1
|
Zheng M, Su Q, Wu H, Cai C, Ninh LT, Cai H. Elucidating Bile Acid Tolerance in Saccharomyces cerevisiae: Effects on Sterol Biosynthesis and Transport Protein Expression. Foods 2024; 13:3405. [PMID: 39517189 PMCID: PMC11544841 DOI: 10.3390/foods13213405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
The tolerance of Saccharomyces cerevisiae to high concentrations of bile acids is intricately linked to its potential as a probiotic. While the survival of yeast under high concentrations of bile acids has been demonstrated, the specific mechanisms of tolerance remain inadequately elucidated. This study aims to elucidate the tolerance mechanisms of S. cerevisiae CEN.PK2-1C under conditions of elevated bile acid concentrations. Through growth curve analyses and scanning electron microscopy (SEM), we examined the impact of high bile acid concentrations on yeast growth and cellular morphology. Additionally, transcriptomic sequencing and molecular docking analyses were employed to explore differentially expressed genes under high bile acid conditions, with particular emphasis on ATP-binding cassette (ABC) transporters and steroid hormone biosynthesis. Our findings indicate that high concentrations of bile acids induce significant alterations in the sterol synthesis pathway and transporter protein expression in S. cerevisiae. These alterations primarily function to regulate sterol synthesis pathways to maintain cellular structure and sustain growth, while enhanced expression of transport proteins improves tolerance to elevated bile acid levels. This study elucidates the tolerance mechanisms of S. cerevisiae under high bile acid conditions and provides a theoretical foundation for optimizing fermentation processes and process control.
Collapse
Affiliation(s)
- Miao Zheng
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (M.Z.); suqi99-@outlook.com (Q.S.); (H.W.); (C.C.)
| | - Qi Su
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (M.Z.); suqi99-@outlook.com (Q.S.); (H.W.); (C.C.)
| | - Haoqing Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (M.Z.); suqi99-@outlook.com (Q.S.); (H.W.); (C.C.)
| | - Chenggang Cai
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (M.Z.); suqi99-@outlook.com (Q.S.); (H.W.); (C.C.)
| | - Le Thanh Ninh
- Department of Food Science and Engineering, National University of Singapore, Singapore 117542, Singapore;
| | - Haiying Cai
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (M.Z.); suqi99-@outlook.com (Q.S.); (H.W.); (C.C.)
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Tabe S, Hikiji H, Hashidate‐Yoshida T, Shindou H, Shimizu T, Tominaga K. The role of lysophosphatidylcholine acyltransferase 2 in osteoblastic differentiation of C2C12 cells. FEBS Open Bio 2024; 14:1490-1502. [PMID: 39075841 PMCID: PMC11492341 DOI: 10.1002/2211-5463.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 07/31/2024] Open
Abstract
Glycerophospholipids, a primary component of cellular membranes, play important structural and functional roles in cells. In the remodelling pathway (Lands' cycle), the concerted actions of phospholipase As and lysophospholipid acyltransferases (LPLATs) contribute to the incorporation of diverse fatty acids in glycerophospholipids in an asymmetric manner, which differ between cell types. In this study, the role of LPLATs in osteoblastic differentiation of C2C12 cells was investigated. Gene and protein expression levels of lysophosphatidylcholine acyltransferase 2 (LPCAT2), one of the LPLATs, increased during osteoblastic differentiation in C2C12 cells. LPCAT2 knockdown in C2C12 cells downregulated the expression of osteoblastic differentiation markers and the number and size of lipid droplets (LDs) and suppressed the phosphorylation of Smad1/5/9. In addition, LPCAT2 knockdown inhibited Snail1 and the downstream target of Runx2 and vitamin D receptor (VDR). These results suggest that LPCAT2 modulates osteoblastic differentiation in C2C12 cells through the bone morphogenetic protein (BMP)/Smad signalling pathway.
Collapse
Affiliation(s)
- Shirou Tabe
- Division of Oral and Maxillofacial Surgery, Department of Science of Physical FunctionsKyushu Dental UniversityKitakyushu‐shiJapan
| | - Hisako Hikiji
- School of Oral Health SciencesKyushu Dental UniversityKitakyushu‐shiJapan
| | - Tomomi Hashidate‐Yoshida
- Department of Lipid Life Science, Research InstituteNational Center for Global Health and MedicineShinjuku‐kuJapan
| | - Hideo Shindou
- Department of Lipid Life Science, Research InstituteNational Center for Global Health and MedicineShinjuku‐kuJapan
- Agency for Medical Research and Development‐Core Research for Evolutional Medical Science and Technology (AMED‐CREST), AMEDChiyoda‐kuJapan
| | - Takao Shimizu
- Department of Lipid Life Science, Research InstituteNational Center for Global Health and MedicineShinjuku‐kuJapan
- Department of Lipidomics, Graduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Kazuhiro Tominaga
- Division of Oral and Maxillofacial Surgery, Department of Science of Physical FunctionsKyushu Dental UniversityKitakyushu‐shiJapan
| |
Collapse
|
3
|
Shimizu K, Ono M, Mikamoto T, Urayama Y, Yoshida S, Hase T, Michinaga S, Nakanishi H, Iwasaki M, Terada T, Sakurai F, Mizuguchi H, Shindou H, Tomita K, Nishinaka T. Overexpression of lysophospholipid acyltransferase, LPLAT10/LPCAT4/LPEAT2, in the mouse liver increases glucose-stimulated insulin secretion. FASEB J 2024; 38:e23425. [PMID: 38226852 DOI: 10.1096/fj.202301594rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Postprandial hyperglycemia is an early indicator of impaired glucose tolerance that leads to type 2 diabetes mellitus (T2DM). Alterations in the fatty acid composition of phospholipids have been implicated in diseases such as T2DM and nonalcoholic fatty liver disease. Lysophospholipid acyltransferase 10 (LPLAT10, also called LPCAT4 and LPEAT2) plays a role in remodeling fatty acyl chains of phospholipids; however, its relationship with metabolic diseases has not been fully elucidated. LPLAT10 expression is low in the liver, the main organ that regulates metabolism, under normal conditions. Here, we investigated whether overexpression of LPLAT10 in the liver leads to improved glucose metabolism. For overexpression, we generated an LPLAT10-expressing adenovirus (Ad) vector (Ad-LPLAT10) using an improved Ad vector. Postprandial hyperglycemia was suppressed by the induction of glucose-stimulated insulin secretion in Ad-LPLAT10-treated mice compared with that in control Ad vector-treated mice. Hepatic and serum levels of phosphatidylcholine 40:7, containing C18:1 and C22:6, were increased in Ad-LPLAT10-treated mice. Serum from Ad-LPLAT10-treated mice showed increased glucose-stimulated insulin secretion in mouse insulinoma MIN6 cells. These results indicate that changes in hepatic phosphatidylcholine species due to liver-specific LPLAT10 overexpression affect the pancreas and increase glucose-stimulated insulin secretion. Our findings highlight LPLAT10 as a potential novel therapeutic target for T2DM.
