1
|
Wong CN, Lee SK, Lim YM, Yang SB, Chew YL, Chua AL, Liew KB. Recent Advances in Vitamin E TPGS-Based Organic Nanocarriers for Enhancing the Oral Bioavailability of Active Compounds: A Systematic Review. Pharmaceutics 2025; 17:485. [PMID: 40284480 PMCID: PMC12030195 DOI: 10.3390/pharmaceutics17040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Background: D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), an amphiphilic derivative of natural vitamin E, functions as both a drug efflux inhibitor and a protector against enzymatic degradation and has been widely incorporated into nano-formulations for drug design and delivery. Objective: This systematic review evaluates TPGS-based organic nanocarriers, emphasizing their potential to enhance bioavailability of active compounds which include drugs and phytochemicals, improve pharmacokinetic profiles, and optimize therapeutic outcomes, eventually overcoming the limitations of conventional oral active compounds delivery. Search strategy: Data collection was carried out by entering key terms (TPGS) AND (Micelle OR Liposome OR Nanoparticle OR Nanotube OR Dendrimer OR Niosome OR Nanosuspension OR Nanomicelle OR Nanocrystal OR Nanosphere OR Nanocapsule) AND (Oral Bioavailability) into the Scopus database. Inclusion criteria: Full-text articles published in English and relevant to TPGS, which featured organic materials, utilized an oral administration route, and included pharmacokinetic study, were included to the final review. Data extraction and analysis: Data selection was conducted by two review authors and subsequently approved by all other authors through a consensus process. The outcomes of the included studies were reviewed and categorized based on the types of nanocarriers. Results: An initial search of the database yielded 173 records. After screening by title and abstract, 52 full-text articles were analyzed. A total of 21 papers were excluded while 31 papers were used in this review. Conclusions: This review concludes that TPGS-based organic nanocarriers are able to enhance the bioavailability of various active compounds, including several phytochemicals, leveraging TPGS's amphiphilic nature, inhibition of efflux transporters, protection against degradation, and stabilization properties. Despite using the same excipient, variability in particle size, zeta potential, and encapsulation efficiency among nanocarriers indicates the need for tailored formulations. A comprehensive approach involving the development and standardized comparison of diverse TPGS-incorporated active compound formulations is essential to identify the optimal TPGS-based nanocarrier for improving a particular active compound's bioavailability.
Collapse
Affiliation(s)
- Chee Ning Wong
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia; (C.N.W.); (Y.M.L.)
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia; (C.N.W.); (Y.M.L.)
| | - Yang Mooi Lim
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia; (C.N.W.); (Y.M.L.)
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan;
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia;
| | - Ang-Lim Chua
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia;
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya 63000, Malaysia
| |
Collapse
|
2
|
Elhassan E, Omolo CA, Gafar MA, Ismail EA, Ibrahim UH, Khan R, Lesouhaitier M, Kubes P, Govender T. Multifunctional hyaluronic acid-based biomimetic/pH-responsive hybrid nanostructured lipid carriers for treating bacterial sepsis. J Biomed Sci 2025; 32:19. [PMID: 39930418 PMCID: PMC11812216 DOI: 10.1186/s12929-024-01114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/17/2024] [Indexed: 02/13/2025] Open
Abstract
INTRODUCTION The application of biomimetic and stimuli-responsive nanocarriers displays considerable promise in improving the management of bacterial sepsis and overcoming antimicrobial resistance. Therefore, the study aimed to synthesize a novel hyaluronic acid-lysine conjugate (HA-Lys) and to utilize the attributes of the synthesized HA-Lys with Tocopherol succinate (TS) and Oleylamine (OLA) in the formulation of multifunctional biomimetic pH-responsive HNLCs loaded with vancomycin (VCM-HNLCs), to combat bacterial sepsis. METHODS A novel hyaluronic acid-lysine conjugate (HA-Lys) was synthesized and characterized using FTIR and 1H NMR spectroscopy. Vancomycin-loaded hybrid nanosystems (VCM-HNLCs) were prepared through hot homogenization ultrasonication and evaluated for particle size, polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE%). In vitro biocompatibility was assessed via MTT assay and red blood cell hemolysis test. The binding affinity to TLR2 and TLR4 was measured using microscale thermophoresis (MST). Drug release was evaluated using the dialysis bag method. Antimicrobial activity against MRSA and efflux pump inhibition were also determined. Efficacy was demonstrated in an MRSA-induced sepsis mice model. RESULTS The VCM-HNLCs, produced via hot homogenization ultrasonication, exhibited particle size (PS), polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE%) of 110.77 ± 1.692 nm, 0.113 ± 0.022, - 2.92 ± 0.210 mV, and 76.27 ± 1.200%, respectively. In vitro, biocompatibility was proven by hemolysis and cytotoxicity studies. The VCM-HNLCs demonstrated targetability to human Toll-like receptors (TLR 2 and 4) as validated by microscale thermophoresis (MST). VCM-HNLCs showed a twofold reduction in MIC values at physiological pH compared to the bare VCM against S. aureus and MRSA for 48 h. While at pH 6.0, MIC values were reduced by fourfold in the first 24 h and by eightfold in the subsequent 48 and 72 h against tested strains. Furthermore, VCM-HNLCs showed inhibitory effects against MRSA efflux pumps, reactive oxygen species (ROS), and lipopolysaccharide (LPS)-induced hyperinflammation. In an MRSA-induced sepsis mice model, VCM-HNLCs demonstrated superior efficacy compared to free VCM, significantly eliminated bacteria and improved survival rates. CONCLUSIONS Overall, these results highlight the potential of VCM-HNLCs as novel multifunctional nanocarriers to combat antimicrobial resistance (AMR) and enhance sepsis outcomes.
