1
|
Navratna V, Kumar A, Rana JK, Mosalaganti S. Structure of the human systemic RNAi defective transmembrane protein 1 (hSIDT1) reveals the conformational flexibility of its lipid binding domain. Life Sci Alliance 2024; 7:e202402624. [PMID: 38925866 PMCID: PMC11208740 DOI: 10.26508/lsa.202402624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
In Caenorhabditis elegans, inter-cellular transport of the small non-coding RNA causing systemic RNAi is mediated by the transmembrane protein SID1, encoded by the sid1 gene in the systemic RNAi defective (sid) loci. SID1 shares structural and sequence similarity with cholesterol uptake protein 1 (CHUP1) and is classified as a member of the ChUP family. Although systemic RNAi is not an evolutionarily conserved process, the sid gene products are found across the animal kingdom, suggesting the existence of other novel gene regulatory mechanisms mediated by small non-coding RNAs. Human homologs of sid gene products-hSIDT1 and hSIDT2-mediate contact-dependent lipophilic small non-coding dsRNA transport. Here, we report the structure of recombinant human SIDT1. We find that the extra-cytosolic domain of hSIDT1 adopts a double jelly roll fold, and the transmembrane domain exists as two modules-a flexible lipid binding domain and a rigid transmembrane domain core. Our structural analyses provide insights into the inherent conformational dynamics within the lipid binding domain in ChUP family members.
Collapse
Affiliation(s)
- Vikas Navratna
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jaimin K Rana
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Wang R, Cong Y, Qian D, Yan C, Gong D. Structural basis for double-stranded RNA recognition by SID1. Nucleic Acids Res 2024; 52:6718-6727. [PMID: 38742627 PMCID: PMC11194109 DOI: 10.1093/nar/gkae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
The nucleic acid transport properties of the systemic RNAi-defective (SID) 1 family make them attractive targets for developing RNA-based therapeutics and drugs. However, the molecular basis for double-stranded (ds) RNA recognition by SID1 family remains elusive. Here, we report the cryo-EM structures of Caenorhabditis elegans (c) SID1 alone and in complex with dsRNA, both at a resolution of 2.2 Å. The dimeric cSID1 interacts with two dsRNA molecules simultaneously. The dsRNA is located at the interface between β-strand rich domain (BRD)1 and BRD2 and nearly parallel to the membrane plane. In addition to extensive ionic interactions between basic residues and phosphate backbone, several hydrogen bonds are formed between 2'-hydroxyl group of dsRNA and the contact residues. Additionally, the electrostatic potential surface shows three basic regions are fitted perfectly into three major grooves of dsRNA. These structural characteristics enable cSID1 to bind dsRNA in a sequence-independent manner and to distinguish between DNA and RNA. The cSID1 exhibits no conformational changes upon binding dsRNA, with the exception of a few binding surfaces. Structural mapping of dozens of loss-of-function mutations allows potential interpretation of their diverse functional mechanisms. Our study marks an important step toward mechanistic understanding of the SID1 family-mediated dsRNA uptake.
Collapse
Affiliation(s)
- Runhao Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Ye Cong
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China. Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China. State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China
| | - Dandan Qian
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Chuangye Yan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China. Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China. State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China
| | - Deshun Gong
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Navratna V, Kumar A, Rana JK, Mosalaganti S. Structure of the human systemic RNAi defective transmembrane protein 1 (hSIDT1) reveals the conformational flexibility of its lipid binding domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572875. [PMID: 38187772 PMCID: PMC10769365 DOI: 10.1101/2023.12.21.572875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In C. elegans, inter-cellular transport of the small non-coding RNA causing systemic RNA interference (RNAi) is mediated by the transmembrane protein SID1, encoded by the sid1 gene in the systemic RNA interference-defective (sid) loci. SID1 shares structural and sequence similarity with cholesterol uptake protein 1 (CHUP1) and is classified as a member of the cholesterol uptake family (ChUP). Although systemic RNAi is not an evolutionarily conserved process, the sid gene products are found across the animal kingdom, suggesting the existence of other novel gene regulatory mechanisms mediated by small non-coding RNAs. Human homologs of sid gene products - hSIDT1 and hSIDT2 - mediate contact-dependent lipophilic small non-coding dsRNA transport. Here, we report the structure of recombinant human SIDT1. We find that the extra-cytosolic domain (ECD) of hSIDT1 adopts a double jelly roll fold, and the transmembrane domain (TMD) exists as two modules - a flexible lipid binding domain (LBD) and a rigid TMD core. Our structural analyses provide insights into the inherent conformational dynamics within the lipid binding domain in cholesterol uptake (ChUP) family members.
Collapse
Affiliation(s)
- Vikas Navratna
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Arvind Kumar
- Thermo Fisher Scientific, Waltham, Massachusetts, 02451, United States
| | - Jaimin K. Rana
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
4
|
Wang W, Yan J, Han L, Zou ZL, Xu AL. Silencing METTL14 alleviates liver injury in non-alcoholic fatty liver disease by regulating mitochondrial homeostasis. BIOMOLECULES & BIOMEDICINE 2024; 24:505-519. [PMID: 37902450 PMCID: PMC11088893 DOI: 10.17305/bb.2023.9698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 10/31/2023]
Abstract
Mitochondrial dysfunction is an important pathogenic factor in non-alcoholic fatty liver disease (NAFLD). Methyltransferase-like 14 (METTL14) has been implicated in mitochondrial fission processes. This research aimed to investigate the mechanism of METTL14 in the mitochondrial function of NAFLD. We first established NAFLD mouse models and cell models, recording body and liver weights and examining pathological changes in liver tissues. Subsequently, serum levels of liver function indices (aspartate aminotransferase [AST], alanine aminotransferase [ALT], total cholesterol [TC], and triglycerides [TG]), inflammatory markers (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-6, and IL-1β), and mitochondrial dysfunction indicators (fission 1 protein [Fis1], dynamin-related protein 1 [Drp1], mitofusin 2 [Mfn2], SID1 transmembrane family member 2 [SIDT2], and mitochondrial membrane potential [MMP]) in the liver and cells were evaluated. The N6-methyladenosine (m6A) modification level of primary microRNA (pri-miRNA) and m6A enrichment on pri-miR-34a were quantified. Co-immunoprecipitation and dual-luciferase reporter gene assays were utilized to validate gene interactions. Our findings revealed highly elevated METTL14 expression in NAFLD mouse and cell models. Silencing METTL14 reduced weight gain and mitigated adverse liver function indices, inflammation, hepatic steatosis, and structural damage in NAFLD mice. It also led to a decrease in Fis1/Drp1 levels and an increase in MMP/Mfn2 in the liver and cells. Moreover, METTL14 increased the m6A level, promoting the binding of DiGeorge syndrome critical region 8 (DGCR8) to pri-miR-34a, which enhanced miR-34a-5p expression. Databases and dual-luciferase reporter gene assays indicated that miR-34a-5p could suppress SIDT2 expression. The overexpression of miR-34a-5p or inhibition of SIDT2 expression negated the alleviative effects of METTL14 silencing on mitochondrial homeostasis imbalance. In conclusion, METTL14, through m6A modification, modulates the miR-34a-5p/SIDT2 axis, impairing mitochondrial homeostasis in NAFLD.
