1
|
Lacasse É, Dubuc I, Gudimard L, Andrade ACDSP, Gravel A, Greffard K, Chamberland A, Oger C, Galano JM, Durand T, Philipe É, Blanchet MR, Bilodeau JF, Flamand L. Delayed viral clearance and altered inflammatory responses affect severity of SARS-CoV-2 infection in aged mice. Immun Ageing 2025; 22:11. [PMID: 40075368 PMCID: PMC11899864 DOI: 10.1186/s12979-025-00503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Epidemiological investigations consistently demonstrate an overrepresentation of the elderly in COVID-19 hospitalizations and fatalities, making the advanced age as a major predictor of disease severity. Despite this, a comprehensive understanding of the cellular and molecular mechanisms explaining how old age represents a major risk factor remain elusive. To investigate this, we compared SARS-CoV-2 infection outcomes in young adults (2 months) and geriatric (15-22 months) mice. Both groups of K18-ACE2 mice were intranasally infected with 500 TCID50 of SARS-CoV-2 Delta variant with analyses performed on days 3, 5, and 7 post-infection (DPI). Analyses included pulmonary cytokines, lung RNA-seq, viral loads, lipidomic profiles, and histological assessments, with a concurrent evaluation of the percentage of mice reaching humane endpoints. The findings unveiled notable differences, with aged mice exhibiting impaired viral clearance, reduced survival, and failure to recover weight loss due to infection. RNA-seq data suggested greater lung damage and reduced respiratory function in infected aged mice. Additionally, elderly-infected mice exhibited a deficient antiviral response characterized by reduced Th1-associated mediators (IFNγ, CCL2, CCL3, CXCL9) and diminished number of macrophages, NK cells, and T cells. Furthermore, mass-spectrometry analysis of the lung lipidome indicated altered expression of several lipids with immunomodulatory and pro-resolution effects in aged mice such as Resolvin, HOTrEs, and NeuroP, but also DiHOMEs-related ARDS. These findings indicate that aging affects antiviral immunity, leading to prolonged infection, greater lung damage, and poorer clinical outcomes. This underscores the potential efficacy of immunomodulatory treatments for elderly subjects experiencing symptoms of severe COVID-19.
Collapse
Affiliation(s)
- Émile Lacasse
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
- Département de Microbiologie, Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Isabelle Dubuc
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Leslie Gudimard
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Ana Claudia Dos S P Andrade
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Annie Gravel
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Karine Greffard
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | | | - Camille Oger
- Institut Des Biomolécules Max Mousseron, UMR 5247, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut Des Biomolécules Max Mousseron, UMR 5247, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut Des Biomolécules Max Mousseron, UMR 5247, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Éric Philipe
- Département de Chirurgie, Faculté de Médecine, Université, Québec, QC, Canada
| | - Marie-Renée Blanchet
- Département de Médecine, Faculté de Médecine, Université, Québec, QC, Canada
- Centre de Recherche de L'Institut de Cardiologie de Québec, Université, Québec, QC, Canada
| | - Jean-François Bilodeau
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
- Département de Médecine, Faculté de Médecine, Université, Québec, QC, Canada
| | - Louis Flamand
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada.
- Département de Microbiologie, Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
2
|
Wang L, Cheng C, Yu X, Guo L, Wan X, Xu J, Xiang X, Yang J, Kang J, Deng Q. Conversion of α-linolenic acid into n-3 long-chain polyunsaturated fatty acids: bioavailability and dietary regulation. Crit Rev Food Sci Nutr 2024:1-33. [PMID: 39686568 DOI: 10.1080/10408398.2024.2442064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
N-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) are essential for physiological requirements and disease prevention throughout life but are not adequately consumed worldwide. Dietary supplementation with plant-derived α-linolenic acid (ALA) has the potential to rebalance the fatty acid profile and enhance health benefits but faces challenges such as high β-oxidation consumption, low hepatic conversion efficiency, and high oxidative susceptibility under stress. This review focuses on the metabolic fate and potential regulatory targets of ALA-containing lipids in vivo, specifically the pathway from the gastrointestinal tract to the lymph, blood circulation, and liver. We propose a hypothesis that positively regulates the conversion of ALA into n-3 LCPUFAs based on the model of "fast" or "slow" absorption, transport, and hepatic metabolic fate. Furthermore, the potential effects of dietary nutrients on the metabolic conversion of ALA into n-3 LCPUFAs are discussed. The conversion of ALA is differentially regulated by structured lipids, phospholipids, other lipids, carbohydrates, specific proteins, amino acids, polyphenols, vitamins, and minerals. Future research should focus on designing a steady-state and precise delivery system for ALA, coupled with specific nutrients or phytochemicals, to effectively improve its metabolic conversion and ultimately achieve synergistic regulation of nutrition and health effects.
Collapse
Affiliation(s)
- Lei Wang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Chen Cheng
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Xiao Yu
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xia Wan
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jiqu Xu
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Xia Xiang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jing Yang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jingxuan Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Qianchun Deng
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| |
Collapse
|
3
|
Qiu JY, Zhang WH, Zhu XM, Wu LD, Huang JH, Zhang J. Association between dietary intake of niacin and stroke in the US residents: evidence from national health and nutrition examination survey (NHANES) 1999-2018. Front Nutr 2024; 11:1391023. [PMID: 39101008 PMCID: PMC11294223 DOI: 10.3389/fnut.2024.1391023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Objective This study aims to explore the association between niacin intake and stroke within a diverse, multi-ethnic population. Methods A stringent set of inclusion and exclusion criteria led to the enrollment of 39,721 participants from the National Health and Nutrition Examination Survey (NHANES). Two interviews were conducted to recall dietary intake, and the USDA's Food and Nutrient Database for Dietary Studies (FNDDS) was utilized to calculate niacin intake based on dietary recall results. Weighted multivariate logistic regression was employed to examine the correlation between niacin and stroke, with a simultaneous exploration of potential nonlinear relationships using restricted cubic spline (RCS) regression. Results A comprehensive analysis of baseline data revealed that patients with stroke history had lower niacin intake levels. Both RCS analysis and multivariate logistic regression indicated a negative nonlinear association between niacin intake and stroke. The dose-response relationship exhibited a non-linear pattern within the range of dietary niacin intake. Prior to the inflection point (21.8 mg) in the non-linear correlation between niacin intake and stroke risk, there exists a marked decline in the risk of stroke as niacin intake increases. Following the inflection point, the deceleration in the decreasing trend of stroke risk with increasing niacin intake becomes evident. The inflection points exhibit variations across diverse populations. Conclusion This investigation establishes a negative nonlinear association between niacin intake and stroke in the broader American population.
Collapse
Affiliation(s)
- Jie-Yu Qiu
- Department of Cardiology, XiShan People’s Hospital of Wuxi City, Wuxi, China
| | - Wen-Hui Zhang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xiao-Ming Zhu
- Department of Cardiology, XiShan People’s Hospital of Wuxi City, Wuxi, China
| | - Li-Da Wu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ji-Hua Huang
- Guangdong Province Panyu Prison Hospital, Panyu, China
| | - Jie Zhang
- Department of Cardiology, XiShan People’s Hospital of Wuxi City, Wuxi, China
| |
Collapse
|
4
|
Gong J. Oxylipins biosynthesis and the regulation of bovine postpartum inflammation. Prostaglandins Other Lipid Mediat 2024; 171:106814. [PMID: 38280540 DOI: 10.1016/j.prostaglandins.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China.
| |
Collapse
|
5
|
Rice J, Lautrup S, Fang EF. NAD + Boosting Strategies. Subcell Biochem 2024; 107:63-90. [PMID: 39693020 DOI: 10.1007/978-3-031-66768-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Nicotinamide adenine dinucleotide (oxidized form, NAD+) serves as a co-substrate and co-enzyme in cells to execute its key roles in cell signalling pathways and energetic metabolism, arbitrating cell survival and death. It was discovered in 1906 by Arthur Harden and William John Young in yeast extract which could accelerate alcohol fermentation. NAD acts as an electron acceptor and cofactor throughout the processes of glycolysis, Tricarboxylic Acid Cycle (TCA), β oxidation, and oxidative phosphorylation (OXPHOS). NAD has two forms: NAD+ and NADH. NAD+ is the oxidising coenzyme that is reduced when it picks up electrons. NAD+ levels steadily decline with age, resulting in an increase in vulnerability to chronic illness and perturbed cellular metabolism. Boosting NAD+ levels in various model organisms have resulted in improvements in healthspan and lifespan extension. These results have prompted a search for means by which NAD+ levels in the body can be augmented by both internal and external means. The aim of this chapter is to provide an overview of NAD+, appraise clinical evidence of its importance and success in potentially extending health- and lifespan, as well as to explore NAD+ boosting strategies.
