1
|
Lin RT, Osipov B, Steffen D, Chamberlin M, Pathak SJ, Christiansen BA, Paulussen KJM, Baar K. Saturated fatty acids negatively affect musculoskeletal tissues in vitro and in vivo. Matrix Biol Plus 2024; 23:100153. [PMID: 38882396 PMCID: PMC11179588 DOI: 10.1016/j.mbplus.2024.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024] Open
Abstract
Fish oils rank among the world's most popular nutritional supplements and are purported to have numerous health benefits. Previous work suggested that fish oils increase collagen production; however, the effect of fish oils on musculoskeletal health is poorly understood. Further, the divergent effects of omega-3 (Ω3FA) and saturated fatty acids (SFA) remains poorly understood. We tested the effects of Ω3FA and SFAs on in vitro-engineered human ligament (EHL) function. EHLs were treated with bovine serum albumin (BSA)-conjugated eicosapentaenoic acid (EPA, 20:5(n-3)), palmitic acid (PA, 16:0), or a BSA control for 6 days. EPA did not significantly alter, whereas PA significantly decreased EHL function and collagen content. To determine whether this was an in vitro artifact, mice were fed a control or high-lard diet for 14 weeks and musculoskeletal mass, insulin sensitivity, and the collagen content, and mechanics of tendon and bone were determined. Body weight was 40 % higher on a HFD, but muscle, tendon, and bone mass did not keep up with body weight resulting in relative losses in muscle mass, tendon, and bone collagen, as well as mechanical properties. Importantly, we show that PA acutely decreases collagen synthesis in vitro to a similar extent as the decrease in collagen content with chronic treatment. These data suggest that Ω3FAs have a limited effect on EHLs, whereas SFA exert a negative effect on collagen synthesis resulting in smaller and weaker musculoskeletal tissues both in vitro and in vivo.
Collapse
Affiliation(s)
- Ryan T Lin
- Department of Neurobiology, Physiology & Behavior, University of California Davis, 1 Shields Avenue, 195 Briggs Hall, Davis, CA 95616, USA
- University of Pittsburgh School of Medicine, 3550 Terrace St, Pittsburgh, PA, USA
| | - Benjamin Osipov
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, USA
| | - Danielle Steffen
- Department of Neurobiology, Physiology & Behavior, University of California Davis, 1 Shields Avenue, 195 Briggs Hall, Davis, CA 95616, USA
| | - Marin Chamberlin
- Department of Neurobiology, Physiology & Behavior, University of California Davis, 1 Shields Avenue, 195 Briggs Hall, Davis, CA 95616, USA
| | - Suraj J Pathak
- Department of Neurobiology, Physiology & Behavior, University of California Davis, 1 Shields Avenue, 195 Briggs Hall, Davis, CA 95616, USA
| | - Blaine A Christiansen
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, USA
| | - Kevin J M Paulussen
- Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Keith Baar
- Department of Neurobiology, Physiology & Behavior, University of California Davis, 1 Shields Avenue, 195 Briggs Hall, Davis, CA 95616, USA
- Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
2
|
Snider AP, Gomes RS, Summers AF, Tenley SC, Abedal-Majed MA, McFee RM, Wood JR, Davis JS, Cupp AS. Identification of Lipids and Cytokines in Plasma and Follicular Fluid before and after Follicle-Stimulating Hormone Stimulation as Potential Markers for Follicular Maturation in Cattle. Animals (Basel) 2023; 13:3289. [PMID: 37894013 PMCID: PMC10603728 DOI: 10.3390/ani13203289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The process of follicle maturation leading to ovulation is a key milestone in female fertility. It is known that circulating lipids and cytokines play a role in the follicle's ability to go through follicular maturation and the ovulatory processes. However, the specific mechanisms are not well understood. We posit that dysregulation of granulosa cells influences the ovarian environment, which tries to adapt by changing released lipids and cytokines to achieve follicular maturation. Eleven non-lactating adult females underwent estrus synchronization with two injections of PGF2α 14 days apart. Daily blood samples were collected for 28 days to monitor steroid hormone production after the second injection. To understand the potential impacts of lipids and cytokines during ovulation, a low-dose FSH stimulation (FSHLow) was performed after resynchronization of cows, and daily blood samples were collected for 14 days to monitor steroid hormone production until ovariectomies. The lipidomic analysis demonstrated increased circulating diacylglycerides and triacylglycerides during the mid-luteal phase and after FSHLow treatment. Cholesteryl esters decreased in circulation but increased in follicular fluid (FF) after FSHLow. Increased circulating concentrations of TNFα and reduced CXCL9 were observed in response to FSHLow. Therefore, specific circulating lipids and cytokines may serve as markers of normal follicle maturation.
Collapse
Affiliation(s)
- Alexandria P. Snider
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA;
| | - Renata S. Gomes
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | | | - Sarah C. Tenley
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | - Mohamed A. Abedal-Majed
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan;
| | - Renee M. McFee
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Jennifer R. Wood
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | - John S. Davis
- Olson Center for Women’s Health, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, NE 68198, USA;
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Andrea S. Cupp
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| |
Collapse
|
3
|
Ali S, Corbi G, Medoro A, Intrieri M, Scapagnini G, Davinelli S. Relationship between monounsaturated fatty acids and sarcopenia: a systematic review and meta-analysis of observational studies. Aging Clin Exp Res 2023; 35:1823-1834. [PMID: 37340168 PMCID: PMC10460305 DOI: 10.1007/s40520-023-02465-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/03/2023] [Indexed: 06/22/2023]
Abstract
Accumulating evidence suggests that fatty acids (FAs) play an essential role in regulating skeletal muscle mass and function throughout life. This systematic review and meta-analysis aimed to examine the relationship between dietary or circulatory levels of monounsaturated FAs (MUFAs) and sarcopenia in observational studies. A comprehensive literature search was performed in three databases (PubMed, Scopus, and Web of Science) from inception until August 2022. Of 414 records, a total of 12 observational studies were identified for this review. Ten studies were meta-analysed, comprising a total of 3704 participants. The results revealed that MUFA intake is inversely associated with sarcopenia (standardized mean difference = - 0.28, 95% CI - 0.46 to - 0.11; p < 0.01). Despite the limited number of studies, our results suggest that lower MUFA intake is associated with a higher risk of sarcopenia. However, the available evidence is still insufficient and further investigations are needed to demonstrate this relationship.
