1
|
Agarwal AK, Tunison K, Vale G, McDonald JG, Li X, Horton JD, Garg A. Adipose-specific overexpression of human AGPAT2 in mice causes increased adiposity and mild hepatic dysfunction. iScience 2024; 27:108653. [PMID: 38274405 PMCID: PMC10809107 DOI: 10.1016/j.isci.2023.108653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/11/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
AGPAT2, a critical enzyme involved in the biosynthesis of phospholipids and triacylglycerol (TAG), is highly expressed in adipose tissue (AT). Whether overexpression of AGPAT2 in AT will result in increased TAG synthesis (obesity) and its metabolic complications remains unknown. We overexpressed human AGPAT2 specifically in AT using the adiponectin promoter and report increased mass of subcutaneous, gonadal, and brown AT in wild-type mice. Unexpectedly, overexpression of hAGPAT2 did not change the pattern of phospholipid or TAG concentration of the AT depots. Although there is an increase in liver weight, plasma aspartate aminotransferase, and plasma insulin at various time points of the study, it did not result in significant liver dysfunction. Despite increased adiposity in the Tg-AT-hAGPAT2;mAgpat2+/+ mice, there was no significant increase in TAG concentration of AT. Therefore, this study suggests a role of AGPAT2 in the generation of AT, but not for adipocyte TAG synthesis.
Collapse
Affiliation(s)
- Anil K. Agarwal
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katie Tunison
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Goncalo Vale
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xilong Li
- Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay D. Horton
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Peng K, Chen X, Pei K, Wang X, Ma X, Liang C, Dong Q, Liu Z, Han M, Liu G, Yang H, Zheng M, Liu G, Gao M. Lipodystrophic gene Agpat2 deficiency aggravates hyperlipidemia and atherosclerosis in Ldlr -/- mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166850. [PMID: 37591406 DOI: 10.1016/j.bbadis.2023.166850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
AIMS Dysfunction of adipose tissue increases the risk of cardiovascular disease. It was well established that obesity aggravates atherosclerosis, but the effect of adipose tissue loss on atherosclerosis has been less studied. AGPAT2 is the first causative gene of congenital generalized lipodystrophy (CGL), but the role of AGPAT2 on atherosclerosis has not been reported. Hypertriglyceridemia is one of the clinical manifestations of CGL patients, but it is usually absent in CGL mouse model on a normal diet. This study will investigate the effect of Agpat2 on hyperlipidemia and atherosclerosis. METHODS AND RESULTS In this study, Agpat2 knockout (Agpat2-/-) mice were generated using CRISPR/Cas system, which showed severe loss of adipose tissue and fatty liver, consistent with previous reports. Agpat2-/- mice were then crossed with hypercholesterolemic and atherosclerotic prone LDL receptor knockout (Ldlr-/-) mice to obtain double knockout mouse model (Agpat2-/-Ldlr-/-). Plasma lipid profile, insulin resistance, fatty liver, and atherosclerotic lesions were observed after 12 weeks of the atherogenic high-fat diet (HFD) feeding. We found that compared with Ldlr-/- mice, Agpat2-/-Ldlr-/- mice showed significantly higher plasma total cholesterol and triglycerides after HFD feeding. Agpat2-/-Ldlr-/- mice also developed hyperglycemia and hyperinsulinemia, with increased pancreatic islet area. The liver weight of Agpat2-/-Ldlr-/- mice was about 4 times higher than that of Ldlr-/- mice. The liver lipid deposition was severe and Sirius red staining showed liver fibrosis. In addition, in Agpat2-/-Ldlr-/- mice, the area of atherosclerotic lesions in aortic arch and aortic root was significantly increased. CONCLUSIONS Our results show that Agpat2 deficiency led to more severe hyperlipidemia, liver fibrosis and aggravation of atherosclerosis in Ldlr-/- mice. This study provided additional insights into the role of adipose tissue in hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Kenan Peng
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Laboratory Department of Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Xin Chen
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Kexin Pei
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Xiaowei Wang
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xindi Ma
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Chenxi Liang
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Qianqian Dong
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Ziwei Liu
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW 2052, Australia
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China.
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China.
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
3
|
Upadhyay KK, Choi EYK, Foisner R, Omary MB, Brady GF. Hepatocyte-specific loss of LAP2α protects against diet-induced hepatic steatosis, steatohepatitis, and fibrosis in male mice. Am J Physiol Gastrointest Liver Physiol 2023; 325:G184-G195. [PMID: 37366543 PMCID: PMC10396226 DOI: 10.1152/ajpgi.00214.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/24/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
There is increasing evidence for the importance of the nuclear envelope in lipid metabolism, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). Human mutations in LMNA, encoding A-type nuclear lamins, cause early-onset insulin resistance and NASH, while hepatocyte-specific deletion of Lmna predisposes to NASH with fibrosis in male mice. Given that variants in the gene encoding LAP2α, a nuclear protein that regulates lamin A/C, were previously identified in patients with NAFLD, we sought to determine the role of LAP2α in NAFLD using a mouse genetic model. Hepatocyte-specific Lap2α-knockout (Lap2α(ΔHep)) mice and littermate controls were fed normal chow or high-fat diet (HFD) for 8 wk or 6 mo. Unexpectedly, male Lap2α(ΔHep) mice showed no increase in hepatic steatosis or NASH compared with controls. Rather, Lap2α(ΔHep) mice demonstrated reduced hepatic steatosis, with decreased NASH and fibrosis after long-term HFD. Accordingly, pro-steatotic genes including Cidea, Mogat1, and Cd36 were downregulated in Lap2α(ΔHep) mice, along with concomitant decreases in expression of pro-inflammatory and pro-fibrotic genes. These data indicate that hepatocyte-specific Lap2α deletion protects against hepatic steatosis and NASH in mice and raise the possibility that LAP2α could become a potential therapeutic target in human NASH.NEW & NOTEWORTHY The nuclear envelope and lamina regulate lipid metabolism and susceptibility to nonalcoholic steatohepatitis (NASH), but the role of the nuclear lamin-binding protein LAP2α in NASH has not been explored. Our data demonstrate that hepatocyte-specific loss of LAP2α protects against diet-induced hepatic steatosis, NASH, and fibrosis in male mice, with downregulation of pro-steatotic, pro-inflammatory, and pro-fibrotic lamin-regulated genes. These findings suggest that targeting LAP2α could have future potential as a novel therapeutic avenue in NASH.