Collapse
Affiliation(s)
- Jared Rice
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
6
|
Almubarak A, Osman R, Lee J, Yu IJ, Jeon Y. Effects of niacin supplementation during in vitro culture on the developmental competence of porcine embryos. Reprod Domest Anim 2023; 58:1685-1694. [PMID: 37786952 DOI: 10.1111/rda.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
Niacin is a water-soluble vitamin belonging to the vitamin B complex. It has been found to possess various biological activities, including antioxidant and lipid modification capacities. This study aimed to elucidate the effects of niacin treatment in porcine in vitro culture (IVC) medium on embryo developmental competence after parthenogenetic activation. IVC medium was supplemented with different concentrations of niacin (0 [control], 300, 600 and 900 μM). The results showed that embryos cultured in an IVC medium supplemented with 300 and 600 μM niacin had an increased cleavage rate (p < .05). In addition, 300 μM niacin treatment resulted in a higher blastocyst formation rate than the control and other niacin-treated groups. However, the total cell number did not differ significantly among the experimental groups. Niacin supplementation at 600 μM decreased reactive oxygen species, whereas treatment with 300, 600 and 900 μM increased glutathione levels in day two embryos. On day seven, 300 μM niacin exhibited improved fatty acid levels and fewer lipid droplets than the control group. Furthermore, gene expression at the mRNA level was performed on day two and day seven embryos, treated with or without 300 μM niacin. The expression of anti-apoptotic BCL2 and lipid metabolism PLIN2-related genes were upregulated, whereas the pro-apoptotic BAX and CASPASE3 were downregulated with niacin supplementation compared with the control group. However, SIRT1, a gene related to energy and the oxidative state, was up-regulated in niacin-treated day two embryos (p < .05). Overall, the results indicate that niacin has a beneficial effect on pre-implantation embryo development by modulating lipid metabolism and reducing oxidative stress and apoptosis. The expression patterns of PLIN2 and SIRT1 reported here suggest that these transcripts may be involved in the mechanism by which niacin affects the developmental capacity of IVC embryos.
Collapse
Affiliation(s)
- Areeg Almubarak
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, Korea
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum North, Sudan
| | - Rana Osman
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, Korea
| | - Joohyeong Lee
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Korea
- Department of Companion Animal Industry, Semyung University, Jecheon, Republic of Korea
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, Korea
| | - Yubyeol Jeon
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, Korea
| |
Collapse
|
7
|
Ermutlu İ, Fesli R, Arıkök AT, Ergüder Bİ, Kertmen H, Gürer B. Neuroprotective Effects of Niacin on Ischemia/Reperfusion Injury of the Rabbit Spinal Cord. World Neurosurg 2023; 177:e644-e656. [PMID: 37400055 DOI: 10.1016/j.wneu.2023.06.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Previous studies have shown niacin has neuroprotective effects on the central nervous system. However, its specific effect on spinal cord ischemia/reperfusion injury has not yet been explored. This study aims to evaluate whether niacin can contribute neuroprotective effects on spinal cord ischemia/reperfusion injury. METHODS Rabbits were randomized into 4 groups of 8 animals: group I (control), group II (ischemia), group III (30 mg/kg methylprednisolone, intraperitoneal), and group IV (500 mg/kg niacin, intraperitoneal). The rabbits in group IV were premedicated with niacin for 7 days prior to inducing ischemia/reperfusion injury. The control group was subjected only to a laparotomy, while the remaining groups underwent spinal cord ischemia through a 20-minute occlusion of the aorta caudal to the left renal artery. Following the procedure, levels of catalase, malondialdehyde, xanthine oxidase, myeloperoxidase, and caspase-3 were analyzed. Ultrastructural, histopathological, and neurological evaluations were also performed. RESULTS Spinal cord ischemia/reperfusion injury resulted in increased levels of xanthine oxidase, malondialdehyde, myeloperoxidase, and caspase-3, with a concomitant decrease in catalase levels. Treatment with methylprednisolone and niacin led to decreased levels of xanthine oxidase, malondialdehyde, myeloperoxidase, and caspase-3 and an increase in catalase. Both methylprednisolone and niacin treatments demonstrated improvements in histopathological, ultrastructural, and neurological assessments. CONCLUSIONS Our findings suggest that niacin has antiapoptotic, anti-inflammatory, antioxidant, and neuroprotective effects at least equal to methylprednisolone in ischemia/reperfusion injury of the spinal cord. This study is the first to report the neuroprotective impact of niacin on spinal cord ischemia/reperfusion injury. Further research is warranted to elucidate the role of niacin in this context.
Collapse
Affiliation(s)
- İlçim Ermutlu
- Department of Neurosurgery, Cizre Selahattin Cizrelioğlu City Hospital, Şırnak, Turkey
| | - Ramazan Fesli
- Department of Neurosurgery, Medicalpark Hospital, Mersin, Turkey
| | - Ata Türker Arıkök
- Department of Pathology, Ministry of Health Dışkapı Yıldırım Beyazıt Education and Research Hospital, Ankara, Turkey
| | - Berrin İmge Ergüder
- Department of Biochemistry, Ankara University, Faculty of Medicine, Ankara, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery, Ministry of Health Dışkapı Yıldırım Beyazıt Education and Research Hospital, Ankara, Turkey
| | - Bora Gürer
- Department of Neurosurgery, İstinye University, Faculty of Medicine, Istanbul, Turkey.
| |
Collapse
|
8
|
Zachut M, Tam J, Contreras GA. Modulating immunometabolism in transition dairy cows: the role of inflammatory lipid mediators. Anim Front 2022; 12:37-45. [PMID: 36268169 PMCID: PMC9564993 DOI: 10.1093/af/vfac062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Genaro Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Ren Z, Xu Y, Li T, Sun W, Tang Z, Wang Y, Zhou K, Li J, Ding Q, Liang K, Wu L, Yin Y, Sun Z. NAD+ and its possible role in gut microbiota: Insights on the mechanisms by which gut microbes influence host metabolism. ANIMAL NUTRITION 2022; 10:360-371. [PMID: 35949199 PMCID: PMC9356074 DOI: 10.1016/j.aninu.2022.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
|
10
|
Zhang W, Cui Y, Zhang J. Multi metabolomics-based analysis of application of Astragalus membranaceus in the treatment of hyperuricemia. Front Pharmacol 2022; 13:948939. [PMID: 35935868 PMCID: PMC9355468 DOI: 10.3389/fphar.2022.948939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022] Open
Abstract
Hyperuricemia (HUA) is a common metabolic disease that is an independent risk factor for comorbidities such as hypertension, chronic kidney disease, and coronary artery disease. The prevalence of HUA has increased over the last several decades with improved living standards and increased lifespans. Metabolites are considered the most direct reflection of individual physiological and pathological conditions, and represent attractive candidates to provide deep insights into disease phenotypes. Metabolomics, a technique used to profile metabolites in biofluids and tissues, is a powerful tool for identification of novel biomarkers, and can be used to provide valuable insights into the etiopathogenesis of metabolic diseases and to evaluate the efficacy of drugs. In this study, multi metabolomics-based analysis of the blood, urine, and feces of rats with HUA showed that HUA significantly altered metabolite profiles. Astragalus membranaceus (AM) and benbromomalone significantly mitigated these changes in blood and feces, but not in urine. Some crucial metabolic pathways including lipid metabolism, lipid signaling, hormones synthesis, unsaturated fatty acid (UFAs) absorption, and tryptophan metabolism, were seriously disrupted in HUA rats. In addition, AM administration exerted better treatment effects on HUA than benbromomalone. Furthermore, additional supplementation with UFAs and tryptophan may also induce therapeutic effects against HUA.