Collapse
Affiliation(s)
- Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis 1, Campobasso, Italy
| | - Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis 1, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis 1, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis 1, Campobasso, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis 1, Campobasso, Italy.
| |
Collapse
|
4
|
Palmitic Acid Inhibits Myogenic Activity and Expression of Myosin Heavy Chain MHC IIb in Muscle Cells through Phosphorylation-Dependent MyoD Inactivation. Int J Mol Sci 2023; 24:ijms24065847. [PMID: 36982919 PMCID: PMC10054354 DOI: 10.3390/ijms24065847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Sarcopenia associated with aging and obesity is characterized by the atrophy of fast-twitch muscle fibers and an increase in intramuscular fat deposits. However, the mechanism of fast-twitch fiber-specific atrophy remains unclear. In this study, we aimed to assess the effect of palmitic acid (PA), the most common fatty acid component of human fat, on muscle fiber type, focusing on the expression of fiber-type-specific myosin heavy chain (MHC). Myotubes differentiated from C2C12 myoblasts were treated with PA. The PA treatment inhibited myotube formation and hypertrophy while reducing the gene expression of MHC IIb and IIx, specific isoforms of fast-twitch fibers. Consistent with this, a significant suppression of MHC IIb protein expression in PA-treated cells was observed. A reporter assay using plasmids containing the MHC IIb gene promoter revealed that the PA-induced reduction in MHC IIb gene expression was caused by the suppression of MyoD transcriptional activity through its phosphorylation. Treatment with a specific protein kinase C (PKC) inhibitor recovered the reduction in MHC IIb gene expression levels in PA-treated cells, suggesting the involvement of the PA-induced activation of PKC. Thus, PA selectively suppresses the mRNA and protein expression of fast-twitch MHC by modulating MyoD activity. This finding provides a potential pathogenic mechanism for age-related sarcopenia.
Collapse
|
5
|
Aoi W, Inoue R, Mizushima K, Honda A, Björnholm M, Takagi T, Naito Y. Exercise-acclimated microbiota improves skeletal muscle metabolism via circulating bile acid deconjugation. iScience 2023; 26:106251. [PMID: 36915683 PMCID: PMC10005909 DOI: 10.1016/j.isci.2023.106251] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/31/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Habitual exercise alters the intestinal microbiota composition, which may mediate its systemic benefits. We examined whether transplanting fecal microbiota from trained mice improved skeletal muscle metabolism in high-fat diet (HFD)-fed mice. Fecal samples from sedentary and exercise-trained mice were gavage-fed to germ-free mice. After receiving fecal samples from trained donor mice for 1 week, recipient mice had elevated levels of AMP-activated protein kinase (AMPK) and insulin growth factor-1 in skeletal muscle. In plasma, bile acid (BA) deconjugation was found to be promoted in recipients transplanted with feces from trained donor mice; free-form BAs also induced more AMPK signaling and glucose uptake than tauro-conjugated BAs. The transplantation of exercise-acclimated fecal microbiota improved glucose tolerance after 8 weeks of HFD administration. Intestinal microbiota may mediate exercise-induced metabolic improvements in mice by modifying circulating BAs. Our findings provide insights into the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 6068522, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka 5730101, Japan
| | - Katsura Mizushima
- Department of Human Immunology and Nutrition Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Akira Honda
- Gastroenterology, Tokyo Medical University Ibaraki Medical Center, Ibaraki 3000395, Japan
| | - Marie Björnholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17176, Sweden
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan.,Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| |
Collapse
|
6
|
Gu X, Wang L, Liu S, Shan T. Adipose tissue adipokines and lipokines: Functions and regulatory mechanism in skeletal muscle development and homeostasis. Metabolism 2023; 139:155379. [PMID: 36538987 DOI: 10.1016/j.metabol.2022.155379] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Skeletal muscle plays important roles in normal biological activities and whole-body energy homeostasis in humans. The growth and development of skeletal muscle also directly influence meat production and meat quality in animal production. Therefore, regulating the development and homeostasis of skeletal muscle is crucial for human health and animal production. Adipose tissue, which includes white adipose tissue (WAT) and brown adipose tissue (BAT), not only functions as an energy reserve but also has attracted substantial attention because of its role as an endocrine organ. The novel signalling molecules known as "adipokines" and "lipokines" that are secreted by adipose tissue were identified through the secretomic technique, which broadened our understanding of the previously unknown crosstalk between adipose tissue and skeletal muscle. In this review, we summarize and discuss the secretory role of adipose tissues, both WAT and BAT, as well as the regulatory roles of various adipokines and lipokines in skeletal muscle development and homeostasis. We suggest that adipokines and lipokines have potential as drug candidates for the treatment of skeletal muscle dysfunction and related metabolic diseases and as promising nutrients for improving animal production.
Collapse
Affiliation(s)
- Xin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
7
|
Lipke K, Kubis-Kubiak A, Piwowar A. Molecular Mechanism of Lipotoxicity as an Interesting Aspect in the Development of Pathological States-Current View of Knowledge. Cells 2022; 11:cells11050844. [PMID: 35269467 PMCID: PMC8909283 DOI: 10.3390/cells11050844] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Free fatty acids (FFAs) play numerous vital roles in the organism, such as contribution to energy generation and reserve, serving as an essential component of the cell membrane, or as ligands for nuclear receptors. However, the disturbance in fatty acid homeostasis, such as inefficient metabolism or intensified release from the site of storage, may result in increased serum FFA levels and eventually result in ectopic fat deposition, which is unfavorable for the organism. The cells are adjusted for the accumulation of FFA to a limited extent and so prolonged exposure to elevated FFA levels results in deleterious effects referred to as lipotoxicity. Lipotoxicity contributes to the development of diseases such as insulin resistance, diabetes, cardiovascular diseases, metabolic syndrome, and inflammation. The nonobvious organs recognized as the main lipotoxic goal of action are the pancreas, liver, skeletal muscles, cardiac muscle, and kidneys. However, lipotoxic effects to a significant extent are not organ-specific but affect fundamental cellular processes occurring in most cells. Therefore, the wider perception of cellular lipotoxic mechanisms and their interrelation may be beneficial for a better understanding of various diseases’ pathogenesis and seeking new pharmacological treatment approaches.
Collapse
|
8
|
Unveiling the Role of the Fatty Acid Binding Protein 4 in the Metabolic-Associated Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10010197. [PMID: 35052876 PMCID: PMC8773613 DOI: 10.3390/biomedicines10010197] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), the main cause of chronic liver disease worldwide, is a progressive disease ranging from fatty liver to steatohepatitis (metabolic-associated steatohepatitis; MASH). Nevertheless, it remains underdiagnosed due to the lack of effective non-invasive methods for its diagnosis and staging. Although MAFLD has been found in lean individuals, it is closely associated with obesity-related conditions. Adipose tissue is the main source of liver triglycerides and adipocytes act as endocrine organs releasing a large number of adipokines and pro-inflammatory mediators involved in MAFLD progression into bloodstream. Among the adipocyte-derived molecules, fatty acid binding protein 4 (FABP4) has been recently associated with fatty liver and additional features of advanced stages of MAFLD. Additionally, emerging data from preclinical studies propose FABP4 as a causal actor involved in the disease progression, rather than a mere biomarker for the disease. Therefore, the FABP4 regulation could be considered as a potential therapeutic strategy to MAFLD. Here, we review the current knowledge of FABP4 in MAFLD, as well as its potential role as a therapeutic target for this disease.
