1
|
Zhang S, Huang Y, Han C, Chen M, Yang Z, Wang C. Circulating mitochondria carrying cGAS promote endothelial Secreted group IIA phospholipase A2-mediated neuroinflammation through activating astroglial/microglial Integrin-alphavbeta3 in subfornical organ to augment central sympathetic overdrive in heart failure rats. Int Immunopharmacol 2025; 144:113649. [PMID: 39586230 DOI: 10.1016/j.intimp.2024.113649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Sympathoexcitation, a manifestation of heart-brain axis dysregulation, contributes to the progression of heart failure (HF). Our recent study revealed that circulating mitochondria (C-Mito), a newly identified mediator of multi-organ communication, promote sympathoexcitation in HF by aggravating endothelial cell (EC)-derived neuroinflammation in the subfornical organ (SFO), the cardiovascular autonomic neural center. The precise molecular mechanism by which C-Mito promotes SFO-induced endothelial neuroinflammation has not been fully elucidated. OBJECTIVE C-Mito carrying cGAS promote sympathoexcitation by targeting PLA2G2A in ECs of the SFO in HF rats. METHODS Male Sprague-Dawley (SD) rats received a subcutaneous injection of isoprenaline (ISO) at a dosage of 5 mg/kg/day for seven consecutive days to establish a HF model. C-Mito were isolated from HF rats and evaluated. The level of cGAS, a dsDNA sensor recently discovered to be directly localized on the outer membrane of mitochondria, was detected in C-Mito. C-Mito from HF rats (C-MitoHF) or control rats (C-MitoCtrl) were intravenously infused into HF rats. The accumulation of C-Mito in the ECs in the SFO was detected via double immunofluorescence staining. The SFO was processed for RNA sequencing (RNA-Seq) analysis. Secreted group IIA phospholipase A2 (PLA2G2A), the key gene involved in C-MitoHF-associated SFO dysfunction, was identified via bioinformatics analysis. Upregulation of PLA2G2A in the SFO ECs was assessed via immunofluorescence staining and immunoblotting, and PLA2G2A activity was evaluated. The interaction between cGAS and PLA2G2A was detected via co-immunoprecipitation. The dowstream molecular mechanisms of which PLA2G2A induced astroglial/microglial activation were also investigated. AAV9-TIE-shRNA (PLA2G2A) was introduced into the SFO to specifically knockdown endothelial PLA2G2A. Neuronal activation and glial proinflammatory polarization in the SFO were also evaluated. Renal sympathetic nerve activity (RSNA) was measured to evaluate central sympathetic output. Cardiac sympathetic hyperinnervation, myocardial remodeling, and left ventricular systolic function were assessed in C-Mito-treated HF rats. RESULTS Respiratory functional incompetence and oxidative damage were observed in C-MitoHF compared with C-MitoCtrl. Surprisingly, cGAS protein levels in C-MitoHF were significantly higher than those in C-MitoCtrl, while blocking cGAS with its specific inhibitor, RU.521, mitigated respiratory dysfunction and oxidative injury in C-MitoHF. C-Mito entered the ECs of the SFO in HF rats. RNA sequencing revealed that PLA2G2A is a key molecule for the induction of SFO dysfunction by C-MitoHF. The immunoblotting and immunofluorescence results confirmed that, compared with C-MitoCtrl, C-MitoHF increased endothelial PLA2G2A expression in the SFO of HF rats, which could be alleviated by attenuating C-MitoHF-localized cGAS. Furthermore, we found that cGAS directly interacts with PLA2G2A, increased the activity of PLA2AG2, which produced arachidonic acid, and also promoted PLA2G2A secretion in brain ECs. In addition, the inhibition of PLA2G2A in brain ECs significantly mitigated the proinflammatory effect of conditioned cell culture medium from C-MitoHF-treated ECs on astroglia and microglia. Also, we found that PLA2G2A secreted from ECs insulted by C-Mito induced neuroinflammation through activating astriglial/microglial Integrin-alphavbeta3 in the SFO, which further promote central sympathetic overdrive in HF rats. Specific knockdown of endothelial PLA2G2A in the SFO mitigated C-MitoHF-induced presympathetic neuronal sensitization, cardiac sympathetic hyperinnervation, RSNA activation, myocardial remodeling, and systolic dysfunction in HF rats. CONCLUSION C-Mito carrying cGAS promoted cardiac sympathoexcitation by directly targeting PLA2G2A in the ECs of the SFO in HF rats. Secreted PLA2G2A derived from ECs insulted by C-Mito induced neuroinflammation through activating astriglial/microglial Integrin-alphavbeta3 in the SFO, which further promote central sympathetic overdrive in HF rats. Our study indicated that inhibiting cGAS in C-Mito might be a potential treatment for central sympathetic overdrive in HF.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Yijun Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Chengzhi Han
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Maoxiang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| |
Collapse
|
2
|
Ishida Y, Matsushita M, Yoneshiro T, Saito M, Nakayama K. Association between thermogenic brown fat and genes under positive natural selection in circumpolar populations. J Physiol Anthropol 2024; 43:19. [PMID: 39160621 PMCID: PMC11331686 DOI: 10.1186/s40101-024-00368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Adaptation to cold was essential for human migration across Eurasia. Non-shivering thermogenesis through brown adipose tissue (BAT) participates in cold adaptation because some genes involved in the differentiation and function of BAT exhibit signatures of positive natural selection in populations at high latitudes. Whether these genes are associated with the inter-individual variability in BAT thermogenesis remains unclear. In this study, we evaluated the potential associations between BAT activity and single nucleotide polymorphisms (SNPs) in candidate gene regions in East Asian populations. METHODS BAT activity induced by mild cold exposure was measured in 399 healthy Japanese men and women using fluorodeoxyglucose-positron emission tomography and computed tomography (FDG-PET/CT). The capacity for cold-induced thermogenesis and fat oxidation was measured in 56 men. Association analyses with physiological traits were performed for 11 SNPs at six loci (LEPR, ANGPTL8, PLA2G2A, PLIN1, TBX15-WARS2, and FADS1) reported to be under positive natural selection. Associations found in the FDG-PET/CT population were further validated in 84 healthy East Asian men and women, in whom BAT activity was measured using infrared thermography. Associations between the SNP genotypes and BAT activity or other related traits were tested using multiple logistic and linear regression models. RESULTS Of the 11 putative adaptive alleles of the six genes, two intronic SNPs in LEPR (rs1022981 and rs12405556) tended to be associated with higher BAT activity. However, these did not survive multiple test comparisons. Associations with lower body fat percentage, plasma triglyceride, insulin, and HOMA-IR levels were observed in the FDG-PET/CT population (P < 0.05). Other loci, including TBX15-WARS2, which is speculated to mediate cold adaptation in Greenland Inuits, did not show significant differences in BAT thermogenesis. CONCLUSIONS Our results suggest a marginal but significant association between LEPR SNPs. However, robust supporting evidence was not established for the involvement of other loci under positive natural selection in cold adaptation through BAT thermogenesis in East Asian adults. Given the pleiotropic function of these genes, factors other than cold adaptation through BAT thermogenesis, such as diet adaptation, may contribute to positive natural selection at these loci.
Collapse
Affiliation(s)
- Yuka Ishida
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Mami Matsushita
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, Hokkaido, 065-0013, Japan
| | - Takeshi Yoneshiro
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Masayuki Saito
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, Hokkaido, 065-0013, Japan
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Kazuhiro Nakayama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
3
|
Halpage J, DaSilva Pantoja P, Mancarella S. Prolonged tamoxifen-enriched diet is associated with cardiomyopathy and nutritional frailty in mice. Exp Physiol 2024; 109:513-523. [PMID: 38291801 PMCID: PMC10984784 DOI: 10.1113/ep091668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/01/2024] [Indexed: 02/01/2024]
Abstract
Tamoxifen (TAM) is required for gene recombination in the inducible Cre/lox system. The TAM-enriched diet is considered safe, with negligible impact on animal wellbeing. However, studies reporting the long-term effects of the TAM diet and its potential impact on experimental outcomes are scarce. We conducted a longitudinal study on mice exposed to a 4-week dietary TAM citrate supplementation. Several parameters were recorded, such as body weight, body composition, mortality, and cardiac function. The collagen1a2 (Col1a2) transgenic mouse was used to assess TAM-induced recombination in vivo in cardiac fibroblasts followed by myocardial infarction (MI). The impact of TAM on the MI outcome was also evaluated. The recombination efficiency and cytotoxic effect of the TAM active metabolite, 4-hydroxy-tamoxifen (4-OHT), were assessed in vitro. Mice exposed to a TAM diet showed body weight loss and a 10% increase in mortality (P = 0.045). The TAM diet decreased cardiac function and induced cardiac remodeling, indicated by decreased fractional shortening from 32.23% to 19.23% (P = 0.001) and left ventricular (LV) wall thinning. All measured parameters were reversed to normal when mice were returned to a normal diet. Infarcted Col1a2-CreER mice on the TAM regimen showed gene recombination in fibroblasts, but it was associated with a substantial increase in mortality post-surgery (2.5-fold) compared to the controls. In vitro, 4-OHT induced gene editing in fibroblasts; however, cell growth arrest and cytotoxicity were observed at high concentrations. In conclusion, prolonged exposure to the TAM diet can be detrimental and necessitates careful model selection and interpretation of the results.