Collapse
Affiliation(s)
- Kapil K Upadhyay
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Eun-Young K Choi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Roland Foisner
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter Campus, Vienna, Austria
| | - M Bishr Omary
- Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, United States
| | - Graham F Brady
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
4
|
Singer JM, Shew TM, Ferguson D, Renkemeyer MK, Pietka TA, Hall AM, Finck BN, Lutkewitte AJ. Monoacylglycerol O-acyltransferase 1 lowers adipocyte differentiation capacity in vitro but does not affect adiposity in mice. Obesity (Silver Spring) 2022; 30:2122-2133. [PMID: 36321276 PMCID: PMC9634674 DOI: 10.1002/oby.23538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Monoacylglycerol O-acyltransferase 1 (Mogat1), a lipogenic enzyme that converts monoacylglycerol to diacylglycerol, is highly expressed in adipocytes and may regulate lipolysis by re-esterifying fatty acids released during times when lipolytic rates are low. However, the role of Mogat1 in regulating adipocyte fat storage during differentiation and diet-induced obesity is relatively understudied. METHODS Here, adipocyte-specific Mogat1 knockout mice were generated and subjected to a high-fat diet to determine the effects of Mogat1 deficiency on diet-induced obesity. Mogat1 floxed mice were also used to develop preadipocyte cell lines wherein Mogat1 could be conditionally knocked out to study adipocyte differentiation in vitro. RESULTS In preadipocytes, it was found that Mogat1 knockout at the onset of preadipocyte differentiation prevented the accumulation of glycerolipids and reduced the differentiation capacity of preadipocytes. However, the loss of adipocyte Mogat1 did not affect weight gain or fat mass induced by a high-fat diet in mice. Furthermore, loss of Mogat1 in adipocytes did not affect plasma lipid or glucose concentrations or insulin tolerance. CONCLUSIONS These data suggest Mogat1 may play a role in adipocyte differentiation in vitro but not adipose tissue expansion in response to nutrient overload in mice.
Collapse
Affiliation(s)
- Jason M. Singer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Trevor M. Shew
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Daniel Ferguson
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - M. Katie Renkemeyer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Terri A. Pietka
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Angela M. Hall
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Brian N. Finck
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Andrew J. Lutkewitte
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
5
|
Gökçe G, Bayraktar M. Assessment of the association of the MOGAT1 and MOGAT3 gene with growth traits in different growth stages in Holstein calves. Arch Anim Breed 2022; 65:301-308. [PMID: 36035878 PMCID: PMC9400126 DOI: 10.5194/aab-65-301-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/22/2022] [Indexed: 11/11/2022] Open
Abstract
The members of the monoacylglycerol acyltransferase (MOGAT) family are essential candidate genes that influence economic traits associated with triglyceride synthesis, dietary fat absorption, and storage in livestock. In addition, the MOGAT gene family may also play an essential function in human polygenic diseases, like type 2 diabetes and obesity. The present study was conducted on Holstein calves to find the association between MOGAT1, MOGAT3/g.A229G, and MOGAT3/g.G1627A and growth traits. The polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) method was performed for genotyping the MOGAT1, MOGAT3/g.A229G, and MOGAT3/g.G1627A genes' locus using the TaqI, MspI, and BsuRI restriction enzyme. The allele frequency of A and G of the MOGAT1 locus was 0.79 and 0.21, respectively, while the genotype frequency was 0.65, 0.28, and 0.07 for AA, AG, and GG, respectively. While the allele and genotype frequencies of the MOGAT3/g.A229G locus were 00.57(A1), 0.43(G1), 0.35(A1A1), 0.45(A1G1), and 0.20(G1G1), the allele and genotype frequencies of the MOGAT3/g.G1627A locus were 0.49(A2), 0.51(G2), 0.25(A2A2), 0.49(A2G2), and 0.26(G2G2). Chi-square analysis showed that MOGAT3/g.G1627A distribution was at the Hardy–Weinberg disequilibrium (p < 0.05), and MOGAT1 and MOGAT3/g.A229G distribution was at the Hardy–Weinberg equilibrium (p > 0.05). In total, two statistical methods (general linear model (GLM) and PROC MIXED) were used to identify an association between gene locus and growth traits. An association analysis showed a statistically significant difference between the MOGAT1 and body weight, body length, and chest circumference, MOGAT3/g.A229G with average daily gain (ADG) and withers height, and MOGAT3/g.G1627A with body weight and body length (p < 0.05). The results confirmed that the MOGAT1, MOGAT3/g.A229G, and MOGAT3/g.G1627A locus are strong candidate genes that could be considered molecular markers for growth traits in cattle breeding.