Collapse
|
9
|
Saturated Fatty Acids Promote GDF15 Expression in Human Macrophages through the PERK/eIF2/CHOP Signaling Pathway. Nutrients 2020; 12:nu12123771. [PMID: 33302552 PMCID: PMC7764024 DOI: 10.3390/nu12123771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 01/03/2023] Open
Abstract
Growth differentiation factor-15 (GDF-15) and its receptor GFRAL are both involved in the development of obesity and insulin resistance. Plasmatic GDF-15 level increases with obesity and is positively associated with disease progression. Despite macrophages have been recently suggested as a key source of GDF-15 in obesity, little is known about the regulation of GDF-15 in these cells. In the present work, we sought for potential pathophysiological activators of GDF15 expression in human macrophages and identified saturated fatty acids (SFAs) as strong inducers of GDF15 expression and secretion. SFAs increase GDF15 expression through the induction of an ER stress and the activation of the PERK/eIF2/CHOP signaling pathway in both PMA-differentiated THP-1 cells and in primary monocyte-derived macrophages. The transcription factor CHOP directly binds to the GDF15 promoter region and regulates GDF15 expression. Unlike SFAs, unsaturated fatty acids do not promote GDF15 expression and rather inhibit both SFA-induced GDF15 expression and ER stress. These results suggest that free fatty acids may be involved in the control of GDF-15 and provide new molecular insights about how diet and lipid metabolism may regulate the development of obesity and T2D.
Collapse
|
10
|
Hepatic Lipidomics and Molecular Imaging in a Murine Non-Alcoholic Fatty Liver Disease Model: Insights into Molecular Mechanisms. Biomolecules 2020; 10:biom10091275. [PMID: 32899418 PMCID: PMC7563600 DOI: 10.3390/biom10091275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
An imbalance between hepatic fatty acid uptake and removal results in ectopic fat accumulation, which leads to non-alcoholic fatty liver disease (NAFLD). The amount and type of accumulated triglycerides seem to play roles in NAFLD progression; however, a complete understanding of how triglycerides contribute to NAFLD evolution is lacking. Our aim was to evaluate triglyceride accumulation in NAFLD in a murine model and its associations with molecular mechanisms involved in liver damage and adipose tissue-liver cross talk by employing lipidomic and molecular imaging techniques. C57BL/6J mice fed a high-fat diet (HFD) for 12 weeks were used as a NAFLD model. Standard-diet (STD)-fed animals were used as controls. Standard liver pathology was assessed using conventional techniques. The liver lipidome was analyzed by liquid chromatography–mass spectrometry (LC–MS) and laser desorption/ionization–mass spectrometry (LDI–MS) tissue imaging. Liver triglycerides were identified by MS/MS. The transcriptome of genes involved in intracellular lipid metabolism and inflammation was assessed by RT-PCR. Plasma leptin, resistin, adiponectin, and FABP4 levels were determined using commercial kits. HFD-fed mice displayed increased liver lipid content. LC–MS analyses identified 14 triglyceride types that were upregulated in livers from HFD-fed animals. Among these 14 types, 10 were identified in liver cross sections by LDI–MS tissue imaging. The accumulation of these triglycerides was associated with the upregulation of lipogenesis and inflammatory genes and the downregulation of β-oxidation genes. Interestingly, the levels of plasma FABP4, but not of other adipokines, were positively associated with 8 of these triglycerides in HFD-fed mice but not in STD-fed mice. Our findings suggest a putative role of FABP4 in the liver-adipose tissue cross talk in NAFLD.
Collapse
|
11
|
Chaari A, Bendriss G, Zakaria D, McVeigh C. Importance of Dietary Changes During the Coronavirus Pandemic: How to Upgrade Your Immune Response. Front Public Health 2020; 8:476. [PMID: 32984253 PMCID: PMC7481450 DOI: 10.3389/fpubh.2020.00476] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
The new coronavirus pandemic continues to spread causing further public health, social, and economic issues. The disparities in the rates of death between countries poses questions about the importance of lifestyle habits and the immune status of populations. An exploration of dietary habits and COVID-19-related death might unravel associations between these two variables. Indeed, while both nutritional excess and deficiency are associated with immunodeficiency, adequate nutrition leading to an optimally functioning immune system may be associated with better outcomes with regards to preventing infection and complications of COVID-19, as well as developing a better immune response to other pathogenic viruses and microorganisms. This article outlines the key functions of the immune system and how macronutrients, micronutrients, and metabolites from the gut microbiome can be essential in the development of an efficient immune system. In addition, the effects of intermittent fasting on the inflammatory state as well as metabolic parameters will be discussed.
Collapse
Affiliation(s)
- Ali Chaari
- Premedical Department, Weill Cornell Medicine, Qatar Foundation, Education City, Doha, Qatar
| | | | | | | |
Collapse
|
12
|
Kolczynska K, Loza-Valdes A, Hawro I, Sumara G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis 2020; 19:113. [PMID: 32466765 PMCID: PMC7257441 DOI: 10.1186/s12944-020-01286-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Protein kinase C (PKC) and Protein kinase D (PKD) isoforms can sense diacylglycerol (DAG) generated in the different cellular compartments in various physiological processes. DAG accumulates in multiple organs of the obese subjects, which leads to the disruption of metabolic homeostasis and the development of diabetes as well as associated diseases. Multiple studies proved that aberrant activation of PKCs and PKDs contributes to the development of metabolic diseases. DAG-sensing PKC and PKD isoforms play a crucial role in the regulation of metabolic homeostasis and therefore might serve as targets for the treatment of metabolic disorders such as obesity and diabetes.
Collapse
Affiliation(s)
- Katarzyna Kolczynska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Angel Loza-Valdes
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Izabela Hawro
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland.
| |
Collapse
|
13
|
Shenghua P, Ziqin Z, Shuyu T, Huixia Z, Xianglu R, Jiao G. An integrated fecal microbiome and metabolome in the aged mice reveal anti-aging effects from the intestines and biochemical mechanism of FuFang zhenshu TiaoZhi(FTZ). Biomed Pharmacother 2020; 121:109421. [DOI: 10.1016/j.biopha.2019.109421] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/17/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
|
14
|
Nisr RB, Shah DS, Ganley IG, Hundal HS. Proinflammatory NFkB signalling promotes mitochondrial dysfunction in skeletal muscle in response to cellular fuel overloading. Cell Mol Life Sci 2019; 76:4887-4904. [PMID: 31101940 PMCID: PMC6881256 DOI: 10.1007/s00018-019-03148-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 11/29/2022]
Abstract
Sustained nutrient (fuel) excess, as occurs during obesity and diabetes, has been linked to increased inflammation, impaired mitochondrial homeostasis, lipotoxicity, and insulin resistance in skeletal muscle. Precisely how mitochondrial dysfunction is initiated and whether it contributes to insulin resistance in this tissue remains a poorly resolved issue. Herein, we examine the contribution that an increase in proinflammatory NFkB signalling makes towards regulation of mitochondrial bioenergetics, morphology, and dynamics and its impact upon insulin action in skeletal muscle cells subject to chronic fuel (glucose and palmitate) overloading. We show sustained nutrient excess of L6 myotubes promotes activation of the IKKβ-NFkB pathway (as judged by a six-fold increase in IL-6 mRNA expression; an NFkB target gene) and that this was associated with a marked reduction in mitochondrial respiratory capacity (>50%), a three-fold increase in mitochondrial fragmentation and 2.5-fold increase in mitophagy. Under these circumstances, we also noted a reduction in the mRNA and protein abundance of PGC1α and that of key mitochondrial components (SDHA, ANT-1, UCP3, and MFN2) as well as an increase in cellular ROS and impaired insulin action in myotubes. Strikingly, pharmacological or genetic repression of NFkB activity ameliorated disturbances in mitochondrial respiratory function/morphology, attenuated loss of SDHA, ANT-1, UCP3, and MFN2 and mitigated the increase in ROS and the associated reduction in myotube insulin sensitivity. Our findings indicate that sustained oversupply of metabolic fuel to skeletal muscle cells induces heightened NFkB signalling and that this serves as a critical driver for disturbances in mitochondrial function and morphology, redox status, and insulin signalling.