Collapse
Affiliation(s)
- Wei Wang
- Gastroenterology Department, Hunan Aerospace Hospital, Changsha, China
| | - Jun Yan
- Gastroenterology Department, Hunan Aerospace Hospital, Changsha, China
| | - Long Han
- Gastroenterology Department, Hunan Aerospace Hospital, Changsha, China
| | - Zi-Lin Zou
- Gastroenterology Department, Hunan Aerospace Hospital, Changsha, China
| | - Ai-Lei Xu
- Gastroenterology Department, Hunan Aerospace Hospital, Changsha, China
| |
Collapse
|
5
|
Li J, Moretti F, Hidvegi T, Sviben S, Fitzpatrick JAJ, Sundaramoorthi H, Pak SC, Silverman GA, Knapp B, Filipuzzi I, Alford J, Reece-Hoyes J, Nigsch F, Murphy LO, Nyfeler B, Perlmutter DH. Multiple Genes Core to ERAD, Macroautophagy and Lysosomal Degradation Pathways Participate in the Proteostasis Response in α1-Antitrypsin Deficiency. Cell Mol Gastroenterol Hepatol 2024; 17:1007-1024. [PMID: 38336172 PMCID: PMC11053228 DOI: 10.1016/j.jcmgh.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND & AIMS In the classic form of α1-antitrypsin deficiency (ATD), the misfolded α1-antitrypsin Z (ATZ) variant accumulates in the endoplasmic reticulum (ER) of liver cells. A gain-of-function proteotoxic mechanism is responsible for chronic liver disease in a subgroup of homozygotes. Proteostatic response pathways, including conventional endoplasmic reticulum-associated degradation and autophagy, have been proposed as the mechanisms that allow cellular adaptation and presumably protection from the liver disease phenotype. Recent studies have concluded that a distinct lysosomal pathway called endoplasmic reticulum-to-lysosome completely supplants the role of the conventional macroautophagy pathway in degradation of ATZ. Here, we used several state-of-the-art approaches to characterize the proteostatic responses more fully in cellular systems that model ATD. METHODS We used clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing coupled to a cell selection step by fluorescence-activated cell sorter to perform screening for proteostasis genes that regulate ATZ accumulation and combined that with selective genome editing in 2 other model systems. RESULTS Endoplasmic reticulum-associated degradation genes are key early regulators and multiple autophagy genes, from classic as well as from ER-to-lysosome and other newly described ER-phagy pathways, participate in degradation of ATZ in a manner that is temporally regulated and evolves as ATZ accumulation persists. Time-dependent changes in gene expression are accompanied by specific ultrastructural changes including dilation of the ER, formation of globular inclusions, budding of autophagic vesicles, and alterations in the overall shape and component parts of mitochondria. CONCLUSIONS Macroautophagy is a critical component of the proteostasis response to cellular ATZ accumulation and it becomes more important over time as ATZ synthesis continues unabated. Multiple subtypes of macroautophagy and nonautophagic lysosomal degradative pathways are needed to respond to the high concentrations of misfolded protein that characterizes ATD and these pathways are attractive candidates for genetic variants that predispose to the hepatic phenotype.
Collapse
Affiliation(s)
- Jie Li
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | | | - Tunda Hidvegi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Sanja Sviben
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, Missouri
| | - James A J Fitzpatrick
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| | | | - Stephen C Pak
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Gary A Silverman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Britta Knapp
- Novartis Biomedical Research, Basel, Switzerland
| | | | - John Alford
- Novartis Biomedical Research, Cambridge, Massachusetts
| | | | | | - Leon O Murphy
- Novartis Biomedical Research, Cambridge, Massachusetts
| | - Beat Nyfeler
- Novartis Biomedical Research, Basel, Switzerland
| | - David H Perlmutter
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
6
|
Abbas M, Diallo A, Goodney G, Gaye A. Leveraging the transcriptome to further our understanding of GWAS findings: eQTLs associated with genes related to LDL and LDL subclasses, in a cohort of African Americans. Front Genet 2024; 15:1345541. [PMID: 38384714 PMCID: PMC10879560 DOI: 10.3389/fgene.2024.1345541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Background: GWAS discoveries often pose a significant challenge in terms of understanding their underlying mechanisms. Further research, such as an integration with expression quantitative trait locus (eQTL) analyses, are required to decipher the mechanisms connecting GWAS variants to phenotypes. An eQTL analysis was conducted on genes associated with low-density lipoprotein (LDL) cholesterol and its subclasses, with the aim of pinpointing genetic variants previously implicated in GWAS studies focused on lipid-related traits. Notably, the study cohort consisted of African Americans, a population characterized by a heightened prevalence of hypercholesterolemia. Methods: A comprehensive differential expression (DE) analysis was undertaken, with a dataset of 17,948 protein-coding mRNA transcripts extracted from the whole-blood transcriptomes of 416 samples to identify mRNA transcripts associated with LDL, with further granularity delineated between small LDL and large LDL subclasses. Subsequently, eQTL analysis was conducted with a subset of 242 samples for which whole-genome sequencing data were available to identify single-nucleotide polymorphisms (SNPs) associated with the LDL-related mRNA transcripts. Lastly, plausible functional connections were established between the identified eQTLs and genetic variants reported in the GWAS catalogue. Results: DE analysis revealed 1,048, 284, and 94 mRNA transcripts that exhibited differential expression in response to LDL, small LDL, and large LDL, respectively. The eQTL analysis identified a total of 9,950 significant SNP-mRNA associations involving 6,955 SNPs including a subset 101 SNPs previously documented in GWAS of LDL and LDL-related traits. Conclusion: Through comprehensive differential expression analysis, we identified numerous mRNA transcripts responsive to LDL, small LDL, and large LDL. Subsequent eQTL analysis revealed a rich landscape of eQTL-mRNA associations, including a subset of eQTL reported in GWAS studies of LDL and related traits. The study serves as a testament to the important role of integrative genomics in unraveling the enigmatic GWAS relationships between genetic variants and the complex fabric of human traits and diseases.
Collapse
Affiliation(s)
- Malak Abbas
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ana Diallo
- School of Nursing, Virginia Commonwealth University, Richmond, VA, United States
| | - Gabriel Goodney
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Amadou Gaye
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Zheng L, Yang T, Guo H, Qi C, Lu Y, Xiao H, Gao Y, Liu Y, Yang Y, Zhou M, Nguyen HC, Zhu Y, Sun F, Zhang CY, Ji X. Cryo-EM structures of human SID-1 transmembrane family proteins and implications for their low-pH-dependent RNA transport activity. Cell Res 2024; 34:80-83. [PMID: 37932445 PMCID: PMC10770124 DOI: 10.1038/s41422-023-00893-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023] Open
Affiliation(s)
- Le Zheng
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China
| | - Tingting Yang
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China
| | - Hangtian Guo
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China.
| | - Chen Qi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuchi Lu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Haonan Xiao
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Yue Liu
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yixuan Yang
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China
| | - Mengru Zhou
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China
| | - Henry C Nguyen
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Chen-Yu Zhang
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China.
| | - Xiaoyun Ji
- National Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China.