Collapse
Affiliation(s)
- Kahori Shimizu
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Moe Ono
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Takenari Mikamoto
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Yuya Urayama
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Sena Yoshida
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tomomi Hase
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | | | - Miho Iwasaki
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tomoyuki Terada
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Tomita
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| |
Collapse
|
4
|
Chen Q, Zhang W, Xiao L, Sun Q, Wu F, Liu G, Wang Y, Pan Y, Wang Q, Zhang J. Multi-Omics Reveals the Effect of Crossbreeding on Some Precursors of Flavor and Nutritional Quality of Pork. Foods 2023; 12:3237. [PMID: 37685169 PMCID: PMC10486348 DOI: 10.3390/foods12173237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Over the last several decades, China has continuously introduced Duroc boars and used them as breeding boars. Although this crossbreeding method has increased pork production, it has affected pork quality. Nowadays, one of the primary goals of industrial breeding and production systems is to enhance the quality of meat. This research analyzed the molecular mechanisms that control the quality of pork and may be used as a guide for future efforts to enhance meat quality. The genetic mechanisms of cross-breeding for meat quality improvement were investigated by combining transcriptome and metabolome analysis, using Chinese native Jiaxing black (JXB) pigs and crossbred Duroc × Duroc × Berkshire × JXB (DDBJ) pigs. In the longissimus Dorsi muscle, the content of inosine monophosphate, polyunsaturated fatty acid, and amino acids were considerably higher in JXB pigs in contrast with that of DDBJ pigs, whereas DDBJ pigs have remarkably greater levels of polyunsaturated fatty acids than JXB pigs. Differentially expressed genes (DEGs) and differential metabolites were identified using transcriptomic and metabolomic KEGG enrichment analyses. Differential metabolites mainly include amino acids, fatty acids, and phospholipids. In addition, several DEGs that may explain differences in meat quality between the two pig types were found, including genes associated with the metabolism of lipids (e.g., DGKA, LIPG, and LPINI), fatty acid (e.g., ELOVL5, ELOVL4, and ACAT2), and amino acid (e.g., SLC7A2, SLC7A4). Combined with the DEGS-enriched signaling pathways, the regulatory mechanisms related to amino acids, fatty acids, and phospholipids were mapped. The abundant metabolic pathways and DEGs may provide insight into the specific molecular mechanism that regulates meat quality. Optimizing the composition of fatty acids, phospholipids, amino acids, and other compounds in pork is conducive to improving meat quality. Overall, these findings will provide useful information and further groundwork for enhancing the meat quality that may be achieved via hybrid breeding.
Collapse
Affiliation(s)
- Qiangqiang Chen
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Q.C.); (W.Z.); (L.X.); (Q.S.); (F.W.); (Y.P.); (Q.W.)
| | - Wei Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Q.C.); (W.Z.); (L.X.); (Q.S.); (F.W.); (Y.P.); (Q.W.)
| | - Lixia Xiao
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Q.C.); (W.Z.); (L.X.); (Q.S.); (F.W.); (Y.P.); (Q.W.)
| | - Qian Sun
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Q.C.); (W.Z.); (L.X.); (Q.S.); (F.W.); (Y.P.); (Q.W.)
| | - Fen Wu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Q.C.); (W.Z.); (L.X.); (Q.S.); (F.W.); (Y.P.); (Q.W.)
| | - Guoliang Liu
- Zhejiang Qinglian Food Co., Ltd., Jiaxing 314317, China;
| | - Yuan Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100107, China;
| | - Yuchun Pan
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Q.C.); (W.Z.); (L.X.); (Q.S.); (F.W.); (Y.P.); (Q.W.)
| | - Qishan Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Q.C.); (W.Z.); (L.X.); (Q.S.); (F.W.); (Y.P.); (Q.W.)
| | - Jinzhi Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Q.C.); (W.Z.); (L.X.); (Q.S.); (F.W.); (Y.P.); (Q.W.)
| |
Collapse
|
5
|
Lu Y, Liang H, Li X, Chen H, Yang C. Pan-cancer analysis identifies LPCATs family as a prognostic biomarker and validation of LPCAT4/WNT/β-catenin/c-JUN/ACSL3 in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:204723. [PMID: 37294538 DOI: 10.18632/aging.204723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/16/2023] [Indexed: 06/10/2023]
Abstract
Lipid remodeling regulators are now being investigated as potential therapeutic targets for cancer therapy as a result of their involvement, which includes promoting cancer cells' adaptation to the restricted environment. Lysophosphatidylcholine acyltransferases (LPCATs, LPCAT1-4) are enzymes that regulate the remodeling of bio-membranes. The functions of these enzymes in cancer are largely unknown. In the current study, we found that genes belonging to the LPCAT family participated in tumor advancement and were strongly linked to dismal prognosis in many different malignancies. We constructed the LPCATs scores model and explored this model in pan-cancer. Malignant pathways in pan-cancer were positively related to LPCATs scores, and all pathways had strong links to the tumor microenvironment (TME). Multiple immune-associated features of the TME in pan-cancer were likewise associated with higher LPCATs scores. In addition, the LPCATs score functioned as a prognostic marker for immune checkpoint inhibitor (ICI) therapies in patients with cancer. LPCAT4 enhanced cell growth and cholesterol biosynthesis by up-regulating ACSL3 in hepatocellular carcinoma (HCC). WNT/β-catenin/c-JUN signaling pathway mediated LPCAT4's regulation on ACSL3. These findings demonstrated that genes in the LPCAT family might be used as cancer immunotherapy and prognosis-related biomarkers. Specifically, LPCAT4 could be a treatment target of HCC.