Collapse
Affiliation(s)
- Raid B Nisr
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Dinesh S Shah
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
15
|
Hernández-Saavedra D, Stanford KI. The Regulation of Lipokines by Environmental Factors. Nutrients 2019; 11:E2422. [PMID: 31614481 PMCID: PMC6835582 DOI: 10.3390/nu11102422] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 01/08/2023] Open
Abstract
Adipose tissue is a highly metabolically-active tissue that senses and secretes hormonal and lipid mediators that facilitate adaptations to metabolic tissues. In recent years, the role of lipokines, which are lipid species predominantly secreted from adipose tissue that act as hormonal regulators in many metabolic tissues, has been an important area of research for obesity and diabetes. Previous studies have identified that these secreted lipids, including palmitoleate, 12,13-diHOME, and fatty acid-hydroxy-fatty acids (FAHFA) species, are important regulators of metabolism. Moreover, environmental factors that directly affect the secretion of lipokines such as diet, exercise, and exposure to cold temperatures constitute attractive therapeutic strategies, but the mechanisms that regulate lipokine stimulation have not been thoroughly reviewed. In this study, we will discuss the chemical characteristics of lipokines that position them as attractive targets for chronic disease treatment and prevention and the emerging roles of lipokines as regulators of inter-tissue communication. We will define the target tissues of lipokines, and explore the ability of lipokines to prevent or delay the onset and development of chronic diseases. Comprehensive understanding of the lipokine synthesis and lipokine-driven regulation of metabolic outcomes is instrumental for developing novel preventative and therapeutic strategies that harness adipose tissue-derived lipokines.
Collapse
Affiliation(s)
- Diego Hernández-Saavedra
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Abstract
The Western world has witnessed a tremendous increase in the occurrence of allergy and autoimmunity in the second half of the 20th century. Extensive efforts have been made to explain this phenomenon and various hypotheses have been formulated. Among them, two concepts have attracted the most attention: the "hygiene hypothesis," identifying the reduced exposure to environmental microorganisms as a driving force behind the observed epidemiological trends; and the "diet hypotheses," pointing to the importance of changes in our dietary habits. In this review, we discuss the interplay between the Western diet, microbiota, and inflammatory conditions, with particular emphasis on respiratory diseases. This is followed by an in-depth overview of the immunomodulatory potential of different dietary fatty acids. We conclude by identifying the outstanding questions, which, if answered, could shed further light on the impact of dietary habits on immunity and interconnect it with postulates proposed by the hygiene hypothesis. Linking these two concepts will be an important step towards understanding how Western lifestyle shapes disease susceptibility.
Collapse
|
17
|
Cittadini MC, García-Estévez I, Escribano-Bailón MT, Rivas-Gonzalo JC, Valentich MA, Repossi G, Soria EA. Modulation of Fatty Acids and Interleukin-6 in Glioma Cells by South American Tea Extracts and their Phenolic Compounds. Nutr Cancer 2017; 70:267-277. [DOI: 10.1080/01635581.2018.1412484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- María C. Cittadini
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, INICSA, Ciudad Universitaria, Córdoba, Argentina
- Ministerio de Salud de la Nación, Instituto Nacional del Cáncer, CABA, Argentina
| | - Ignacio García-Estévez
- Universidad de Salamanca, Facultad de Farmacia, Grupo de Investigación en Polifenoles, Campus Miguel de Unamuno, Salamanca, Spain
| | - M. Teresa Escribano-Bailón
- Universidad de Salamanca, Facultad de Farmacia, Grupo de Investigación en Polifenoles, Campus Miguel de Unamuno, Salamanca, Spain
| | - Julián C. Rivas-Gonzalo
- Universidad de Salamanca, Facultad de Farmacia, Grupo de Investigación en Polifenoles, Campus Miguel de Unamuno, Salamanca, Spain
| | - Mirta A. Valentich
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, INICSA, Ciudad Universitaria, Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Cátedra de Biología Celular, Histología y Embriología, Instituto de Biología Celular, Córdoba, Argentina
| | - Gastón Repossi
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, INICSA, Ciudad Universitaria, Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Cátedra de Biología Celular, Histología y Embriología, Instituto de Biología Celular, Córdoba, Argentina
| | - Elio A. Soria
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, INICSA, Ciudad Universitaria, Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Cátedra de Biología Celular, Histología y Embriología, Instituto de Biología Celular, Córdoba, Argentina
| |
Collapse
|
18
|
Ye J, Piao H, Jiang J, Jin G, Zheng M, Yang J, Jin X, Sun T, Choi YH, Li L, Yan G. Polydatin inhibits mast cell-mediated allergic inflammation by targeting PI3K/Akt, MAPK, NF-κB and Nrf2/HO-1 pathways. Sci Rep 2017; 7:11895. [PMID: 28928455 PMCID: PMC5605538 DOI: 10.1038/s41598-017-12252-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Polydatin(PD) shows anti-allergic inflammatory effect, and this study investigated its underlying mechanisms in in vitro and in vivo models. IgE-mediated passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA) models were used to confirm PD effect in vivo. Various signaling pathway proteins in mast cell were examined. RT-PCR, ELISA and western blotting were applied when appropriate. Activity of Lyn and Fyn kinases in vitro was measured using the Kinase Enzyme System. PD dose-dependently reduced the pigmentation of Evans blue in the PCA model and decreased the concentration of serum histamine in PSA model, and attenuated the degranulation of mast cells without generating cytotoxicity. PD decreased pro-inflammatory cytokine expression (TNF-α, IL-4, IL-1β, and IL-8). PD directly inhibited activity of Lyn and Syk kinases and down-regulated downstream signaling pathway including MAPK, PI3K/AKT and NF-kB. In addition, PD also targets Nrf2/HO-1 pathway to inhibit mast cell-derived allergic inflammatory reactions. In conclusion, the study demonstrates that PD is a possible therapeutic candidate for allergic inflammatory diseases. It directly inhibited activity of Lyn and Syk kinases and down-regulates the signaling pathway of MAPK, PI3K/AKT and NF-κB, and up-regulates the signaling pathway of Nrf2/HO-1 to inhibit the degranulation of mast cells.