Collapse
Affiliation(s)
- Janith Halpage
- Department of PhysiologyUniversity of Tennessee Health Sciences CenterMemphisTennesseeUSA
| | | | - Salvatore Mancarella
- Department of PhysiologyUniversity of Tennessee Health Sciences CenterMemphisTennesseeUSA
| |
Collapse
|
4
|
Sasidharan K, Caddeo A, Jamialahmadi O, Noto FR, Tomasi M, Malvestiti F, Ciociola E, Tavaglione F, Mancina RM, Cherubini A, Bianco C, Mirarchi A, Männistö V, Pihlajamäki J, Kärjä V, Grimaudo S, Luukkonen PK, Qadri S, Yki-Järvinen H, Petta S, Manfrini S, Vespasiani-Gentilucci U, Bruni V, Valenti L, Romeo S. IL32 downregulation lowers triglycerides and type I collagen in di-lineage human primary liver organoids. Cell Rep Med 2024; 5:101352. [PMID: 38232700 PMCID: PMC10829727 DOI: 10.1016/j.xcrm.2023.101352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 09/26/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Steatotic liver disease (SLD) prevails as the most common chronic liver disease yet lack approved treatments due to incomplete understanding of pathogenesis. Recently, elevated hepatic and circulating interleukin 32 (IL-32) levels were found in individuals with severe SLD. However, the mechanistic link between IL-32 and intracellular triglyceride metabolism remains to be elucidated. We demonstrate in vitro that incubation with IL-32β protein leads to an increase in intracellular triglyceride synthesis, while downregulation of IL32 by small interfering RNA leads to lower triglyceride synthesis and secretion in organoids from human primary hepatocytes. This reduction requires the upregulation of Phospholipase A2 group IIA (PLA2G2A). Furthermore, downregulation of IL32 results in lower intracellular type I collagen levels in di-lineage human primary hepatic organoids. Finally, we identify a genetic variant of IL32 (rs76580947) associated with lower circulating IL-32 and protection against SLD measured by non-invasive tests. These data suggest that IL32 downregulation may be beneficial against SLD.
Collapse
Affiliation(s)
- Kavitha Sasidharan
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Andrea Caddeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Francesca Rita Noto
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Melissa Tomasi
- Precision Medicine Lab, Biological Resource Center Unit, Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Malvestiti
- Precision Medicine Lab, Biological Resource Center Unit, Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Ester Ciociola
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Federica Tavaglione
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Rosellina M Mancina
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alessandro Cherubini
- Precision Medicine Lab, Biological Resource Center Unit, Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristiana Bianco
- Precision Medicine Lab, Biological Resource Center Unit, Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Mirarchi
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Clinical Nutrition and Obesity Centre, Kuopio University Hospital, Kuopio, Finland
| | - Vesa Kärjä
- Department of Pathology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Stefania Grimaudo
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Panu K Luukkonen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Sami Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Silvia Manfrini
- Operative Unit of Endocrinology and Diabetes, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Research Unit of Endocrinology and Diabetes, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Umberto Vespasiani-Gentilucci
- Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Bruni
- Operative Unit of Bariatric Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Luca Valenti
- Precision Medicine Lab, Biological Resource Center Unit, Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
5
|
Keever KR, Cui K, Casteel JL, Singh S, Hoover DB, Williams DL, Pavlov VA, Yakubenko VP. Cholinergic signaling via the α7 nicotinic acetylcholine receptor regulates the migration of monocyte-derived macrophages during acute inflammation. J Neuroinflammation 2024; 21:3. [PMID: 38178134 PMCID: PMC10765732 DOI: 10.1186/s12974-023-03001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The involvement of the autonomic nervous system in the regulation of inflammation is an emerging concept with significant potential for clinical applications. Recent studies demonstrate that stimulating the vagus nerve activates the cholinergic anti-inflammatory pathway that inhibits pro-inflammatory cytokines and controls inflammation. The α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages plays a key role in mediating cholinergic anti-inflammatory effects through a downstream intracellular mechanism involving inhibition of NF-κB signaling, which results in suppression of pro-inflammatory cytokine production. However, the role of the α7nAChR in the regulation of other aspects of the immune response, including the recruitment of monocytes/macrophages to the site of inflammation remained poorly understood. RESULTS We observed an increased mortality in α7nAChR-deficient mice (compared with wild-type controls) in mice with endotoxemia, which was paralleled with a significant reduction in the number of monocyte-derived macrophages in the lungs. Corroborating these results, fluorescently labeled α7nAChR-deficient monocytes adoptively transferred to WT mice showed significantly diminished recruitment to the inflamed tissue. α7nAChR deficiency did not affect monocyte 2D transmigration across an endothelial monolayer, but it significantly decreased the migration of macrophages in a 3D fibrin matrix. In vitro analysis of major adhesive receptors (L-selectin, β1 and β2 integrins) and chemokine receptors (CCR2 and CCR5) revealed reduced expression of integrin αM and αX on α7nAChR-deficient macrophages. Decreased expression of αMβ2 was confirmed on fluorescently labeled, adoptively transferred α7nAChR-deficient macrophages in the lungs of endotoxemic mice, indicating a potential mechanism for α7nAChR-mediated migration. CONCLUSIONS We demonstrate a novel role for the α7nAChR in mediating macrophage recruitment to inflamed tissue, which indicates an important new aspect of the cholinergic regulation of immune responses and inflammation.
Collapse
Affiliation(s)
- Kasey R Keever
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson, TN, USA
| | - Kui Cui
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA
| | - Jared L Casteel
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson, TN, USA
| | - Sanjay Singh
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson, TN, USA
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson, TN, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson, TN, USA
| | - Valentin A Pavlov
- Center for Biomedical Science and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11550, USA
| | - Valentin P Yakubenko
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA.
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson, TN, USA.
| |
Collapse
|
6
|
Sahu SK, Ozantürk AN, Kulkarni DH, Ma L, Barve RA, Dannull L, Lu A, Starick M, McPhatter J, Garnica L, Sanfillipo-Burchman M, Kunen J, Wu X, Gelman AE, Brody SL, Atkinson JP, Kulkarni HS. Lung epithelial cell-derived C3 protects against pneumonia-induced lung injury. Sci Immunol 2023; 8:eabp9547. [PMID: 36735773 PMCID: PMC10023170 DOI: 10.1126/sciimmunol.abp9547] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
The complement component C3 is a fundamental plasma protein for host defense, produced largely by the liver. However, recent work has demonstrated the critical importance of tissue-specific C3 expression in cell survival. Here, we analyzed the effects of local versus peripheral sources of C3 expression in a model of acute bacterial pneumonia induced by Pseudomonas aeruginosa. Whereas mice with global C3 deficiency had severe pneumonia-induced lung injury, those deficient only in liver-derived C3 remained protected, comparable to wild-type mice. Human lung transcriptome analysis showed that secretory epithelial cells, such as club cells, express high levels of C3 mRNA. Mice with tamoxifen-induced C3 gene ablation from club cells in the lung had worse pulmonary injury compared with similarly treated controls, despite maintaining normal circulating C3 levels. Last, in both the mouse pneumonia model and cultured primary human airway epithelial cells, we showed that stress-induced death associated with C3 deficiency parallels that seen in Factor B deficiency rather than C3a receptor deficiency. Moreover, C3-mediated reduction in epithelial cell death requires alternative pathway component Factor B. Thus, our findings suggest that a pathway reliant on locally derived C3 and Factor B protects the lung mucosal barrier.