Collapse
Affiliation(s)
- Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Mathieu Lesouhaitier
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
3
|
Szabo M, Cs. Szabo B, Kurtan K, Varga Z, Panyi G, Nagy P, Zakany F, Kovacs T. Look Beyond Plasma Membrane Biophysics: Revealing Considerable Variability of the Dipole Potential Between Plasma and Organelle Membranes of Living Cells. Int J Mol Sci 2025; 26:889. [PMID: 39940660 PMCID: PMC11816637 DOI: 10.3390/ijms26030889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Due to the lack of measurement techniques suitable for examining compartments of intact, living cells, membrane biophysics is almost exclusively investigated in the plasma membrane despite the fact that its alterations in intracellular organelles may also contribute to disease pathogenesis. Here, we employ a novel, easy-to-use, confocal microscopy-based approach utilizing F66, an environment-sensitive fluorophore in combination with fluorescent organelle markers and quantitative image analysis to determine the magnitude of the molecular order-related dipole potential in the plasma membrane and intracellular organelles of various tumor and neural cell lines. Our comparative analysis demonstrates considerable intracellular variations of the dipole potential that may be large enough to modulate protein functions, with an inward decreasing gradient on the route of the secretory/endocytic pathway (plasma membrane >> lysosome > Golgi > endoplasmic reticulum), whereas mitochondrial membranes are characterized by a dipole potential slightly larger than that of lysosomes. Our approach is suitable and sensitive enough to quantify membrane biophysical properties selectively in intracellular compartments and their comparative analysis in intact, living cells, and, therefore, to identify the affected organelles and potential therapeutic targets in diseases associated with alterations in membrane lipid composition and thus biophysics such as tumors, metabolic, neurodegenerative, or lysosomal storage disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.S.); (B.C.S.); (K.K.); (Z.V.); (G.P.); (P.N.)
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.S.); (B.C.S.); (K.K.); (Z.V.); (G.P.); (P.N.)
| |
Collapse
|
4
|
Hayashi D, Mouchlis VD, Okamoto S, Namba T, Wang L, Li S, Ueda S, Yamanoue M, Tachibana H, Arai H, Ashida H, Dennis EA, Shirai Y. Vitamin E functions by association with a novel binding site on the 67 kDa laminin receptor activating diacylglycerol kinase. J Nutr Biochem 2022; 110:109129. [PMID: 35977663 PMCID: PMC10243646 DOI: 10.1016/j.jnutbio.2022.109129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/27/2022] [Accepted: 07/16/2022] [Indexed: 01/13/2023]
Abstract
It is generally recognized that the main function of α-tocopherol (αToc), which is the most active form of vitamin E, is its antioxidant effect, while non-antioxidant effects have also been reported. We previously found that αToc ameliorates diabetic nephropathy via diacylglycerol kinase alpha (DGKα) activation in vivo, and the activation was not related to the antioxidant effect. However, the underlying mechanism of how αToc activates DGKα have been enigmatic. We report that the membrane-bound 67 kDa laminin receptor (67LR), which has previously been shown to serve as a receptor for epigallocatechin gallate (EGCG), also contains a novel binding site for vitamin E, and its association with Vitamin E mediates DGKα activation by αToc. We employed hydrogen-deuterium exchange mass spectrometry (HDX/MS) and molecular dynamics (MD) simulations to identify the specific binding site of αToc on the 67LR and discovered the conformation of the specific hydrophobic pocket that accommodates αToc. Also, HDX/MS and MD simulations demonstrated the detailed binding of EGCG to a water-exposed hydrophilic site on 67LR, while in contrast αToc binds to a distinct hydrophobic site. We demonstrated that 67LR triggers an important signaling pathway mediating non-antioxidant effects of αToc, such as DGKα activation. This is the first evidence demonstrating a membrane receptor for αToc and one of the underlying mechanisms of a non-antioxidant function for αToc.
Collapse
Affiliation(s)
- Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan; Department of Pharmacology, and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Varnavas D Mouchlis
- Department of Pharmacology, and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Seika Okamoto
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Tomoka Namba
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Liuqing Wang
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Sheng Li
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Shuji Ueda
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Minoru Yamanoue
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo Japan
| | - Hitoshi Ashida
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Edward A Dennis
- Department of Pharmacology, and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan.
| |
Collapse
|
5
|
Kovacs T, Nagy P, Panyi G, Szente L, Varga Z, Zakany F. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates? Pharmaceutics 2022; 14:pharmaceutics14122559. [PMID: 36559052 PMCID: PMC9788615 DOI: 10.3390/pharmaceutics14122559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclodextrins, representing a versatile family of cyclic oligosaccharides, have extensive pharmaceutical applications due to their unique truncated cone-shaped structure with a hydrophilic outer surface and a hydrophobic cavity, which enables them to form non-covalent host-guest inclusion complexes in pharmaceutical formulations to enhance the solubility, stability and bioavailability of numerous drug molecules. As a result, cyclodextrins are mostly considered as inert carriers during their medical application, while their ability to interact not only with small molecules but also with lipids and proteins is largely neglected. By forming inclusion complexes with cholesterol, cyclodextrins deplete cholesterol from cellular membranes and thereby influence protein function indirectly through alterations in biophysical properties and lateral heterogeneity of bilayers. In this review, we summarize the general chemical principles of direct cyclodextrin-protein interactions and highlight, through relevant examples, how these interactions can modify protein functions in vivo, which, despite their huge potential, have been completely unexploited in therapy so far. Finally, we give a brief overview of disorders such as Niemann-Pick type C disease, atherosclerosis, Alzheimer's and Parkinson's disease, in which cyclodextrins already have or could have the potential to be active therapeutic agents due to their cholesterol-complexing or direct protein-targeting properties.