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Song Y, Gu J, You J, Tao Y, Zhang Y, Wang L, Gao J. The functions of SID1 transmembrane family, member 2 (Sidt2). FEBS J 2023; 290:4626-4637. [PMID: 36176242 DOI: 10.1111/febs.16641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022]
Abstract
The SID1 transmembrane family, member 2, namely, Sidt2, is a highly glycosylated multichannel lysosomal transmembrane protein, but its specific physiological function remains unknown. Lysosomal membrane proteins are very important for the executive functioning of lysosomes. As an important part of the lysosomal membrane, Sidt2 can maintain the normal morphology of lysosomes and help stabilize them from the acidic pH environment within. As a receptor/transporter, it binds and transports nucleic acids and mediates the uptake and degradation of RNA and DNA by the lysosome. During glucose metabolism, deletion of Sidt2 can cause an increase in fasting blood glucose and the impairment of grape tolerance, which is closely related to the secretion of insulin. During lipid metabolism, the loss of Sidt2 can cause hepatic steatosis and lipid metabolism disorders and can also play a role in signal regulation and transport. Here, we review the function of the lysosomal membrane protein Sidt2, and focus on its role in glucose and lipid metabolism, autophagy and nucleotide (DNA/RNA) transport.
Collapse
Affiliation(s)
- Yingying Song
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Jing Gu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Jingya You
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Yiyang Tao
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| |
Collapse
|
9
|
Sampieri A, Asanov A, Méndez-Acevedo KM, Vaca L. SIDT2 Associates with Apolipoprotein A1 (ApoA1) and Facilitates ApoA1 Secretion in Hepatocytes. Cells 2023; 12:2353. [PMID: 37830567 PMCID: PMC10571540 DOI: 10.3390/cells12192353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023] Open
Abstract
SIDT2 is a lysosomal protein involved in the degradation of nucleic acids and the transport of cholesterol between membranes. Previous studies identified two "cholesterol recognition/interaction amino acid consensus" (CRAC) motifs in SIDT1 and SIDT2 members. We have previously shown that the first CRAC motif (CRAC-1) is essential for protein translocation to the PM upon cholesterol depletion in the cell. In the present study, we show that SIDT2 and the apolipoprotein A1 (ApoA1) form a complex which requires the second CRAC-2 motif in SIDT2 to be established. The overexpression of SIDT2 and ApoA1 results in enhanced ApoA1 secretion by HepG2 cells. This is not observed when overexpressing the SIDT2 with the CRAC-2 domain mutated to render it unfunctional. All these results provide evidence of a novel role for SIDT2 as a protein forming a complex with ApoA1 and enhancing its secretion to the extracellular space.
Collapse
Affiliation(s)
- Alicia Sampieri
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico;
| | | | - Kevin Manuel Méndez-Acevedo
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK;
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico;
| |
Collapse
|
10
|
Chai P, Lebedenko CG, Flynn RA. RNA Crossing Membranes: Systems and Mechanisms Contextualizing Extracellular RNA and Cell Surface GlycoRNAs. Annu Rev Genomics Hum Genet 2023; 24:85-107. [PMID: 37068783 DOI: 10.1146/annurev-genom-101722-101224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The subcellular localization of a biopolymer often informs its function. RNA is traditionally confined to the cytosolic and nuclear spaces, where it plays critical and conserved roles across nearly all biochemical processes. Our recent observation of cell surface glycoRNAs may further explain the extracellular role of RNA. While cellular membranes are efficient gatekeepers of charged polymers such as RNAs, a large body of research has demonstrated the accumulation of specific RNA species outside of the cell, termed extracellular RNAs (exRNAs). Across various species and forms of life, protein pores have evolved to transport RNA across membranes, thus providing a mechanistic path for exRNAs to achieve their extracellular topology. Here, we review types of exRNAs and the pores capable of RNA transport to provide a logical and testable path toward understanding the biogenesis and regulation of cell surface glycoRNAs.
Collapse
Affiliation(s)
- Peiyuan Chai
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Charlotta G Lebedenko
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Qian D, Cong Y, Wang R, Chen Q, Yan C, Gong D. Structural insight into the human SID1 transmembrane family member 2 reveals its lipid hydrolytic activity. Nat Commun 2023; 14:3568. [PMID: 37322007 PMCID: PMC10272179 DOI: 10.1038/s41467-023-39335-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
The systemic RNAi-defective (SID) transmembrane family member 2 (SIDT2) is a putative nucleic acid channel or transporter that plays essential roles in nucleic acid transport and lipid metabolism. Here, we report the cryo-electron microscopy (EM) structures of human SIDT2, which forms a tightly packed dimer with extensive interactions mediated by two previously uncharacterized extracellular/luminal β-strand-rich domains and the unique transmembrane domain (TMD). The TMD of each SIDT2 protomer contains eleven transmembrane helices (TMs), and no discernible nucleic acid conduction pathway has been identified within the TMD, suggesting that it may act as a transporter. Intriguingly, TM3-6 and TM9-11 form a large cavity with a putative catalytic zinc atom coordinated by three conserved histidine residues and one aspartate residue lying approximately 6 Å from the extracellular/luminal surface of the membrane. Notably, SIDT2 can hydrolyze C18 ceramide into sphingosine and fatty acid with a slow rate. The information presented advances the understanding of the structure-function relationships in the SID1 family proteins.
Collapse
Affiliation(s)
- Dandan Qian
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Ye Cong
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
| | - Runhao Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300350, China.
| | - Chuangye Yan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China.
| | - Deshun Gong
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
12
|
León-Reyes G, Argoty-Pantoja AD, Rivera-Paredez B, Hidalgo-Bravo A, Flores YN, Salmerón J, Velázquez-Cruz R. Interaction between SIDT2 and ABCA1 Variants with Nutrients on HDL-c Levels in Mexican Adults. Nutrients 2023; 15:370. [PMID: 36678241 PMCID: PMC9861312 DOI: 10.3390/nu15020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 01/13/2023] Open
Abstract
Previous studies have reported that the SIDT2 and ABCA1 genes are involved in lipid metabolism. We aimed to analyze the association-the gene x gene interaction between rs17120425 and rs1784042 on SIDT2 and rs9282541 on ABCA1 and their diet interaction on the HDL-c serum levels-in a cohort of 1982 Mexican adults from the Health Workers Cohort Study. Demographic and clinical data were collected through a structured questionnaire and standardized procedures. Genotyping was performed using a predesigned TaqMan assay. The associations and interactions of interest were estimated using linear and logistic regression. Carriers of the rs17120425-A and rs1784042-A alleles had slightly higher blood HDL-c levels compared to the non-carriers. In contrast, rs9282541-A was associated with low blood HDL-c levels (OR = 1.34, p = 0.013). The rs1784042 x rs9282541 interaction was associated with high blood HDL-c levels (p = 3.4 × 10-4). Premenopausal women who carried at least one rs17120425-A allele and consumed high dietary fat, protein, monounsaturated, or polyunsaturated fatty acids levels had higher HDL-c levels than the non-carriers. These results support the association between the genetic variants on SIDT2 and ABCA1 with HDL-c levels and suggest gene-gene and gene-diet interactions over HDL-c concentrations in Mexican adults. Our findings could be a platform for developing clinical and dietary strategies for improving the health of the Mexican population.