Collapse
Affiliation(s)
- Sanjaya K. Sahu
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ayşe N. Ozantürk
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Devesha H. Kulkarni
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Lina Ma
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine; St. Louis, USA
| | - Linus Dannull
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Angel Lu
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Marick Starick
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ja’Nia McPhatter
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Lorena Garnica
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Maxwell Sanfillipo-Burchman
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine; St. Louis, USA
| | - Jeremy Kunen
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Xiaobo Wu
- Division of Rheumatology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine; St. Louis, USA
| | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - John P. Atkinson
- Division of Rheumatology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Hrishikesh S. Kulkarni
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| |
Collapse
|
7
|
Shinton SA, Brill-Dashoff J, Hayakawa K. Pla2g2a promotes innate Th2-type immunity lymphocytes to increase B1a cells. Sci Rep 2022; 12:14899. [PMID: 36050343 PMCID: PMC9437038 DOI: 10.1038/s41598-022-18876-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Newborns require early generation of effective innate immunity as a primary physiological mechanism for survival. The neonatal Lin28+Let7– developmental pathway allows increased generation of Th2-type cells and B1a (B-1 B) cells compared to adult cells and long-term maintenance of these initially generated innate cells. For initial B1a cell growth from the neonatal to adult stage, Th2-type IL-5 production from ILC2s and NKT2 cells is important to increase B1a cells. The Th17 increase is dependent on extracellular bacteria, and increased bacteria leads to lower Th2-type generation. Secreted group IIA-phospholipase A2 (sPLA2-IIA) from the Pla2g2a gene can bind to gram-positive bacteria and degrade bacterial membranes, controlling microbiota in the intestine. BALB/c mice are Pla2g2a+, and express high numbers of Th2-type cells and B1a cells. C57BL/6 mice are Pla2g2a-deficient and distinct from the SLAM family, and exhibit fewer NKT2 cells and fewer B1a cells from the neonatal to adult stage. We found that loss of Pla2g2a in the BALB/c background decreased IL-5 from Th2-type ILC2s and NKT2s but increased bacterial-reactive NKT17 cells and MAIT cells, and decreased the number of early-generated B1a cells and MZ B cells and the CD4/CD8 T cell ratio. Low IL-5 by decreased Th2-type cells in Pla2g2a loss led to low early-generated B1a cell growth from the neonatal to adult stage. In anti-thymocyte/Thy-1 autoreactive μκ transgenic (ATAμκ Tg) Pla2g2a+ BALB/c background C.B17 mice generated NKT2 cells that continuously control CD1d+ B1 B cells through old aging and lost CD1d in B1 B cells generating strong B1 ATA B cell leukemia/lymphoma. Pla2g2a-deficient ATAμκTg C57BL/6 mice suppressed the initial B1a cell increase, with low/negative spontaneous leukemia/lymphoma generation. These data confirmed that the presence of Pla2g2a to control bacteria is important to allow the neonatal to adult stage. Pla2g2a promotes innate Th2-type immunity lymphocytes to increase early generated B1a cells.
Collapse
Affiliation(s)
- Susan A Shinton
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | | | - Kyoko Hayakawa
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
| |
Collapse
|
8
|
Associations of genetic variants of lysophosphatidylcholine metabolic enzymes with levels of serum lipids. Pediatr Res 2022; 91:1595-1599. [PMID: 33935285 DOI: 10.1038/s41390-021-01549-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Metabolic disturbance of lysophosphatidylcholine (LPC) is related with dyslipidemia. Therefore, eight single-nucleotide polymorphisms (SNPs) were selected from LPC metabolic enzymes to study their associations with obesity and serum levels of lipids. METHODS A total of 3305 children were recruited from four independent studies. Eight SNPs of LPC metabolic enzymes were selected and genotyped with the matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). The multivariable linear regression model was applied to detect the associations of eight SNPs with obesity-related phenotypes and levels of lipids in each study. Meta-analyses were used to combine the results of four studies. RESULTS Only SNP rs4420638 of APOC-1 gene was associated with serum lipids even after Bonferroni correction. The rs4420638 was positively associated with TC (β = 0.15, P = 8.59 × 10-9) and low-density-lipoprotein-cholesterol (LDL-C, β = 0.16, P = 9.98 × 10-14) individually. CONCLUSION The study firstly revealed the association between APOC-1/rs4420638 and levels of serum lipids in Chinese children, providing evidence for susceptible gene variants of dyslipidemia.
Collapse
|
9
|
Yang P, Cai C, Niu M, Liu X, Wang H, Liang H, Cheng B, Zhang Z, Chen F, Xie J, Qi Z, Yang G, Shi Q, Wang E, Lei C, Chen H, Ru B, Huang Y. Effect of copy number variation of PLA2G2A gene to growth traits in Chinese cattle. Gene 2022; 809:146014. [PMID: 34655722 DOI: 10.1016/j.gene.2021.146014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 11/19/2022]
Abstract
SIMPLE SUMMARY As a member of genetic polymorphism, copy number variation has been a commonly used method in the world for investigating effect of genetic polymorphism on gene expression. Effect of genetic polymorphism made on livestock development has been more and more important in beef cattle molecular breeding. The characteristics of Chinese cattle are excellent meat quality, tolerant to rough feeding, good environmental adaptability and so on. But there are some obvious weaknesses still exist in the process of cattle growth and development, such as weak hindquarters and growth slowly. To improve the growth performance and market competitiveness of Chinese cattle, a lot of studies have been made about finding and investigating effective molecular marker. In this study, Q-PCR and data association analysis were used for PLA2G2A gene copy number variation detection and related effect analysis in Chinese cattle. Results showed that PLA2G2A gene has a significant effect on two breeds of Chinese cattle on growth traits, which could be a basic materials and effective information of cattle molecular markers breeding. PLA2G2A, member of secreted phospholipases A2 (sPLA2) in superfamily of phospholipase A2, could catalyze the process of glycerophospholipids hydrolysis from position of sn-2 acyl with the release of free fatty acids and lysophospholipids. Researches about PLA2G2A gene are mostly focus on disease, including tumors and diabetes, the number of study occurred on animal breeding is weak. In this study, blood samples were collected from five breeds of Chinese cattle (Qingchuan cattle, Xianan cattle, Yunling cattle, Pinan cattle and Guyuan cattle) for PLA2G2A gene CNV type detection. SPSS 20.0 software and method of ANOVA were used to analyzed the association between types of CNV and growth traits. Results reveal that the distribution of different copy number types in different cattle breeds is different. In QC, XN and GY cattle, the frequencies of Deletion and Duplication are about 40%; in YL cattle, the frequency of Deletion type exceeds 60%; in PN cattle, the frequency of Duplication is closed to 80%. Association analysis indicate that CNV of PLA2G2A gene showed a positive effect in cattle growth: in QC cattle, Chest depth with Normal type copy number possess a increased trend (P < 0.05); individuals with Deletion type copy number have better performance on Height at sacrum, Heart girth and Body height in GY cattle (P < 0.05). The functional role and molecular mechanism of PLA2G2A gene in animal growth and development are still unclear, and it is necessary for processing a further research. This research aims to provide basic materials for molecular breeding of Chinese cattle.
Collapse
Affiliation(s)
- Peng Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Cuicui Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, Ningxia 756000, People's Republic of China
| | - Mengxiao Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Hongli Wang
- Jiaxian Animal Husbandry Bureau, Jiaxian, Henan 467100, People's Republic of China
| | - Huifeng Liang
- Jiaxian Animal Husbandry Bureau, Jiaxian, Henan 467100, People's Republic of China
| | - Baowei Cheng
- Jiaxian Animal Husbandry Bureau, Jiaxian, Henan 467100, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China
| | - Fuying Chen
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China
| | - Jianliang Xie
- Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, Ningxia 756000, People's Republic of China
| | - Zengfang Qi
- Jiaxian Animal Husbandry Bureau, Jiaxian, Henan 467100, People's Republic of China
| | - Guojie Yang
- Jiaxian Animal Husbandry Bureau, Jiaxian, Henan 467100, People's Republic of China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China.