Collapse
|
6
|
Ryyti R, Pemmari A, Peltola R, Hämäläinen M, Moilanen E. Effects of Lingonberry ( Vaccinium vitis-idaea L.) Supplementation on Hepatic Gene Expression in High-Fat Diet Fed Mice. Nutrients 2021; 13:3693. [PMID: 34835949 PMCID: PMC8623941 DOI: 10.3390/nu13113693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is growing worldwide in association with Western-style diet and increasing obesity. Lingonberry (Vaccinium vitis-idaea L.) is rich in polyphenols and has been shown to attenuate adverse metabolic changes in obese liver. This paper investigated the effects of lingonberry supplementation on hepatic gene expression in high-fat diet induced obesity in a mouse model. C57BL/6N male mice were fed for six weeks with either a high-fat (HF) or low-fat (LF) diet (46% and 10% energy from fat, respectively) or HF diet supplemented with air-dried lingonberry powder (HF + LGB). HF diet induced a major phenotypic change in the liver, predominantly affecting genes involved in inflammation and in glucose and lipid metabolism. Lingonberry supplementation prevented the effect of HF diet on an array of genes (in total on 263 genes) associated particularly with lipid or glucose metabolic process (such as Mogat1, Plin4, Igfbp2), inflammatory/immune response or cell migration (such as Lcn2, Saa1, Saa2, Cxcl14, Gcp1, S100a10) and cell cycle regulation (such as Cdkn1a, Tubb2a, Tubb6). The present results suggest that lingonberry supplementation prevents HF diet-induced adverse changes in the liver that are known to predispose the development of NAFLD and its comorbidities. The findings encourage carrying out human intervention trials to confirm the results, with the aim of recommending the use of lingonberries as a part of healthy diet against obesity and its hepatic and metabolic comorbidities.
Collapse
Affiliation(s)
- Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Rainer Peltola
- Natural Resources Institute Finland, Bioeconomy and Environment, 96200 Rovaniemi, Finland;
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| |
Collapse
|
7
|
Lutkewitte AJ, Singer JM, Shew TM, Martino MR, Hall AM, He M, Finck BN. Multiple antisense oligonucleotides targeted against monoacylglycerol acyltransferase 1 (Mogat1) improve glucose metabolism independently of Mogat1. Mol Metab 2021; 49:101204. [PMID: 33676028 PMCID: PMC8027266 DOI: 10.1016/j.molmet.2021.101204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Monoacylglycerol acyltransferase (MGAT) enzymes catalyze the synthesis of diacylglycerol from monoacylglycerol. Previous work has suggested the importance of MGAT activity in the development of obesity-related hepatic insulin resistance. Indeed, antisense oligonucleotide (ASO)-mediated knockdown of Mogat1 mRNA, which encodes MGAT1, reduced hepatic MGAT activity and improved glucose tolerance and insulin resistance in high-fat diet (HFD)-fed mice. However, recent work has suggested that some ASOs may have off-target effects on body weight and metabolic parameters via activation of the interferon alpha/beta receptor 1 (IFNAR-1) pathway. METHODS Mice with whole-body Mogat1 knockout or a floxed allele for Mogat1 to allow for liver-specific Mogat1-knockout (by either a liver-specific transgenic or adeno-associated virus-driven Cre recombinase) were generated. These mice were placed on an HFD, and glucose metabolism and insulin sensitivity were assessed after 16 weeks on diet. In some experiments, mice were treated with control scramble or Mogat1 ASOs in the presence or absence of IFNAR-1 neutralizing antibody. RESULTS Genetic deletion of hepatic Mogat1, either acutely or chronically, did not improve hepatic steatosis, glucose tolerance, or insulin sensitivity in HFD-fed mice. Furthermore, constitutive Mogat1 knockout in all tissues actually exacerbated HFD-induced obesity, insulin sensitivity, and glucose intolerance on an HFD. Despite markedly reduced Mogat1 expression, liver MGAT activity was unaffected in all knockout mouse models. Mogat1 overexpression in hepatocytes increased liver MGAT activity and TAG content in low-fat-fed mice but did not cause insulin resistance. Multiple Mogat1 ASO sequences improved glucose tolerance in both wild-type and Mogat1 null mice, suggesting an off-target effect. Hepatic IFNAR-1 signaling was activated by multiple Mogat1 ASOs, but its blockade did not prevent the effects of either Mogat1 ASO on glucose homeostasis. CONCLUSION These results indicate that genetic loss of Mogat1 does not affect hepatic MGAT activity or metabolic homeostasis on HFD and show that multiple Mogat1 ASOs improve glucose metabolism through effects independent of targeting Mogat1 or activation of IFNAR-1 signaling.