Collapse
Affiliation(s)
- Wenwen Zhang
- The School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yifang Cui
- The School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayu Zhang
- The School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang,
| |
Collapse
|
11
|
Zhang W, Cui Y, Liu Z, Wang S, Yang A, Li X, Zhang J. Astragalus membranaceus ultrafine powder alleviates hyperuricemia by regulating the gut microbiome and reversing bile acid and adrenal hormone biosynthesis dysregulation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
12
|
Predictors of oxylipins in a healthy pediatric population. Pediatr Res 2021; 89:1530-1540. [PMID: 32726799 PMCID: PMC7855434 DOI: 10.1038/s41390-020-1084-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxylipins are formed from oxidation of omega-6 (n6) and omega-3 (n3) fatty acids (FAs). Evidence for inflammatory effects comes mostly from adults. METHODS Oxylipins from n6 FA (27 n6-oxylipins) and n3 FA (12 n3-oxylipins) were measured through ultra-high-performance liquid chromatography-mass spectrometry (LC-MS/MS) in plasma from 111 children at risk of type 1 diabetes (age 1-17 years) studied longitudinally. Oxylipin precursor FAs (arachidonic acid, linoleic acid, alpha-linolenic acid, docosahexaenoic acid, eicosapentaenoic acid) were measured in red blood cell (RBC) membrane and plasma. Precursor FAs dietary intake was measured through food frequency questionnaire and environmental tobacco smoke (ETS) through questionnaires. Linear mixed models were used to test oxylipins with predictors. RESULTS Age associated with 15 n6- and 6 n3-oxylipins; race/ethnicity associated with 3 n6- and 1 n3-oxylipins; sex associated with 2 n6-oxylipins. ETS associated with lipoxin-A4. Oxylipins associated with precursor FAs in plasma more often than RBC. RBC levels and dietary intake of precursor FAs more consistently associated with n3-oxylipins than with n6-oxylipins. CONCLUSIONS In healthy children, oxylipin levels change with age. Oxylipins associated with precursor FAs more often in plasma than RBC or diet, suggesting that inflammatory regulation leading to FA release into plasma may also be a determinant of oxylipin generation. IMPACT This is the first study to examine predictors of oxylipins in healthy children at risk of type 1 diabetes. In healthy children at risk of type 1 diabetes, many oxylipins change with age, and most oxylipins do not differ by sex or race/ethnicity. Environmental tobacco smoke exposure was associated with the presence of lipoxin A4. Omega-6- and omega-3-related oxylipin levels were consistently associated with their respective precursor fatty acid levels measured in the plasma. Proportionally more omega-3 compared to omega-6 oxylipins were associated with dietary intake and red blood cell membrane levels of the respective precursor fatty acid.
Collapse
|
13
|
Nieman DC, Gillitt ND, Chen GY, Zhang Q, Sha W, Kay CD, Chandra P, Kay KL, Lila MA. Blueberry and/or Banana Consumption Mitigate Arachidonic, Cytochrome P450 Oxylipin Generation During Recovery From 75-Km Cycling: A Randomized Trial. Front Nutr 2020; 7:121. [PMID: 32850939 PMCID: PMC7426440 DOI: 10.3389/fnut.2020.00121] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Oxylipins are bioactive lipid oxidation products, have vital regulatory roles in numerous physiological processes including inflammation, and can be impacted by diet. This study determined if 2-weeks of blueberry and/or acute banana ingestion influenced generation of n-6 and n-3 PUFA-derived oxylipins during recovery from exercise-induced physiological stress. Cyclists (n = 59, 39 ± 2 years of age) were randomized to freeze-dried blueberry or placebo groups, and ingested 26 grams/d (1 cup/d blueberries equivalent) for 2 weeks. Cyclists reported to the lab in an overnight fasted state and engaged in a 75-km cycling time trial (185.5 ± 5.2 min). Cyclists from each group (blueberry, placebo) were further randomized to ingestion of a water-only control or water with a carbohydrate source (Cavendish bananas, 0.2 g/kg carbohydrate every 15 min) during exercise. Blood samples were collected pre- and post-2-weeks blueberry supplementation, and 0, 1.5, 3, 5, 24, and 48 h-post-exercise. Plasma oxylipins and blueberry and banana metabolites were measured with UPLC–tandem MS/MS. Significant time by treatment effects (eight time points, four groups) were found for 24 blueberry- and seven banana-derived phenolic metabolites in plasma (FDR adjusted p < 0.05). Significant post-exercise increases were observed for 64 of 67 identified plasma oxylipins. When oxylipins were grouped relative to fatty acid substrate [arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), α-linolenic acid (ALA), linoleic acid (LA)], and enzyme systems [cytochrome P450 (CYP), lipoxygenase (LOX)], banana and blueberry ingestion were independently associated with significant post-exercise reductions in pro-inflammatory ARA-CYP hydroxy- and dihydroxy-eicosatetraenoic acids (HETEs, DiHETrEs) (treatment effects, FDR adjusted p < 0.05). These trial differences were especially apparent within the first 3 h of recovery. In summary, heavy exertion evoked a transient but robust increase in plasma levels of oxylipins in cyclists, with a strong attenuation effect linked to both chronic blueberry and acute banana intake on pro-inflammatory ARA-CYP oxylipins.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States
| | | | - Guan-Yuan Chen
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Wei Sha
- Bioinformatics Services Division, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC, United States
| | - Colin D Kay
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Preeti Chandra
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Kristine L Kay
- Department of Nutrition, University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, NC, United States
| | - Mary Ann Lila
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States
| |
Collapse
|
14
|
Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y, Shi D. Small rodent models of atherosclerosis. Biomed Pharmacother 2020; 129:110426. [PMID: 32574973 DOI: 10.1016/j.biopha.2020.110426] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
The ease of breeding, low cost of maintenance, and relatively short period for developing atherosclerosis make rodents ideal for atherosclerosis research. However, none of the current models accurately model human lipoprotein profile or atherosclerosis progression since each has its advantages and disadvantages. The advent of transgenic technologies much supports animal models' establishment. Notably, two classic transgenic mouse models, apoE-/- and Ldlr-/-, constitute the primary platforms for studying underlying mechanisms and development of pharmaceutical approaches. However, there exist crucial differences between mice and humans, such as the unhumanized lipoprotein profile, and the different plaque progression and characteristics. Among rodents, hamsters and guinea pigs might be the more realistic models in atherosclerosis research based on the similarities in lipoprotein metabolism to humans. Studies involving rat models, a rodent with natural resistance to atherosclerosis, have revealed evidence of atherosclerotic plaques under dietary induction and genetic manipulation by novel technologies, notably CRISPR-Cas9. Ldlr-/- hamster models were established in recent years with severe hyperlipidemia and atherosclerotic lesion formation, which could offer an alternative to classic transgenic mouse models. In this review, we provide an overview of classic and innovative small rodent models in atherosclerosis researches, including mice, rats, hamsters, and guinea pigs, focusing on their lipoprotein metabolism and histopathological changes.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hua Qu
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Wenli Xiao
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Oxylipin concentrations in bovine corpora lutea during maternal recognition of pregnancy. Theriogenology 2019; 142:384-389. [PMID: 31708196 DOI: 10.1016/j.theriogenology.2019.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022]
Abstract
The objective was to determine the effects of pregnancy status on oxylipin profiles and eicosanoid metabolizing enzymes and in corpora lutea (CL) or endometrial (caruncle; CAR and intercaruncle; IC) tissues. Angus crossed cattle were synchronized with the CO-Synch protocol and artificially inseminated (AI). Sixteen days after AI, cattle were euthanized, and reproductive tracts collected from 6 non-pregnant and 6 pregnant cows. Oxylipin profiles and concentrations of progesterone (P4) were obtained from CL tissues. The activity of cytochrome P450 1A (CYP1A) and UDP-glucuronosyltransferase (UGT) enzymes were determined using specific luminogenic substrates. Data were analyzed using the MIXED procedure of SAS, and the model included pregnancy status. Corpora lutea of pregnant cattle contained greater (P < 0.05) concentrations of 9,10-DiHODE, 15,16-DiHODE, and 9,10-DiHOME. These oxylipins have been observed to increase cellular proliferation and vasodilation. Activity of CYP1A in the CL and UGT in CAR and IC was not different (P > 0.05) between pregnant and non-pregnant cattle. In the CL, activity of UGT was decreased (P < 0.05) in pregnant vs. non-pregnant cattle. The decrease in CL UGT activity during pregnancy indicates alterations in local hormone metabolism, while no differences in CL weight nor amount of P4 in CL were different between pregnant and non-pregnant cattle. Moreover, the increase in specific concentrations of oxylipins in the CL may indicate a novel pathway of steroid and eicosanoid metabolism during maternal recognition of pregnancy.