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
10
|
Schadler P, Lohberger B, Thauerer B, Faschingbauer M, Kullich W, Stradner MH, Leithner A, Ritschl V, Omara M, Steinecker-Frohnwieser B. The Association of Blood Biomarkers and Body Mass Index in Knee Osteoarthritis: A Cross-Sectional Study. Cartilage 2022; 13:19476035211069251. [PMID: 35094602 PMCID: PMC9137302 DOI: 10.1177/19476035211069251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Despite massive efforts, there are no diagnostic blood biomarkers for knee osteoarthritis (KOA). This study investigated several candidate diagnostic biomarkers and the metabolic phenotype in end-stage KOA in the context of obesity. DESIGN In this cross-sectional study, adult patients undergoing knee arthroplasty were enrolled and KOA severity was assessed using the Lequesne index. Blood biomarkers with an important role in obesity, the metabolic syndrome, or KOA (oxidized form of low-density lipoprotein [oxLDL], advanced glycation end product [AGE], soluble AGE receptor [sRAGE], fatty acid binding protein 4 [FABP4], phospholipase A2 group IIA [PLA2G2A], fibroblast growth factor 23 [FGF-23], ghrelin, leptin, and resistin) were measured using enzyme-linked immunosorbent assay (ELISA; n = 70) or Luminex technique (subgroup of n = 35). H1-NMR spectroscopy was used for the quantification of metabolite levels (subgroup of n = 31). The hip-knee-ankle angle was assessed. Multivariable and multivariate regression analysis was used to examine the relationship of biomarkers with body mass index (BMI) and KOA severity in complete case and multiple imputation analysis. RESULTS While most of the investigated biomarkers were not associated with KOA severity, FABP4 and leptin were found to correlate with BMI and gender. Resistin was associated with Lequesne index in complete case analysis. Using a targeted metabolomics approach, BMI-dependent changes in the metabolome were hardly visible. CONCLUSIONS Our findings confirm studies on FABP4, leptin, and resistin with regard to obesity and the metabolic syndrome. There was no association of the investigated biomarkers with KOA severity, most likely due to the patient selection (end-stage KOA patients). Based on this absence of BMI-dependent changes in the metabolome, we might assume that BMI is not correlated with KOA severity in this specific patient group.
Collapse
Affiliation(s)
- Paul Schadler
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Saalfelden, Austria,Birgit Lohberger, Head of the Research Laboratory, Research Laboratory, Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5-7, Graz 8036, Austria.
| | - Bettina Thauerer
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Saalfelden, Austria
| | | | - Werner Kullich
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Saalfelden, Austria
| | - Martin Helmut Stradner
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Valentin Ritschl
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Maisa Omara
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria,Institute for Outcomes Research, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
11
|
Levy SB, Leonard WR. The evolutionary significance of human brown adipose tissue: Integrating the timescales of adaptation. Evol Anthropol 2021; 31:75-91. [PMID: 34910348 DOI: 10.1002/evan.21930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/14/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
While human adaptability is regarded as a classical topic in anthropology, recent work provides new insight into metabolic adaptations to cold climates and the role of phenotypic plasticity in human evolution. A growing body of literature demonstrates that adults retain brown adipose tissue (BAT) which may play a role in non-shivering thermogenesis. In this narrative review, we apply the timescales of adaptation framework in order to explore the adaptive significance of human BAT. Human variation in BAT is shaped by multiple adaptive modes (i.e., allostasis, acclimatization, developmental adaptation, epigenetic inheritance, and genetic adaptation), and together the adaptive modes act as an integrated system. We hypothesize that plasticity in BAT facilitated the successful expansion of human populations into circumpolar regions, allowing for selection of genetic adaptations to cold climates to take place. Future research rooted in human energetics and biocultural perspectives is essential for understanding BAT's adaptive and health significance.
Collapse
Affiliation(s)
- Stephanie B Levy
- Department of Anthropology, CUNY Hunter College, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - William R Leonard
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
12
|
Okamura Y, Miyanishi H, Kono T, Sakai M, Hikima JI. Identification and expression of phospholipase A2 genes related to transcriptional control in the interleukin-17A/F1 pathway in the intestines of Japanese medaka Oryzias latipes. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100028. [PMID: 36420487 PMCID: PMC9680080 DOI: 10.1016/j.fsirep.2021.100028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Phospholipase A2 (PLA2), a phospholipid hydrolase, has recently attracted attention owing to its broad functionality. Immunological evidence has revealed increased susceptibility to infectious diseases and immunodeficiency in knockout (KO) mice of several pla2 genes. However, no progress has been made in terms of immunological research on any pla2 gene in fish. In this study, we focused on the intestinal immune responses of fish PLA2s. The full-length open reading frames of pla2g1b, pla2g3, pla2g10, pla2g12b1, pla2g12b2, and pla2g15 cDNAs were cloned in Japanese medaka (Orizias latipes), and their gene expressions were quantified by real-time PCR (qPCR) and in situ hybridization (ISH). Characterization of pla2 genes revealed a functional domain and three-dimensional structure similar to the mammalian counterparts. In addition, expression of pla2g1b, pla2g12b1, and pla2g12b2 was extremely high in Japanese medaka intestines. ISH detected strong expression of pla2g1b mRNAs in the basal muscle layer, and pla2g12b1 and pla2g12b2 mRNAs were detected in the epithelial cells. In the medaka exposed to Edwardsiella piscicida, pla2g12b1, pla2g12b2 and pla2g15 were significantly induced in the anterior and posterior intestines, and pla2g1b was upregulated in the anterior intestine. Furthermore, pla2g1b, pla2g3, pla2g10, and pla2g12b2 were significantly downregulated in the IL-17A/F1 KO medaka compared to those in wild-type medaka. These results suggest that these PLA2s are involved in intestinal immunity in teleosts.
Collapse
Affiliation(s)
- Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jun-ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Corresponding author.
| |
Collapse
|
13
|
Castor K, Dawlaty J, Arakaki X, Gross N, Woldeamanuel YW, Harrington MG, Cowan RP, Fonteh AN. Plasma Lipolysis and Changes in Plasma and Cerebrospinal Fluid Signaling Lipids Reveal Abnormal Lipid Metabolism in Chronic Migraine. Front Mol Neurosci 2021; 14:691733. [PMID: 34531722 PMCID: PMC8438335 DOI: 10.3389/fnmol.2021.691733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lipids are a primary storage form of energy and the source of inflammatory and pain signaling molecules, yet knowledge of their importance in chronic migraine (CM) pathology is incomplete. We aim to determine if plasma and cerebrospinal fluid (CSF) lipid metabolism are associated with CM pathology. Methods We obtained plasma and CSF from healthy controls (CT, n = 10) or CM subjects (n = 15) diagnosed using the International Headache Society criteria. We measured unesterified fatty acid (UFA) and esterified fatty acids (EFAs) using gas chromatography-mass spectrometry. Glycerophospholipids (GP) and sphingolipid (SP) levels were determined using LC-MS/MS, and phospholipase A2 (PLA2) activity was determined using fluorescent substrates. Results Unesterified fatty acid levels were significantly higher in CM plasma but not in CSF. Unesterified levels of five saturated fatty acids (SAFAs), eight monounsaturated fatty acids (MUFAs), five ω-3 polyunsaturated fatty acids (PUFAs), and five ω-6 PUFAs are higher in CM plasma. Esterified levels of three SAFAs, eight MUFAs, five ω-3 PUFAs, and three ω-6 PUFAs, are higher in CM plasma. The ratios C20:4n-6/homo-γ-C20:3n-6 representative of delta-5-desaturases (D5D) and the elongase ratio are lower in esterified and unesterified CM plasma, respectively. In the CSF, the esterified D5D index is lower in CM. While PLA2 activity was similar, the plasma UFA to EFA ratio is higher in CM. Of all plasma GP/SPs detected, only ceramide levels are lower (p = 0.0003) in CM (0.26 ± 0.07%) compared to CT (0.48 ± 0.06%). The GP/SP proportion of platelet-activating factor (PAF) is significantly lower in CM CSF. Conclusions Plasma and CSF lipid changes are consistent with abnormal lipid metabolism in CM. Since plasma UFAs correspond to diet or adipose tissue levels, higher plasma fatty acids and UFA/EFA ratios suggest enhanced adipose lipolysis in CM. Differences in plasma and CSF desaturases and elongases suggest altered lipid metabolism in CM. A lower plasma ceramide level suggests reduced de novo synthesis or reduced sphingomyelin hydrolysis. Changes in CSF PAF suggest differences in brain lipid signaling pathways in CM. Together, this pilot study shows lipid metabolic abnormality in CM corresponding to altered energy homeostasis. We propose that controlling plasma lipolysis, desaturases, elongases, and lipid signaling pathways may relieve CM symptoms.