Collapse
Affiliation(s)
- Andrew J Lutkewitte
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Jason M Singer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Trevor M Shew
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael R Martino
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Angela M Hall
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
8
|
Zhang C, Qiao S, Wu J, Xu W, Ma S, Zhao B, Wang X. A new insulin-sensitive enhancer from Silene viscidula, WPTS, treats type 2 diabetes by ameliorating insulin resistance, reducing dyslipidemia, and promoting proliferation of islet β cells. Pharmacol Res 2021; 165:105416. [PMID: 33412277 DOI: 10.1016/j.phrs.2020.105416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/20/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
Wacao pentacyclic triterpenoid saponins (WPTS) is a newly discovered insulin sensitivity enhancer. It is a powerful hypoglycemic compound derived from Silene viscidula, which has a hypoglycemic effect similar to that of insulin. It can rapidly reduce blood glucose levels, normalizing them within 3 days of administration. However, its mechanism of action is completely different from that of insulin. Thus, we aimed to determine the pharmacological effects and mechanism of activity of WPTS on type 2 diabetes to elucidate the main reasons for its rapid effects. The results showed that WPTS could effectively improve insulin resistance in KKAy diabetic mice. Comparative transcriptomics showed that WPTS could upregulate the expression of insulin resistance-related genes such as glucose transporter type 4 (Glut4), insulin receptor substrate 1 (Irs1), Akt, and phosphoinositide 3-kinase (PI3K), and downregulate the expression of lipid metabolism-related genes such as monoacylglycerol O-acyltransferase 1 (Moat1), lipase C (Lipc), and sphingomyelin phosphodiesterase 4 (Smpd4). The results indicated that the differentially expressed genes could regulate lipid metabolism via the PI3K/AKT metabolic pathway, and it is noteworthy that WPTS was found to upregulate Glut4 expression, decrease blood glucose levels, and attenuate insulin resistance via the PI3K/AKT pathway. Q-PCR and western blotting further validated the transcriptomics findings at the mRNA and protein levels, respectively. We believe that WPTS can achieve a rapid hypoglycemic effect by improving the lipid metabolism and insulin resistance of the diabetic KKAy mice. WPTS could be a very promising candidate drug for the treatment of diabetes and deserves further research.
Collapse
Affiliation(s)
- Caijuan Zhang
- School of Life Science, Beijing University of Chinese Medicine, China
| | - Sanyang Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Jiahui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Wenjuan Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Shuangshuang Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Baosheng Zhao
- Beijing Institute of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Xueyong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China; Beijing Institute of Chinese Medicine, Beijing University of Chinese Medicine, China.
| |
Collapse
|
9
|
Genetic effects of MOGAT1 gene SNP in growth traits of Chinese cattle. Gene 2020; 769:145201. [PMID: 33035617 DOI: 10.1016/j.gene.2020.145201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022]
Abstract
Single nucleotide polymorphism (SNP) has recently become one of the ideal genetic markers. SNP refers to the DNA sequence polymorphism caused by double nucleotide variation in the genome, including the conversion or transversion of segmented bases. The synthesis and metabolism of triglycerides are related to the changes of energy in the body of livestock, which in turn affects their growth and development. Studies have shown that MOGAT1 gene plays a role in the route of triglyceride synthesis. PCR-RFLP and agarose gel electrophoresis technology were used to type the SNP site of MOGAT1 gene at g.25940T > C in this study. Association analysis between typing results and growth trait data was detected by SPSS 20.0 software. Results show that MOGAT1 gene was in a low level of heterozygosity in Xianan, Qinchuan and Pinan cattle population (0 < PIC < 0.25), and in middle level of heterozygosity in YL cattle population(0.25 < PIC < 0.5). And genotype 'AA' was dominant gene in Chinese cattle population. In QC and XN cattle, genotype of GG possess advantage on Body weight (P < 0.05); in YL cattle, individuals with genotype of homozygous mutation decreased significantly on Chest depth (P < 0.05). The purpose of this research is to provide theoretical materials for molecular breeding of yellow cattle and to promote the process of improving the growth traits of Chinese local yellow cattle.
Collapse
|
10
|
Xu F, Wang M, Hu S, Zhou Y, Collyer J, Li K, Xu H, Xiao J. Candidate Regulators of Dyslipidemia in Chromosome 1 Substitution Lines Using Liver Co-Expression Profiling Analysis. Front Genet 2020; 10:1258. [PMID: 31998355 PMCID: PMC6962132 DOI: 10.3389/fgene.2019.01258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/14/2019] [Indexed: 11/13/2022] Open
Abstract
Dyslipidemia is a major risk factor for cardiovascular disease. Although many genetic factors have been unveiled, a large fraction of the phenotypic variance still needs further investigation. Chromosome 1 (Chr 1) harbors multiple gene loci that regulate blood lipid levels, and identifying functional genes in these loci has proved challenging. We constructed a mouse population, Chr 1 substitution lines (C1SLs), where only Chr 1 differs from the recipient strain C57BL/6J (B6), while the remaining chromosomes are unchanged. Therefore, any phenotypic variance between C1SLs and B6 can be attributed to the differences in Chr 1. In this study, we assayed plasma lipid and glucose levels in 13 C1SLs and their recipient strain B6. Through weighted gene co-expression network analysis of liver transcriptome and “guilty-by-association” study, eight associated modules of plasma lipid and glucose were identified. Further joint analysis of human genome wide association studies revealed 48 candidate genes. In addition, 38 genes located on Chr 1 were also uncovered, and 13 of which have been functionally validated in mouse models. These results suggest that C1SLs are ideal mouse models to identify functional genes on Chr 1 associated with complex traits, like dyslipidemia, by using gene co-expression network analysis.
Collapse
Affiliation(s)
- Fuyi Xu
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, China
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Maochun Wang
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, China
| | - Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Yuxun Zhou
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, China
| | - John Collyer
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kai Li
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, China
| | - Hongyan Xu
- Department of Biostatistics and Epidemiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Junhua Xiao
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, China
- *Correspondence: Junhua Xiao,
| |
Collapse
|
11
|
Agarwal AK, Tunison K, Mitsche MA, McDonald JG, Garg A. Insights into lipid accumulation in skeletal muscle in dysferlin-deficient mice. J Lipid Res 2019; 60:2057-2073. [PMID: 31653658 PMCID: PMC6889719 DOI: 10.1194/jlr.ra119000399] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Loss of dysferlin (DYSF) protein in humans results in limb-girdle muscular dystrophy 2B, characterized by progressive loss of muscles in the distal limbs with impaired locomotion. The DYSF-null (Bla/J) mouse develops severe steatotic muscles upon aging. Here, we report a marked increase in adipocytes, especially in the psoas and gluteus muscles but not in the soleus and tibialis anterior muscles in aged Bla/J mice compared with WT mice. There was a robust upregulation in the mRNA expression of enzymes involved in lipogenesis and triacylglycerol (TAG) synthesis pathways in the steatotic skeletal muscles. Lipidomic analysis of the steatotic skeletal muscles revealed an increase in several molecular species of TAG, although it is unclear whether it was at the expense of phosphatidylcholine and phosphatidylserine. The adipocytes in steatotic muscles were extramyocellular, as determined by the increased expression of caveolin 1 (a cellular marker for adipocytes) and lipid-droplet protein, perilipin 1. This increase in adipocytes occured as a consequence of the loss of myocytes.