Collapse
Affiliation(s)
- Jing Ye
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, Yanji, 133002, P.R. China
| | - Hongmei Piao
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji, P.R. China
| | - Jingzhi Jiang
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, Yanji, 133002, P.R. China
| | - Guangyu Jin
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji, P.R. China
| | - Mingyu Zheng
- College of Pharmacy, Yanbian University, Yanji, 133002, P.R. China
| | - Jinshi Yang
- College of Pharmacy, Yanbian University, Yanji, 133002, P.R. China
| | - Xiang Jin
- College of Pharmacy, Yanbian University, Yanji, 133002, P.R. China
| | - Tianyi Sun
- College of Pharmacy, Yanbian University, Yanji, 133002, P.R. China
| | - Yun Ho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
| | - Liangchang Li
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, Yanji, 133002, P.R. China.
| | - Guanghai Yan
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, Yanji, 133002, P.R. China.
| |
Collapse
|
19
|
Camera DM, Burniston JG, Pogson MA, Smiles WJ, Hawley JA. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. FASEB J 2017; 31:5478-5494. [PMID: 28855275 DOI: 10.1096/fj.201700531r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/31/2017] [Indexed: 12/23/2022]
Abstract
It is generally accepted that muscle adaptation to resistance exercise (REX) training is underpinned by contraction-induced, increased rates of protein synthesis and dietary protein availability. By using dynamic proteome profiling (DPP), we investigated the contribution of both synthesis and breakdown to changes in abundance on a protein-by-protein basis in human skeletal muscle. Age-matched, overweight males consumed 9 d of a high-fat, low-carbohydrate diet during which time they either undertook 3 sessions of REX or performed no exercise. Precursor enrichment and the rate of incorporation of deuterium oxide into newly synthesized muscle proteins were determined by mass spectrometry. Ninety proteins were included in the DPP, with 28 proteins exhibiting significant responses to REX. The most common pattern of response was an increase in turnover, followed by an increase in abundance with no detectable increase in protein synthesis. Here, we provide novel evidence that demonstrates that the contribution of synthesis and breakdown to changes in protein abundance induced by REX differ on a protein-by-protein basis. We also highlight the importance of the degradation of individual muscle proteins after exercise in human skeletal muscle.-Camera, D. M., Burniston, J. G., Pogson, M. A., Smiles, W. J., Hawley, J. A. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise.
Collapse
Affiliation(s)
- Donny M Camera
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Victoria, Australia
| | - Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Mark A Pogson
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
| | - William J Smiles
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Victoria, Australia
| | - John A Hawley
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Victoria, Australia; .,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
20
|
Su L, Zhao H, Zhang X, Lou Z, Dong X. UHPLC-Q-TOF-MS based serum metabonomics revealed the metabolic perturbations of ischemic stroke and the protective effect of RKIP in rat models. MOLECULAR BIOSYSTEMS 2017; 12:1831-41. [PMID: 27110897 DOI: 10.1039/c6mb00137h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stroke is one of the most fatal diseases in the world, which is seriously threatening human life. Raf kinase inhibitory protein (RKIP) is involved in the regulation of several signaling pathways and is important for cell growth, proliferation, differentiation and apoptosis. In the present study, the protective effect of RKIP on stroke was investigated by the metabonomics method based on the UHPLC-Q-TOF-MS technique. TTC staining of brain tissues showed that RKIP overexpression by the lentivirus markedly reduced the necrotic area after ischemic stroke. Subsequent metabolomic profiling revealed that the protective effect of RKIP overexpression on ischemic stroke is mainly reflected in the metabolism of energy, amino acids and lipids. Several metabolites involved in purine, pyrimidine and fatty acid metabolism were identified. It was also shown that the protective effect of RKIP on ischemic stroke might be mediated by inhibiting the inflammatory response. The current study provided insight into the molecular mechanism of ischemic stroke and a reliable basis for the development of novel therapeutic targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Li Su
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Hongxia Zhao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xiuhua Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Ziyang Lou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xin Dong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
21
|
Lipina C, Hundal HS. Lipid modulation of skeletal muscle mass and function. J Cachexia Sarcopenia Muscle 2017; 8:190-201. [PMID: 27897400 PMCID: PMC5377414 DOI: 10.1002/jcsm.12144] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022] Open
Abstract
Loss of skeletal muscle mass is a characteristic feature of various pathologies including cancer, diabetes, and obesity, as well as being a general feature of ageing. However, the processes underlying its pathogenesis are not fully understood and may involve multiple factors. Importantly, there is growing evidence which supports a role for fatty acids and their derived lipid intermediates in the regulation of skeletal muscle mass and function. In this review, we discuss evidence pertaining to those pathways which are involved in the reduction, increase and/or preservation of skeletal muscle mass by such lipids under various pathological conditions, and highlight studies investigating how these processes may be influenced by dietary supplementation as well as genetic and/or pharmacological intervention.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
22
|
Williams EJ, Baines KJ, Berthon BS, Wood LG. Effects of an Encapsulated Fruit and Vegetable Juice Concentrate on Obesity-Induced Systemic Inflammation: A Randomised Controlled Trial. Nutrients 2017; 9:E116. [PMID: 28208713 PMCID: PMC5331547 DOI: 10.3390/nu9020116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/01/2023] Open
Abstract
Phytochemicals from fruit and vegetables reduce systemic inflammation. This study examined the effects of an encapsulated fruit and vegetable (F&V) juice concentrate on systemic inflammation and other risk factors for chronic disease in overweight and obese adults. A double-blinded, parallel, randomized placebo-controlled trial was conducted in 56 adults aged ≥40 years with a body mass index (BMI) ≥28 kg/m². Before and after eight weeks daily treatment with six capsules of F&V juice concentrate or placebo, peripheral blood gene expression (microarray, quantitative polymerase chain reaction (qPCR)), plasma tumour necrosis factor (TNF)α (enzyme-linked immunosorbent assay (ELISA)), body composition (Dual-energy X-ray absorptiometry (DEXA)) and lipid profiles were assessed. Following consumption of juice concentrate, total cholesterol, low-density lipoprotein (LDL) cholesterol and plasma TNFα decreased and total lean mass increased, while there was no change in the placebo group. In subjects with high systemic inflammation at baseline (serum C-reactive protein (CRP) ≥3.0 mg/mL) who were supplemented with the F&V juice concentrate (n = 16), these effects were greater, with decreased total cholesterol, LDL cholesterol and plasma TNFα and increased total lean mass; plasma CRP was unchanged by the F&V juice concentrate following both analyses. The expression of several genes involved in lipogenesis, the nuclear factor-κB (NF-κB) and 5' adenosine monophosphate-activated protein kinase (AMPK) signalling pathways was altered, including phosphomevalonate kinase (PMVK), zinc finger AN1-type containing 5 (ZFAND5) and calcium binding protein 39 (CAB39), respectively. Therefore, F&V juice concentrate improves the metabolic profile, by reducing systemic inflammation and blood lipid profiles and, thus, may be useful in reducing the risk of obesity-induced chronic disease.