Collapse
Affiliation(s)
- Katherine Castor
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Jessica Dawlaty
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Xianghong Arakaki
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Noah Gross
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | | | - Michael G Harrington
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Robert P Cowan
- Pain Center, Department of Neurology, Stanford University, Stanford, CA, United States
| | - Alfred N Fonteh
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Kuefner MS, Stephenson E, Savikj M, Smallwood HS, Dong Q, Payré C, Lambeau G, Park EA. Group IIA secreted phospholipase A2 (PLA2G2A) augments adipose tissue thermogenesis. FASEB J 2021; 35:e21881. [PMID: 34478587 DOI: 10.1096/fj.202002481rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022]
Abstract
Group IIA secreted phospholipase A2 (PLA2G2A) hydrolyzes glycerophospholipids at the sn-2 position resulting in the release of fatty acids and lysophospholipids. C57BL/6 mice do not express Pla2g2a due to a frameshift mutation (wild-type [WT] mice). We previously reported that transgenic expression of human PLA2G2A in C57BL/6 mice (IIA+ mice) protects against weight gain and insulin resistance, in part by increasing total energy expenditure. Additionally, we found that brown and white adipocytes from IIA+ mice have increased expression of mitochondrial uncoupling markers, such as uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor-gamma coactivator, and PR domain containing 16, suggesting that the energy expenditure phenotype might be due to an increased thermogenic capacity in adipose tissue. Here, we further characterize the impact of PLA2G2A on thermogenic mechanisms in adipose tissue. Metabolic analysis of WT and IIA+ mice revealed that even when housed within their thermoneutral zone, IIA+ mice have elevated energy expenditure compared to WT littermates. Increased energy expenditure in IIA+ mice is associated with increased citrate synthase activity in brown adipose tissue (BAT) and increased mitochondrial respiration in both brown and white adipocytes. We also observed that direct addition of recombinant PLA2G2A enzyme to in vitro cultured adipocytes results in the marked induction of UCP1 protein expression. Finally, we report that PLA2G2A induces the expression of numerous transcripts related to energy substrate transport and metabolism in BAT, suggestive of an increase in substrate flux to fuel BAT activity. These data demonstrate that PLA2G2A enhances adipose tissue thermogenesis, in part, through elevated substrate delivery and increased mitochondrial content in BAT.
Collapse
Affiliation(s)
- Michael S Kuefner
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Erin Stephenson
- Department of Anatomy, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, USA
| | - Mladen Savikj
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Heather S Smallwood
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Qingming Dong
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Christine Payré
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Gérard Lambeau
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Edwards A Park
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| |
Collapse
|
15
|
Johnson AA, Shokhirev MN, Lehallier B. The protein inputs of an ultra-predictive aging clock represent viable anti-aging drug targets. Ageing Res Rev 2021; 70:101404. [PMID: 34242807 DOI: 10.1016/j.arr.2021.101404] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022]
Abstract
Machine learning models capable of predicting age given a set of inputs are referred to as aging clocks. We recently developed an aging clock that utilizes 491 plasma protein inputs, has an exceptional accuracy, and is capable of measuring biological age. Here, we demonstrate that this clock is extremely predictive (r = 0.95) when used to measure age in a novel plasma proteomic dataset derived from 370 human subjects aged 18-69 years. Over-representation analyses of the proteins that make up this clock in the Gene Ontology and Reactome databases predominantly implicated innate and adaptive immune system processes. Immunological drugs and various age-related diseases were enriched in the DrugBank and GLAD4U databases. By performing an extensive literature review, we find that at least 269 (54.8 %) of these inputs regulate lifespan and/or induce changes relevant to age-related disease when manipulated in an animal model. We also show that, in a large plasma proteomic dataset, the majority (57.2 %) of measurable clock proteins significantly change their expression level with human age. Different subsets of proteins were overlapped with distinct epigenetic, transcriptomic, and proteomic aging clocks. These findings indicate that the inputs of this age predictor likely represent a rich source of anti-aging drug targets.
Collapse
Affiliation(s)
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California, United States
| | | |
Collapse
|
16
|
Schranner D, Schönfelder M, Römisch‐Margl W, Scherr J, Schlegel J, Zelger O, Riermeier A, Kaps S, Prehn C, Adamski J, Söhnlein Q, Stöcker F, Kreuzpointner F, Halle M, Kastenmüller G, Wackerhage H. Physiological extremes of the human blood metabolome: A metabolomics analysis of highly glycolytic, oxidative, and anabolic athletes. Physiol Rep 2021; 9:e14885. [PMID: 34152092 PMCID: PMC8215680 DOI: 10.14814/phy2.14885] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
Human metabolism is highly variable. At one end of the spectrum, defects of enzymes, transporters, and metabolic regulation result in metabolic diseases such as diabetes mellitus or inborn errors of metabolism. At the other end of the spectrum, favorable genetics and years of training combine to result in physiologically extreme forms of metabolism in athletes. Here, we investigated how the highly glycolytic metabolism of sprinters, highly oxidative metabolism of endurance athletes, and highly anabolic metabolism of natural bodybuilders affect their serum metabolome at rest and after a bout of exercise to exhaustion. We used targeted mass spectrometry-based metabolomics to measure the serum concentrations of 151 metabolites and 43 metabolite ratios or sums in 15 competitive male athletes (6 endurance athletes, 5 sprinters, and 4 natural bodybuilders) and 4 untrained control subjects at fasted rest and 5 minutes after a maximum graded bicycle test to exhaustion. The analysis of all 194 metabolite concentrations, ratios and sums revealed that natural bodybuilders and endurance athletes had overall different metabolite profiles, whereas sprinters and untrained controls were more similar. Specifically, natural bodybuilders had 1.5 to 1.8-fold higher concentrations of specific phosphatidylcholines and lower levels of branched chain amino acids than all other subjects. Endurance athletes had 1.4-fold higher levels of a metabolite ratio showing the activity of carnitine-palmitoyl-transferase I and 1.4-fold lower levels of various alkyl-acyl-phosphatidylcholines. When we compared the effect of exercise between groups, endurance athletes showed 1.3-fold higher increases of hexose and of tetradecenoylcarnitine (C14:1). In summary, physiologically extreme metabolic capacities of endurance athletes and natural bodybuilders are associated with unique blood metabolite concentrations, ratios, and sums at rest and after exercise. Our results suggest that long-term specific training, along with genetics and other athlete-specific factors systematically change metabolite concentrations at rest and after exercise.
Collapse
Affiliation(s)
- Daniela Schranner
- Exercise BiologyDepartment of Sport and Health SciencesTechnische Universität MünchenMunichGermany
| | - Martin Schönfelder
- Exercise BiologyDepartment of Sport and Health SciencesTechnische Universität MünchenMunichGermany
| | | | - Johannes Scherr
- University Center for Prevention and Sports MedicineUniversity Hospital BalgristUniversität ZürichZurichSwitzerland
| | - Jürgen Schlegel
- Department of NeuropathologyInstitute of PathologyTechnische Universität MünchenMunichGermany
| | - Otto Zelger
- Department of Prevention and Sports MedicineTechnische Universität MünchenMunichGermany
| | - Annett Riermeier
- Exercise BiologyDepartment of Sport and Health SciencesTechnische Universität MünchenMunichGermany
| | - Stephanie Kaps
- Exercise BiologyDepartment of Sport and Health SciencesTechnische Universität MünchenMunichGermany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and MetabolismHelmholtz Zentrum MünchenNeuherbergGermany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and MetabolismHelmholtz Zentrum MünchenNeuherbergGermany
- German Center for Diabetes ResearchNeuherbergGermany
- Chair of Experimental GeneticsTechnische Universität MünchenFreising‐WeihenstephanGermany
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Quirin Söhnlein
- Exercise BiologyDepartment of Sport and Health SciencesTechnische Universität MünchenMunichGermany
| | - Fabian Stöcker
- Teaching and Educational LabDepartment of Sport and Health SciencesTechnische Universität MünchenMunichGermany
| | - Florian Kreuzpointner
- Prevention CenterDepartment of Sport and Health SciencesTechnische Universität MünchenMunichGermany
| | - Martin Halle
- Department of Prevention and Sports MedicineTechnische Universität MünchenMunichGermany
| | - Gabi Kastenmüller
- Institute of Computational BiologyHelmholtz Zentrum MünchenNeuherbergGermany
- German Center for Diabetes ResearchNeuherbergGermany
| | - Henning Wackerhage
- Exercise BiologyDepartment of Sport and Health SciencesTechnische Universität MünchenMunichGermany
| |
Collapse
|
17
|
Short Linear Motifs Characterizing Snake Venom and Mammalian Phospholipases A2. Toxins (Basel) 2021; 13:toxins13040290. [PMID: 33923919 PMCID: PMC8073766 DOI: 10.3390/toxins13040290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Snake venom phospholipases A2 (PLA2s) have sequences and structures very similar to those of mammalian group I and II secretory PLA2s, but they possess many toxic properties, ranging from the inhibition of coagulation to the blockage of nerve transmission, and the induction of muscle necrosis. The biological properties of these proteins are not only due to their enzymatic activity, but also to protein–protein interactions which are still unidentified. Here, we compare sequence alignments of snake venom and mammalian PLA2s, grouped according to their structure and biological activity, looking for differences that can justify their different behavior. This bioinformatics analysis has evidenced three distinct regions, two central and one C-terminal, having amino acid compositions that distinguish the different categories of PLA2s. In these regions, we identified short linear motifs (SLiMs), peptide modules involved in protein–protein interactions, conserved in mammalian and not in snake venom PLA2s, or vice versa. The different content in the SLiMs of snake venom with respect to mammalian PLA2s may result in the formation of protein membrane complexes having a toxic activity, or in the formation of complexes whose activity cannot be blocked due to the lack of switches in the toxic PLA2s, as the motif recognized by the prolyl isomerase Pin1.