Collapse
Affiliation(s)
- Guadalupe León-Reyes
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Morelos, Mexico
| | - Anna D. Argoty-Pantoja
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Morelos, Mexico
| | - Berenice Rivera-Paredez
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Morelos, Mexico
| | - Alberto Hidalgo-Bravo
- Department of Genetics, National Institute of Rehabilitation (INR), Mexico City 014389, Morelos, Mexico
| | - Yvonne N. Flores
- Epidemiological and Health Services Research Unit, Morelos, Mexican Institute of Social Security, Cuernavaca 62000, Morelos, Mexico
- Department of Health Policy and Management and Kaiser Permanente Center for Health Equity, Fielding School of Public Health, Los Angeles, University of California, Los Angeles, CA 90095, USA
- Cancer Prevention and Control Research Center, Fielding School of Public Health and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | - Jorge Salmerón
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Morelos, Mexico
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Morelos, Mexico
| |
Collapse
|
13
|
Zhao JC, Saleh A, Crooke ST. SIDT2 Inhibits Phosphorothioate Antisense Oligonucleotide Activity by Regulating Cellular Localization of Lysosomes. Nucleic Acid Ther 2022; 33:108-116. [PMID: 36576400 DOI: 10.1089/nat.2022.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phosphorothioate (PS)-modified antisense oligonucleotide (ASO) drugs enter cells through endocytic pathways where a majority are entrapped within membrane-bound endosomes and lysosomes, representing a limiting step for antisense activity. While late endosomes have been identified as a major site for productive PS-ASO release, how lysosomes regulate PS-ASO activity beyond macromolecule degradation remains not fully understood. In this study, we reported that SID1 transmembrane family, member 2 (SIDT2), a lysosome transmembrane protein, can robustly regulate PS-ASO activity. We showed that SIDT2 is required for the proper colocalization between PS-ASO and lysosomes, suggesting an important role of SIDT2 in the entrapment of PS-ASOs in lysosomes. Mechanistically, we revealed that SIDT2 regulates lysosome cellular location. Lysosome location is largely determined by its movement along microtubules. Interestingly, we also observed an enrichment of proteins involved in microtubule function among SIDT2-binding proteins, suggesting that SIDT2 regulates lysosome location via its interaction with microtubule-related proteins. Overall, our data suggest that lysosome protein SIDT2 inhibits PS-ASO activity potentially through its interaction with microtubule-related proteins to place lysosomes at perinuclear regions, thus, facilitating PS-ASO's localization to lysosomes for degradation.
Collapse
Affiliation(s)
- Jing Crystal Zhao
- Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Aurian Saleh
- Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Stanley T Crooke
- Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| |
Collapse
|
14
|
Systemic Beta-Hydroxybutyrate Affects BDNF and Autophagy into the Retina of Diabetic Mice. Int J Mol Sci 2022; 23:ijms231710184. [PMID: 36077579 PMCID: PMC9455989 DOI: 10.3390/ijms231710184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Diabetic retinopathy (DR) is a neurovascular disease, characterized by a deficiency of brain-derived neurotrophic factor (BDNF), a regulator of autophagy. Beta-hydroxybutyrate (BHB), previously reported as a protective agent in DR, has been associated with BDNF promotion. Here, we investigated whether systemic BHB affects the retinal levels of BDNF and local autophagy in diabetic mice with retinopathy; Methods: C57BL/6J mice were administered with intraperitoneal (i.p.) streptozotocin (STZ) (75 mg/kg) injection to develop diabetes. After 2 weeks, they received i.p. injections of BHB (25−50−100 mg/kg) twice a week for 10 weeks. Retinal samples were collected in order to perform immunofluorescence, Western blotting, and ELISA analysis; Results: BHB 50 mg/kg and 100 mg/kg significantly improved retinal BDNF levels (p < 0.01) in diabetic mice. This improvement was negatively associated with autophagosome−lysosome formations (marked by LC3B and ATG14) and to higher levels of connexin 43 (p < 0.01), a marker of cell integrity. Moreover, BHB administration significantly reduced M1 microglial activation and autophagy (p < 0.01); Conclusions: The systemic administration of BHB in mice with DR improves the retinal levels of BDNF, with the consequent reduction of the abnormal microglial autophagy. This leads to retinal cell safety through connexin 43 restoration.
Collapse
|
15
|
Sidt2 is a key protein in the autophagy-lysosomal degradation pathway and is essential for the maintenance of kidney structure and filtration function. Cell Death Dis 2021; 13:7. [PMID: 34923568 PMCID: PMC8684554 DOI: 10.1038/s41419-021-04453-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022]
Abstract
The regulation and homeostasis of autophagy are essential for maintaining organ morphology and function. As a lysosomal membrane protein, the effect of Sidt2 on kidney structure and renal autophagy is still unknown. In this study, we found that the kidneys of Sidt2-/- mice showed changes in basement membrane thickening, foot process fusion, and mitochondrial swelling, suggesting that the structure of the kidney was damaged. Increased urine protein at 24 h indicated that the kidney function was also damaged. At the same time, the absence of Sidt2 caused a decrease in the number of acidic lysosomes, a decrease in acid hydrolase activity and expression in the lysosome, and an increase of pH in the lysosome, suggesting that lysosomal function was impaired after Sidt2 deletion. The accumulation of autophagolysosomes, increased LC3-II and P62 protein levels, and decreased P62 mRNA levels indicated that the absence of the Sidt2 gene caused abnormal autophagy pathway flow. Chloroquine experiment, immunofluorescence autophagosome, and lysosome fusion assay, and Ad-mcherry-GFP-LC3B further indicated that, after Sidt2 deletion, the production of autophagosomes did not increase, but the fusion of autophagosomes and lysosomes and the degradation of autophagolysosomes were impaired. When incubating Sidt2-/- cells with the autophagy activator rapamycin, we found that it could activate autophagy, which manifested as an increase in autophagosomes, but it could not improve autophagolysosome degradation. Meanwhile, it further illustrated that the Sidt2 gene plays an important role in the smooth progress of autophagolysosome processes. In summary, the absence of the Sidt2 gene caused impaired lysosome function and a decreased number of acidic lysosomes, leading to formation and degradation disorders of the autophagolysosomes, which eventually manifested as abnormal kidney structure and function. Sidt2 is essential in maintaining the normal function of the lysosomes and the physiological stability of the kidneys.