Collapse
Affiliation(s)
- Yaoyong Lu
- Department of Oncology (Section 3), Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Hongfeng Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) Guangzhou, Guangdong, China
| | - Xiaoyin Li
- Department of Oncology (Section 3), Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Haiwen Chen
- Department of Oncology (Section 3), Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Changfu Yang
- Department of Oncology (Section 3), Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| |
Collapse
|
6
|
Feng H, Yousuf S, Liu T, Zhang X, Huang W, Li A, Xie L, Miao X. The comprehensive detection of miRNA and circRNA in the regulation of intramuscular and subcutaneous adipose tissue of Laiwu pig. Sci Rep 2022; 12:16542. [PMID: 36192451 PMCID: PMC9530237 DOI: 10.1038/s41598-022-21045-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractcircRNAs, as miRNA sponges, participate in many important biological processes. However, it remains unclear whether circRNAs can regulate lipid metabolism. This study aimed to explore the competing endogenouse RNA (ceRNA) regulatory network that affects the difference between intramuscular fat (IMF) and subcutaneous fat (SCF) deposition, and to screen key circRNAs and their regulatory genes. In this experiment, we identified 265 differentially expressed circRNAs, of which 187 up-regulated circRNA and 78 down-regulated circRNA in IMF. Subsequently, we annotated the function of DEcircRNA's host genes, and found that DEcircRNA's host genes were mainly involved in GO terms (including cellular response to fatty acids, lysophosphatidic acid acyltransferase activity, R-SMAD binding, etc.) and signaling pathways (fatty acid biosynthesis, Citrate cycle, TGF- β Signal pathway) related to adipogenesis, differentiation and lipid metabolism. By constructing a circRNA-miRNA network, we screened out DEcircRNA that can competitively bind to more miRNAs as key circRNAs (circRNA_06424 and circRNA_08840). Through the functional annotation of indirect target genes and protein network analysis, we found that circRNA_06424 affects the expression of PPARD, MMP9, UBA7 and other indirect target genes by competitively binding to miRNAs such as ssc-miR-339-5p, ssc-miR-744 and ssc-miR-328, and participates in PPAR signaling pathway, Wnt signaling pathway, unsaturated fatty acid and other signaling pathways, resulting in the difference of fat deposition between IMF and SCF. This study provide a theoretical basis for further research investigating the differences of lipid metabolism in different adipose tissues, providing potential therapeutic targets for ectopic fat deposition and lipid metabolism diseases.
Collapse
|
7
|
Wu C, Xing X, Liu G, Su D, Li A, Gui S, Lu W, Liang J. Effects of Nongxiangxing baijiu (Chinese liquor) on mild alcoholic liver injury revealed by non-target metabolomics using ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry. J Biosci Bioeng 2022; 134:62-69. [PMID: 35597723 DOI: 10.1016/j.jbiosc.2022.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
Nongxiangxing baijiu (Chinese liquor) is one of the most widely consumed beverages in China. This liquor has been shown to contain large quantities of various bioactive ingredients that are beneficial to health. The goals of the present study were to examine the effects of moderate dose Nongxiangxing baijiu on alcoholic liver injury in rats, and to explore the mechanism of action of Nongxiangxing baijiu on alcoholic liver injury. To accomplish these goals, we developed a metabolomic analysis method based on ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) analysis and multivariate statistical analysis. Our serum lipid and hepatic histopathology results demonstrate that ethanol administration induced mild alcoholic liver injury in rats. However, these ethanol-induced changes were significantly alleviated in the Nongxiangxing baijiu group. These results suggest that moderate dose Nongxiangxing baijiu might have a preventive effect on mild alcoholic liver injury. Using our metabolomics method, we were able to identify 45 differential metabolites in serum and urine which could be used to characterize mild alcoholic liver injury in rats. Of these, 15 differential metabolites, including four Lysophosphatidylethanolamines, two phosphatidylcholines, four long-chain fatty acids, one porphyrin, two esters, one ceramide, and one triol, were regulated by Nongxiangxing baijiu. KEGG metabolic pathway analysis revealed that the main metabolic pathway regulated by Nongxiangxing baijiu was the glycerolipid pathway. Together, these findings provide evidence that moderate dose Nongxiangxing baijiu can reduce mild alcoholic liver injury (including metabolic disorders). Our study also provides preliminary data on the mechanism of action of Nongxiangxing baijiu in liver injury.
Collapse
Affiliation(s)
- Cuifang Wu
- Anhui Gujing Gongjiu Co. Ltd., Bozhou, 236820 Anhui, China
| | - Xiaofan Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guoying Liu
- Anhui Gujing Gongjiu Co. Ltd., Bozhou, 236820 Anhui, China
| | - Die Su
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Anjun Li
- Anhui Gujing Gongjiu Co. Ltd., Bozhou, 236820 Anhui, China
| | - Shuangying Gui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230021, China
| | - Wei Lu
- Anhui Gujing Gongjiu Co. Ltd., Bozhou, 236820 Anhui, China
| | - Juan Liang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230021, China.