Collapse
Affiliation(s)
- Evan J Williams
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan NSW 2308, Australia.
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan NSW 2308, Australia.
| | - Bronwyn S Berthon
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan NSW 2308, Australia.
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan NSW 2308, Australia.
| |
Collapse
|
23
|
Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med 2017; 49:e291. [PMID: 28154371 PMCID: PMC5336562 DOI: 10.1038/emm.2016.157] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022] Open
Abstract
Free fatty acids (FFAs) are important substrates for mitochondrial oxidative metabolism and ATP synthesis but also cause serious stress to various tissues, contributing to the development of metabolic diseases. CD36 is a major mediator of cellular FFA uptake. Inside the cell, saturated FFAs are able to induce the production of cytosolic and mitochondrial reactive oxygen species (ROS), which can be prevented by co-exposure to unsaturated FFAs. There are close connections between oxidative stress and organellar Ca2+ homeostasis. Highly oxidative conditions induced by palmitate trigger aberrant endoplasmic reticulum (ER) Ca2+ release and thereby deplete ER Ca2+ stores. The resulting ER Ca2+ deficiency impairs chaperones of the protein folding machinery, leading to the accumulation of misfolded proteins. This ER stress may further aggravate oxidative stress by augmenting ER ROS production. Secondary to ER Ca2+ release, cytosolic and mitochondrial matrix Ca2+ concentrations can also be altered. In addition, plasmalemmal ion channels operated by ER Ca2+ depletion mediate persistent Ca2+ influx, further impairing cytosolic and mitochondrial Ca2+ homeostasis. Mitochondrial Ca2+ overload causes superoxide production and functional impairment, culminating in apoptosis. This vicious cycle of lipotoxicity occurs in multiple tissues, resulting in β-cell failure and insulin resistance in target tissues, and further aggravates diabetic complications.
Collapse
|
24
|
de Araújo GR, Rabelo ACS, Meira JS, Rossoni-Júnior JV, Castro-Borges WD, Guerra-Sá R, Batista MA, Silveira-Lemos DD, Souza GHBD, Brandão GC, Chaves MM, Costa DC. Baccharis trimera inhibits reactive oxygen species production through PKC and down-regulation p47 phox phosphorylation of NADPH oxidase in SK Hep-1 cells. Exp Biol Med (Maywood) 2016; 242:333-343. [PMID: 28103717 DOI: 10.1177/1535370216672749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Baccharis trimera, popularly known as "carqueja", is a native South-American plant possessing a high concentration of polyphenolic compounds and therefore high antioxidant potential. Despite the antioxidant potential described for B. trimera, there are no reports concerning the signaling pathways involved in this process. So, the aim of the present study was to assess the influence of B. trimera on the modulation of PKC signaling pathway and to characterize the effect of the nicotinamide adenine dinucleotide phosphate oxidase enzyme (NOX) on the generation of reactive oxygen species in SK Hep-1 cells. SK-Hep 1 cells were treated with B. trimera, quercetin, or rutin and then stimulated or not with PMA/ionomycin and labeled with carboxy H2DCFDA for detection of reactive oxygen species by flow cytometer. The PKC expression by Western blot and enzyme activity was performed to evaluate the influence of B. trimera and quercetin on PKC signaling pathway. p47 phox and p47 phox phosphorylated expression was performed by Western blot to evaluate the influence of B. trimera on p47 phox phosphorylation. The results showed that cells stimulated with PMA/ionomycin (activators of PKC) showed significantly increased reactive oxygen species production, and this production returned to baseline levels after treatment with DPI (NOX inhibitor). Both B. trimera and quercetin modulated reactive oxygen species production through the inhibition of PKC protein expression and enzymatic activity, also with inhibition of p47 phox phosphorylation. Taken together, these results suggest that B. trimera has a potential mechanism for inhibiting reactive oxygen species production through the PKC signaling pathway and inhibition subunit p47 phox phosphorylation of nicotinamide adenine dinucleotide phosphate oxidase.
Collapse
Affiliation(s)
- Glaucy Rodrigues de Araújo
- 1 Center for Research in Biological Sciences - NUPEB, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| | | | - Janaína Serenato Meira
- 2 Department of Biological Sciences, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| | - Joamyr Victor Rossoni-Júnior
- 1 Center for Research in Biological Sciences - NUPEB, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| | - William de Castro-Borges
- 1 Center for Research in Biological Sciences - NUPEB, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil.,2 Department of Biological Sciences, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| | - Renata Guerra-Sá
- 1 Center for Research in Biological Sciences - NUPEB, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil.,2 Department of Biological Sciences, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| | - Maurício Azevedo Batista
- 3 Postgraduate Program in Parasitology, Immunology Laboratory and Genomic Parasites, Federal University of Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Denise da Silveira-Lemos
- 3 Postgraduate Program in Parasitology, Immunology Laboratory and Genomic Parasites, Federal University of Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Gustavo Henrique Bianco de Souza
- 1 Center for Research in Biological Sciences - NUPEB, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil.,4 Department of Pharmaceutical Sciences - DEFAR, Program Postgraduate Pharmaceutical Sciences (CIPHARMA), School of Pharmacy, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| | - Geraldo Célio Brandão
- 4 Department of Pharmaceutical Sciences - DEFAR, Program Postgraduate Pharmaceutical Sciences (CIPHARMA), School of Pharmacy, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| | - Míriam Martins Chaves
- 5 Department of Biochemistry and Immunology, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Daniela Caldeira Costa
- 1 Center for Research in Biological Sciences - NUPEB, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil.,2 Department of Biological Sciences, Federal University of Ouro Preto, 35400-000 Ouro Preto, Brazil
| |
Collapse
|
25
|
Chang W, Chen L, Hatch GM. Berberine treatment attenuates the palmitate-mediated inhibition of glucose uptake and consumption through increased 1,2,3-triacyl-sn-glycerol synthesis and accumulation in H9c2 cardiomyocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:352-62. [DOI: 10.1016/j.bbalip.2015.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 01/22/2023]
|
26
|
Ganglioside GM3 as a gatekeeper of obesity-associated insulin resistance: Evidence and mechanisms. FEBS Lett 2015; 589:3221-7. [PMID: 26434718 DOI: 10.1016/j.febslet.2015.09.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/01/2015] [Accepted: 09/20/2015] [Indexed: 12/29/2022]
Abstract
Gangliosides constitute a large family of sialic acid-containing glycosphingolipids which play a key regulatory role in a diverse array of cellular processes, including receptor-associated signalling. Accordingly, the aberrant production of the ganglioside GM3 has been linked to pathophysiological changes associated with obesity, which in turn can lead to metabolic disorders such as insulin resistance and type 2 diabetes mellitus. This review examines the role of GM3 in mediating obesity-induced perturbations in metabolic function, including impaired insulin action. By doing so, we highlight the potential use of therapies targeting GM3 biosynthesis in order to counteract obesity-related metabolic disorders.