Collapse
|
16
|
Vogel P, Read RW, Hansen GM, Powell DR. Histopathology is required to identify and characterize myopathies in high-throughput phenotype screening of genetically engineered mice. Vet Pathol 2021; 58:1158-1171. [PMID: 34269122 DOI: 10.1177/03009858211030541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of mouse models that replicate the genetic and pathological features of human disease is important in preclinical research because these types of models enable the completion of meaningful pharmacokinetic, safety, and efficacy studies. Numerous relevant mouse models of human disease have been discovered in high-throughput screening programs, but there are important specific phenotypes revealed by histopathology that are not reliably detected by any other physiological or behavioral screening tests. As part of comprehensive phenotypic analyses of over 4000 knockout (KO) mice, histopathology identified 12 lines of KO mice with lesions indicative of an autosomal recessive myopathy. This report includes a brief summary of histological and other findings in these 12 lines. Notably, the inverted screen test detected muscle weakness in only 4 of these 12 lines (Scyl1, Plpp7, Chkb, and Asnsd1), all 4 of which have been previously recognized and published. In contrast, 6 of 8 KO lines showing negative or inconclusive findings on the inverted screen test (Plppr2, Pnpla7, Tenm1, Srpk3, Sidt2, Yif1b, Mrs2, and Pnpla2) had not been previously identified as having myopathies. These findings support the need to include histopathology in phenotype screening protocols in order to identify novel genetic myopathies that are not clinically evident or not detected by the inverted screen test.
Collapse
Affiliation(s)
- Peter Vogel
- 5417St Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert W Read
- 57636Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | | | - David R Powell
- 57636Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| |
Collapse
|
17
|
Gu J, Geng M, Qi M, Wang L, Zhang Y, Gao J. The role of lysosomal membrane proteins in glucose and lipid metabolism. FASEB J 2021; 35:e21848. [PMID: 34582051 DOI: 10.1096/fj.202002602r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 11/11/2022]
Abstract
Lysosomes have long been regarded as the "garbage dump" of the cell. More recently, however, researchers have revealed novel roles for lysosomal membranes in autophagy, ion transport, nutrition sensing, and membrane fusion and repair. With active research into lysosomal membrane proteins (LMP), increasing evidence has become available showing that LMPs are inextricably linked to glucose and lipid metabolism, and this relationship represents mutual influence and regulation. In this review, we summarize the roles of LMPs in relation to glucose and lipid metabolism, and describe their roles in glucose transport, glycolysis, cholesterol transport, and lipophagy. The role of transport proteins can be traced back to the original discoveries of GLUT8, NPC1, and NPC2, which were all found to have significant roles in the pathways involved in glucose and lipid metabolism. CLC-5 and SIDT2-knockout animals show serious phenotypic disorders of metabolism, and V-ATPase and LAMP-2 have been found to interact with proteins related to glucose and lipid metabolism. These findings all emphasize the critical role of LMPs in glycolipid metabolism and help to strengthen our understanding of the independent and close relationship between LMPs and glycolipid metabolism.
Collapse
Affiliation(s)
- Jing Gu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Mengya Geng
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Mengxiang Qi
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research (Wannan Medical College), Wannan Medical College, Wuhu, China
| |
Collapse
|
18
|
León-Mimila P, Villamil-Ramírez H, Macías-Kauffer LR, Jacobo-Albavera L, López-Contreras BE, Posadas-Sánchez R, Posadas-Romero C, Romero-Hidalgo S, Morán-Ramos S, Domínguez-Pérez M, Olivares-Arevalo M, López-Montoya P, Nieto-Guerra R, Acuña-Alonzo V, Macín-Pérez G, Barquera-Lozano R, Del-Río-Navarro BE, González-González I, Campos-Pérez F, Gómez-Pérez F, Valdés VJ, Sampieri A, Reyes-García JG, Carrasco-Portugal MDC, Flores-Murrieta FJ, Aguilar-Salinas CA, Vargas-Alarcón G, Shih D, Meikle PJ, Calkin AC, Drew BG, Vaca L, Lusis AJ, Huertas-Vazquez A, Villarreal-Molina T, Canizales-Quinteros S. Genome-Wide Association Study Identifies a Functional SIDT2 Variant Associated With HDL-C (High-Density Lipoprotein Cholesterol) Levels and Premature Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2021; 41:2494-2508. [PMID: 34233476 PMCID: PMC8664085 DOI: 10.1161/atvbaha.120.315391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective Low HDL-C (high-density lipoprotein cholesterol) is the most frequent dyslipidemia in Mexicans, but few studies have examined the underlying genetic basis. Our purpose was to identify genetic variants associated with HDL-C levels and cardiovascular risk in the Mexican population. Approach and Results A genome-wide association studies for HDL-C levels in 2335 Mexicans, identified four loci associated with genome-wide significance: CETP, ABCA1, LIPC, and SIDT2. The SIDT2 missense Val636Ile variant was associated with HDL-C levels and was replicated in 3 independent cohorts (P=5.9×10−18 in the conjoint analysis). The SIDT2/Val636Ile variant is more frequent in Native American and derived populations than in other ethnic groups. This variant was also associated with increased ApoA1 and glycerophospholipid serum levels, decreased LDL-C (low-density lipoprotein cholesterol) and ApoB levels, and a lower risk of premature CAD. Because SIDT2 was previously identified as a protein involved in sterol transport, we tested whether the SIDT2/Ile636 protein affected this function using an in vitro site-directed mutagenesis approach. The SIDT2/Ile636 protein showed increased uptake of the cholesterol analog dehydroergosterol, suggesting this variant affects function. Finally, liver transcriptome data from humans and the Hybrid Mouse Diversity Panel are consistent with the involvement of SIDT2 in lipid and lipoprotein metabolism. Conclusions This is the first genome-wide association study for HDL-C levels seeking associations with coronary artery disease in the Mexican population. Our findings provide new insight into the genetic architecture of HDL-C and highlight SIDT2 as a new player in cholesterol and lipoprotein metabolism in humans.
Collapse
Affiliation(s)
- Paola León-Mimila
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Hugo Villamil-Ramírez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Luis R Macías-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
- Dirección de Planeación, Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Estado de México (L.R.M.-K.)
| | - Leonor Jacobo-Albavera
- Laboratorio de Enfermedades Cardiovasculares, INMEGEN, Mexico City (L.J.-A., M.D.-P., T.V.-M.)
| | - Blanca E López-Contreras
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Rosalinda Posadas-Sánchez
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City (R.P.-S., C.P.-R.)
| | - Carlos Posadas-Romero
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City (R.P.-S., C.P.-R.)
| | | | - Sofía Morán-Ramos
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico City (S.M.-R.)
| | - Mayra Domínguez-Pérez
- Laboratorio de Enfermedades Cardiovasculares, INMEGEN, Mexico City (L.J.-A., M.D.-P., T.V.-M.)
| | - Marisol Olivares-Arevalo
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Priscilla López-Montoya
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | - Roberto Nieto-Guerra
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| | | | - Gastón Macín-Pérez
- Escuela Nacional de Antropología e Historia, Mexico City (V.A.-A., G.M.-P.)
| | | | | | | | | | - Francisco Gómez-Pérez
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (F.G.-P., C.A.A.-S.)
| | - Victor J Valdés
- Instituto de Fisiología Celular, UNAM, Mexico City (V.J.V., A.S., L.V.)
| | - Alicia Sampieri
- Instituto de Fisiología Celular, UNAM, Mexico City (V.J.V., A.S., L.V.)
| | - Juan G Reyes-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City (J.G.R.-G., F.J.F.-M.)
| | - Miriam Del C Carrasco-Portugal
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City (M.C.-P., F.J.F.-M.)
| | - Francisco J Flores-Murrieta
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City (J.G.R.-G., F.J.F.-M.)