Collapse
Affiliation(s)
- Anil K Agarwal
- Division of Nutrition and Metabolic Diseases Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Katie Tunison
- Division of Nutrition and Metabolic Diseases Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Matthew A Mitsche
- Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jeffrey G McDonald
- Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
12
|
Abstract
The cause of insulin resistance in obesity and type 2 diabetes mellitus (T2DM) is not limited to impaired insulin signalling but also involves the complex interplay of multiple metabolic pathways. The analysis of large data sets generated by metabolomics and lipidomics has shed new light on the roles of metabolites such as lipids, amino acids and bile acids in modulating insulin sensitivity. Metabolites can regulate insulin sensitivity directly by modulating components of the insulin signalling pathway, such as insulin receptor substrates (IRSs) and AKT, and indirectly by altering the flux of substrates through multiple metabolic pathways, including lipogenesis, lipid oxidation, protein synthesis and degradation and hepatic gluconeogenesis. Moreover, the post-translational modification of proteins by metabolites and lipids, including acetylation and palmitoylation, can alter protein function. Furthermore, the role of the microbiota in regulating substrate metabolism and insulin sensitivity is unfolding. In this Review, we discuss the emerging roles of metabolites in the pathogenesis of insulin resistance and T2DM. A comprehensive understanding of the metabolic adaptations involved in insulin resistance may enable the identification of novel targets for improving insulin sensitivity and preventing, and treating, T2DM.
Collapse
|
13
|
Polyzos SA, Perakakis N, Mantzoros CS. Fatty liver in lipodystrophy: A review with a focus on therapeutic perspectives of adiponectin and/or leptin replacement. Metabolism 2019; 96:66-82. [PMID: 31071311 DOI: 10.1016/j.metabol.2019.05.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 01/17/2023]
Abstract
Lipodystrophy is a group of clinically heterogeneous, inherited or acquired, disorders characterized by complete or partial absence of subcutaneous adipose tissue that may occur simultaneously with the pathological, ectopic, accumulation of fat in other regions of the body, including the liver. Fatty liver adds significantly to hepatic and extra-hepatic morbidity in patients with lipodystrophy. Lipodystrophy is strongly associated with severe insulin resistance and related comorbidities, such as hyperglycemia, hyperlipidemia and nonalcoholic fatty liver disease (NAFLD), but other hepatic diseases may co-exist in some types of lipodystrophy, including autoimmune hepatitis in acquired lipodystrophies, or viral hepatitis in human immunodeficiency virus (HIV)-associated lipodystrophy. The aim of this review is to summarize evidence linking lipodystrophy with hepatic disease and to provide a special focus on potential therapeutic perspectives of leptin replacement therapy and adiponectin upregulation in lipodystrophy.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Nikolaos Perakakis
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christos S Mantzoros
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Lee J, Ridgway ND. Substrate channeling in the glycerol-3-phosphate pathway regulates the synthesis, storage and secretion of glycerolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158438. [PMID: 30959116 DOI: 10.1016/j.bbalip.2019.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/16/2023]
Abstract
The successive acylation of glycerol-3-phosphate (G3P) by glycerol-3-phosphate acyltransferases and acylglycerol-3-phosphate acyltransferases produces phosphatidic acid (PA), a precursor for CDP-diacylglycerol-dependent phospholipid synthesis. PA is further dephosphorylated by LIPINs to produce diacylglycerol (DG), a substrate for the synthesis of triglyceride (TG) by DG acyltransferases and a precursor for phospholipid synthesis via the CDP-choline and CDP-ethanolamine (Kennedy) pathways. The channeling of fatty acids into TG for storage in lipid droplets and secretion in lipoproteins or phospholipids for membrane biogenesis is dependent on isoform expression, activity and localization of G3P pathway enzymes, as well as dietary and hormonal and tissue-specific factors. Here, we review the mechanisms that control partitioning of substrates into lipid products of the G3P pathway.
Collapse
Affiliation(s)
- Jonghwa Lee
- Atlantic Research Center, Depts. of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Neale D Ridgway
- Atlantic Research Center, Depts. of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
15
|
Lutkewitte AJ, McCommis KS, Schweitzer GG, Chambers KT, Graham MJ, Wang L, Patti GJ, Hall AM, Finck BN. Hepatic monoacylglycerol acyltransferase 1 is induced by prolonged food deprivation to modulate the hepatic fasting response. J Lipid Res 2019; 60:528-538. [PMID: 30610082 PMCID: PMC6399500 DOI: 10.1194/jlr.m089722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/05/2018] [Indexed: 01/14/2023] Open
Abstract
During prolonged fasting, the liver plays a central role in maintaining systemic energy homeostasis by producing glucose and ketones in processes fueled by oxidation of fatty acids liberated from adipose tissue. In mice, this is accompanied by transient hepatic accumulation of glycerolipids. We found that the hepatic expression of monoacylglycerol acyltransferase 1 (Mogat1), an enzyme with monoacylglycerol acyltransferase (MGAT) activity that produces diacyl-glycerol from monoacylglycerol, was significantly increased in the liver of fasted mice compared with mice given ad libitum access to food. Basal and fasting-induced expression of Mogat1 was markedly diminished in the liver of mice lacking the transcription factor PPARα. Suppressing Mogat1 expression in liver and adipose tissue with antisense oligonucleotides (ASOs) reduced hepatic MGAT activity and triglyceride content compared with fasted controls. Surprisingly, the expression of many other PPARα target genes and PPARα activity was also decreased in mice given Mogat1 ASOs. When mice treated with control or Mogat1 ASOs were gavaged with the PPARα ligand, WY-14643, and then fasted for 18 h, WY-14643 administration reversed the effects of Mogat1 ASOs on PPARα target gene expression and liver triglyceride content. In conclusion, Mogat1 is a fasting-induced PPARα target gene that may feed forward to regulate liver PPARα activity during food deprivation.