Collapse
|
16
|
Modern Methods of Sample Preparation for the Analysis of Oxylipins in Biological Samples. Molecules 2019; 24:molecules24081639. [PMID: 31027298 PMCID: PMC6515351 DOI: 10.3390/molecules24081639] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
Oxylipins are potent lipid mediators derived from polyunsaturated fatty acids, which play important roles in various biological processes. Being important regulators and/or markers of a wide range of normal and pathological processes, oxylipins are becoming a popular subject of research; however, the low stability and often very low concentration of oxylipins in samples are a significant challenge for authors and continuous improvement is required in both the extraction and analysis techniques. In recent years, the study of oxylipins has been directly related to the development of new technological platforms based on mass spectrometry (LC–MS/MS and gas chromatography–mass spectrometry (GC–MS)/MS), as well as the improvement in methods for the extraction of oxylipins from biological samples. In this review, we systematize and compare information on sample preparation procedures, including solid-phase extraction, liquid–liquid extraction from different biological tissues.
Collapse
|
17
|
Putman A, Brown J, Gandy J, Abuelo A, Sordillo L. Oxylipid profiles of dairy cattle vary throughout the transition into early mammary gland involution. J Dairy Sci 2019; 102:2481-2491. [DOI: 10.3168/jds.2018-15158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
|
18
|
Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int J Mol Sci 2019; 20:ijms20040974. [PMID: 30813414 PMCID: PMC6412771 DOI: 10.3390/ijms20040974] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Niacin (also known as "vitamin B₃" or "vitamin PP") includes two vitamers (nicotinic acid and nicotinamide) giving rise to the coenzymatic forms nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). The two coenzymes are required for oxidative reactions crucial for energy production, but they are also substrates for enzymes involved in non-redox signaling pathways, thus regulating biological functions, including gene expression, cell cycle progression, DNA repair and cell death. In the central nervous system, vitamin B₃ has long been recognized as a key mediator of neuronal development and survival. Here, we will overview available literature data on the neuroprotective role of niacin and its derivatives, especially focusing especially on its involvement in neurodegenerative diseases (Alzheimer's, Parkinson's, and Huntington's diseases), as well as in other neuropathological conditions (ischemic and traumatic injuries, headache and psychiatric disorders).
Collapse
Affiliation(s)
- Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Matteo Sibilano
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Isabella Savini
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| | - Maria Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
19
|
Körner A, Schlegel M, Kaussen T, Gudernatsch V, Hansmann G, Schumacher T, Giera M, Mirakaj V. Sympathetic nervous system controls resolution of inflammation via regulation of repulsive guidance molecule A. Nat Commun 2019; 10:633. [PMID: 30733433 PMCID: PMC6367413 DOI: 10.1038/s41467-019-08328-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022] Open
Abstract
The bidirectional communication between the immune and nervous system is important in regulating immune responses. Here we show that the adrenergic nerves of sympathetic nervous system orchestrate inflammation resolution and regenerative programs by modulating repulsive guidance molecule A (RGM-A). In murine peritonitis, adrenergic nerves and RGM-A show bidirectional activation by stimulating the mutual expression and exhibit a higher potency for the cessation of neutrophil infiltration; this reduction is accompanied by increased pro-resolving monocyte or macrophage recruitment, polymorphonucleocyte clearance and specialized pro-resolving lipid mediators production at sites of injury. Chemical sympathectomy results in hyperinflammation and ineffective resolution in mice, while RGM-A treatments reverse these phenotypes. Signalling network analyses imply that RGM-A and β2AR agonist regulate monocyte activation by suppressing NF-κB activity but activating RICTOR and PI3K/AKT signalling. Our results thus illustrate the function of sympathetic nervous system and RGM-A in regulating resolution and tissue repair in a murine acute peritonitis model. Diverse interactions between the nervous and immune systems have been shown, but specific mechanistic insights are still lacking. Here the authors show, using both mouse inflammation models and clinical correlation, that adrenergic nerve may ameliorate inflammation by inducing repulsive guidance molecule A signalling.
Collapse
Affiliation(s)
- Andreas Körner
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Martin Schlegel
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Torsten Kaussen
- Department of Pediatric Cardiology and Critical Care, Carl-Neuberg-Str. 1, Hannover Medical School, 30625, Hannover, Germany
| | - Verena Gudernatsch
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Carl-Neuberg-Str. 1, Hannover Medical School, 30625, Hannover, Germany
| | - Timo Schumacher
- Department of Pediatric Cardiology and Critical Care, Carl-Neuberg-Str. 1, Hannover Medical School, 30625, Hannover, Germany
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Valbona Mirakaj
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| |
Collapse
|
20
|
The Schistosoma mansoni lipidome: Leads for immunomodulation. Anal Chim Acta 2018; 1037:107-118. [DOI: 10.1016/j.aca.2017.11.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 11/30/2022]
|
21
|
Schlegel M, Körner A, Kaussen T, Knausberg U, Gerber C, Hansmann G, Jónasdóttir HS, Giera M, Mirakaj V. Inhibition of neogenin fosters resolution of inflammation and tissue regeneration. J Clin Invest 2018; 128:4711-4726. [PMID: 30222138 DOI: 10.1172/jci96259] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/26/2018] [Indexed: 12/14/2022] Open
Abstract
The resolution of inflammation is an active process that is coordinated by endogenous mediators. Previous studies have demonstrated the immunomodulatory properties of the axonal guidance proteins in the initial phase of acute inflammation. We hypothesized that the neuronal guidance protein neogenin (Neo1) modulates mechanisms of inflammation resolution. In murine peritonitis, Neo1 deficiency (Neo1-/-) resulted in higher efficacies in reducing neutrophil migration into injury sites, increasing neutrophil apoptosis, actuating PMN phagocytosis, and increasing the endogenous biosynthesis of specialized proresolving mediators, such as lipoxin A4, maresin-1, and protectin DX. Neo1 expression was limited to Neo1-expressing Ly6Chi monocytes, and Neo1 deficiency induced monocyte polarization toward an antiinflammatory and proresolving phenotype. Signaling network analysis revealed that Neo1-/- monocytes mediate their immunomodulatory effects specifically by activating the PI3K/AKT pathway and suppressing the TGF-β pathway. In a cohort of 59 critically ill, intensive care unit (ICU) pediatric patients, we found a strong correlation between Neo1 blood plasma levels and abdominal compartment syndrome, Pediatric Risk of Mortality III (PRISM-III) score, and ICU length of stay and mortality. Together, these findings identify a crucial role for Neo1 in regulating tissue regeneration and resolution of inflammation, and determined Neo1 to be a predictor of morbidity and mortality in critically ill children affected by clinical inflammation.