| |
Collapse
|
8
|
Xu C, Hou L, Zhao J, Wang Y, Jiang F, Jiang Q, Zhu Z, Tian L. Exosomal let-7i-5p from three-dimensional cultured human umbilical cord mesenchymal stem cells inhibits fibroblast activation in silicosis through targeting TGFBR1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113302. [PMID: 35189518 DOI: 10.1016/j.ecoenv.2022.113302] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Silicosis of pulmonary fibrosis (PF) is related to long-term excessive inhalation of silica. The activation of fibroblasts into myofibroblasts is the main terminal effect leading to lung fibrosis, which is of great significance to the study of the occurrence and development of silicosis fibrosis and its prevention and treatment. Exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-Exos) are considered to be a potential therapy of silica-induced PF, however, their exact mechanism remains unknown. Therefore, this study aims to explore whether hucMSC-Exos affect the activation of fibroblasts to alleviate PF. In this study, a three-dimensional (3D) method was applied to culture hucMSCs and MRC-5 cells (human embryonic lung fibroblasts), and exosomes were isolated from serum-free media, identified by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and Western blotting analysis. Then, the study used an animal model of silica-induced PF to observe the effects of hucMSC-Exos and MRC-5-Exos on activation of fibroblasts. In addition, the activation of fibroblasts was analyzed by Western blotting analysis, wound healing, and migration assay with the treatment of hucMSC-Exos and MRC-5-Exos in NIH-3T3 cells (mouse embryonic fibroblasts). Furthermore, differential expression of microRNAs (DE miRNAs) was measured between hucMSCs-Exos and MRC-5-Exos by high throughput sequence. HucMSC-Exos inhibited the activation of fibroblasts in mice and NIH-3T3 cells. Let-7i-5p was significantly up-regulated in hucMSCs-Exos compared to MRC-5-Exos, which was related to silica-induced PF. Let-7i-5p of hucMSCs-Exos was responsible for the activation of fibroblasts by targeting TGFBR1. Meanwhile, Smad3 was also an important role in the activation of fibroblasts. The study demonstrates that hucMSCs-Exos act as a mediator that transfers let-7i-5p to inhibit the activation of fibroblasts, which alleviates PF through the TGFBR1/Smad3 signaling pathway. The mechanism has potential value for the treatment of silica-induced PF.
Collapse
Affiliation(s)
- Chunjie Xu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lin Hou
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jing Zhao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Fuyang Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
9
|
Li Z, Chiang YP, He M, Worgall TS, Zhou H, Jiang XC. Liver sphingomyelin synthase 1 deficiency causes steatosis, steatohepatitis, fibrosis, and tumorigenesis: An effect of glucosylceramide accumulation. iScience 2021; 24:103449. [PMID: 34927020 PMCID: PMC8649732 DOI: 10.1016/j.isci.2021.103449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/21/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Glucosylceramide (GluCer) was accumulated in sphingomyelin synthase 1 (SMS1) but not SMS2 deficient mouse tissues. In current study, we studied GluCer accumulation-mediated metabolic consequences. Livers from liver-specific Sms1/global Sms2 double-knockout (dKO) exhibited severe steatosis under a high-fat diet. Moreover, chow diet-fed ≥6-month-old dKO mice had liver impairment, inflammation, and fibrosis, compared with wild type and Sms2 KO mice. RNA sequencing showed 3- to 12-fold increases in various genes which are involved in lipogenesis, inflammation, and fibrosis. Further, we found that direct GluCer treatment (in vitro and in vivo) promoted hepatocyte to secrete more activated TGFβ1, which stimulated more collagen 1α1 production in hepatic stellate cells. Additionally, GluCer promoted more β-catenin translocation into the nucleus, thus promoting tumorigenesis. Importantly, human NASH patients had higher liver GluCer synthase and higher plasma GluCer. These findings implicated that GluCer accumulation is one of triggers promoting the development of NAFLD into NASH, then, fibrosis, and tumorigenesis.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Yeun-po Chiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Mulin He
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | | | - Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York, USA
| |
Collapse
|
10
|
Yang T, Wang X, Yuan Z, Miao Y, Wu Z, Chai Y, Yu Q, Wang H, Sun L, Huang X, Zhang L, Jiang Z. Sphingosine 1-phosphate receptor-1 specific agonist SEW2871 ameliorates ANIT-induced dysregulation of bile acid homeostasis in mice plasma and liver. Toxicol Lett 2020; 331:242-253. [PMID: 32579994 DOI: 10.1016/j.toxlet.2020.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated bile acid (BA) homeostasis is an extremely significant pathological phenomenon of intrahepatic cholestasis, and the accumulated BA could further trigger hepatocyte injury. Here, we showed that the expression of sphingosine-1-phosphate receptor 1 (S1PR1) was down-regulated by α-naphthylisothiocyanate (ANIT) in vivo and in vitro. The up-regulated S1PR1 induced by SEW2871 (a specific agonist of S1PR1) could improve ANIT-induced deficiency of hepatocyte tight junctions (TJs), cholestatic liver injury and the disrupted BA homeostasis in mice. BA metabolic profiles showed that SEW2871 not only reversed the disruption of plasma BA homeostasis, but also alleviated BA accumulation in the liver of ANIT-treated mice. Further quantitative analysis of 19 BAs showed that ANIT increased almost all BAs in mice plasma and liver, all of which were restored by SEW2871. Our data demonstrated that the top performing BAs were taurine conjugated bile acids (T-), especially taurocholic acid (TCA). Molecular mechanism studies indicated that BA transporters, synthetase, and BAs nuclear receptors (NRs) might be the important factors that maintained BA homeostasis by SEW2871 in ANIT-induced cholestasis. In conclusion, these results demonstrated that S1PR1 selective agonists might be the novel and potential effective agents for the treatment of intrahepatic cholestasis by recovering dysregulated BA homeostasis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xue Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zihang Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Ziteng Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Chai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Qiongna Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Haiyan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
11
|
Okamoto K, Koda M, Okamoto T, Onoyama T, Miyoshi K, Kishina M, Matono T, Kato J, Tokunaga S, Sugihara T, Hiramatsu A, Hyogo H, Tobita H, Sato S, Kawanaka M, Hara Y, Hino K, Chayama K, Murawaki Y, Isomoto H. Serum miR-379 expression is related to the development and progression of hypercholesterolemia in non-alcoholic fatty liver disease. PLoS One 2020; 15:e0219412. [PMID: 32106257 PMCID: PMC7046274 DOI: 10.1371/journal.pone.0219412] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) has a wide spectrum, eventually leading to cirrhosis and hepatic carcinogenesis. We previously reported that a series of microRNAs (miRNAs) mapped in the 14q32.2 maternally imprinted gene region (Dlk1-Dio3 mat) are related to NAFLD development and progression in a mouse model. We examined the suitability of miR-379, a circulating Dlk1-Dio3 mat miRNA, as a human NAFLD biomarker. Methods Eighty NAFLD patients were recruited for this study. miR-379 was selected from the putative Dlk1-Dio3 mat miRNA cluster because it exhibited the greatest expression difference between NAFLD and non-alcoholic steatohepatitis in our preliminary study. Real-time PCR was used to examine the expression levels of miR-379 and miR-16 as an internal control. One patient was excluded due to low RT-PCR signal. Results Compared to normal controls, serum miR-379 expression was significantly up-regulated in NAFLD patients. Receiver operating characteristic curve analysis suggested that miR-379 is a suitable marker for discriminating NAFLD patients from controls, with an area under the curve value of 0.72. Serum miR-379 exhibited positive correlations with alkaline phosphatase, total cholesterol, low-density-lipoprotein cholesterol and non-high-density-lipoprotein cholesterol levels in patients with early stage NAFLD (Brunt fibrosis stage 0 to 1). The correlation between serum miR-379 and cholesterol levels was lost in early stage NAFLD patients treated with statins. Software-based predictions indicated that various energy metabolism–related genes, including insulin-like growth factor-1 (IGF-1) and IGF-1 receptor, are potential targets of miR-379. Conclusions Serum miR-379 exhibits high potential as a biomarker for NAFLD. miR-379 appears to increase cholesterol lipotoxicity, leading to the development and progression of NAFLD, via interference with the expression of target genes, including those related to the IGF-1 signaling pathway. Our results could facilitate future research into the pathogenesis, diagnosis, and treatment of NAFLD.