Collapse
|
18
|
Kábelová A, Malínská H, Marková I, Oliyarnyk O, Chylíková B, Šeda O. Ellagic Acid Affects Metabolic and Transcriptomic Profiles and Attenuates Features of Metabolic Syndrome in Adult Male Rats. Nutrients 2021; 13:nu13030804. [PMID: 33671116 PMCID: PMC8001306 DOI: 10.3390/nu13030804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Ellagic acid, a natural substance found in various fruits and nuts, was previously shown to exhibit beneficial effects towards metabolic syndrome. In this study, using a genetic rat model of metabolic syndrome, we aimed to further specify metabolic and transcriptomic responses to ellagic acid treatment. Adult male rats of the SHR-Zbtb16Lx/k.o. strain were fed a high-fat diet accompanied by daily intragastric gavage of ellagic acid (50 mg/kg body weight; high-fat diet–ellagic acid (HFD-EA) rats) or vehicle only (high-fat diet–control (HFD-CTL) rats). Morphometric and metabolic parameters, along with transcriptomic profile of liver and brown and epididymal adipose tissues, were assessed. HFD-EA rats showed higher relative weight of brown adipose tissue (BAT) and decreased weight of epididymal adipose tissue, although no change in total body weight was observed. Glucose area under the curve, serum insulin, and cholesterol levels, as well as the level of oxidative stress, were significantly lower in HFD-EA rats. The most differentially expressed transcripts reflecting the shift induced by ellagic acid were detected in BAT, showing downregulation of BAT activation markers Dio2 and Nr4a1 and upregulation of insulin-sensitizing gene Pla2g2a. Ellagic acid may provide a useful nutritional supplement to ameliorate features of metabolic syndrome, possibly by suppressing oxidative stress and its effects on brown adipose tissue.
Collapse
Affiliation(s)
- Adéla Kábelová
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and The General University Hospital, 121 08 Prague, Czech Republic; (A.K.); (B.C.)
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.M.); (I.M.); (O.O.)
| | - Irena Marková
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.M.); (I.M.); (O.O.)
| | - Olena Oliyarnyk
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.M.); (I.M.); (O.O.)
| | - Blanka Chylíková
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and The General University Hospital, 121 08 Prague, Czech Republic; (A.K.); (B.C.)
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and The General University Hospital, 121 08 Prague, Czech Republic; (A.K.); (B.C.)
- Correspondence: ; Tel.: +420-224-968-180
| |
Collapse
|
19
|
Barisón MJ, Pereira IT, Waloski Robert A, Dallagiovanna B. Reorganization of Metabolism during Cardiomyogenesis Implies Time-Specific Signaling Pathway Regulation. Int J Mol Sci 2021; 22:1330. [PMID: 33572750 PMCID: PMC7869011 DOI: 10.3390/ijms22031330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the cell differentiation process involves the characterization of signaling and regulatory pathways. The coordinated action involved in multilevel regulation determines the commitment of stem cells and their differentiation into a specific cell lineage. Cellular metabolism plays a relevant role in modulating the expression of genes, which act as sensors of the extra-and intracellular environment. In this work, we analyzed mRNAs associated with polysomes by focusing on the expression profile of metabolism-related genes during the cardiac differentiation of human embryonic stem cells (hESCs). We compared different time points during cardiac differentiation (pluripotency, embryoid body aggregation, cardiac mesoderm, cardiac progenitor and cardiomyocyte) and showed the immature cell profile of energy metabolism. Highly regulated canonical pathways are thoroughly discussed, such as those involved in metabolic signaling and lipid homeostasis. We reveal the critical relevance of retinoic X receptor (RXR) heterodimers in upstream retinoic acid metabolism and their relationship with thyroid hormone signaling. Additionally, we highlight the importance of lipid homeostasis and extracellular matrix component biosynthesis during cardiomyogenesis, providing new insights into how hESCs reorganize their metabolism during in vitro cardiac differentiation.
Collapse
Affiliation(s)
| | | | | | - Bruno Dallagiovanna
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR 81350-010, Brazil; (M.J.B.); (I.T.P.); (A.W.R.)
| |
Collapse
|
20
|
Prunonosa Cervera I, Gabriel BM, Aldiss P, Morton NM. The phospholipase A2 family's role in metabolic diseases: Focus on skeletal muscle. Physiol Rep 2021; 9:e14662. [PMID: 33433056 PMCID: PMC7802192 DOI: 10.14814/phy2.14662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
The prevalence of obesity and type 2 diabetes has increased substantially in recent years creating a global health burden. In obesity, skeletal muscle, the main tissue responsible for insulin-mediated glucose uptake, exhibits dysregulation of insulin signaling, glucose uptake, lipid metabolism, and mitochondrial function, thus, promoting type 2 diabetes. The phospholipase A2 (PLA2) enzyme family mediates lipid signaling and membrane remodeling and may play an important role in metabolic disorders such as obesity, diabetes, hyperlipidemia, and fatty liver disease. The PLA2 family consists of 16 members clustered in four groups. PLA2s hydrolyze the sn-2 ester bond of phospholipids generating free fatty acids and lysophospholipids. Differential tissue and subcellular PLA2 expression patterns and the abundance of distinct fatty acyl groups in the target phospholipid determine the impact of individual family members on metabolic functions and, potentially, diseases. Here, we update the current knowledge of the role of the PLA2 family in skeletal muscle, with a view to their potential for therapeutic targeting in metabolic diseases.
Collapse
Affiliation(s)
- Iris Prunonosa Cervera
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Brendan M. Gabriel
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
- Department of Physiology and PharmacologyIntegrative PhysiologyKarolinska InstituteStockholmSweden
- Aberdeen Cardiovascular & Diabetes CentreThe Rowett InstituteUniversity of AberdeenAberdeenUK
| | - Peter Aldiss
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Nicholas M. Morton
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
21
|
Kuefner MS. Secretory Phospholipase A2s in Insulin Resistance and Metabolism. Front Endocrinol (Lausanne) 2021; 12:732726. [PMID: 34512555 PMCID: PMC8429832 DOI: 10.3389/fendo.2021.732726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
The phospholipases A2 (PLA2) superfamily encompasses enzymes commonly found in mammalian tissues and snake venom. Many of these enzymes have unique tissue distribution, function, and substrate specificity suggesting distinct biological roles. In the past, much of the research on secretory PLA2s has analyzed their roles in inflammation, anti-bacterial actions, and atherosclerosis. In recent studies utilizing a variety of mouse models, pancreatic islets, and clinical trials, a role for many of these enzymes in the control of metabolism and insulin action has been revealed. In this review, this research, and the unique contributions of the PLA2 enzymes in insulin resistance and metabolism.