Collapse
Affiliation(s)
- Martin Schlegel
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Andreas Körner
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Torsten Kaussen
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| | - Urs Knausberg
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Carmen Gerber
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| | - Hulda Soffia Jónasdóttir
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Valbona Mirakaj
- Department of Anesthesiology and Intensive Care Medicine, Molecular Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Li T, Sun S, Zhang J, Qu K, Yang L, Ma C, Jin X, Zhu H, Wang Y. Beneficial Metabolic Effects of 2?,3?,5?-Triacetyl-N6-(3-hydroxylaniline) adenosine in Multiple Biological Matrices and Intestinal Flora of Hyperlipidemic Hamsters. J Proteome Res 2018; 17:2870-2879. [DOI: 10.1021/acs.jproteome.8b00330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tianqi Li
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shanshan Sun
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinyue Zhang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kai Qu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liu Yang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Changlu Ma
- Department of Food and Biological Engineering, Beijing Vocational College of Agriculture, Beijing 100012, China
| | - Xiangju Jin
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yinghong Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
23
|
Kaisar MMM, Ritter M, del Fresno C, Jónasdóttir HS, van der Ham AJ, Pelgrom LR, Schramm G, Layland LE, Sancho D, Prazeres da Costa C, Giera M, Yazdanbakhsh M, Everts B. Dectin-1/2-induced autocrine PGE2 signaling licenses dendritic cells to prime Th2 responses. PLoS Biol 2018; 16:e2005504. [PMID: 29668708 PMCID: PMC5927467 DOI: 10.1371/journal.pbio.2005504] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/30/2018] [Accepted: 03/20/2018] [Indexed: 02/02/2023] Open
Abstract
The molecular mechanisms through which dendritic cells (DCs) prime T helper 2 (Th2) responses, including those elicited by parasitic helminths, remain incompletely understood. Here, we report that soluble egg antigen (SEA) from Schistosoma mansoni, which is well known to drive potent Th2 responses, triggers DCs to produce prostaglandin E2 (PGE2), which subsequently—in an autocrine manner—induces OX40 ligand (OX40L) expression to license these DCs to drive Th2 responses. Mechanistically, SEA was found to promote PGE2 synthesis through Dectin-1 and Dectin-2, and via a downstream signaling cascade involving spleen tyrosine kinase (Syk), extracellular signal-regulated kinase (ERK), cytosolic phospholipase A2 (cPLA2), and cyclooxygenase 1 and 2 (COX-1 and COX-2). In addition, this pathway was activated independently of the actions of omega-1 (ω-1), a previously described Th2-priming glycoprotein present in SEA. These findings were supported by in vivo murine data showing that ω-1–independent Th2 priming by SEA was mediated by Dectin-2 and Syk signaling in DCs. Finally, we found that Dectin-2−/−, and to a lesser extent Dectin-1−/− mice, displayed impaired Th2 responses and reduced egg-driven granuloma formation following S. mansoni infection, highlighting the physiological importance of this pathway in Th2 polarization during a helminth infection. In summary, we identified a novel pathway in DCs involving Dectin-1/2-Syk-PGE2-OX40L through which Th2 immune responses are induced. T helper 2 (Th2) responses, which are initiated by dendritic cells (DCs), can cause allergic diseases, but they can also provide protection against metabolic disorders and parasitic helminth infections. As such, there is great interest in better understanding how their activity is induced and regulated by DCs. Parasitic helminths can potently induce Th2 responses. However, how helminths condition DCs for priming of Th2 responses remains incompletely understood. Here, we find that egg antigens from the parasitic helminth Schistosoma mansoni bind to pattern-recognition receptors (PRRs) Dectin-1 and Dectin-2 on DCs. This binding triggers a signaling cascade in DCs that results in synthesis of eicosanoid prostaglandin E2 (PGE2). PGE2 is sensed by the DCs themselves, resulting in expression of OX40 ligand (OX40L), which subsequently enables the DCs to promote Th2 differentiation. We show that this pathway is activated independently of omega-1 (ω-1), which is a glycoprotein secreted by the eggs and previously shown to condition DCs for priming of Th2 responses. Moreover, we demonstrate that this ω-1–independent pathway is crucial for Th2 induction and egg-driven immunopathology following S. mansoni infection in vivo. In summary, we identified a novel pathway in DCs involving Dectin-1/2–induced autocrine PGE2 signaling through which Th2 responses are induced.
Collapse
Affiliation(s)
- Maria M. M. Kaisar
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Germany
| | - Carlos del Fresno
- Centro Nacional de Investigaciones Cardiovasculares “Carlos III”, Madrid, Spain
| | - Hulda S. Jónasdóttir
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Alwin J. van der Ham
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Leonard R. Pelgrom
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Laura E. Layland
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Germany & German Centre for Infection Research, partner site, Bonn-Cologne, Bonn, Germany
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares “Carlos III”, Madrid, Spain
| | | | - Martin Giera
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
24
|
Dias S, Paredes S, Ribeiro L. Drugs Involved in Dyslipidemia and Obesity Treatment: Focus on Adipose Tissue. Int J Endocrinol 2018; 2018:2637418. [PMID: 29593789 PMCID: PMC5822899 DOI: 10.1155/2018/2637418] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome can be defined as a state of disturbed metabolic homeostasis characterized by visceral obesity, atherogenic dyslipidemia, arterial hypertension, and insulin resistance. The growing prevalence of metabolic syndrome will certainly contribute to the burden of cardiovascular disease. Obesity and dyslipidemia are main features of metabolic syndrome, and both can present with adipose tissue dysfunction, involved in the pathogenic mechanisms underlying this syndrome. We revised the effects, and underlying mechanisms, of the current approved drugs for dyslipidemia and obesity (fibrates, statins, niacin, resins, ezetimibe, and orlistat; sibutramine; and diethylpropion, phentermine/topiramate, bupropion and naltrexone, and liraglutide) on adipose tissue. Specifically, we explored how these drugs can modulate the complex pathways involved in metabolism, inflammation, atherogenesis, insulin sensitivity, and adipogenesis. The clinical outcomes of adipose tissue modulation by these drugs, as well as differences of major importance for clinical practice between drugs of the same class, were identified. Whether solutions to these issues will be found in further adjustments and combinations between drugs already in use or necessarily in new advances in pharmacology is not known. To better understand the effect of drugs used in dyslipidemia and obesity on adipose tissue not only is challenging for physicians but could also be the next step to tackle cardiovascular disease.
Collapse
Affiliation(s)
- Sofia Dias
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sílvia Paredes
- Department of Endocrinology, Hospital de Braga, 4710-243 Braga, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Laura Ribeiro
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
25
|
Natural killer cells play an essential role in resolution of antigen-induced inflammation in mice. Mol Immunol 2017; 93:1-8. [PMID: 29112834 DOI: 10.1016/j.molimm.2017.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 12/29/2022]
Abstract
This study examined whether NK cells are important for resolution of antigen-induced inflammation. C57BL/6 mice were immunized twice with methylated BSA (mBSA) and inflammation induced by intraperitoneal injection of mBSA. Mice were injected intravenously with anti-asialo GM1 (αASGM1) or a control antibody 24h prior to peritonitis induction and peritoneal exudate collected at different time points. Expression of surface molecules and apoptosis on peritoneal cells was determined by flow cytometry and concentration of chemokines, cytokines, soluble cytokine receptors and lipid mediators by ELISA and LC-MS/MS. Apoptosis in parathymic lymph nodes and spleens was determined by TUNEL staining. Mice administered αASGM1 had lower peritoneal NK cell numbers and a higher number of peritoneal neutrophils 12h after induction of inflammation than control mice. The number of neutrophils was still high in the αASGM1 treated mice when their number had returned to baseline levels in the control mice, 48h after induction of inflammation. Peritoneal concentrations of the neutrophil regulators G-CSF and IL-12p40 were higher at 12h in the αASGM1 treated mice than in the control mice, whereas concentrations of lipid mediators implicated in resolution of inflammation, i.e. LXA4 and PGE2, were lower. Reduced apoptosis was detected in peritoneal neutrophils as well as in draining lymph nodes and spleens from the αASGM1 treated mice compared with that in the control mice. In addition, αASGM1 treated mice had lower number of peritoneal NK cells expressing NKp46 and NKG2D, receptors implicated in NK cell-induced neutrophil apoptosis. Furthermore, αASGM1 treatment completely blocked the increase in CD27+ NK cells that occurred in control mice following induction of inflammation, but CD27+ NK cells have been suggested to have a regulatory role. These results indicate a crucial role for NK cells in resolution of antigen-induced inflammation and suggest their importance in tempering neutrophil recruitment and maintaining neutrophil apoptosis.