Collapse
Affiliation(s)
- Kinya Okamoto
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
- * E-mail:
| | - Masahiko Koda
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Toshiaki Okamoto
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Takumi Onoyama
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Kenichi Miyoshi
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Manabu Kishina
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Tomomitsu Matono
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Jun Kato
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Shiho Tokunaga
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Takaaki Sugihara
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Akira Hiramatsu
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Hideyuki Hyogo
- Department of Gastroenterology and Hepatology, JA Hiroshima General Hospital, Hatsukaichi, Hiroshima, Japan
| | - Hiroshi Tobita
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Shuichi Sato
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Miwa Kawanaka
- Department of General Internal Medicine 2, General Medical Center, Kawasaki Medical School, Okayama, Okayama, Japan
| | - Yuichi Hara
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Yoshikazu Murawaki
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Hajime Isomoto
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| |
Collapse
|
12
|
Ishii H, Saitoh M, Sakamoto K, Sakamoto K, Saigusa D, Kasai H, Ashizawa K, Miyazawa K, Takeda S, Masuyama K, Yoshimura K. Lipidome-based rapid diagnosis with machine learning for detection of TGF-β signalling activated area in head and neck cancer. Br J Cancer 2020; 122:995-1004. [PMID: 32020064 PMCID: PMC7109155 DOI: 10.1038/s41416-020-0732-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 01/05/2023] Open
Abstract
Background Several pro-oncogenic signals, including transforming growth factor beta (TGF-β) signalling from tumour microenvironment, generate intratumoural phenotypic heterogeneity and result in tumour progression and treatment failure. However, the precise diagnosis for tumour areas containing subclones with cytokine-induced malignant properties remains clinically challenging. Methods We established a rapid diagnostic system based on the combination of probe electrospray ionisation-mass spectrometry (PESI-MS) and machine learning without the aid of immunohistological and biochemical procedures to identify tumour areas with heterogeneous TGF-β signalling status in head and neck squamous cell carcinoma (HNSCC). A total of 240 and 90 mass spectra were obtained from TGF-β-unstimulated and -stimulated HNSCC cells, respectively, by PESI-MS and were used for the construction of a diagnostic system based on lipidome. Results This discriminant algorithm achieved 98.79% accuracy in discrimination of TGF-β1-stimulated cells from untreated cells. In clinical human HNSCC tissues, this approach achieved determination of tumour areas with activated TGF-β signalling as efficiently as a conventional histopathological assessment using phosphorylated-SMAD2 staining. Furthermore, several altered peaks on mass spectra were identified as phosphatidylcholine species in TGF-β-stimulated HNSCC cells. Conclusions This diagnostic system combined with PESI-MS and machine learning encourages us to clinically diagnose intratumoural phenotypic heterogeneity induced by TGF-β.
Collapse
Affiliation(s)
- Hiroki Ishii
- Department of Otolaryngology, Head and Neck Surgery, Chuo-city, Japan.
| | - Masao Saitoh
- Center for Medical Education and Sciences, Chuo-city, Japan
| | - Kaname Sakamoto
- Department of Otolaryngology, Head and Neck Surgery, Chuo-city, Japan
| | - Kei Sakamoto
- Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo City, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | | | - Kei Ashizawa
- Department of Otolaryngology, Head and Neck Surgery, Chuo-city, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Chuo-city, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo-city, Japan
| | - Keisuke Masuyama
- Department of Otolaryngology, Head and Neck Surgery, Chuo-city, Japan
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo-city, Japan.
| |
Collapse
|
13
|
Beyoğlu D, Idle JR. Metabolomic and Lipidomic Biomarkers for Premalignant Liver Disease Diagnosis and Therapy. Metabolites 2020; 10:E50. [PMID: 32012846 PMCID: PMC7074571 DOI: 10.3390/metabo10020050] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a plethora of attempts to discover biomarkers that are more reliable than α-fetoprotein for the early prediction and prognosis of hepatocellular carcinoma (HCC). Efforts have involved such fields as genomics, transcriptomics, epigenetics, microRNA, exosomes, proteomics, glycoproteomics, and metabolomics. HCC arises against a background of inflammation, steatosis, and cirrhosis, due mainly to hepatic insults caused by alcohol abuse, hepatitis B and C virus infection, adiposity, and diabetes. Metabolomics offers an opportunity, without recourse to liver biopsy, to discover biomarkers for premalignant liver disease, thereby alerting the potential of impending HCC. We have reviewed metabolomic studies in alcoholic liver disease (ALD), cholestasis, fibrosis, cirrhosis, nonalcoholic fatty liver (NAFL), and nonalcoholic steatohepatitis (NASH). Specificity was our major criterion in proposing clinical evaluation of indole-3-lactic acid, phenyllactic acid, N-lauroylglycine, decatrienoate, N-acetyltaurine for ALD, urinary sulfated bile acids for cholestasis, cervonoyl ethanolamide for fibrosis, 16α-hydroxyestrone for cirrhosis, and the pattern of acyl carnitines for NAFL and NASH. These examples derive from a large body of published metabolomic observations in various liver diseases in adults, adolescents, and children, together with animal models. Many other options have been tabulated. Metabolomic biomarkers for premalignant liver disease may help reduce the incidence of HCC.