Collapse
|
22
|
Ferrero R, Rainer P, Deplancke B. Toward a Consensus View of Mammalian Adipocyte Stem and Progenitor Cell Heterogeneity. Trends Cell Biol 2020; 30:937-950. [PMID: 33148396 DOI: 10.1016/j.tcb.2020.09.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022]
Abstract
White adipose tissue (WAT) is a cellularly heterogeneous endocrine organ that not only serves as an energy reservoir, but also actively participates in metabolic homeostasis. Among the main constituents of adipose tissue are adipocytes, which arise from adipose stem and progenitor cells (ASPCs). While it is well known that these ASPCs reside in the stromal vascular fraction (SVF) of adipose tissue, their molecular heterogeneity and functional diversity is still poorly understood. Driven by the resolving power of single-cell transcriptomics, several recent studies provided new insights into the cellular complexity of ASPCs among different mammalian fat depots. In this review, we present current knowledge on ASPCs, their population structure, hierarchy, fat depot-specific nature, function, and regulatory mechanisms, and discuss not only the similarities, but also the differences between mouse and human ASPC biology.
Collapse
Affiliation(s)
- Radiana Ferrero
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pernille Rainer
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
23
|
Rescue of Hepatic Phospholipid Remodeling Defectin iPLA2β-Null Mice Attenuates Obese but Not Non-Obese Fatty Liver. Biomolecules 2020; 10:biom10091332. [PMID: 32957701 PMCID: PMC7565968 DOI: 10.3390/biom10091332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
Polymorphisms of group VIA calcium-independent phospholipase A2 (iPLA2β or PLA2G6) are positively associated with adiposity, blood lipids, and Type-2 diabetes. The ubiquitously expressed iPLA2β catalyzes the hydrolysis of phospholipids (PLs) to generate a fatty acid and a lysoPL. We studied the role of iPLA2β on PL metabolism in non-alcoholic fatty liver disease (NAFLD). By using global deletion iPLA2β-null mice, we investigated three NAFLD mouse models; genetic Ob/Ob and long-term high-fat-diet (HFD) feeding (representing obese NAFLD) as well as feeding with methionine- and choline-deficient (MCD) diet (representing non-obese NAFLD). A decrease of hepatic PLs containing monounsaturated- and polyunsaturated fatty acids and a decrease of the ratio between PLs and cholesterol esters were observed in all three NAFLD models. iPLA2β deficiency rescued these decreases in obese, but not in non-obese, NAFLD models. iPLA2β deficiency elicited protection against fatty liver and obesity in the order of Ob/Ob › HFD » MCD. Liver inflammation was not protected in HFD NAFLD, and that liver fibrosis was even exaggerated in non-obese MCD model. Thus, the rescue of hepatic PL remodeling defect observed in iPLA2β-null mice was critical for the protection against NAFLD and obesity. However, iPLA2β deletion in specific cell types such as macrophages may render liver inflammation and fibrosis, independent of steatosis protection.
Collapse
|
24
|
Vijay J, Gauthier MF, Biswell RL, Louiselle DA, Johnston JJ, Cheung WA, Belden B, Pramatarova A, Biertho L, Gibson M, Simon MM, Djambazian H, Staffa A, Bourque G, Laitinen A, Nystedt J, Vohl MC, Fraser JD, Pastinen T, Tchernof A, Grundberg E. Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat Metab 2020; 2:97-109. [PMID: 32066997 PMCID: PMC7025882 DOI: 10.1038/s42255-019-0152-6] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The complex relationship between metabolic disease risk and body fat distribution in humans involves cellular characteristics which are specific to body fat compartments. Here we show depot-specific differences in the stromal vascual fraction of visceral and subcutaneous adipose tissue by performing single-cell RNA sequencing of tissue specimen from obese individuals. We characterize multiple immune cells, endothelial cells, fibroblasts, adipose and hematopoietic stem cell progenitors. Subpopulations of adipose-resident immune cells are metabolically active and associated with metabolic disease status and those include a population of potential dysfunctional CD8+ T cells expressing metallothioneins. We identify multiple types of adipocyte progenitors that are common across depots, including a subtype enriched in individuals with type 2 diabetes. Depot-specific analysis reveals a class of adipocyte progenitors unique to visceral adipose tissue, which shares common features with beige preadipocytes. Our human single-cell transcriptome atlas across fat depots provides a resource to dissect functional genomics of metabolic disease.
Collapse
Affiliation(s)
- Jinchu Vijay
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
- McGill University and Genome Québec Innovation Centre, Montreal, Québec, Canada
| | | | - Rebecca L Biswell
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Daniel A Louiselle
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Jeffrey J Johnston
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Warren A Cheung
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Bradley Belden
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Albena Pramatarova
- McGill University and Genome Québec Innovation Centre, Montreal, Québec, Canada
| | - Laurent Biertho
- Québec Heart and Lung Institute, Université Laval, Québec, Québec, Canada
| | - Margaret Gibson
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | | | - Haig Djambazian
- McGill University and Genome Québec Innovation Centre, Montreal, Québec, Canada
| | - Alfredo Staffa
- McGill University and Genome Québec Innovation Centre, Montreal, Québec, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
- McGill University and Genome Québec Innovation Centre, Montreal, Québec, Canada
| | | | | | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec, Canada
| | - Jason D Fraser
- Department of Surgery, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Tomi Pastinen
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - André Tchernof
- Québec Heart and Lung Institute, Université Laval, Québec, Québec, Canada.
| | - Elin Grundberg
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, USA.
| |
Collapse
|
25
|
Kelahmetoglu Y, Jannig PR, Cervenka I, Koch LG, Britton SL, Zhou J, Wang H, Robinson MM, Nair KS, Ruas JL. Comparative Analysis of Skeletal Muscle Transcriptional Signatures Associated With Aerobic Exercise Capacity or Response to Training in Humans and Rats. Front Endocrinol (Lausanne) 2020; 11:591476. [PMID: 33193103 PMCID: PMC7649134 DOI: 10.3389/fendo.2020.591476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
Increasing exercise capacity promotes healthy aging and is strongly associated with lower mortality rates. In this study, we analyzed skeletal muscle transcriptomics coupled to exercise performance in humans and rats to dissect the inherent and response components of aerobic exercise capacity. Using rat models selected for intrinsic and acquired aerobic capacity, we determined that the high aerobic capacity muscle transcriptome is associated with pathways for tissue oxygenation and vascularization. Conversely, the low capacity muscle transcriptome indicated immune response and metabolic dysfunction. Low response to training was associated with an inflammatory signature and revealed a potential link to circadian rhythm. Next, we applied bioinformatics tools to predict potential secreted factors (myokines). The predicted secretome profile for exercise capacity highlighted circulatory factors involved in lipid metabolism and the exercise response secretome was associated with extracellular matrix remodelling. Lastly, we utilized human muscle mitochondrial respiration and transcriptomics data to explore molecular mediators of exercise capacity and response across species. Human transcriptome comparison highlighted epigenetic mechanisms linked to exercise capacity and the damage repair for response. Overall, our findings from this cross-species transcriptome analysis of exercise capacity and response establish a foundation for future studies on the mechanisms that link exercise and health.