Collapse
Affiliation(s)
- Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
6
|
Lechner BD, Smith P, McGill B, Marshall S, Trick JL, Chumakov AP, Winlove CP, Konovalov OV, Lorenz CD, Petrov PG. The Effects of Cholesterol Oxidation on Erythrocyte Plasma Membranes: A Monolayer Study. MEMBRANES 2022; 12:828. [PMID: 36135847 PMCID: PMC9506283 DOI: 10.3390/membranes12090828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Cholesterol plays a key role in the molecular and mesoscopic organisation of lipid membranes and it is expected that changes in its molecular structure (e.g., through environmental factors such as oxidative stress) may affect adversely membrane properties and function. In this study, we present evidence that oxidation of cholesterol has significant effects on the mechanical properties, molecular and mesoscopic organisation and lipid-sterol interactions in condensed monolayers composed of the main species found in the inner leaflet of the erythrocyte membrane. Using a combination of experimental methods (static area compressibility, surface dilatational rheology, fluorescence microscopy, and surface sensitive X-ray techniques) and atomistic molecular dynamics simulations, we show that oxidation of cholesterol to 7-ketocholesterol leads to stiffening of the monolayer (under both static and dynamic conditions), significant changes in the monolayer microdomain organisation, disruption in the van der Waals, electrostatic and hydrophobic interactions between the sterol and the other lipid species, and the lipid membrane hydration. Surface sensitive X-ray techniques reveal that, whilst the molecular packing mode is not significantly affected by cholesterol oxidation in these condensed phases, there are subtle changes in membrane thickness and a significant decrease in the coherence length in monolayers containing 7-ketocholesterol.
Collapse
Affiliation(s)
- Bob-Dan Lechner
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Paul Smith
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, UK
| | - Beth McGill
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Skye Marshall
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Jemma L. Trick
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, UK
| | - Andrei P. Chumakov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Charles Peter Winlove
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Oleg V. Konovalov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Christian D. Lorenz
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, UK
| | - Peter G. Petrov
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| |
Collapse
|
7
|
Sarkar P, Chattopadhyay A. Membrane Dipole Potential: An Emerging Approach to Explore Membrane Organization and Function. J Phys Chem B 2022; 126:4415-4430. [PMID: 35696090 DOI: 10.1021/acs.jpcb.2c02476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological membranes are complex organized molecular assemblies of lipids and proteins that provide cells and membrane-bound intracellular organelles their individual identities by morphological compartmentalization. Membrane dipole potential originates from the electrostatic potential difference within the membrane due to the nonrandom arrangement (orientation) of amphiphile and solvent (water) dipoles at the membrane interface. In this Feature Article, we will focus on the measurement of dipole potential using electrochromic fluorescent probes and highlight interesting applications. In addition, we will focus on ratiometric fluorescence microscopic imaging technique to measure dipole potential in cellular membranes, a technique that can be used to address novel problems in cell biology which are otherwise difficult to address using available approaches. We envision that membrane dipole potential could turn out to be a convenient tool in exploring the complex interplay between membrane lipids and proteins and could provide novel insights in membrane organization and function.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
8
|
Qiu L, Xu J, Ahmed KS, Zhu M, Zhang Y, Long M, Chen W, Fang W, Zhang H, Chen J. Stimuli-responsive, dual-function prodrug encapsulated in hyaluronic acid micelles to overcome doxorubicin resistance. Acta Biomater 2022; 140:686-699. [PMID: 34875359 DOI: 10.1016/j.actbio.2021.11.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
Multidrug resistance (MDR) is the main challenge faced by cancer chemotherapy. Drug-conjugate offers a promising strategy for breast cancer therapy. In this regard, we developed a DNVM multifunctional drug delivery system by crosslinking doxorubicin (DOX) and vitamin E succinate (VES) with a pH-sensitive hydrazone bond and then encapsulated the DOX-NN-VES prodrug into pH-sensitive hyaluronic acid-2-(octadecyloxy)-1,3-dioxan-5-amine (HOD) micelles. DOX resistant MCF-7/ADR cell were adopted as a model to study the capability and mechanism of MDR reversal. DNVM exhibited much higher cytotoxicity and cell uptake efficiency compared with that of acid-insensitive DOX-VES loaded HOD micelles (DVSM) and DOX loaded HOD micelles (DOXM), indicating the better capacity of DNVM for the reversal of MDR. Moreover, DNVM prevented drug efflux more effectively, inhibited the expression of P-gp, induced excessive production of reactive oxygen species and affected the expression of apoptosis-related proteins. In vivo experiments showed that DNVM significantly inhibited the tumor growth with no obvious changes in the body weight of MCF-7/ADR cells-bearing nude mice. The results suggested that the "double gain" DNVM can synergistically enhance the efficacy of chemotherapeutics for DOX resistant tumor cells and has the potential to overcome tumor MDR. STATEMENT OF SIGNIFICANCE: A dual-functional pH-sensitive doxorubicin - vitamin E succinate prodrug was developed and loaded into tumor microenvironment-sensitive hyaluronic acid-2-(octadecyloxy)-1,3-dioxan-5-amine micelle system (DNVM) for sequencing stimuli-release and overcoming doxorubicin resistance. The "double gain" DNVM can synergistically enhance the efficacy of chemotherapeutics for doxorubicin resistant tumor cells and has the potential to overcome tumor multiple drug resistance.