Collapse
Affiliation(s)
| | - Jeffrey R. Idle
- Arthur G. Zupko’s Division of Systems Pharmacology and Pharmacogenomics, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, USA;
| |
Collapse
|
14
|
Law SH, Chan ML, Marathe GK, Parveen F, Chen CH, Ke LY. An Updated Review of Lysophosphatidylcholine Metabolism in Human Diseases. Int J Mol Sci 2019; 20:ijms20051149. [PMID: 30845751 PMCID: PMC6429061 DOI: 10.3390/ijms20051149] [Citation(s) in RCA: 489] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidylcholine (LPC) is increasingly recognized as a key marker/factor positively associated with cardiovascular and neurodegenerative diseases. However, findings from recent clinical lipidomic studies of LPC have been controversial. A key issue is the complexity of the enzymatic cascade involved in LPC metabolism. Here, we address the coordination of these enzymes and the derangement that may disrupt LPC homeostasis, leading to metabolic disorders. LPC is mainly derived from the turnover of phosphatidylcholine (PC) in the circulation by phospholipase A2 (PLA2). In the presence of Acyl-CoA, lysophosphatidylcholine acyltransferase (LPCAT) converts LPC to PC, which rapidly gets recycled by the Lands cycle. However, overexpression or enhanced activity of PLA2 increases the LPC content in modified low-density lipoprotein (LDL) and oxidized LDL, which play significant roles in the development of atherosclerotic plaques and endothelial dysfunction. The intracellular enzyme LPCAT cannot directly remove LPC from circulation. Hydrolysis of LPC by autotaxin, an enzyme with lysophospholipase D activity, generates lysophosphatidic acid, which is highly associated with cancers. Although enzymes with lysophospholipase A1 activity could theoretically degrade LPC into harmless metabolites, they have not been found in the circulation. In conclusion, understanding enzyme kinetics and LPC metabolism may help identify novel therapeutic targets in LPC-associated diseases.
Collapse
Affiliation(s)
- Shi-Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Mei-Lin Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital, MacKay Medical College, Taipei 10449, Taiwan.
| | - Gopal K Marathe
- Department of Studies in Biochemistry, Manasagangothri, University of Mysore, Mysore-570006, India.
| | - Farzana Parveen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chu-Huang Chen
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
15
|
Pérez‐Ramírez IF, Gallegos‐Corona MA, González‐Dávalos ML, Mora O, Rocha‐Guzmán NE, Reynoso‐Camacho R. Mechanisms Associated with the Effect of
Hypericum perforatum
and
Smilax cordifolia
Aqueous Extracts on Hepatic Steatosis in Obese Rats: A Lipidomic Approach. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | - María L. González‐Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN)Instituto de NeurobiologíaUniversidad Nacional Autónoma de MéxicoQuerétaro76230México
| | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN)Instituto de NeurobiologíaUniversidad Nacional Autónoma de MéxicoQuerétaro76230México
| | - Nuria E. Rocha‐Guzmán
- Departamento de Ingenierías Química y BioquímicaUnidad de PosgradoInvestigación y Desarrollo Tecnológico (UPIDET)Instituto Tecnológico de DurangoDurango34080México
| | | |
Collapse
|
16
|
Zhang QQ, Huang WQ, Gao YQ, Han ZD, Zhang W, Zhang ZJ, Xu FG. Metabolomics Reveals the Efficacy of Caspase Inhibition for Saikosaponin D-Induced Hepatotoxicity. Front Pharmacol 2018; 9:732. [PMID: 30034340 PMCID: PMC6043666 DOI: 10.3389/fphar.2018.00732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/18/2018] [Indexed: 12/23/2022] Open
Abstract
Saikosaponin d (SSd) is a major hepatoprotective component of saikosaponins derived from Radix Bupleuri, which was also linked to hepatotoxicity. Previous studies have demonstrated that caspases play a key role in SSd-induced liver cell death. Our in vitro and in vivo studies also showed that treatment with caspase inhibitor z-VAD-fmk could significantly reduce the L02 hepatocyte cells death and lessen the degree of liver damage in mice caused by SSd. In order to further reveal the underlying mechanisms of caspase inhibition in SSd-induced hepatotoxicity, mass spectrometry based untargeted metabolomics was conducted. Significant alterations in metabolic profiling were observed in SSd-treated group, which could be restored by caspase inhibition. Bile acids and phospholipids were screened out to be most significant by spearman correlation analysis, heatmap analysis and S-Plot analysis. These findings were further confirmed by absolute quantitation of bile acids via targeted metabolomics approach. Furthermore, cytokine profiles were analyzed to identify potential associations between inflammation and metabolites. The study could provide deeper insight into the hepatotoxicity of SSd and the efficacy of caspase inhibition.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Wan-Qiu Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Yi-Qiao Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Zhao-di Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Wei Zhang
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau
| | - Zun-Jian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Feng-Guo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
17
|
SARNOVA L, GREGOR M. Biliary System Architecture: Experimental Models and Visualization Techniques. Physiol Res 2017; 66:383-390. [PMID: 28248543 DOI: 10.33549/physiolres.933499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The complex architecture of the liver biliary network represents a structural prerequisite for the formation and secretion of bile as well as excretion of toxic substances through bile ducts. Disorders of the biliary tract affect a significant portion of the worldwide population, often leading to cholestatic liver diseases. Cholestatic liver disease is a condition that results from an impairment of bile formation or bile flow to the gallbladder and duodenum. Cholestasis leads to dramatic changes in biliary tree architecture, worsening liver disease and systemic illness. Recent studies show that the prevalence of cholestatic liver diseases is increasing. The availability of well characterized animal models, as well as development of visualization approaches constitutes a critical asset to develop novel pathogenetic concepts and new treatment strategies.