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City (M.C.-P., F.J.F.-M.)
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (F.G.-P., C.A.A.-S.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L. Mexico (C.A.A.-S.)
| | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City (G.V.-A.)
| | - Diana Shih
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (D.S., A.J.L., A.H.-V.)
| | - Peter J Meikle
- Head Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (P.J.M.)
| | - Anna C Calkin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (A.C.C., B.G.D.)
- Central Clinical School, Monash University, Melbourne, VIC, Australia (A.C.C., B.G.D.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia (A.C.C., B.G.D.)
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (A.C.C., B.G.D.)
- Central Clinical School, Monash University, Melbourne, VIC, Australia (A.C.C., B.G.D.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia (A.C.C., B.G.D.)
| | - Luis Vaca
- Instituto de Fisiología Celular, UNAM, Mexico City (V.J.V., A.S., L.V.)
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (D.S., A.J.L., A.H.-V.)
| | - Adriana Huertas-Vazquez
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (D.S., A.J.L., A.H.-V.)
| | | | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City (P.L.-M., H.V.-R., L.R.M.-K., B.E.L.-C., S.M.-R., M.O.-A., P.L.-M., R.N.-G., S.C.-Q.)
| |
Collapse
|
19
|
耿 梦, 王 李, 章 尧, 裴 文, 漆 梦, 杨 梦, 许 家, 梁 洋, 吕 坤, 何 春, 高 家. [Lysosomal membrane protein Sidt2 deletion impairs autophagy in human hepatocytes]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1207-1213. [PMID: 34549712 PMCID: PMC8527224 DOI: 10.12122/j.issn.1673-4254.2021.08.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the effect of lysosomal membrane protein Sidt2 deletion on autophagy in human hepatocytes. METHODS Crispr-Cas9 technology was used to construct a human hepatocyte (HL7702) model of Sidt2 knockout (Sidt2-/-), and the expression levels of the key autophagy proteins LC3II/I, P62 and autophagy-related proteins Atg5, Atg7, and Atg12 were detected.The co-localization of LC3B and P62 in the cells were analyzed with immunofluorescence assay to assess the identification and storage of P62 cargo proteins by the autophagosomes and the degradation of the autophagolysosomes.The co-localization of LC3B and LAMP1 was also determined with immunofluorescence assay to detect the fusion of the autophagosomes with the lysosomes, and LysoTracker was used to trace the acidic lysosomes. RESULTS We successfully constructed a HL7702 cell model of Sidt2+/+ and Sidt2-/-, and compared with Sidt2+/+ cells, the Sidt2-/- cell model showed significantly increased expressions of LC3-II/I and P62 (P < 0.01).Immunofluorescence assay showed a significant increase of LC3B and P62 expressions (P < 0.001) and obviously lowered expressions of Atg5, Atg7, and Atg12 in Sidt2-/- cells (P < 0.05).The co-localization of LC3B and P62 and that of LC3B and LAMP1 were both reduced and the number of acidic lysosomes was significantly lowered in Sidt2-/- cells (P < 0.05). CONCLUSION Sidt2 gene deletion disturbs the recognition and sequestration of P62 cargo protein by autophagosomes in human hepatocytes.At the same time, the decreased number of acidic lysosomes and the dysfunction of autophagosome and lysosome fusion cause the block of the autophagy-lysosome pathway, leading eventually to LC3B and P62 accumulation and impaired autophagy in the hepatocytes.
Collapse
Affiliation(s)
- 梦雅 耿
- 皖南医学院弋矶山医院内分泌科, 安徽 芜湖 241002Department of Endocrinology and Genetic Metabolism, Wannan Medical College, Wuhu 241002, China
- 皖南医学院弋矶山医院内分泌糖尿病研究所, 安徽 芜湖 241002Institute of Endocrine and Metabolic Diseases, Yijishan Hospital of Wannan Medical College, Wuhu 241002, China
- 皖南医学院临床医学院, 安徽 芜湖 241002School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 李卓 王
- 皖南医学院安徽省活性生物大分子研究安徽省重点实验室, 安徽 芜湖 241002Anhui Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, China
- 皖南医学院基础医学院生化教研室, 安徽 芜湖 241002Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, China
| | - 尧 章
- 皖南医学院安徽省活性生物大分子研究安徽省重点实验室, 安徽 芜湖 241002Anhui Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, China
- 皖南医学院基础医学院生化教研室, 安徽 芜湖 241002Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, China
| | - 文俊 裴
- 皖南医学院安徽省活性生物大分子研究安徽省重点实验室, 安徽 芜湖 241002Anhui Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, China
| | - 梦湘 漆
- 皖南医学院临床医学院, 安徽 芜湖 241002School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 梦 杨
- 皖南医学院临床医学院, 安徽 芜湖 241002School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 家豪 许
- 皖南医学院临床医学院, 安徽 芜湖 241002School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 洋洋 梁
- 皖南医学院临床医学院, 安徽 芜湖 241002School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - 坤 吕
- 皖南医学院中心实验室, 安徽 芜湖 241002Central Laboratory, Wannan Medical College, Wuhu 241002, China
- 皖南医学院重大疾病非编码RNA转化研究安徽普通高校重点实验室, 安徽 芜湖 241002Anhui Provincial College Key Laboratory of Non-coding RNA Transformation Research on Critical Diseases, Wannan Medical College, Wuhu 241002, China
| | - 春玲 何
- 皖南医学院弋矶山医院内分泌科, 安徽 芜湖 241002Department of Endocrinology and Genetic Metabolism, Wannan Medical College, Wuhu 241002, China
| | - 家林 高
- 皖南医学院弋矶山医院内分泌科, 安徽 芜湖 241002Department of Endocrinology and Genetic Metabolism, Wannan Medical College, Wuhu 241002, China
- 皖南医学院弋矶山医院内分泌糖尿病研究所, 安徽 芜湖 241002Institute of Endocrine and Metabolic Diseases, Yijishan Hospital of Wannan Medical College, Wuhu 241002, China
- 皖南医学院安徽省活性生物大分子研究安徽省重点实验室, 安徽 芜湖 241002Anhui Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
20
|
Yao M, Wu Y, Cao Y, Liu H, Ma N, Chai Y, Zhang S, Zhang H, Nong L, Liang L, Zhang B. Autophagy-Mediated Clearance of Free Genomic DNA in the Cytoplasm Protects the Growth and Survival of Cancer Cells. Front Oncol 2021; 11:667920. [PMID: 34123836 PMCID: PMC8189927 DOI: 10.3389/fonc.2021.667920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023] Open
Abstract
The cGAS (GMP-AMP synthase)-mediated senescence-associated secretory phenotype (SASP) and DNA-induced autophagy (DNA autophagy) have been extensively investigated in recent years. However, cGAS-mediated autophagy has not been elucidated in cancer cells. The described investigation revealed that active DNA autophagy but not SASP activity could be detected in the BT-549 breast cancer cell line with high micronucleus (MN) formation. DNA autophagy was identified as selective autophagy of free genomic DNA in the cytoplasm but not nucleophagy. The process of DNA autophagy in the cytosol could be initiate by cGAS and usually cooperates with SQSTM1-mediated autophagy of ubiquitinated histones. Cytoplasmic DNA, together with nuclear proteins such as histones, could be derived from DNA replication-induced nuclear damage and MN collapse. The inhibition of autophagy through chemical inhibitors as well as the genomic silencing of cGAS or SQSTM1 could suppress the growth and survival of cancer cells, and induced DNA damage could increase the sensitivity to these inhibitors. Furthermore, expanded observations of several other kinds of human cancer cells indicated that high relative DNA autophagy or enhancement of DNA damage could also increase or sensitize these cells to inhibition of DNA autophagy.