Collapse
|
27
|
Abstract
BACKGROUND The role of calcium-independent phospholipase A2 (iPLA2), a component of the three major PLA2 families, in acute/chronic inflammatory processes remains elusive. Previous investigations have documented iPLA2-mediated respiratory burst of neutrophils (PMNs); however, the causative isoform of iPLA2 is unidentified. We also demonstrated that the iPLA2γ-specific inhibitor attenuates trauma/hemorrhagic shock-induced lung injury. Therefore, iPLA2γ may be implicated in acute inflammation. In addition, arachidonic acid (AA), which is primarily produced by cytosolic PLA2 (cPLA2), is known to display PMN cytotoxicity, although the relationship between AA and the cytotoxic function is still being debated on. We therefore hypothesized that iPLA2γ regulates PMN cytotoxicity via AA-independent signaling pathways. The study aim was to distinguish the role of intracellular phospholipases A2, iPLA2, and cPLA2, in human PMN cytotoxicity and explore the possibility of the presence of signaling molecule(s) other than AA. METHODS Isolated human PMNs were incubated with the PLA2 inhibitor selective for iPLA2β, iPLA2γ, or cPLA2 and then activated with formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol 12-myristate 13-acetate (PMA). Superoxide production was assayed according to the superoxide dismutase-inhibitable cytochrome c reduction method, and the degree of elastase release was measured using a p-nitroanilide-conjugated elastase-specific substrate. In addition, chemotaxis toward platelet activating factor/fMLP was determined with a modified Boyden chamber system. RESULTS The iPLA2γ-specific inhibitor reduced the fMLP/PMA-stimulated superoxide generation by 90% and 30%, respectively; in addition, the inhibitor completely blocked the fMLP/PMA-activated elastase release. However, the cPLA2-specific inhibitor did not abrogate these effects to any degree at all concentrations. Likewise, the inhibitor for iPLA2γ, but not iPLA2β or cPLA2, completely inhibited the platelet activating factor/fMLP-induced chemotaxis. CONCLUSION iPLA2 is involved in extracellular reactive oxygen species production, elastase release, and chemotaxis in response to well-defined stimuli. In addition, the ineffectiveness of the cPLA2 inhibitor suggests that AA may not be relevant to these cytotoxic functions.
Collapse
|
28
|
Lipina C, Nardi F, Grace H, Hundal HS. NEU3 sialidase as a marker of insulin sensitivity: Regulation by fatty acids. Cell Signal 2015; 27:1742-50. [PMID: 26022181 DOI: 10.1016/j.cellsig.2015.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 12/27/2022]
Abstract
The plasma membrane-associated enzyme NEU3 sialidase functions to cleave sialic acid residues from the ganglioside GM3 thereby promoting its degradation, and has been implicated in the modulation of insulin action. Herein, we report for the first time that impaired insulin sensitivity in skeletal muscle and liver of obese Zucker fatty rats and aged C57BL/6 mice coincides with reduced NEU3 protein abundance. In addition, high fat feeding was found to significantly reduce NEU3 protein in white adipose tissue of rats. Notably, we also demonstrate the ability of the fatty acids palmitate and oleate to repress and induce NEU3 protein in L6 myotubes, concomitant with their insulin desensitising and enhancing effects, respectively. Moreover, we show that the palmitate-driven loss in NEU3 protein is mediated, at least in part, by intracellular ceramide synthesis but does not involve the proteasomal pathway. Strikingly, we further reveal that protein kinase B (PKB/Akt) acts as a key positive modulator of NEU3 protein abundance. Together, our findings implicate NEU3 as a potential biomarker of insulin sensitivity, and provide novel mechanistic insight into the regulation of NEU3 expression.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Francesca Nardi
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Helen Grace
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
29
|
Chan KL, Pillon NJ, Sivaloganathan DM, Costford SR, Liu Z, Théret M, Chazaud B, Klip A. Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK). J Biol Chem 2015; 290:16979-88. [PMID: 25987561 DOI: 10.1074/jbc.m115.646992] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Indexed: 12/16/2022] Open
Abstract
A rise in tissue-embedded macrophages displaying "M1-like" proinflammatory polarization is a hallmark of metabolic inflammation during a high fat diet or obesity. Here we show that bone marrow-derived macrophages (BMDM) from high fat-fed mice retain a memory of their dietary environment in vivo (displaying the elevated proinflammatory genes Cxcl1, Il6, Tnf, Nos2) despite 7-day differentiation and proliferation ex vivo. Notably, 6-h incubation with palmitoleate (PO) reversed the proinflammatory gene expression and cytokine secretion seen in BMDM from high fat-fed mice. BMDM from low fat-fed mice exposed to palmitate (PA) for 18 h ex vivo also showed elevated expression of proinflammatory genes (Cxcl1, Il6, Tnf, Nos2, and Il12b) associated with M1 polarization. Conversely, PO treatment increased anti-inflammatory genes (Mrc1, Tgfb1, Il10, Mgl2) and oxidative metabolism, characteristic of M2 macrophages. Therefore, saturated and unsaturated fatty acids bring about opposite macrophage polarization states. Coincubation of BMDM with both fatty acids counteracted the PA-induced Nos2 expression in a PO dose-dependent fashion. PO also prevented PA-induced IκBα degradation, RelA nuclear translocation, NO production, and cytokine secretion. Mechanistically, PO exerted its anti-inflammatory function through AMP-activated protein kinase as AMP kinase knockout or inhibition by Compound C offset the PO-dependent prevention of PA-induced inflammation. These results demonstrate a nutritional memory of BMDM ex vivo, highlight the plasticity of BMDM polarization in response to saturated and unsaturated fatty acids, and identify the potential to reverse diet- and saturated fat-induced M1-like polarization by administering palmitoleate. These findings could have applicability to reverse obesity-linked inflammation in metabolically relevant tissues.
Collapse
Affiliation(s)
- Kenny L Chan
- From the Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada, the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
| | - Nicolas J Pillon
- From the Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | | | - Sheila R Costford
- From the Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Zhi Liu
- From the Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Marine Théret
- the Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - Benedicte Chazaud
- the Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - Amira Klip
- From the Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada, the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
| |
Collapse
|
30
|
Jordy AB, Kraakman MJ, Gardner T, Estevez E, Kammoun HL, Weir JM, Kiens B, Meikle PJ, Febbraio MA, Henstridge DC. Analysis of the liver lipidome reveals insights into the protective effect of exercise on high-fat diet-induced hepatosteatosis in mice. Am J Physiol Endocrinol Metab 2015; 308:E778-91. [PMID: 25714675 DOI: 10.1152/ajpendo.00547.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/15/2015] [Indexed: 01/14/2023]
Abstract
The accumulation of lipid at ectopic sites, including the skeletal muscle and liver, is a common consequence of obesity and is associated with tissue-specific and whole body insulin resistance. Exercise is well known to improve insulin resistance by mechanisms not completely understood. We performed lipidomic profiling via mass spectrometry in liver and skeletal muscle samples from exercise-trained mice to decipher the lipid changes associated with exercise-induced improvements in whole body glucose metabolism. Obesity and insulin resistance were induced in C57BL/6J mice by high-fat feeding for 4 wk. Mice then underwent an exercise training program (treadmill running) 5 days/wk (Ex) for 4 wk or remained sedentary (Sed). Compared with Sed, Ex displayed improved (P < 0.01) whole body metabolism as measured via an oral glucose tolerance test. Deleterious lipid species such as diacylglycerol (P < 0.05) and cholesterol esters (P < 0.01) that accumulate with high-fat feeding were decreased in the liver of trained mice. Furthermore, the ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE) (the PC/PE ratio), which is associated with membrane integrity and linked to hepatic disease progression, was increased by training (P < 0.05). These findings occurred without corresponding changes in the skeletal muscle lipidome. A concomitant decrease (P < 0.05) was observed for the fatty acid transporters CD36 and FATP4 in the liver, suggesting that exercise stimulates a coordinated reduction in fatty acid entry into hepatocytes. Given the important role of the liver in the regulation of whole body glucose homeostasis, hepatic lipid regression may be a key component by which exercise can improve metabolism.