Collapse
Affiliation(s)
- Andrew J Lutkewitte
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| | - Kyle S McCommis
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| | - George G Schweitzer
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| | - Kari T Chambers
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| | | | - Lingjue Wang
- Department of Chemistry, Washington University, St. Louis, MO
| | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Angela M Hall
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| | - Brian N Finck
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
16
|
Devasthale P, Cheng D. Monoacylglycerol Acyltransferase 2 (MGAT2) Inhibitors for the Treatment of Metabolic Diseases and Nonalcoholic Steatohepatitis (NASH). J Med Chem 2018; 61:9879-9888. [PMID: 29986142 DOI: 10.1021/acs.jmedchem.8b00864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Monoacylglycerol transferase 2 (MGAT2) is a pivotal enzyme in the monoacylglycerol pathway for triacylglycerol synthesis. The pathway for triacylglycerol synthesis has provided several attractive targets for drug discovery in the treatment of metabolic diseases. Marketed drugs that inhibit enzymes in this pathway include orlistat (pancreatic lipase inhibitor), lomitapide (mitochondrial transfer protein inhibitor), and mipomersen (apolipoprotein B synthesis inhibitor), but poor gastrointestinal (GI) tolerability or safety considerations have limited their use and indications. In addition, several inhibitors of diacylglycerol transferase 1 (DGAT1) have advanced to the clinic but were withdrawn due to poor GI tolerability. This report first discusses the biological rationale in support of inhibition of MGAT2 as a therapeutic approach that may offer a distinct and superior efficacy versus GI tolerability profile and then reviews advances in the discovery of small molecule MGAT2 inhibitors for the treatment of metabolic diseases and nonalcoholic steatohepatitis (NASH).
Collapse
|
17
|
Liss KHH, Lutkewitte AJ, Pietka T, Finck BN, Franczyk M, Yoshino J, Klein S, Hall AM. Metabolic importance of adipose tissue monoacylglycerol acyltransferase 1 in mice and humans. J Lipid Res 2018; 59:1630-1639. [PMID: 29853530 PMCID: PMC6121930 DOI: 10.1194/jlr.m084947] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/10/2018] [Indexed: 12/31/2022] Open
Abstract
Adipocyte triglyceride storage provides a reservoir of energy that allows the organism to survive times of nutrient scarcity, but excessive adiposity has emerged as a health problem in many areas of the world. Monoacylglycerol acyltransferase (MGAT) acylates monoacylglycerol to produce diacylglycerol; the penultimate step in triglyceride synthesis. However, little is known about MGAT activity in adipocytes, which are believed to rely primarily on another pathway for triglyceride synthesis. We show that expression of the gene that encodes MGAT1 is robustly induced during adipocyte differentiation and that its expression is suppressed in fat of genetically-obese mice and metabolically-abnormal obese human subjects. Interestingly, MGAT1 expression is also reduced in physiologic contexts where lipolysis is high. Moreover, knockdown or knockout of MGAT1 in adipocytes leads to higher rates of basal adipocyte lipolysis. Collectively, these data suggest that MGAT1 activity may play a role in regulating basal adipocyte FFA retention.
Collapse
Affiliation(s)
- Kim H H Liss
- Department of Pediatrics Washington University School of Medicine, St. Louis, MO 63110
| | | | - Terri Pietka
- Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian N Finck
- Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael Franczyk
- Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jun Yoshino
- Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Samuel Klein
- Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Angela M Hall
- Medicine, Washington University School of Medicine, St. Louis, MO 63110.
| |
Collapse
|
18
|
Ramon-Krauel M, Pentinat T, Bloks VW, Cebrià J, Ribo S, Pérez-Wienese R, Vilà M, Palacios-Marin I, Fernández-Pérez A, Vallejo M, Téllez N, Rodríguez MÀ, Yanes O, Lerin C, Díaz R, Plosch T, Tietge UJF, Jimenez-Chillaron JC. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance. FASEB J 2018; 32:fj201700717RR. [PMID: 29812971 DOI: 10.1096/fj.201700717rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Postnatal overfeeding increases the risk of chronic diseases later in life, including obesity, insulin resistance, hepatic steatosis, and type 2 diabetes. Epigenetic mechanisms might underlie the long-lasting effects associated with early nutrition. Here we aimed to explore the molecular pathways involved in early development of insulin resistance and hepatic steatosis, and we examined the potential contribution of DNA methylation and histone modifications to long-term programming of metabolic disease. We used a well-characterized mouse model of neonatal overfeeding and early adiposity by litter size reduction. Neonatal overfeeding led to hepatic insulin resistance very early in life that persisted throughout adulthood despite normalizing food intake. Up-regulation of monoacylglycerol O-acyltransferase ( Mogat) 1 conceivably mediates hepatic steatosis and insulin resistance through increasing intracellular diacylglycerol content. Early and sustained deregulation of Mogat1 was associated with a combination of histone modifications that might favor Mogat1 expression. In sum, postnatal overfeeding causes extremely rapid derangements of hepatic insulin sensitivity that remain relatively stable until adulthood. Epigenetic mechanisms, particularly histone modifications, could contribute to such long-lasting effects. Our data suggest that targeting hepatic monoacylglycerol acyltransferase activity during early life might provide a novel strategy to improve hepatic insulin sensitivity and prevent late-onset insulin resistance and fatty liver disease.-Ramon-Krauel, M., Pentinat, T., Bloks, V. W., Cebrià, J., Ribo, S., Pérez-Wienese, R., Vilà, M., Palacios-Marin, I., Fernández-Pérez, A., Vallejo, M., Téllez, N., Rodríguez, M. À., Yanes, O., Lerin, C., Díaz, R., Plosch, T., Tietge, U. J. F., Jimenez-Chillaron, J. C. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance.