Collapse
Affiliation(s)
- Lipeng Qiu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jiamin Xu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Kamel S Ahmed
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Mengqin Zhu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yan Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Miaomiao Long
- Department of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi 214028, Jiangsu, China
| | - Weijun Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wenjie Fang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Huijie Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Jinghua Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
9
|
Oruz O, Yar K, Şaker D, Açıkalın A, Dağlıoğlu YK, Polat S. Histopathological effects of topical coenzyme q 10 + Vit E TPGS in experimental ischemic optic neuropathy. Ultrastruct Pathol 2022; 46:54-62. [PMID: 34978274 DOI: 10.1080/01913123.2021.2022055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We aimed to create a mechanical optic nerve damage model in rats and to investigate the neuroprotective effects of topical Coenzyme Q10 + Vitamin E TPGS (CoQ10+Vit E) molecule on retinal ganglion cells. In our study, 30 eyes of 20 male Wistar rats were used. Three groups, each consisting of 10 eyes, were formed as control, experimental, and treatment groups. The control group was used to test the formation of optic nerve damage. Topical CoQ10 + Vit E TPGS solution was applied to the rats in the treatment group, one drop twice a day for 3 weeks. On the other hand, physiological drops were applied to the experimental group 2 times a day for 3 weeks. After 3 weeks, the optic nerves of the rats were dissected and examined histopathologically. In electron microscopic examination of the treatment group, it was noted that the myelin sheath in the majority of myelinated nerve fibers and the normal structures of mitochondria, neurotubules, and neurofilaments in the axoplasm were preserved. It was observed that the oligodendrocytes surrounded the myelinated axons. In the experimental group, significant degenerative changes were observed in myelinated nerve fibers in many areas. The number of myelinated axons was significantly increased in the treatment group compared to the experimental group (p = .0028). In the light of the data obtained, the neuroprotective effect of the topically used CoQ10 + Vit E TPGS molecule was found to be histopathologically effective in our experimental study.Abbreviations: NAAION: Nonarteritic anterior ischemic optic neuropathy; CoQ10: Coenzyme q10; CG: Control group; EG: Experimental group; TG: Treatment group.
Collapse
Affiliation(s)
- Oğuzhan Oruz
- Department of Ophthalmology, Başkent University School of Medicine, Adana, Turkey
| | - Kemal Yar
- Department of Ophthalmology, Çukurova University School of Medicine, Adana, Turkey
| | - Dilek Şaker
- Department of Histology and Embryology, Çukurova University School of Medicine, Adana, Turkey
| | - Arbil Açıkalın
- Department of Pathology, Çukurova University School of Medicine, Adana, Turkey
| | - Yusuf Kenan Dağlıoğlu
- Departmant of Microbiology, Ahi Evran University School of Medicine, Kırşehir, Turkey
| | - Sait Polat
- Department of Histology and Embryology, Çukurova University School of Medicine, Adana, Turkey
| |
Collapse
|
10
|
Ibrahim UH, Devnarain N, Omolo CA, Mocktar C, Govender T. Biomimetic pH/lipase dual responsive vitamin-based solid lipid nanoparticles for on-demand delivery of vancomycin. Int J Pharm 2021; 607:120960. [PMID: 34333022 DOI: 10.1016/j.ijpharm.2021.120960] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/12/2023]
Abstract
In this study, ascorbyl tocopherol succinate (ATS) was designed, synthesized and characterized via FT-IR, HR-MS, H1 NMR and C13 NMR, to simultaneously confer biomimetic and dual responsive properties of an antibiotic nanosystem to enhance their antibacterial efficacy and reduce antimicrobial resistance. Therefore, an in silico-aided design (to mimic the natural substrate of bacterial lipase) was employed to demonstrate the binding potential of ATS to lipase (-32.93 kcal/mol binding free energy (ΔGbind) and bacterial efflux pumps blocking potential (NorA ΔGbind: -37.10 kcal/mol, NorB ΔGbind: -34.46 kcal/mol). ATS bound stronger to lipase than the natural substrate (35 times lower Kd value). The vancomycin loaded solid lipid nanoparticles (VM-ATS-SLN) had a hydrodynamic diameter, zeta potential, polydispersity index and entrapment efficiency of 106.9 ± 1.4 nm, -16.5 ± 0.93 mV, 0.11 ± 0.012 and 61.9 ± 1.31%, respectively. In vitro biocompatibility studies revealed VM-ATS-SLN biosafety and non-haemolytic activity. Significant enhancement in VM release was achieved in response to acidified pH and lipase enzyme, compared to controls. VM-ATS-SLN showed enhanced sustained in vitro antibacterial activity for 5 days, 2-fold greater MRSA biofilm growth inhibition and 3.44-fold reduction in bacterial burden in skin infected mice model compared to bare VM. Therefore, ATS shows potential as a novel multifunctional adjuvant for effective and targeted delivery of antibiotics.
Collapse
Affiliation(s)
- Usri H Ibrahim
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P.O. Box 14634-00800, Nairobi, Kenya.