Collapse
Affiliation(s)
- Andreas B Jordy
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; and Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Kraakman
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; and
| | - Tim Gardner
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; and
| | - Emma Estevez
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; and
| | - Helene L Kammoun
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; and
| | - Jacqui M Weir
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; and
| | - Bente Kiens
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Peter J Meikle
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; and
| | - Mark A Febbraio
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; and
| | | |
Collapse
|
31
|
Abstract
The inflammatory response plays an important role in host defense and maintenance of homeostasis, while imbalances in these responses can also lead to pathologic disease processes. Emerging data show that RKIP interacts with multiple signaling molecules that may potentiate multiple functions during inflammatory processes. Here, we review the interaction of RKIP with both the MAPK and NF-κB pathways in relation to chronic inflammatory diseases. In these settings, it can both inhibit inflammatory pathways as well contribute to pro-inflammatory signaling, often depending on the interactions with multiple proteins and perhaps lipids. The interactions of RKIP with proteins, phospholipids, fatty acids, and their enzymes thus could play a substantial role in diseases like asthma and diabetes. Targeting interactions of RKIP with these pathways could lead to novel approaches to treatment.
Collapse
Affiliation(s)
- Jinming Zhao
- University of Pittsburgh Asthma Institute at UPMC/Pulmonary Allergy and Critical Care Medicine Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sally Wenzel
- University of Pittsburgh Asthma Institute at UPMC/Pulmonary Allergy and Critical Care Medicine Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Nardi F, Lipina C, Magill D, Hage Hassan R, Hajduch E, Gray A, Hundal HS. Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A. PLoS One 2014; 9:e92255. [PMID: 24632852 PMCID: PMC3954878 DOI: 10.1371/journal.pone.0092255] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/19/2014] [Indexed: 11/19/2022] Open
Abstract
AIMS/HYPOTHESIS Reduced skeletal muscle insulin sensitivity is a feature associated with sustained exposure to excess saturated fatty acids (SFA), whereas mono and polyunsaturated fatty acids (MUFA and PUFA) not only improve insulin sensitivity but blunt SFA-induced insulin resistance. The mechanisms by which MUFAs and PUFAs institute these favourable changes remain unclear, but may involve stimulating insulin signalling by counter-modulation/repression of protein phosphatase 2A (PP2A). This study investigated the effects of oleic acid (OA; a MUFA), linoleic acid (LOA; a PUFA) and palmitate (PA; a SFA) in cultured myotubes and determined whether changes in insulin signalling can be attributed to PP2A regulation. PRINCIPAL FINDINGS We treated cultured skeletal myotubes with unsaturated and saturated fatty acids and evaluated insulin signalling, phosphorylation and methylation status of the catalytic subunit of PP2A. Unlike PA, sustained incubation of rat or human myotubes with OA or LOA significantly enhanced Akt- and ERK1/2-directed insulin signalling. This was not due to heightened upstream IRS1 or PI3K signalling nor to changes in expression of proteins involved in proximal insulin signalling, but was associated with reduced dephosphorylation/inactivation of Akt and ERK1/2. Consistent with this, PA reduced PP2Ac demethylation and tyrosine307phosphorylation - events associated with PP2A activation. In contrast, OA and LOA strongly opposed these PA-induced changes in PP2Ac thus exerting a repressive effect on PP2A. CONCLUSIONS/INTERPRETATION Beneficial gains in insulin sensitivity and the ability of unsaturated fatty acids to oppose palmitate-induced insulin resistance in muscle cells may partly be accounted for by counter-modulation of PP2A.
Collapse
Affiliation(s)
- Francesca Nardi
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David Magill
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Rima Hage Hassan
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche des Cordeliers, UMR-S 872, Paris, France
- Université Pierre et Marie Curie – Paris 6, UMR-S 872, Paris, France
- Université Paris Descartes, UMR-S 872, Paris, France
| | - Eric Hajduch
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche des Cordeliers, UMR-S 872, Paris, France
- Université Pierre et Marie Curie – Paris 6, UMR-S 872, Paris, France
- Université Paris Descartes, UMR-S 872, Paris, France
| | - Alexander Gray
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Harinder S. Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
33
|
Pelletier M, Billingham LK, Ramaswamy M, Siegel RM. Extracellular flux analysis to monitor glycolytic rates and mitochondrial oxygen consumption. Methods Enzymol 2014; 542:125-49. [PMID: 24862264 DOI: 10.1016/b978-0-12-416618-9.00007-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Evidence accumulating over the past decade has linked alterations in bioenergetic metabolism to the pathogenesis of several diseases, including inflammatory conditions and cancer. However, the mutual relationship between the effector functions and the metabolism of immune cells has begun to emerge only recently. Similar to malignant cells, both innate and adaptive immune cells undergo a metabolic reprogramming that is required for effector functions, de facto underlying the elicitation of a robust immune response. These changes allow immune cells not only to rapidly respond to pathogens or (pre)malignant cells but also to adapt to changing microenvironmental conditions. Targeting the metabolic alterations of malignant cells has been the subject of an intense wave of investigation, resulting in the identification of promising therapeutic strategies. Since the inflammatory milieu and the tumor microenvironment are similar, the metabolism of immune cells and its regulation has recently come under renewed interest as a target for immunotherapy. Here, we describe different tools and techniques to study the bioenergetic metabolism of cultured cells, using immune cells as a model. Our methodological approach relies on an extracellular flux analyzer, an instrument that enables the real-time measurement of the two central pathways used by living cells to generate adenosine triphosphate: glycolysis and oxidative phosphorylation. This instrument and similar technological innovations have transformed the study of cellular metabolism, unveiling its profound impact on various immunologic and oncological disorders.
Collapse
Affiliation(s)
- Martin Pelletier
- Autoimmunity Branch, Immunoregulation Section, National Institutes of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Leah K Billingham
- Autoimmunity Branch, Immunoregulation Section, National Institutes of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Madhu Ramaswamy
- Autoimmunity Branch, Immunoregulation Section, National Institutes of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Richard M Siegel
- Autoimmunity Branch, Immunoregulation Section, National Institutes of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA.
| |
Collapse
|