Collapse
Affiliation(s)
| | - M. GREGOR
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
18
|
Chronic microaspiration of bile acids induces lung fibrosis through multiple mechanisms in rats. Clin Sci (Lond) 2017; 131:951-963. [PMID: 28341659 DOI: 10.1042/cs20160926] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022]
Abstract
Gastroesophageal reflux (GER) and microaspiration of duodenogastric refluxate have been recognized as a risk factor for pulmonary fibrosis. Recent evidence suggests that bile acid microaspiration may contribute to the development of lung fibrosis. However, the molecular evidence is scarce and the underlying mechanisms remain to be elucidated. We have recently demonstrated that bile acids induce activation of alveolar epithelial cells (AECs) and lung fibroblasts in vitro In the present study, a rat model of bile acid microaspiration was established by weekly intratracheal instillation of three major bile acids including chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), and lithocholic acid (LCA). Repeated microaspiration of CDCA, DCA, and LCA caused fibrotic changes, including alveolar wall thickening and extensive collagen deposition, in rat lungs. Bile acid microaspiration also induced alveolar epithelial-mesenchymal transition (EMT), as indicated by up-regulation of mesenchymal markers α-smooth muscle actin (α-SMA) and vimentin, as well as down-regulaton of epithelial markers E-cadherin and cytokeratin in alveolar epithelium of rat lungs. The expression of fibrogenic mediators, including transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and periostin, was significantly elevated in rat lungs exposed to microaspiration of bile acids. Furthermore, microaspiration of bile acids also induced p-Smad3 and farnesoid X receptor (FXR) expression in rat lungs. Our findings suggest that microaspiration of bile acids could promote the development of pulmonary fibrosis in vivo, possibly via stimulating fibrogenic mediator expression and activating TGF-β1/Smad3 signaling and FXR.
Collapse
|
19
|
Zhao Q, Yang R, Liu F, Wang J, Hu DD, Yang XW, Li F. Metabolomics reveals that PPARα activation protects against lithocholic acid-induced liver injury. RSC Adv 2017. [DOI: 10.1039/c7ra08823j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fenofibrate protected against LCA-induced liver injury.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- China
| | - Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- China
| | - Fang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- China
| | - Jing Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- China
| | - Dan-Dan Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- China
| | - Xiu-Wei Yang
- School of Pharmaceutical Sciences
- Peking University Health Science Center
- Peking University
- Beijing 100191
- China
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- China
| |
Collapse
|
20
|
Fang ZZ, Zhang D, Cao YF, Xie C, Lu D, Sun DX, Tanaka N, Jiang C, Chen Q, Chen Y, Wang H, Gonzalez FJ. Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression. Toxicol Appl Pharmacol 2016; 291:21-27. [PMID: 26706406 PMCID: PMC4718832 DOI: 10.1016/j.taap.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/29/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023]
Abstract
Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showed that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4(+) naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression.
Collapse
Affiliation(s)
- Zhong-Ze Fang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, China; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian, China
| | - Dunfang Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun-Feng Cao
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian, China
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dan Lu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Dong-Xue Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Changtao Jiang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haina Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Han JC, Yu J, Gao YJ. Lipidomics investigation of reversal effect of glycyrrhizin (GL) towards lithocholic acid (LCA)-induced alteration of phospholipid profiles. PHARMACEUTICAL BIOLOGY 2014; 52:1624-1628. [PMID: 25289528 DOI: 10.3109/13880209.2014.900810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Glycyrrhizin (GL), the major ingredient isolated from licorice, exerts multiple pharmacological activities. OBJECTIVE To elucidate the protective mechanism of GL towards lithocholic acid (LCA)-induced liver toxicity using lipidomics. MATERIALS AND METHODS GL (200 mg/kg) dissolved in corn oil was treated intraperitoneally for 7 d. On the 4th day, 200 mg/kg LCA was used to treat mice (i.p., twice daily) for another 4 d. The protective role of GL towards LCA-induced liver toxicity was investigated through evaluating the liver histology and the activity of alanine transaminase (ALT). The complete lipid profile was employed using UFLC-Triple TOF MS-based lipidomics. RESULTS Intraperitoneal (i.p.) administration of 200 mg/kg GL can significantly protect LCA-induced liver damage, indicated by alleviated histology alteration and prevention of the ALT elevation. Lipidomics analysis can well separate the control group from LCA-treated group, and three lipid components were major contributors, including LPC 16:0, LPC 18:0, and LPC 18:2. GL treatment can significantly prevent LCA-induced reduction of these three lipid compounds, providing a new explanation for GL's protection mechanism towards LCA-induced liver toxicity. DISCUSSION AND CONCLUSION The recent study highlights the importance of lipidomics in elucidating the therapeutic mechanism of herbs.