Collapse
Affiliation(s)
- Marta Ramon-Krauel
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Thais Pentinat
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Vincent W Bloks
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Judith Cebrià
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Silvia Ribo
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Ricky Pérez-Wienese
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Maria Vilà
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Ivonne Palacios-Marin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Antonio Fernández-Pérez
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Mario Vallejo
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Noèlia Téllez
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet, Barcelona, Spain
| | - Miguel Àngel Rodríguez
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Oscar Yanes
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Carles Lerin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Rubén Díaz
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Torsten Plosch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
19
|
Wang H, Airola MV, Reue K. How lipid droplets "TAG" along: Glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1131-1145. [PMID: 28642195 PMCID: PMC5688854 DOI: 10.1016/j.bbalip.2017.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023]
Abstract
Triacylglycerols (TAG) serve as the predominant form of energy storage in mammalian cells, and TAG synthesis influences conditions such as obesity, fatty liver, and insulin resistance. In most tissues, the glycerol 3-phosphate pathway enzymes are responsible for TAG synthesis, and the regulation and function of these enzymes is therefore important for metabolic homeostasis. Here we review the sites and regulation of glycerol-3-phosphate acyltransferase (GPAT), acylglycerol-3-phosphate acyltransferase (AGPAT), lipin phosphatidic acid phosphatase (PAP), and diacylglycerol acyltransferase (DGAT) enzyme action. We highlight the critical roles that these enzymes play in human health by reviewing Mendelian disorders that result from mutation in the corresponding genes. We also summarize the valuable insights that genetically engineered mouse models have provided into the cellular and physiological roles of GPATs, AGPATs, lipins and DGATs. Finally, we comment on the status and feasibility of therapeutic approaches to metabolic disease that target enzymes of the glycerol 3-phosphate pathway. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Huan Wang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, CA, United States.
| |
Collapse
|
20
|
Kwan R, Brady GF, Brzozowski M, Weerasinghe SV, Martin H, Park MJ, Brunt MJ, Menon RK, Tong X, Yin L, Stewart CL, Omary MB. Hepatocyte-Specific Deletion of Mouse Lamin A/C Leads to Male-Selective Steatohepatitis. Cell Mol Gastroenterol Hepatol 2017; 4:365-383. [PMID: 28913408 PMCID: PMC5582719 DOI: 10.1016/j.jcmgh.2017.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/30/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Lamins are nuclear intermediate filament proteins that comprise the major components of the nuclear lamina. Mutations in LMNA, which encodes lamins A/C, cause laminopathies, including lipodystrophy, cardiomyopathy, and premature aging syndromes. However, the role of lamins in the liver is unknown, and it is unclear whether laminopathy-associated liver disease is caused by primary hepatocyte defects or systemic alterations. METHODS To address these questions, we generated mice carrying a hepatocyte-specific deletion of Lmna (knockout [KO] mice) and characterized the KO liver and primary hepatocyte phenotypes by immunoblotting, immunohistochemistry, microarray analysis, quantitative real-time polymerase chain reaction, and Oil Red O and Picrosirius red staining. RESULTS KO hepatocytes manifested abnormal nuclear morphology, and KO mice showed reduced body mass. KO mice developed spontaneous male-selective hepatosteatosis with increased susceptibility to high-fat diet-induced steatohepatitis and fibrosis. The hepatosteatosis was associated with up-regulated transcription of genes encoding lipid transporters, lipid biosynthetic enzymes, lipid droplet-associated proteins, and interferon-regulated genes. Hepatic Lmna deficiency led to enhanced signal transducer and activator of transcription 1 (Stat1) expression and blocked growth hormone-mediated Janus kinase 2 (Jak2), signal transducer and activator of transcription 5 (Stat5), and extracellular signal-regulated kinase (Erk) signaling. CONCLUSIONS Lamin A/C acts cell-autonomously to maintain hepatocyte homeostasis and nuclear shape and buffers against male-selective steatohepatitis by positively regulating growth hormone signaling and negatively regulating Stat1 expression. Lamins are potential genetic modifiers for predisposition to steatohepatitis and liver fibrosis. The microarray data can be found in the Gene Expression Omnibus repository (accession number: GSE93643).