Collapse
|
26
|
Resolution of inflammation and sepsis survival are improved by dietary Ω-3 fatty acids. Cell Death Differ 2017; 25:421-431. [PMID: 29053142 PMCID: PMC5762854 DOI: 10.1038/cdd.2017.177] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/04/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
Critical conditions such as sepsis following infection or traumatic injury disturb the complex state of homeostasis that may lead to uncontrolled inflammation resulting in organ failure, shock and death. They are associated with endogenous mediators that control the onset of acute inflammatory response, but the central problem remains the complete resolution of inflammation. Omega-3 enriched lipid emulsions (Ω-3+ LEs) were used in experimental studies and clinical trials to establish homeostasis, yet with little understanding about their role on the resolution of inflammation and tissue regeneration. Here, we demonstrate that Ω-3 lipid emulsions (LEs) orchestrate inflammation-resolution/regeneration mechanism during sterile peritonitis and murine polymicrobial sepsis. Ω-3+ LEs recessed neutrophil infiltration, reduced pro-inflammatory mediators, reduced the classical monocyte and enhanced the non-classical monocytes/macrophages recruitment and finally increased the efferocytosis in sepsis. The actions of Ω-3+ LE were 5-lipoxygenase (5-LOX) and 12/15-lipoxygenase (12/15-LOX) dependent. Ω-3+ LEs shortened the resolution interval by 56%, stimulated the endogenous biosynthesis of resolution mediators lipoxin A4, protectin DX and maresin 1 and contributed to tissue regeneration. Ω-3+ LEs protected against hypothermia and weight loss and enhanced survival in murine polymicrobial sepsis. We highlighted a role of Ω-3+ LEs in regulating key mechanisms within the resolution terrain during murine sepsis. This might form the basis for a rational design of sepsis specific clinical nutrition.
Collapse
|
27
|
Zahradka P, Neumann S, Aukema HM, Taylor CG. Adipocyte lipid storage and adipokine production are modulated by lipoxygenase-derived oxylipins generated from 18-carbon fatty acids. Int J Biochem Cell Biol 2017; 88:23-30. [PMID: 28465089 DOI: 10.1016/j.biocel.2017.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/31/2017] [Accepted: 04/24/2017] [Indexed: 01/27/2023]
Abstract
Generation of oxylipins (oxygenated metabolites of fatty acids) by lipoxygenases may be responsible for the beneficial effects of 20- and 22-carbon n-3 fatty acids on adipose tissue dysfunction in obesity, but the potential actions of oxylipins derived from 18-carbon fatty acids, which are generally at higher levels in the diet, are unknown. We therefore compared the effects of select lipoxygenase-derived oxylipins produced from α-linolenic acid (ALA, C18:3 n-3), linoleic acid (LA, C18:2 n-6), and arachidonic acid (AA, C20:4 n-6) on key adipocyte functions that are altered in obesity. Individual oxylipins were added to the culture medium of differentiating 3T3-L1 preadipocytes for 6days. Lipid accumulation was subsequently determined by Oil Red O staining, while Western blotting was used to measure levels of proteins associated with lipid metabolism and characteristics of adipocyte functionality. Addition of all oxylipins at 30nM was sufficient to significantly decrease triglyceride accumulation in lipid droplets, and higher levels completely blocked lipid production. Our results establish that lipoxygenase-derived oxylipins produced from 18-carbon PUFA differentially affect multiple adipocyte processes associated with lipid storage and adipokine production. However, these effects are not due to the oxylipins blocking adipocyte maturation and thus globally suppressing all adipocyte characteristics. Furthermore, these oxylipin species decrease the lipid content of adipocytes regardless from which precursor fatty acid or lipoxygenase they were derived. Consequently, adipocyte characteristics can be altered through the ability of oxylipins to selectively modulate levels of proteins involved in both lipid metabolism and adipokine production.
Collapse
Affiliation(s)
- Peter Zahradka
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Department of Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, Canada.
| | - Shannon Neumann
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, Canada
| | - Harold M Aukema
- Department of Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, Canada
| | - Carla G Taylor
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Department of Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, Canada
| |
Collapse
|
28
|
Wang Y, Meng X, Yan H. Niaspan inhibits diabetic retinopathy‑induced vascular inflammation by downregulating the tumor necrosis factor‑α pathway. Mol Med Rep 2017; 15:1263-1271. [PMID: 28138697 PMCID: PMC5367335 DOI: 10.3892/mmr.2017.6146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 11/22/2016] [Indexed: 12/22/2022] Open
Abstract
Diabetic retinopathy (DR) is a serious microvascular complication of diabetes and a major cause of blindness in the developing world. Early DR is characterized by vascular neuroinflammation, cell apoptosis and breakdown of the blood‑retinal barrier (BRB). However, optimal treatment options and associated mechanisms remain unclear. Niaspan, which is widely used in the prevention and treatment of hyperlipidemia‑associated diseases, has been reported to inhibit inflammation. However, the effects of Niaspan and the mechanisms underlying the anti‑inflammatory effects of Niaspan on DR have yet to be reported. The present study aimed to investigate the anti‑inflammatory effects and mechanisms of Niaspan in a rat model of DR. Rats with DR exhibited a significant increase in BRB breakdown, retinal apoptosis, and tumor necrosis factor‑α (TNF‑α) and nuclear factor‑κB (NF‑κB) expression. In addition, the expression levels of inducible nitric oxide synthase (iNOS) and intercellular cell adhesion molecule‑1 (ICAM‑1) were increased in the retinas of DR rats compared with in the normal control group. In conclusion, treatment with Niaspan significantly improved clinical and histopathological outcomes; decreased the expression levels of TNF‑α, NF‑κB, iNOS and ICAM‑1; and decreased apoptosis and BRB breakdown, as compared with in the retinas of DR rats. The present study is the first, to the best of our knowledge, to demonstrate that Niaspan treatment ameliorates DR by inhibiting inflammation, and also suggests that the TNF‑α pathway may contribute to the beneficial effects of Niaspan treatment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiangda Meng
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
29
|
Zeman M, Vecka M, Perlík F, Staňková B, Hromádka R, Tvrzická E, Širc J, Hrib J, Žák A. Pleiotropic effects of niacin: Current possibilities for its clinical use. ACTA PHARMACEUTICA 2016; 66:449-469. [PMID: 27749252 DOI: 10.1515/acph-2016-0043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/02/2016] [Indexed: 12/28/2022]
Abstract
Niacin was the first hypolipidemic drug to significantly reduce both major cardiovascular events and mortality in patients with cardiovascular disease. Niacin favorably influences all lipoprotein classes, including lipoprotein[a],and belongs to the most potent hypolipidemic drugs for increasing HDL-C. Moreover, niacin causes favorable changes to the qualitative composition of lipoprotein HDL. In addition to its pronounced hypolipidemic action, niacin exerts many other, non-hypolipidemic effects (e.g., antioxidative, anti-inflammatory, antithrombotic), which favorably influence the development and progression of atherosclerosis. These effects are dependent on activation of the specific receptor HCA2. Recent results published by the two large clinical studies, AIM-HIGH and HPS2-THRIVE, have led to the impugnation of niacin's role in future clinical practice. However, due to several methodological flaws in the AIM-HIGH and HPS2-THRIVE studies, the pleiotropic effects of niacin now deserve thorough evaluation. This review summarizes the present and possible future use of niacin in clinical practice in light of its newly recognized pleiotropic effects.
