suggested that glycocalyx damage may contribute to the development of insulin resistance in obesity. In this study we assessed glycocalyx barrier properties in skeletal muscle using Sidestream Dark‐Field imaging at an early and later stage of diet‐induced obesity in mice, by feeding them a high‐fat diet for 6 and 18 weeks, respectively. Glycocalyx barrier properties in hindlimb muscle microcirculation were found to be impaired after 6 weeks already. Our results suggest that in obesity glycocalyx damage represents an early aspect of microvascular dysfunction which may as well contribute to the development of glucose intolerance.
Collapse
Affiliation(s)
- Bart J M Eskens
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Thomas M Leurgans
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Hans Vink
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jurgen W G E Vanteeffelen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Townsend KL, An D, Lynes MD, Huang TL, Zhang H, Goodyear LJ, Tseng YH. Increased mitochondrial activity in BMP7-treated brown adipocytes, due to increased CPT1- and CD36-mediated fatty acid uptake. Antioxid Redox Signal 2013; 19:243-57. [PMID: 22938691 PMCID: PMC3691916 DOI: 10.1089/ars.2012.4536] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS Brown adipose tissue dissipates chemical energy in the form of heat and regulates triglyceride and glucose metabolism in the body. Factors that regulate fatty acid uptake and oxidation in brown adipocytes have not yet been fully elucidated. Bone morphogenetic protein 7 (BMP7) is a growth factor capable of inducing brown fat mitochondrial biogenesis during differentiation from adipocyte progenitors. Administration of BMP7 to mice also results in increased energy expenditure. To determine if BMP7 is able to affect the mitochondrial activity of mature brown adipocytes, independent of the differentiation process, we delivered BMP7 to mature brown adipocytes and measured mitochondrial activity. RESULTS We found that BMP7 increased mitochondrial activity, including fatty acid oxidation and citrate synthase activity, without increasing the mitochondrial number. This was accompanied by an increase in fatty acid uptake and increased protein expression of CPT1 and CD36, which import fatty acids into the mitochondria and the cell, respectively. Importantly, inhibition of either CPT1 or CD36 resulted in a blunting of the mitochondrial activity of BMP7-treated cells. INNOVATION These findings uncover a novel pathway regulating mitochondrial activities in mature brown adipocytes by BMP7-mediated fatty acid uptake and oxidation. CONCLUSION In conclusion, BMP7 increases mitochondrial activity in mature brown adipocytes via increased fatty acid uptake and oxidation, a process that requires the fatty acid transporters CPT1 and CD36.
Collapse
Affiliation(s)
- Kristy L Townsend
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
van den Berg SAA, Heemskerk MM, Geerling JJ, van Klinken JB, Schaap FG, Bijland S, Berbée JFP, van Harmelen VJA, Pronk ACM, Schreurs M, Havekes LM, Rensen PCN, van Dijk KW. Apolipoprotein A5 deficiency aggravates high-fat diet-induced obesity due to impaired central regulation of food intake. FASEB J 2013; 27:3354-62. [PMID: 23650188 DOI: 10.1096/fj.12-225367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutations in apolipoprotein A5 (APOA5) have been associated with hypertriglyceridemia in humans and mice. This has been attributed to a stimulating role for APOA5 in lipoprotein lipase-mediated triglyceride hydrolysis and hepatic clearance of lipoprotein remnant particles. However, because of the low APOA5 plasma abundance, we investigated an additional signaling role for APOA5 in high-fat diet (HFD)-induced obesity. Wild-type (WT) and Apoa5(-/-) mice fed a chow diet showed no difference in body weight or 24-h food intake (Apoa5(-/-), 4.5±0.6 g; WT, 4.2±0.5 g), while Apoa5(-/-) mice fed an HFD ate more in 24 h (Apoa5(-/-), 2.8±0.4 g; WT, 2.5±0.3 g, P<0.05) and became more obese than WT mice. Also, intravenous injection of APOA5-loaded VLDL-like particles lowered food intake (VLDL control, 0.26±0.04 g; VLDL+APOA5, 0.11±0.07 g, P<0.01). In addition, the HFD-induced hyperphagia of Apoa5(-/-) mice was prevented by adenovirus-mediated hepatic overexpression of APOA5. Finally, intracerebroventricular injection of APOA5 reduced food intake compared to injection of the same mouse with artificial cerebral spinal fluid (0.40±0.11 g; APOA5, 0.23±0.08 g, P<0.01). These data indicate that the increased HFD-induced obesity of Apoa5(-/-) mice as compared to WT mice is at least partly explained by hyperphagia and that APOA5 plays a role in the central regulation of food intake.
Collapse
|
18
|
Scherer T, Lindtner C, Zielinski E, O'Hare J, Filatova N, Buettner C. Short term voluntary overfeeding disrupts brain insulin control of adipose tissue lipolysis. J Biol Chem 2012; 287:33061-9. [PMID: 22810223 PMCID: PMC3463338 DOI: 10.1074/jbc.m111.307348] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/06/2012] [Indexed: 12/20/2022] Open
Abstract
Insulin controls fatty acid (FA) release from white adipose tissue (WAT) through direct effects on adipocytes and indirectly through hypothalamic signaling by reducing sympathetic nervous system outflow to WAT. Uncontrolled FA release from WAT promotes lipotoxicity, which is characterized by inflammation and insulin resistance that leads to and worsens type 2 diabetes. Here we tested whether early diet-induced insulin resistance impairs the ability of hypothalamic insulin to regulate WAT lipolysis and thus contributes to adipose tissue dysfunction. To this end we fed male Sprague-Dawley rats a 10% lard diet (high fat diet (HFD)) for 3 consecutive days, which is known to induce systemic insulin resistance. Rats were studied by euglycemic pancreatic clamps and concomitant infusion of either insulin or vehicle into the mediobasal hypothalamus. Short term HFD feeding led to a 37% increase in caloric intake and elevated base-line free FAs and insulin levels compared with rats fed regular chow. Overfeeding did not impair insulin signaling in WAT, but it abolished the ability of mediobasal hypothalamus insulin to suppress WAT lipolysis and hepatic glucose production as assessed by glycerol and glucose flux. HFD feeding also increased hypothalamic levels of the endocannabinoid 2-arachidonoylglycerol after only 3 days. In summary, overfeeding impairs hypothalamic insulin action, which may contribute to unrestrained lipolysis seen in human obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Thomas Scherer
- From the Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - Claudia Lindtner
- From the Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - Elizabeth Zielinski
- From the Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - James O'Hare
- From the Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - Nika Filatova
- From the Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| | - Christoph Buettner
- From the Department of Medicine and Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029
| |
Collapse
|
19
|
Coomans CP, Biermasz NR, Geerling JJ, Guigas B, Rensen PCN, Havekes LM, Romijn JA. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice. Diabetes 2011; 60:3132-40. [PMID: 22028182 PMCID: PMC3219951 DOI: 10.2337/db10-1100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. RESEARCH DESIGN AND METHODS Tolbutamide, an inhibitor of ATP-sensitive K(+) channels (K(ATP) channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[(14)C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[(3)H]glucose uptake. RESULTS During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. CONCLUSIONS Insulin stimulates glucose uptake in muscle in part through effects via K(ATP) channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet-induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance.
Collapse
Affiliation(s)
- Claudia P Coomans
- Department of Endocrinology and Metabolic Disorders, Leiden University Medical Center, Leiden, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|