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
11
|
Zakany F, Szabo M, Batta G, Kárpáti L, Mándity IM, Fülöp P, Varga Z, Panyi G, Nagy P, Kovacs T. An ω-3, but Not an ω-6 Polyunsaturated Fatty Acid Decreases Membrane Dipole Potential and Stimulates Endo-Lysosomal Escape of Penetratin. Front Cell Dev Biol 2021; 9:647300. [PMID: 33912562 PMCID: PMC8074792 DOI: 10.3389/fcell.2021.647300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Although the largely positive intramembrane dipole potential (DP) may substantially influence the function of transmembrane proteins, its investigation is deeply hampered by the lack of measurement techniques suitable for high-throughput examination of living cells. Here, we describe a novel emission ratiometric flow cytometry method based on F66, a 3-hydroxiflavon derivative, and demonstrate that 6-ketocholestanol, cholesterol and 7-dehydrocholesterol, saturated stearic acid (SA) and ω-6 γ-linolenic acid (GLA) increase, while ω-3 α-linolenic acid (ALA) decreases the DP. These changes do not correlate with alterations in cell viability or membrane fluidity. Pretreatment with ALA counteracts, while SA or GLA enhances cholesterol-induced DP elevations. Furthermore, ALA (but not SA or GLA) increases endo-lysosomal escape of penetratin, a cell-penetrating peptide. In summary, we have developed a novel method to measure DP in large quantities of individual living cells and propose ALA as a physiological DP lowering agent facilitating cytoplasmic entry of penetratin.
Collapse
Affiliation(s)
- Florina Zakany
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mate Szabo
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyula Batta
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Levente Kárpáti
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - István M. Mándity
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Lendület-Artificial Chloride Ion Transporter Group, Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | - Péter Fülöp
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Nagy
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Kovacs
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Modulation and Protection Effects of Antioxidant Compounds against Oxidant Induced Developmental Toxicity in Zebrafish. Antioxidants (Basel) 2020; 9:antiox9080721. [PMID: 32784515 PMCID: PMC7463582 DOI: 10.3390/antiox9080721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
The antioxidant effect of compounds is regularly evaluated by in vitro assays that do not have the capability to predict in vivo protective activity or to determine their underlying mechanisms of action. The aim of this study was to develop an experimental system to evaluate the in vivo protective effects of different antioxidant compounds, based on the zebrafish embryo test. Zebrafish embryos were exposed to tert-butyl hydroperoxide (tBOOH), tetrachlorohydroquinone (TCHQ) and lipopolysaccharides from Escherichia coli (LPS), chemicals that are known inducers of oxidative stress in zebrafish. The developmental toxic effects (lethality or dysmorphogenesis) induced by these chemicals were modulated with n-acetyl l-cysteine and Nω-nitro l-arginine methyl ester hydrochloride, dimethyl maleate and dl-buthionine sulfoximine in order to validate the oxidant mechanism of oxidative stress inducers. The oxidant effects of tBOOH, TCHQ, and LPS were confirmed by the determination of significant differences in the comparison between the concentration–response curves of the oxidative stress inducers and of the modulators of antioxidant status. This concept was also applied to the study of the effects of well-known antioxidants, such as vitamin E, quercetin, and lipoic acid. Our results confirm the zebrafish model as an in vivo useful tool to test the protective effects of antioxidant compounds.
Collapse
|
13
|
Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158706. [DOI: 10.1016/j.bbalip.2020.158706] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
|
14
|
The effects of dyslipidaemia and cholesterol modulation on erythrocyte susceptibility to malaria parasite infection. Malar J 2019; 18:381. [PMID: 31783858 PMCID: PMC6884832 DOI: 10.1186/s12936-019-3016-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/20/2019] [Indexed: 11/12/2022] Open
Abstract
Background Malaria disease commences when blood-stage parasites, called merozoites, invade human erythrocytes. Whilst the process of invasion is traditionally seen as being entirely merozoite-driven, emerging data suggests erythrocyte biophysical properties markedly influence invasion. Cholesterol is a major determinant of cell membrane biophysical properties demanding its interrogation as a potential mediator of resistance to merozoite invasion of the erythrocyte. Methods Biophysical measurements of erythrocyte deformability by flicker spectroscopy were used to assess changes in erythrocyte bending modulus on forced integration of cholesterol and how these artificial changes affect invasion by human Plasmodium falciparum merozoites. To validate these observations in a natural context, either murine Plasmodium berghei or human Plasmodium falciparum merozoites were tested for their ability to invade erythrocytes from a hypercholesterolaemic mouse model or human clinical erythrocyte samples deriving from patients with a range of serum cholesterol concentrations, respectively. Results Erythrocyte bending modulus (a measure of deformability) was shown to be markedly affected by artificial modulation of cholesterol content and negatively correlated with merozoite invasion efficiency. In an in vitro infection context, however, erythrocytes taken from hypercholesterolaemic mice or from human clinical samples with varying serum cholesterol levels showed little difference in their susceptibility to merozoite invasion. Explaining this, membrane cholesterol levels in both mouse and human hypercholesterolaemia erythrocytes were subsequently found to be no different from matched normal serum controls. Conclusions Based on these observations, serum cholesterol does not appear to impact on erythrocyte susceptibility to merozoite entry. Indeed, no relationship between serum cholesterol and cholesterol content of the erythrocyte is apparent. This work, nonetheless, suggests that native polymorphisms which do affect membrane lipid composition would be expected to affect parasite entry. This supports investigation of erythrocyte biophysical properties in endemic settings, which may yet identify naturally protective lipid-related polymorphisms.