Collapse
Affiliation(s)
- Miroslav Zeman
- 4th Department of Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Marek Vecka
- 4th Department of Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - František Perlík
- Institute of Pharmacology, 1st Faculty of MedicineCharles University in Prague, Prague, Czechia
| | - Barbora Staňková
- 4th Department of Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Robert Hromádka
- Research and Development Center, C2P s.r.o., Chlumec/n Cidlinou, Czechia
| | - Eva Tvrzická
- 4th Department of Medicine, 1st Faculty of Medicine, Charles University in PraguePrague, Czechia
| | - Jakub Širc
- Institute of Macromolecular, Chemistry, Academy of Sciences of the Czech Republic Prague, Czechia
| | - Jakub Hrib
- Institute of Macromolecular, Chemistry, Academy of Sciences of the Czech Republic Prague, Czechia
| | - Aleš Žák
- 4th Department of Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
30
|
Kohler I, Giera M. Recent advances in liquid-phase separations for clinical metabolomics. J Sep Sci 2016; 40:93-108. [DOI: 10.1002/jssc.201600981] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Isabelle Kohler
- Division of Analytical Biosciences, Leiden Academic Centre for Drug Research; Leiden University; Leiden The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
31
|
Cuppen BVJ, Fu J, van Wietmarschen HA, Harms AC, Koval S, Marijnissen ACA, Peeters JJW, Bijlsma JWJ, Tekstra J, van Laar JM, Hankemeier T, Lafeber FPJG, van der Greef J, on behalf of all Society for Rheumatology Research Utrecht investigators. Exploring the Inflammatory Metabolomic Profile to Predict Response to TNF-α Inhibitors in Rheumatoid Arthritis. PLoS One 2016; 11:e0163087. [PMID: 27631111 PMCID: PMC5025050 DOI: 10.1371/journal.pone.0163087] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/04/2016] [Indexed: 01/06/2023] Open
Abstract
In clinical practice, approximately one-third of patients with rheumatoid arthritis (RA) respond insufficiently to TNF-α inhibitors (TNFis). The aim of the study was to explore the use of a metabolomics to identify predictors for the outcome of TNFi therapy, and study the metabolomic fingerprint in active RA irrespective of patients’ response. In the metabolomic profiling, lipids, oxylipins, and amines were measured in serum samples of RA patients from the observational BiOCURA cohort, before start of biological treatment. Multivariable logistic regression models were established to identify predictors for good- and non-response in patients receiving TNFi (n = 124). The added value of metabolites over prediction using clinical parameters only was determined by comparing the area under receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, positive- and negative predictive value and by the net reclassification index (NRI). The models were further validated by 10-fold cross validation and tested on the complete TNFi treatment cohort including moderate responders. Additionally, metabolites were identified that cross-sectionally associated with the RA disease activity score based on a 28-joint count (DAS28), erythrocyte sedimentation rate (ESR) or C-reactive protein (CRP). Out of 139 metabolites, the best-performing predictors were sn1-LPC(18:3-ω3/ω6), sn1-LPC(15:0), ethanolamine, and lysine. The model that combined the selected metabolites with clinical parameters showed a significant larger AUC-ROC than that of the model containing only clinical parameters (p = 0.01). The combined model was able to discriminate good- and non-responders with good accuracy and to reclassify non-responders with an improvement of 30% (total NRI = 0.23) and showed a prediction error of 0.27. For the complete TNFi cohort, the NRI was 0.22. In addition, 88 metabolites were associated with DAS28, ESR or CRP (p<0.05). Our study established an accurate prediction model for response to TNFi therapy, containing metabolites and clinical parameters. Associations between metabolites and disease activity may help elucidate additional pathologic mechanisms behind RA.
Collapse
Affiliation(s)
- Bart V. J. Cuppen
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Junzeng Fu
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
- Sino-Dutch center for Preventive and Personalized Medicine, Zeist, The Netherlands
- * E-mail:
| | - Herman A. van Wietmarschen
- Sino-Dutch center for Preventive and Personalized Medicine, Zeist, The Netherlands
- TNO, Netherlands Organization for Applied Scientific Research, Microbiology & Systems Biology, Zeist, The Netherlands
| | - Amy C. Harms
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
- Netherlands Metabolomics Center, Leiden, The Netherlands
| | - Slavik Koval
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
- Netherlands Metabolomics Center, Leiden, The Netherlands
| | - Anne C. A. Marijnissen
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Johannes W. J. Bijlsma
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Janneke Tekstra
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jacob M. van Laar
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thomas Hankemeier
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
- Netherlands Metabolomics Center, Leiden, The Netherlands
| | - Floris P. J. G. Lafeber
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan van der Greef
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
- Sino-Dutch center for Preventive and Personalized Medicine, Zeist, The Netherlands
- TNO, Netherlands Organization for Applied Scientific Research, Microbiology & Systems Biology, Zeist, The Netherlands
- Netherlands Metabolomics Center, Leiden, The Netherlands
| | | |
Collapse
|
32
|
Schlegel M, Köhler D, Körner A, Granja T, Straub A, Giera M, Mirakaj V. The neuroimmune guidance cue netrin-1 controls resolution programs and promotes liver regeneration. Hepatology 2016; 63:1689-705. [PMID: 26573873 DOI: 10.1002/hep.28347] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED Hepatic ischemia/reperfusion (I/R) is a major adverse reaction to liver transplantation, hemorrhagic shock, or resection. Recently, the anti-inflammatory properties of the axonal guidance cue netrin-1 were reported. Here, we demonstrate that netrin-1 also impacts the resolution of inflammation and promotes hepatic repair and regeneration during liver I/R injury. In initial studies, we investigated the induction of netrin-1 and its receptors in murine liver tissues after I/R injury. Hepatic I/R injury was performed in mice with a partial genetic netrin-1 deficiency (Ntn1(+/-) ) or wild-type C57BL/6 treated with exogenous netrin-1 to examine the endogenous and therapeutically administered impact of netrin-1. These investigations were corroborated by studies determining the characteristics of intravascular leukocyte flow, clearance of apoptotic neutrophils (polymorphonuclear cells [PMNs]), production of specialized proresolving lipid mediators (SPMs), generation of specific growth factors contributing to the resolution of inflammation, and liver repair. Hepatic I/R was associated with a significant reduction of netrin-1 transcript and protein in murine liver tissue. Subsequent studies in netrin-1-deficient mice revealed lower efficacies in reducing PMN infiltration, proinflammatory cytokine levels, and hepatic-specific injury enzymes. Conversely, mice treated with exogenous netrin-1 exhibited increased liver protection and repair, reducing neutrophil influx into the injury site, decreasing proinflammatory mediators, increasing efferocytosis of apoptotic PMNs, and stimulating local endogenous biosynthesis of SPMs and the generation of specific growth factors. Finally, genetic studies implicated the A2B adenosine receptor in netrin-1-mediated protection during hepatic I/R injury. CONCLUSION The present study indicates a previously unrecognized role for netrin-1 in liver protection and its contribution to tissue homeostasis and regeneration.