Collapse
Key Words
- % liver weight, liver percentage of body mass
- Erk, extracellular signal–regulated kinase
- FPLD2, Dunnigan familial partial lipodystrophy
- Fibrosis
- GH, growth hormone
- Growth Hormone Signaling
- HFD, high-fat diet
- Het, heterozygous
- Igf1, insulin-like growth factor 1
- Jak2, Janus kinase 2
- KO, knockout
- Laminopathy
- Lipodystrophy
- NAFLD, nonalcoholic fatty liver disease
- ND, normal diet
- Nonalcoholic Fatty Liver Disease
- PBS, phosphate-buffered saline
- Stat, signal transducer and activator of transcription
- WT, wild type
- qPCR, quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Raymond Kwan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Correspondence Address correspondence to: Raymond Kwan, Department of Molecular and Integrative Physiology, University of Michigan, 7720 Med Sci II, Ann Arbor, Michigan 48109.Department of Molecular and Integrative PhysiologyUniversity of Michigan7720 Med Sci IIAnn ArborMichigan 48109
| | - Graham F. Brady
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Maria Brzozowski
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Sujith V. Weerasinghe
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Hope Martin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Min-Jung Park
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Makayla J. Brunt
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Ram K. Menon
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Xin Tong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Colin L. Stewart
- Development and Regenerative Biology Group, Institute of Medical Biology, Immunos, Singapore
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
21
|
Wolf Greenstein A, Majumdar N, Yang P, Subbaiah PV, Kineman RD, Cordoba-Chacon J. Hepatocyte-specific, PPARγ-regulated mechanisms to promote steatosis in adult mice. J Endocrinol 2017; 232:107-121. [PMID: 27799461 PMCID: PMC5120553 DOI: 10.1530/joe-16-0447] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/25/2016] [Indexed: 12/15/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is the target for thiazolidinones (TZDs), drugs that improve insulin sensitivity and fatty liver in humans and rodent models, related to a reduction in hepatic de novo lipogenesis (DNL). The systemic effects of TZDs are in contrast to reports suggesting hepatocyte-specific activation of PPARγ promotes DNL, triacylglycerol (TAG) uptake and fatty acid (FA) esterification. As these hepatocyte-specific effects of PPARγ could counterbalance the positive therapeutic actions of systemic delivery of TZDs, the current study used a mouse model of adult-onset, liver (hepatocyte)-specific PPARγ knockdown (aLivPPARγkd). This model has advantages over existing congenital knockout models, by avoiding compensatory changes related to embryonic knockdown, thus better modeling the impact of altering PPARγ on adult physiology, where metabolic diseases most frequently develop. The impact of aLivPPARγkd on hepatic gene expression and endpoints in lipid metabolism was examined after 1 or 18 weeks (Chow-fed) or after 14 weeks of low- or high-fat (HF) diet. aLivPPARγkd reduced hepatic TAG content but did not impact endpoints in DNL or TAG uptake. However, aLivPPARγkd reduced the expression of the FA translocase (Cd36), in 18-week Chow- and HF-fed mice, associated with increased NEFA after HF feeding. Also, aLivPPARγkd dramatically reduced Mogat1 expression, that was reflected by an increase in hepatic monoacylglycerol (MAG) levels, indicative of reduced MOGAT activity. These results, coupled with previous reports, suggest that Cd36-mediated FA uptake and MAG pathway-mediated FA esterification are major targets of hepatocyte PPARγ, where loss of this control explains in part the protection against steatosis observed after aLivPPARγkd.
Collapse
Affiliation(s)
- Abigail Wolf Greenstein
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Biologic Resources LaboratoryUniversity of Illinois at Chicago, Chicago, Illinois, USA
| | - Neena Majumdar
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Peng Yang
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Papasani V Subbaiah
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Rhonda D Kineman
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jose Cordoba-Chacon
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
22
|
Sankella S, Garg A, Agarwal AK. Characterization of the Mouse and Human Monoacylglycerol O-Acyltransferase 1 (Mogat1) Promoter in Human Kidney Proximal Tubule and Rat Liver Cells. PLoS One 2016; 11:e0162504. [PMID: 27611931 PMCID: PMC5017789 DOI: 10.1371/journal.pone.0162504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022] Open
Abstract
Monoacylglycerol acyltransferase 1 (Mogat1) catalyzes the conversion of monoacylglycerols (MAG) to diacylglycerols (DAG), the precursor of several physiologically important lipids such as phosphatidylcholine, phosphatidylethanolamine and triacylglycerol (TAG). Expression of Mogat1 is tissue restricted and it is highly expressed in the kidney, stomach and adipose tissue but minimally in the normal adult liver. To understand the transcriptional regulation of Mogat1, we characterized the mouse and human Mogat1 promoters in human kidney proximal tubule-2 (HK-2) cells. In-silico analysis revealed several peroxisome proliferator response element (PPRE) binding sites in the promoters of both human and mouse Mogat1. These sites responded to all three peroxisome proliferator activated receptor (PPAR) isoforms such that their respective agonist or antagonist activated or inhibited the expression of Mogat1. PPRE site mutagenesis revealed that sites located at -592 and -2518 are very effective in decreasing luciferase reporter gene activity. Chromatin immunoprecipitation (ChIP) assay using PPARα antibody further confirmed the occupancy of these sites by PPARα. While these assays revealed the core promoter elements necessary for Mogat1 expression, there are additional elements required to regulate its tissue specific expression. Chromosome conformation capture (3C) assay revealed additional cis-elements located ~10–15 kb upstream which interact with the core promoter. These chromosomal regions are responsive to both PPARα agonist and antagonist.
Collapse
Affiliation(s)
- Shireesha Sankella
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine and Center for Human Nutrition, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States of America
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine and Center for Human Nutrition, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States of America
| | - Anil K. Agarwal
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine and Center for Human Nutrition, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States of America
- * E-mail:
| |
Collapse
|