Collapse
|
15
|
Kohno K, Yamada W, Ishitsuka A, Sekine M, Virgona N, Ota M, Yano T. Tocotrienol-rich fraction from annatto ameliorates expression of lysyl oxidase in human osteoblastic MG-63 cells. Biosci Biotechnol Biochem 2019; 84:526-535. [PMID: 31743080 DOI: 10.1080/09168451.2019.1693252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lysyl oxidase (LOX) is required for the formation of bone collagen cross-links. Inactivation of the LOX gene in osteoblasts by DNA methylation and JAK signaling has been reported to cause loss of cross-links and an increased risk of fractures. Tocotrienols (T3s) have proven benefits on bone strength, but their potential effects on LOX remain largely unknown. Thus, the present study investigates the in vitro effects of T3s on LOX expression in human osteoblastic MG-63 cells. Results indicated that Tocotrienol-Rich Fraction (TRF), the δ-T3 rich oil extracted from Annatto was the most effective and significantly increased LOX expression. TRF treatment decreased de-novo methyltransferases (DNMTs), DNMT3A and DNMT3B levels. In addition, TRF significantly inhibited JAK2 activation and decreased expression of Fli1, a transcription factor of DNMTs. We conclude that TRF induced an increase in LOX expression via inhibition of de-novo methylation and reduction of Fli1 expression by the inactivation of JAK2.Abbreviations: CpG: cytosine-guanine dinucleotide; DNMT: DNA methyltransferase; Fli1: friend leukemia virus integration 1; JAK: janus kinase; LOX: lysyl oxidase; PCR: polymerase chain reaction; STAT: signal transducers and activators of transcription; T3s: tocotrienols; TPs: tocopherols; TRF: Tocotrienol-Rich Fraction.
Collapse
Affiliation(s)
- Kakeru Kohno
- Graduate School of Food and Nutritional Sciences, Toyo University, Itakura, Gunma, Japan
| | - Wakana Yamada
- Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Aya Ishitsuka
- Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Miki Sekine
- Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Nantiga Virgona
- Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Masako Ota
- Graduate School of Food and Nutritional Sciences, Toyo University, Itakura, Gunma, Japan.,Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Tomohiro Yano
- Graduate School of Food and Nutritional Sciences, Toyo University, Itakura, Gunma, Japan.,Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| |
Collapse
|
16
|
Ekicier Acar S, Sarıcaoğlu MS, Çolak A, Aktaş Z, Sepici Dinçel A. Neuroprotective effects of topical coenzyme Q10 + vitamin E in mechanic optic nerve injury model. Eur J Ophthalmol 2019; 30:714-722. [PMID: 30852912 DOI: 10.1177/1120672119833271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE We aimed to create mechanic optic nerve injury model in rats and investigate the neuroprotective effects of topical Coenzyme Q10 + Vitamin E (CoQ + Vit.E) molecules on retinal ganglion cells. METHODS Mechanic optic nerve injury model was created in the right eyes of rats (n = 12). Rats were divided into two groups: glaucoma model with sham treatment and topical CoQ + Vit.E treatment. Treatment was applied for 4 weeks. Glial fibrillary acidic protein, Brn-3a antibody, and anti-Iba1 were examined by immunohistochemistry. Glial fibrillary acidic protein, Bax, Bcl-xL, and Tfam protein expression were measured by Western blot analysis. RESULTS The number of Brn-3a-positive retinal ganglion cell was 15.0 ± 1.0 (min: 14, max: 16) in sham treatment group and 22.2 ± 4.8 (min: 18, max: 29) in topical CoQ10 + Vit.E treatment group. The protection of Brn-3a in CoQ10 + Vit.E was statistically significant (p < 0.05). Glial fibrillary acidic protein-positive astroglial counts were recorded as 11.7 ± 2.1 (min: 10, max: 14) in sham treatment and 2.5 ± 1.5 (min: 1, max: 4) in topical CoQ10 + Vit.E treatment group (p < 0.05). Topical CoQ10 + Vit.E treatment also decreased Iba1 expression in the retina of mechanic optic nerve injury groups. CoQ10 + Vit.E treatment prevented apoptotic cell death by increasing Bcl-xL protein expression. Also, CoQ10 + Vit.E preserved Tfam protein expression in the retina. CONCLUSION This study has shown that in glaucoma treatment the neuron protecting effect of topical CoQ10 + Vit.E molecules can be valuable.
Collapse
Affiliation(s)
| | - M Sinan Sarıcaoğlu
- Eye Clinic, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Aysel Çolak
- Pathology Clinic, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Zeynep Aktaş
- Department of Ophthalmology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Aylin Sepici Dinçel
- Department of Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
17
|
Topical Curcumin Nanocarriers are Neuroprotective in Eye Disease. Sci Rep 2018; 8:11066. [PMID: 30038334 PMCID: PMC6056418 DOI: 10.1038/s41598-018-29393-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 03/14/2018] [Indexed: 11/11/2022] Open
Abstract
Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5dione) is a polyphenol extracted from turmeric that has long been advocated for the treatment of a variety of conditions including neurodegenerative and inflammatory disorders. Despite this promise, the clinical use of curcumin has been limited by the poor solubility and low bioavailability of this molecule. In this article, we describe a novel nanocarrier formulation comprising Pluronic-F127 stabilised D-α-Tocopherol polyethene glycol 1000 succinate nanoparticles, which were used to successfully solubilize high concentrations (4.3 mg/mL) of curcumin. Characterisation with x-ray diffraction and in vitro release assays localise curcumin to the nanocarrier interior, with each particle measuring <20 nm diameter. Curcumin-loaded nanocarriers (CN) were found to significantly protect against cobalt chloride induced hypoxia and glutamate induced toxicity in vitro, with CN treatment significantly increasing R28 cell viability. Using established glaucoma-related in vivo models of ocular hypertension (OHT) and partial optic nerve transection (pONT), topical application of CN twice-daily for three weeks significantly reduced retinal ganglion cell loss compared to controls. Collectively, these results suggest that our novel topical CN formulation has potential as an effective neuroprotective therapy in glaucoma and other eye diseases with neuronal pathology.