Collapse
Affiliation(s)
- Jing-Chun Han
- Oncology Department, First Affiliated Hospital of Dalian Medical University , Dalian , China and
| | | | | |
Collapse
|
22
|
Jia B, Yu ZJ, Duan ZF, Lü XQ, Li JJ, Liu XR, Sun R, Gao XJ, Wang YF, Yan JY, Kan QC. Hyperammonaemia induces hepatic injury with alteration of gene expression profiles. Liver Int 2014; 34:748-58. [PMID: 24134218 DOI: 10.1111/liv.12365] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 10/13/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hyperammonaemia is a serious metabolic disorder commonly observed in patients with hepatic failure. However, it is unknown whether hyperammonaemia has a direct adverse effect on the hepatocytes and thereby serves as both a cause and effect of hepatic failure. AIMS The purposes were to determine whether hepatic injury can be caused by hyperammonaemia, and if so, screen the key genes involved in hyperammonaemia. METHODS Hyperammonaemic rats were established via intragastric administration of the ammonium chloride solution. The liver tissues were assessed via biochemistry, histology, immunohistochemistry and microarray analysis. Selected genes were confirmed by quantitative RT-PCR. RESULTS Administration of the ammonium chloride caused the hyperammonaemia, accompanied with the changes of plasma markers indicating hepatic injury. A pathological assessment demonstrated increased apoptosis and higher level of cyclin D1 and cyclin A in hyperammonaemic rat liver. Microarray was performed on the liver samples and 198 differentially expressed genes were identified in hyperammonaemic rats and validated by quantitative RT-PCR. These genes were associated with many vital functional classes and belonged to different signal transduction pathways. CONCLUSIONS This study demonstrates that hyperammonaemia can directly induce hepatic injury via the hepatocyte apoptosis. Gene expression profile may provide the possible explanations and mechanisms for the hepatic injury induced by hyperammonaemia.
Collapse
Affiliation(s)
- Bin Jia
- Department of Pharmacology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gao C, Ma T, Pang L, Xie R. The influence of bile acids homeostasis by cryptotanshinone-containing herbs. Afr Health Sci 2014; 14:206-10. [PMID: 26060481 DOI: 10.4314/ahs.v14i1.32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Herbs might affect the homeostasis of bile acids through influence of multiple metabolic pathways of bile acids. OBJECTIVE To investigate the inhibition of cryptotanshinone towards the glucuronidation of LCA, trying to indicate the possible influence of cryptotanshinone-containing herbs towards the homeostasis of bile acids. METHODS The LCA-3-glucuronidation and LCA-24-glucuronidation reaction was monitored by LC-MS. RESULTS Initial screening showed that 100 µM of cryptotanshinone inhibited LCA-24-glucuronidation and LCA-3-glucuronidation reaction activity by 82.6% and 79.1%, respectively. This kind of inhibition behaviour exerted cryptotanshinone concentrations-dependent and LCA concentrations-independent inhibition behaviour. CONCLUSION All these data indicated the possibility of cryptotanshinone's influence towards bile acids metabolism and homeostasis of bile acids.
Collapse
Affiliation(s)
- Chengcheng Gao
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, P. R. China
| | - Tianheng Ma
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, P. R. China
| | - Liqun Pang
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, P. R. China
| | - Rui Xie
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, P. R. China
| |
Collapse
|
24
|
Lopez M, Meier D, Müller A, Franken P, Fujita J, Fontana A. Tumor necrosis factor and transforming growth factor β regulate clock genes by controlling the expression of the cold inducible RNA-binding protein (CIRBP). J Biol Chem 2013; 289:2736-44. [PMID: 24337574 DOI: 10.1074/jbc.m113.508200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The circadian clock drives the rhythmic expression of a broad array of genes that orchestrate metabolism, sleep wake behavior, and the immune response. Clock genes are transcriptional regulators engaged in the generation of circadian rhythms. The cold inducible RNA-binding protein (CIRBP) guarantees high amplitude expression of clock. The cytokines TNF and TGFβ impair the expression of clock genes, namely the period genes and the proline- and acidic amino acid-rich basic leucine zipper (PAR-bZip) clock-controlled genes. Here, we show that TNF and TGFβ impair the expression of Cirbp in fibroblasts and neuronal cells. IL-1β, IL-6, IFNα, and IFNγ do not exert such effects. Depletion of Cirbp is found to increase the susceptibility of cells to the TNF-mediated inhibition of high amplitude expression of clock genes and modulates the TNF-induced cytokine response. Our findings reveal a new mechanism of cytokine-regulated expression of clock genes.
Collapse
Affiliation(s)
- Martin Lopez
- From the Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
25
|
Fang ZZ, He RR, Cao YF, Tanaka N, Jiang C, Krausz KW, Qi Y, Dong PP, Ai CZ, Sun XY, Hong M, Ge GB, Gonzalez FJ, Ma XC, Sun HZ. A model of in vitro UDP-glucuronosyltransferase inhibition by bile acids predicts possible metabolic disorders. J Lipid Res 2013; 54:3334-44. [PMID: 24115227 DOI: 10.1194/jlr.m040519] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Increased levels of bile acids (BAs) due to the various hepatic diseases could interfere with the metabolism of xenobiotics, such as drugs, and endobiotics including steroid hormones. UDP-glucuronosyltransferases (UGTs) are involved in the conjugation and elimination of many xenobiotics and endogenous compounds. The present study sought to investigate the potential for inhibition of UGT enzymes by BAs. The results showed that taurolithocholic acid (TLCA) exhibited the strongest inhibition toward UGTs, followed by lithocholic acid. Structure-UGT inhibition relationships of BAs were examined and in vitro-in vivo extrapolation performed by using in vitro inhibition kinetic parameters (Ki) in combination with calculated in vivo levels of TLCA. Substitution of a hydrogen with a hydroxyl group in the R1, R3, R4, R5 sites of BAs significantly weakens their inhibition ability toward most UGTs. The in vivo inhibition by TLCA toward UGT forms was determined with following orders of potency: UGT1A4 > UGT2B7 > UGT1A3 > UGT1A1 ∼ UGT1A7 ∼ UGT1A10 ∼ UGT2B15. In conclusion, these studies suggest that disrupted homeostasis of BAs, notably taurolithocholic acid, found in various diseases such as cholestasis, could lead to altered metabolism of xenobiotics and endobiotics through inhibition of UGT enzymes.
Collapse
Affiliation(s)
- Zhong-Ze Fang
- First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kang DW, Luecke HF. Facile Synthetic Routes to Prepare α-Muricholic Acid, Hyocholic Acid, and Their Taurine Conjugates. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.8.2436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Shindou H, Hishikawa D, Harayama T, Eto M, Shimizu T. Generation of membrane diversity by lysophospholipid acyltransferases. J Biochem 2013; 154:21-8. [DOI: 10.1093/jb/mvt048] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|