Collapse
Affiliation(s)
- Mengfei Yao
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yaqian Wu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanan Cao
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Haijing Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ningning Ma
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yijie Chai
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shuang Zhang
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Hong Zhang
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Lin Nong
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Li Liang
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Bo Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
21
|
The Variant rs1784042 of the SIDT2 Gene is Associated with Metabolic Syndrome through Low HDL-c Levels in a Mexican Population. Genes (Basel) 2020; 11:genes11101192. [PMID: 33066450 PMCID: PMC7602182 DOI: 10.3390/genes11101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
The Mexican population has one of the highest prevalences of metabolic syndrome (MetS) worldwide. The aim of this study was to investigate the association of single-nucleotide polymorphisms (SNPs) with MetS and its components. First, we performed a pilot Genome-wide association study (GWAS) scan on a sub-sample derived from the Health Workers Cohort Study (HWCS) (n = 411). Based on GWAS results, we selected the rs1784042 and rs17120425 SNPs in the SIDT1 transmembrane family member 2 (SIDT2) gene for replication in the entire cohort (n = 1963), using predesigned TaqMan assays. We observed a prevalence of MetS in the HWCS of 52.6%. The minor allele frequency for the variant rs17120425 was 10% and 29% for the rs1784042. The SNP rs1784042 showed an overall association with MetS (OR = 0.82, p = 0.01) and with low levels of high-density lipoprotein (HDL-c) (odds ratio (OR) = 0.77, p = 0.001). The SNP rs17120425 had a significant association with type 2 diabetes (T2D) risk in the overall population (OR = 1.39, p = 0.033). Our results suggest an association of the rs1784042 and rs17120425 variants with MetS, through different mechanisms in the Mexican population. Further studies in larger samples and other populations are required to validate these findings and the relevance of these SNPs in MetS.
Collapse
|
22
|
TM7SF1, an important autophagy regulatory protein in mouse podocytes. Biochem Biophys Res Commun 2020; 528:213-219. [PMID: 32482387 DOI: 10.1016/j.bbrc.2020.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
The autophagy, which can be regulated by lysosomal membrane proteins, plays a critical role in maintaining normal podocyte function. TM7SF1 is a novel lysosomal membrane protein, but its effect on autophagy is still unknown. This study aimed to identify the role of TM7SF1 in mouse podocyte (MPC5) autophagy. Interestingly, we detected an increase in LC3BII and SQSTM1/P62 in MPC5 through inhibiting TM7SF1, and which can be completely corrected after blocking the autolysosome degradation with chloroquine (CQ). Moreover, inhibition of TM7SF1 expression did not increase the mRNA level of SQSTM1/P62. Theses results suggested that inhibition of TM7SF1 led to impaired degradation of autophagy products, which manifest as an abnormal accumulation of LC3BII and SQSTM1/P62. Further studies showed that the downregulation of TM7SF1 resulted in a significant decrease in the number of acid lysosomes, which directly led to decreases in the number and function of autolysosomes. In conclusion, TM7SF1 is therefore essential for autolysosomes degradation pathway at the end of autophagy flow, and for the maintenance of podocyte function.
Collapse
|
23
|
Abstract
Autophagy is a major intracellular degradation system that derives its degradative abilities from the lysosome. The most well-studied form of autophagy is macroautophagy, which delivers cytoplasmic material to lysosomes via the double-membraned autophagosome. Other forms of autophagy, namely chaperone-mediated autophagy and microautophagy, occur directly on the lysosome. Besides providing the means for degradation, lysosomes are also involved in autophagy regulation and can become substrates of autophagy when damaged. During autophagy, they exhibit notable changes, including increased acidification, enhanced enzymatic activity, and perinuclear localization. Despite their importance to autophagy, details on autophagy-specific regulation of lysosomes remain relatively scarce. This review aims to provide a summary of current understanding on the behaviour of lysosomes during autophagy and outline unexplored areas of autophagy-specific lysosome research.
Collapse
Affiliation(s)
- Willa Wen-You Yim
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| |
Collapse
|
24
|
Nguyen TA, Bieging-Rolett KT, Putoczki TL, Wicks IP, Attardi LD, Pang KC. SIDT2 RNA Transporter Promotes Lung and Gastrointestinal Tumor Development. iScience 2019; 20:14-24. [PMID: 31546103 PMCID: PMC6817685 DOI: 10.1016/j.isci.2019.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
Abstract
RNautophagy is a newly described type of selective autophagy whereby cellular RNAs are transported into lysosomes for degradation. This process involves the transmembrane protein SIDT2, which transports double-stranded RNA (dsRNA) across the endolysosomal membrane. We previously demonstrated that SIDT2 is a transcriptional target of p53, but its role in tumorigenesis, if any, is unclear. Unexpectedly, we show here that Sidt2−/− mice with concurrent oncogenic KrasG12D activation develop significantly fewer tumors than littermate controls in a mouse model of lung adenocarcinoma. Consistent with this observation, loss of SIDT2 also leads to enhanced survival and delayed tumor development in an Apcmin/+ mouse model of intestinal cancer. Within the intestine, Apcmin/+;Sidt2−/− mice display accumulation of dsRNA in association with increased phosphorylation of eIF2α and JNK as well as elevated rates of apoptosis. Taken together, our data demonstrate a role for SIDT2, and by extension RNautophagy, in promoting tumor development. Loss of the SIDT2 double-stranded RNA (dsRNA) transporter leads to accumulation of dsRNA in tissues is associated with increased apoptosis reduces tumor burden in mouse models of lung adenocarcinoma and intestinal cancer
Collapse
Affiliation(s)
- Tan A Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kathryn T Bieging-Rolett
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ian P Wicks
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Laura D Attardi
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ken C Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia; Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
25
|
Nguyen TA, Smith BRC, Elgass KD, Creed SJ, Cheung S, Tate MD, Belz GT, Wicks IP, Masters SL, Pang KC. SIDT1 Localizes to Endolysosomes and Mediates Double-Stranded RNA Transport into the Cytoplasm. THE JOURNAL OF IMMUNOLOGY 2019; 202:3483-3492. [PMID: 31061008 DOI: 10.4049/jimmunol.1801369] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/14/2019] [Indexed: 12/15/2022]
Abstract
dsRNA is a common by-product of viral replication and acts as a potent trigger of antiviral immunity. SIDT1 and SIDT2 are closely related members of the SID-1 transmembrane family. SIDT2 functions as a dsRNA transporter and is required to traffic internalized dsRNA from endocytic compartments into the cytosol for innate immune activation, but the role of SIDT1 in dsRNA transport and in the innate immune response to viral infection is unclear. In this study, we show that Sidt1 expression is upregulated in response to dsRNA and type I IFN exposure and that SIDT1 interacts with SIDT2. Moreover, similar to SIDT2, SIDT1 localizes to the endolysosomal compartment, interacts with the long dsRNA analog poly(I:C), and, when overexpressed, enhances endosomal escape of poly(I:C) in vitro. To elucidate the role of SIDT1 in vivo, we generated SIDT1-deficient mice. Similar to Sidt2-/- mice, SIDT1-deficient mice produced significantly less type I IFN following infection with HSV type 1. In contrast to Sidt2-/- mice, however, SIDT1-deficient animals showed no impairment in survival postinfection with either HSV type 1 or encephalomyocarditis virus. Consistent with this, we observed that, unlike SIDT2, tissue expression of SIDT1 was relatively restricted, suggesting that, whereas SIDT1 can transport extracellular dsRNA into the cytoplasm following endocytosis in vitro, the transport activity of SIDT2 is likely to be functionally dominant in vivo.