Collapse
|
18
|
Passador J, Toffoli LV, Fernandes KB, Neves-Souza RD, Pelosi GG, Gomes MV. Dietary Ingestion of Calories and Micronutrients Modulates the DNA Methylation Profile of Leukocytes from Older Individuals. J Nutr Health Aging 2018; 22:1281-1285. [PMID: 30498838 DOI: 10.1007/s12603-018-1085-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Several lines of evidence from the last decade support the connection between nutrition and epigenetic mechanisms. In the present study we evaluated the impact of the daily dietary intake of calories and the micronutrients vitamin A, D, B1, B2, B5, C, E, copper, calcium, phosphorus, iron, iodine, selenium, manganese, potassium and sodium on the global DNA methylation profile of blood cells from older individuals. RESEARCH METHODS AND PROCEDURES The study enrolled 126 physically independent elderly of both sexes (60 men and 66 women). For the molecular analysis, DNA samples were extracted from leukocytes and global DNA methylation was evaluated using a high throughput Elisa-based method. Correlations between global DNA methylation and the daily intake of calorie or micronutrients were evaluated using Prism5 GraphPad Software. RESULTS A statistically significant correlation was observed between global DNA methylation and the daily caloric value (p=0.019, r=-0.21), and the intake of vitamin A (p=0.03, r=-0.18), Vitamin E (p=0.027, r=-0.20) and copper (p=0.04, r=-0.18). No correlation was observed between global DNA methylation and the daily intake of vitamin D, B1, B2, B5, C, calcium, phosphorus, iron, iodine, selenium, manganese and potassium (p>0.05). CONCLUSION Our data demonstrate that the daily intake of calories or the micronutrients vitamin A, vitamin E and copper can potentially modulate the global DNA methylation profile of leukocytes in older adults and corroborate the notion of nutritional influences on epigenetic mechanisms.
Collapse
Affiliation(s)
- J Passador
- Gislaine Garcia Pelosi, Departamento de Ciências Fisiológicas, CCB-UEL, Campus Universitário, Rod Celso Garcia Cid, Km 380, CEP 86055-900, Londrina, Paraná, Brazil. Phone.: +55 43 3371 4201; fax: +55 43 3371 4467, E-mail address:
| | | | | | | | | | | |
Collapse
|
19
|
Davis BM, Brenton J, Davis S, Shamsher E, Sisa C, Grgic L, Cordeiro MF. Assessing anesthetic activity through modulation of the membrane dipole potential. J Lipid Res 2017; 58:1962-1976. [PMID: 28818873 PMCID: PMC5625120 DOI: 10.1194/jlr.m073932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
There is great individual variation in response to general anesthetics (GAs) leading to difficulties in optimal dosing and sometimes even accidental awareness during general anesthesia (AAGA). AAGA is a rare, but potentially devastating, complication affecting between 0.1% and 2% of patients undergoing surgery. The development of novel personalized screening techniques to accurately predict a patient’s response to GAs and the risk of AAGA remains an unmet clinical need. In the present study, we demonstrate the principle of using a fluorescent reporter of the membrane dipole potential, di-8-ANEPPs, as a novel method to monitor anesthetic activity using a well-described inducer/noninducer pair. The membrane dipole potential has previously been suggested to contribute a novel mechanism of anesthetic action. We show that the fluorescence ratio of di-8-ANEPPs changed in response to physiological concentrations of the anesthetic, 1-chloro-1,2,2-trifluorocyclobutane (F3), but not the structurally similar noninducer, 1,2-dichlorohexafluorocyclobutane (F6), to artificial membranes and in vitro retinal cell systems. Modulation of the membrane dipole provides an explanation to overcome the limitations associated with the alternative membrane-mediated mechanisms of GA action. Furthermore, by combining this technique with noninvasive retinal imaging technologies, we propose that this technique could provide a novel and noninvasive technique to monitor GA susceptibility and identify patients at risk of AAGA.
Collapse
Affiliation(s)
| | - Jonathan Brenton
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Sterenn Davis
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Ehtesham Shamsher
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Claudia Sisa
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Ljuban Grgic
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - M Francesca Cordeiro
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom .,Western Eye Hospital, Imperial College Healthcare National Health Service Trust, and Imperial College Ophthalmic Research Group, Imperial College London, London NW1 5QH, United Kingdom
| |
Collapse
|
20
|
Kovács T, Batta G, Zákány F, Szöllősi J, Nagy P. The dipole potential correlates with lipid raft markers in the plasma membrane of living cells. J Lipid Res 2017; 58:1681-1691. [PMID: 28607008 DOI: 10.1194/jlr.m077339] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/06/2017] [Indexed: 11/20/2022] Open
Abstract
The dipole potential generating an electric field much stronger than any other type of membrane potential influences a wide array of phenomena, ranging from passive permeation to voltage-dependent conformational changes of membrane proteins. It is generated by the ordered orientation of lipid carbonyl and membrane-attached water dipole moments. Theoretical considerations and indirect experimental evidence obtained in model membranes suggest that the dipole potential is larger in liquid-ordered domains believed to correspond to lipid rafts in cell membranes. Using three different dipole potential-sensitive fluorophores and four different labeling approaches of raft and nonraft domains, we showed that the dipole potential is indeed stronger in lipid rafts than in the rest of the membrane. The magnitude of this difference is similar to that observed between the dipole potential in control and sphingolipid-enriched cells characteristic of Gaucher's disease. The results established that the heterogeneity of the dipole potential in living cell membranes is correlated with lipid rafts and imply that alterations in the lipid composition of the cell membrane in human diseases can lead to substantial changes in the dipole potential.