Collapse
Affiliation(s)
- Martin Schlegel
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - David Köhler
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Andreas Körner
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Tiago Granja
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Andreas Straub
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Valbona Mirakaj
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Lipids and bariatric procedures Part 2 of 2: scientific statement from the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and Obesity Medicine Association (OMA) 1. Surg Obes Relat Dis 2016; 12:468-495. [DOI: 10.1016/j.soard.2016.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/17/2022]
|
34
|
Heemskerk MM, Giera M, el Bouazzaoui F, Lips MA, Pijl H, Willems van Dijk K, van Harmelen V. Increased PUFA Content and 5-Lipoxygenase Pathway Expression Are Associated with Subcutaneous Adipose Tissue Inflammation in Obese Women with Type 2 Diabetes. Nutrients 2015; 7:7676-90. [PMID: 26378572 PMCID: PMC4586557 DOI: 10.3390/nu7095362] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 12/26/2022] Open
Abstract
Obese women with type 2 diabetes mellitus (T2DM) have more inflammation in their subcutaneous white adipose tissue (sWAT) than age-and-BMI similar obese women with normal glucose tolerance (NGT). We aimed to investigate whether WAT fatty acids and/or oxylipins are associated with the enhanced inflammatory state in WAT of the T2DM women. Fatty acid profiles were measured in both subcutaneous and visceral adipose tissue (vWAT) of 19 obese women with NGT and 16 age-and-BMI similar women with T2DM. Oxylipin levels were measured in sWAT of all women. Arachidonic acid (AA) and docosahexaenoic acid (DHA) percentages were higher in sWAT, but not vWAT of the T2DM women, and AA correlated positively to the gene expression of macrophage marker CD68. We found tendencies for higher oxylipin concentrations of the 5-LOX leukotrienes in sWAT of T2DM women. Gene expression of the 5-LOX leukotriene biosynthesis pathway was significantly higher in sWAT of T2DM women. In conclusion, AA and DHA content were higher in sWAT of T2DM women and AA correlated to the increased inflammatory state in sWAT. Increased AA content was accompanied by an upregulation of the 5-LOX pathway and seems to have led to an increase in the conversion of AA into proinflammatory leukotrienes in sWAT.
Collapse
MESH Headings
- 5-Lipoxygenase-Activating Proteins/genetics
- Adult
- Antigens, CD/genetics
- Antigens, Differentiation, Myelomonocytic/genetics
- Arachidonate 5-Lipoxygenase/analysis
- Arachidonate 5-Lipoxygenase/genetics
- Arachidonic Acid/analysis
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Dipeptidases/genetics
- Docosahexaenoic Acids/analysis
- Female
- Humans
- Inflammation/diagnosis
- Inflammation/enzymology
- Inflammation Mediators/analysis
- Intra-Abdominal Fat/enzymology
- Leukotrienes/analysis
- Middle Aged
- Netherlands
- Obesity, Morbid/diagnosis
- Obesity, Morbid/enzymology
- Obesity, Morbid/genetics
- Obesity, Morbid/surgery
- Signal Transduction
- Subcutaneous Fat/enzymology
- Up-Regulation
Collapse
Affiliation(s)
- Mattijs M. Heemskerk
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands; E-Mails: (M.M.H.); (F.B.); (K.W.V.D.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Martin Giera
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands; E-Mail:
| | - Fatiha el Bouazzaoui
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands; E-Mails: (M.M.H.); (F.B.); (K.W.V.D.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Mirjam A. Lips
- Department of Medicine, division Endocrinology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands; E-Mails: (M.A.L.); (H.P.)
| | - Hanno Pijl
- Department of Medicine, division Endocrinology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands; E-Mails: (M.A.L.); (H.P.)
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands; E-Mails: (M.M.H.); (F.B.); (K.W.V.D.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Medicine, division Endocrinology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands; E-Mails: (M.A.L.); (H.P.)
| | - Vanessa van Harmelen
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands; E-Mails: (M.M.H.); (F.B.); (K.W.V.D.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +31-71-526-9471; Fax: +31-71-526-8285
| |
Collapse
|
35
|
Zeman M, Vecka M, Perlík F, Hromádka R, Staňková B, Tvrzická E, Žák A. Niacin in the Treatment of Hyperlipidemias in Light of New Clinical Trials: Has Niacin Lost its Place? Med Sci Monit 2015. [PMID: 26210594 PMCID: PMC4523006 DOI: 10.12659/msm.893619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Niacin is considered to be a powerful drug for the treatment of lipid and lipoprotein abnormalities connected with “residual cardiovascular risk”, which persist in high-risk patients even when the target goals of LDL-C are achieved with statin therapy. Recent large randomized clinical studies – AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides) and HPS2-THRIVE (Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events) – delivered some disappointing results, leading to the conclusion that no further benefit (decreased parameters of cardiovascular risk) is achieved by adding niacin to existing statin therapy in patients with high cardiovascular risk. Moreover, in these studies, several adverse effects of the treatment were observed; therefore, niacin treatment for hypolipidemias is not recommended. In this paper, we analyze the mechanisms underlying the hypolipidemic and antiatherogenic effects of niacin as well as some limitations of the designs of the AIM HIGH and HP2-THRIVE studies. We also provide the possibilities of rational usage of niacin for specific types of dyslipidemias.
Collapse
Affiliation(s)
- Miroslav Zeman
- 4th Department of Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Marek Vecka
- 4th Department of Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - František Perlík
- Institute of Pharmacology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Róbert Hromádka
- Research and Development Center, C2P s.r.o., Chlumec nad Cidlinou, Czech Republic
| | - Barbora Staňková
- 4th Department of Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Eva Tvrzická
- IVth Dept Internal Med, 1st Fac. Med., Charles Univ., Prague, Czech Republic
| | - Aleš Žák
- 4th Department of Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
36
|
Jónasdóttir HS, Papan C, Fabritz S, Balas L, Durand T, Hardardottir I, Freysdottir J, Giera M. Differential Mobility Separation of Leukotrienes and Protectins. Anal Chem 2015; 87:5036-40. [DOI: 10.1021/acs.analchem.5b00786] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hulda S. Jónasdóttir
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300RC Leiden, The Netherlands
- Department
of Rheumatology, Leiden University Medical Center, Albinusdreef
2, 2300RC Leiden, The Netherlands
| | - Cyrus Papan
- SCIEX Germany GmbH, Landwehrstrasse
54, 64293 Darmstadt, Germany
| | | | - Laurence Balas
- Institut des Biomolécules
Max Mousseron (IBMM), UMR 5247−CNRS, University of Montpellier, 34090 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules
Max Mousseron (IBMM), UMR 5247−CNRS, University of Montpellier, 34090 Montpellier, France
| | - Ingibjorg Hardardottir
- Faculty
of Medicine, Biomedical Center, School of Health Sciences, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik, Iceland
| | - Jona Freysdottir
- Faculty
of Medicine, Biomedical Center, School of Health Sciences, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik, Iceland
- Department
of Immunology and Center for Rheumatology Research, Landspitali-The National University of Iceland, 101 Reykjavik, Iceland
| | - Martin Giera
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300RC Leiden, The Netherlands
| |
Collapse
|
37
|
Abstract
Niacin is an important vitamin (B3) that can be used in gram doses to positively modify pathogenetically relevant lipid disorders: elevated LDL cholesterol, elevated non-HDL cholesterol, elevated triglycerides, elevated lipoprotein(a), and reduced HDL cholesterol. This review reports the latest published findings with respect to niacin's mechanisms of action on these lipids and its anti-inflammatory and anti-atherosclerotic effects. In the pre-statin era, niacin was shown to have beneficial effects on cardiovascular end-points; but in recent years, two major studies performed in patients whose LDL cholesterol levels had been optimized by a statin therapy did not demonstrate an additional significant effect on these end-points in the groups where niacin was administered. Both studies have several drawbacks that suggest that they are not representative for other patients. Thus, niacin still plays a role either as an additive to a statin or as a substitute for a statin in statin-intolerant patients. Moreover, patients with elevated triglyceride and low HDL cholesterol levels and patients with elevated lipoprotein(a) concentrations will possibly benefit from niacin, although currently the study evidence for these indications is rather poor. Niacin may be useful for compliant patients, however possible side effects (flushing, liver damage) and contraindications should be taken into consideration.
Collapse
Affiliation(s)
- Ulrich Julius
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany. Fetscherstr. 74, 01307 Dresden (Germany).,Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany. Fetscherstr. 74, 01307 Dresden (Germany)
| |
Collapse
|