Collapse
Affiliation(s)
- Yildiz Kelahmetoglu
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska Institute, Stockholm, Sweden
| | - Paulo R. Jannig
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska Institute, Stockholm, Sweden
| | - Igor Cervenka
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska Institute, Stockholm, Sweden
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Jiajia Zhou
- Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew M. Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
- Department of Integrative Physiology, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN, United States
| | - K Sreekumaran Nair
- Department of Integrative Physiology, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN, United States
| | - Jorge L. Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska Institute, Stockholm, Sweden
- *Correspondence: Jorge L. Ruas,
| |
Collapse
|
26
|
Cook NL, Pjanic M, Emmerich AG, Rao AS, Hetty S, Knowles JW, Quertermous T, Castillejo-López C, Ingelsson E. CRISPR-Cas9-mediated knockout of SPRY2 in human hepatocytes leads to increased glucose uptake and lipid droplet accumulation. BMC Endocr Disord 2019; 19:115. [PMID: 31664995 PMCID: PMC6820957 DOI: 10.1186/s12902-019-0442-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The prevalence of obesity and its comorbidities, including type 2 diabetes mellitus (T2DM), is dramatically increasing throughout the world; however, the underlying aetiology is incompletely understood. Genome-wide association studies (GWAS) have identified hundreds of genec susceptibility loci for obesity and T2DM, although the causal genes and mechanisms are largely unknown. SPRY2 is a candidate gene identified in GWAS of body fat percentage and T2DM, and has recently been linked to insulin production in pancreatic β-cells. In the present study, we aimed to further understand SPRY2 via functional characterisation in HepG2 cells, an in vitro model of human hepatocytes widely used to investigate T2DM and insulin resistance. METHODS CRISPR-Cas9 genome editing was used to target SPRY2 in HepG2 cells, and the functional consequences of SPRY2 knockout (KO) and overexpression subsequently assessed using glucose uptake and lipid droplet assays, measurement of protein kinase phosphorylation and RNA sequencing. RESULTS The major functional consequence of SPRY2 KO was a significant increase in glucose uptake, along with elevated lipid droplet accumulation. These changes were attenuated, but not reversed, in cells overexpressing SPRY2. Phosphorylation of protein kinases across key signalling pathways (including Akt and mitogen activated protein kinases) was not altered after SPRY2 KO. Transcriptome profiling in SPRY2 KO and mock (control) cells revealed a number of differentially expressed genes related to cholesterol biosynthesis, cell cycle regulation and cellular signalling pathways. Phospholipase A2 group IIA (PLA2G2A) mRNA level was subsequently validated as significantly upregulated following SPRY2 KO, highlighting this as a potential mediator downstream of SPRY2. CONCLUSION These findings suggest a role for SPRY2 in glucose and lipid metabolism in hepatocytes and contribute to clarifying the function of this gene in the context of metabolic diseases.
Collapse
Affiliation(s)
- Naomi L Cook
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Milos Pjanic
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew G Emmerich
- Molecular Systems Biology, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Abhiram S Rao
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Susanne Hetty
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Casimiro Castillejo-López
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Ingelsson
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| |
Collapse
|
27
|
Yu H, Dilbaz S, Coßmann J, Hoang AC, Diedrich V, Herwig A, Harauma A, Hoshi Y, Moriguchi T, Landgraf K, Körner A, Lucas C, Brodesser S, Balogh L, Thuróczy J, Karemore G, Kuefner MS, Park EA, Rapp C, Travers JB, Röszer T. Breast milk alkylglycerols sustain beige adipocytes through adipose tissue macrophages. J Clin Invest 2019; 129:2485-2499. [PMID: 31081799 PMCID: PMC6546455 DOI: 10.1172/jci125646] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
Abstract
Prevalence of obesity among infants and children below 5 years of age is rising dramatically, and early childhood obesity is a forerunner of obesity and obesity-associated diseases in adulthood. Childhood obesity is hence one of the most serious public health challenges today. Here, we have identified a mother-to-child lipid signaling that protects from obesity. We have found that breast milk-specific lipid species, so-called alkylglycerol-type (AKG-type) ether lipids, which are absent from infant formula and adult-type diets, maintain beige adipose tissue (BeAT) in the infant and impede the transformation of BeAT into lipid-storing white adipose tissue (WAT). Breast milk AKGs are metabolized by adipose tissue macrophages (ATMs) to platelet-activating factor (PAF), which ultimately activates IL-6/STAT3 signaling in adipocytes and triggers BeAT development in the infant. Accordingly, lack of AKG intake in infancy leads to a premature loss of BeAT and increases fat accumulation. AKG signaling is specific for infants and is inactivated in adulthood. However, in obese adipose tissue, ATMs regain their ability to metabolize AKGs, which reduces obesity. In summary, AKGs are specific lipid signals of breast milk that are essential for healthy adipose tissue development.
Collapse
Affiliation(s)
| | - Sedat Dilbaz
- Institute of Neurobiology, and
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | | | | | | | | | - Akiko Harauma
- Department of Food and Life Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Yukino Hoshi
- Department of Food and Life Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Toru Moriguchi
- Department of Food and Life Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kathrin Landgraf
- Center for Pediatric Research, University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research, University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Christina Lucas
- Lipidomics Facility, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- Lipidomics Facility, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Lajos Balogh
- Department of Nuclear Medicine, National Public Health Center (NPHC), Budapest, Hungary
| | - Julianna Thuróczy
- Department of Nuclear Medicine, National Public Health Center (NPHC), Budapest, Hungary
| | - Gopal Karemore
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Michael Scott Kuefner
- Veterans Affairs Medical Center and the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Edwards A. Park
- Veterans Affairs Medical Center and the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Christine Rapp
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio, USA
| | | | | |
Collapse
|
28
|
Hallmark B, Karafet TM, Hsieh P, Osipova LP, Watkins JC, Hammer MF. Genomic Evidence of Local Adaptation to Climate and Diet in Indigenous Siberians. Mol Biol Evol 2018; 36:315-327. [DOI: 10.1093/molbev/msy211] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Brian Hallmark
- Interdisciplinary Program in Statistics, University of Arizona, Tucson, AZ
| | | | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Ludmila P Osipova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Joseph C Watkins
- Interdisciplinary Program in Statistics, University of Arizona, Tucson, AZ
| | - Michael F Hammer
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
29
|
Dore E, Boilard E. Roles of secreted phospholipase A 2 group IIA in inflammation and host defense. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:789-802. [PMID: 30905346 DOI: 10.1016/j.bbalip.2018.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
Among all members of the secreted phospholipase A2 (sPLA2) family, group IIA sPLA2 (sPLA2-IIA) is possibly the most studied enzyme. Since its discovery, many names have been associated with sPLA2-IIA, such as "non-pancreatic", "synovial", "platelet-type", "inflammatory", and "bactericidal" sPLA2. Whereas the different designations indicate comprehensive functions or sources proposed for this enzyme, the identification of the precise roles of sPLA2-IIA has remained a challenge. This can be attributed to: the expression of the enzyme by various cells of different lineages, its limited activity towards the membranes of immune cells despite its expression following common inflammatory stimuli, its ability to interact with certain proteins independently of its catalytic activity, and its absence from multiple commonly used mouse models. Nevertheless, elevated levels of the enzyme during inflammatory processes and associated consistent release of arachidonic acid from the membrane of extracellular vesicles suggest that sPLA2-IIA may contribute to inflammation by using endogenous substrates in the extracellular milieu. Moreover, the remarkable potency of sPLA2-IIA towards bacterial membranes and its induced expression during the course of infections point to a role for this enzyme in the defense of the host against invading pathogens. In this review, we present current knowledge related to mammalian sPLA2-IIA and its roles in sterile inflammation and host defense.
Collapse
Affiliation(s)
- Etienne Dore
- Centre de Recherche du CHU de Québec, Université Laval, Department of Infectious Diseases and Immunity, Québec City, QC, Canada
| | - Eric Boilard
- Centre de Recherche du CHU de Québec, Université Laval, Department of Infectious Diseases and Immunity, Québec City, QC, Canada; Canadian National Transplantation Research Program, Edmonton, AB, Canada.
| |
Collapse
|
30
|
Kuefner MS, Deng X, Stephenson EJ, Pham K, Park EA. Secretory phospholipase A
2
group IIA enhances the metabolic rate and increases glucose utilization in response to thyroid hormone. FASEB J 2018; 33:738-749. [DOI: 10.1096/fj.201800711r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Michael S. Kuefner
- Department of PharmacologyCollege of MedicineUniversity of Tennessee Health Science Center Memphis Tennessee USA
- Department of Veterans Affairs Medical Center Memphis Tennessee USA
| | - Xiong Deng
- Department of PharmacologyCollege of MedicineUniversity of Tennessee Health Science Center Memphis Tennessee USA
- Department of Veterans Affairs Medical Center Memphis Tennessee USA
| | - Erin J. Stephenson
- Department of PediatricsCollege of MedicineUniversity of Tennessee Health Science Center Memphis Tennessee USA
- Children's Foundation Research InstituteLeBonheur Children's Hospital Memphis Tennessee USA
| | - Kevin Pham
- Department of PharmacologyCollege of MedicineUniversity of Tennessee Health Science Center Memphis Tennessee USA
- Department of Veterans Affairs Medical Center Memphis Tennessee USA
| | - Edwards A. Park
- Department of PharmacologyCollege of MedicineUniversity of Tennessee Health Science Center Memphis Tennessee USA
- Department of Veterans Affairs Medical Center Memphis Tennessee USA
| |
Collapse
|