Collapse
Affiliation(s)
- Tamás Kovács
- Department of Biophysics and Cell Biology Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gyula Batta
- Faculty of Medicine, and Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Florina Zákány
- Department of Biophysics and Cell Biology Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
21
|
Davis BM, Tian K, Pahlitzsch M, Brenton J, Ravindran N, Butt G, Malaguarnera G, Normando EM, Guo L, Cordeiro MF. Topical Coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension. Mitochondrion 2017; 36:114-123. [PMID: 28549843 PMCID: PMC5645575 DOI: 10.1016/j.mito.2017.05.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022]
Abstract
Coenzyme Q10 (CoQ10) is a mitochondrial-targeted antioxidant with known neuroprotective activity. Its ocular effects when co-solubilised with α-tocopherol polyethylene glycol succinate (TPGS) were evaluated. In vitro studies confirmed that CoQ10 was significantly protective in different retinal ganglion cell (RGC) models. In vivo studies in Adult Dark Agouti (DA) rats with unilateral surgically-induced ocular hypertension (OHT) treated with either CoQ10/TPGS micelles or TPGS vehicle twice daily for three weeks were performed, following which retinal cell health was assessed in vivo using DARC (Detection of Apoptotic Retinal Cells) and post-mortem with Brn3a histological assessment on whole retinal mounts. CoQ10/TPGS showed a significant neuroprotective effect compared to control with DARC (p<0.05) and Brn3 (p<0.01). Topical CoQ10 appears an effective therapy preventing RGC apoptosis and loss in glaucoma-related models.
Collapse
Affiliation(s)
- Benjamin Michael Davis
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Kailin Tian
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Milena Pahlitzsch
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Jonathan Brenton
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Nivedita Ravindran
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Gibran Butt
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Giulia Malaguarnera
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Eduardo M Normando
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom; Western Eye Hospital, Imperial College London, United Kingdom
| | - Li Guo
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - M Francesca Cordeiro
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom; Western Eye Hospital, Imperial College London, United Kingdom.
| |
Collapse
|
22
|
Bokori-Brown M, Petrov PG, Khafaji MA, Mughal MK, Naylor CE, Shore AC, Gooding KM, Casanova F, Mitchell TJ, Titball RW, Winlove CP. Red Blood Cell Susceptibility to Pneumolysin: CORRELATION WITH MEMBRANE BIOCHEMICAL AND PHYSICAL PROPERTIES. J Biol Chem 2016; 291:10210-27. [PMID: 26984406 DOI: 10.1074/jbc.m115.691899] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 12/20/2022] Open
Abstract
This study investigated the effect of the biochemical and biophysical properties of the plasma membrane as well as membrane morphology on the susceptibility of human red blood cells to the cholesterol-dependent cytolysin pneumolysin, a key virulence factor of Streptococcus pneumoniae, using single cell studies. We show a correlation between the physical properties of the membrane (bending rigidity and surface and dipole electrostatic potentials) and the susceptibility of red blood cells to pneumolysin-induced hemolysis. We demonstrate that biochemical modifications of the membrane induced by oxidative stress, lipid scrambling, and artificial cell aging modulate the cell response to the toxin. We provide evidence that the diversity of response to pneumolysin in diabetic red blood cells correlates with levels of glycated hemoglobin and that the mechanical properties of the red blood cell plasma membrane are altered in diabetes. Finally, we show that diabetic red blood cells are more resistant to pneumolysin and the related toxin perfringolysin O relative to healthy red blood cells. Taken together, these studies indicate that the diversity of cell response to pneumolysin within a population of human red blood cells is influenced by the biophysical and biochemical status of the plasma membrane and the chemical and/or oxidative stress pre-history of the cell.
Collapse
Affiliation(s)
- Monika Bokori-Brown
- From the College of Life and Environmental Sciences, School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom,
| | - Peter G Petrov
- the College of Engineering, Mathematics and Physical Sciences, School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Mawya A Khafaji
- the College of Engineering, Mathematics and Physical Sciences, School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Muhammad K Mughal
- the Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Claire E Naylor
- the Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Angela C Shore
- the Department of Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter EX2 5AX, United Kingdom, the National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom, and
| | - Kim M Gooding
- the Department of Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter EX2 5AX, United Kingdom, the National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom, and
| | - Francesco Casanova
- the Department of Diabetes and Vascular Medicine, University of Exeter Medical School, Barrack Road, Exeter EX2 5AX, United Kingdom, the National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom, and
| | - Tim J Mitchell
- the Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Richard W Titball
- From the College of Life and Environmental Sciences, School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - C Peter Winlove
- the College of Engineering, Mathematics and Physical Sciences, School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
| |
Collapse
|