Collapse
Affiliation(s)
- Tan A Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Blake R C Smith
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| | - Kirstin D Elgass
- Monash Micro Imaging, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Sarah J Creed
- Monash Micro Imaging, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Shane Cheung
- Monash Micro Imaging, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Michelle D Tate
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3168, Australia; and
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Seth L Masters
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ken C Pang
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; .,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia.,Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
26
|
Sun M, Wang S, Jiang L, Bai Y, Sun X, Li J, Wang B, Yao X, Liu X, Li Q, Geng C, Zhang C, Yang G. Patulin Induces Autophagy-Dependent Apoptosis through Lysosomal-Mitochondrial Axis and Impaired Mitophagy in HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12376-12384. [PMID: 30392375 DOI: 10.1021/acs.jafc.8b03922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Patulin (PAT) is a compound produced by fungi including those of the Aspergillus, Penicillium, and Byssochlamys species. PAT has been linked with negative outcomes in certain microorganisms and animal species, but how it causes hepatotoxicity is poorly understood. In this study, we determined that, by treating HepG2 cells using PAT, these cells could be induced to rapidly undergo autophagy, and this was followed within 12 h of treatment by lysosomal membrane permeabilization (LMP) and cathepsin B release. We were able to block these outcomes if cells were treated with 3-methyladenine (3MA), an inhibitor of autophagy, prior to PAT treatment. Moreover, PAT-induced collapse of mitochondrial membrane potential (ΔΨm) depended both on cathepsin B and autophagy. 3MA was further able to reduce the induction of apoptosis in response to PAT, suggesting that autophagy is a driving mechanism for this apoptotic induction. Inhibiting cathepsin B using CA-074 Me further reduced PAT-induced collapses of ΔΨm, mitochondiral cytochrome c release, and apoptosis. We also found that extended treatment of HepG2 cells using PAT over a period of 24 h led to the impairment of mitophagy such that morphologically swollen mitochondria accumulated within cells, and PINK1 failed to colocalize with LC3. Together these data reveal that PAT treatment can promote the induction of apoptosis in HepG2 cells in a manner dependent upon autophagy that progresses via the lysosomal-mitochondrial axis. This study thereby affords new insights into the mechanisms by which PAT drives hepatotoxicity.
Collapse
Affiliation(s)
- Ming Sun
- Department of Food Nutrition and Safety , Dalian Medical University , No. 9W. Lushun South Road , Dalian 116044 , China
| | - Shaopeng Wang
- Department of Cardiology , The First Affiliated Hospital of Dalian Medical University , Dalian 116011 , China
| | - Liping Jiang
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center , Dalian Medical University , Dalian 116044 , China
| | - Yueran Bai
- Department of Food Nutrition and Safety , Dalian Medical University , No. 9W. Lushun South Road , Dalian 116044 , China
| | - Xiance Sun
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center , Dalian Medical University , Dalian 116044 , China
| | - Jing Li
- Department of Pathology , Dalian Medical University , Dalian 116044 , China
| | - Bo Wang
- Department of Pathology , Dalian Medical University , Dalian 116044 , China
| | - Xiaofeng Yao
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center , Dalian Medical University , Dalian 116044 , China
| | - Xiaofang Liu
- Department of Food Nutrition and Safety , Dalian Medical University , No. 9W. Lushun South Road , Dalian 116044 , China
| | - Qiujuan Li
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center , Dalian Medical University , Dalian 116044 , China
| | - Chengyan Geng
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center , Dalian Medical University , Dalian 116044 , China
| | - Cong Zhang
- Department of Food Nutrition and Safety , Dalian Medical University , No. 9W. Lushun South Road , Dalian 116044 , China
| | - Guang Yang
- Department of Food Nutrition and Safety , Dalian Medical University , No. 9W. Lushun South Road , Dalian 116044 , China
| |
Collapse
|
27
|
Liu H, Jiang W, Chen X, Chang G, Zhao L, Li X, Zhang H. Skeletal muscle-specific Sidt2 knockout in mice induced muscular dystrophy-like phenotype. Metabolism 2018; 85:259-270. [PMID: 29752955 DOI: 10.1016/j.metabol.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/21/2018] [Accepted: 05/07/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Sidt2 is an integral lysosomal membrane protein. Previously, we generated a Sidt2 global knockout mouse and found impaired insulin secretion, along with skeletal muscle pathology. METHODS A mouse model with a muscle-specific knockout of the Sidt2 gene (Sidt2f/fCre) had been generated, to which extensive morphologic study as well as functional study was applied to investigate the direct role of Sidt2 on skeletal muscle tissue in vivo. Secondly, the autophagy-lysosomal pathway was examined by Western blot and immunostaining. Additionally, RNA expression changes in Sidt2f/fCre mice were analyzed by genechip. RESULTS Sidt2 deficiency in skeletal muscle results in pathognomonic hallmarks of muscular dystrophy, including muscle mass decrease, muscle weakness, fibrosis, central nucleation, fiber regeneration, mildly elevated serum creatine kinase, and dramatically elevated sarcolipin mRNA. Along with accumulation of autophagolysomes, LC3-II, adaptor protein p62, ubiquitinated aggregates, and Lamp2-positive vacuoles were increased significantly in Sidt2f/fCre skeletal muscle fibers. However, only lysosomal-related genes were upregulated, while the genes upstream of the autophagy pathway were unchanged. Simultaneously, the proteasome chymotryptic activity and the lysosomal soluble enzyme activity were unimpaired, which largely excluded the possibility of proteasome chymotryptic activity defect and the lysosomal soluble enzyme defect leading to ubiquitinated aggregates accumulation. CONCLUSION We concluded that Sidt2 deficiency leads to muscular dystrophy-like phenotype in mice and Sidt2 plays a critical role in the late stage of autophagy.
Collapse
Affiliation(s)
- Huan Liu
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Jiang
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueru Chen
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoying Chang
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhao
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Xihua Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China.
| | - Huiwen Zhang
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|