1
|
Liu Y, Fu B, He Q, Bai X, Fan Y. DNA methylation of POU5F1 by DNMT1 and DNMT3B triggers apoptosis in interstitial Cajal-like cells via c-kit/SCF inhibition during cholesterol gallstone formation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167689. [PMID: 39899939 DOI: 10.1016/j.bbadis.2025.167689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025]
Abstract
We have previously reported that inactivation of c-kit and stem cell factor (SCF) might reduce interstitial Cajal-like cells (ICLCs) density, leading to gallbladder motility impairment and cholesterol gallstone (CG) formation. Based on bioinformatics prediction, this study explores the possible role of POU class 5 homeobox 1 (POU5F1) in c-kit/SCF regulation and investigates their function in ICLC activity and CG development. POU5F1 was identified as a transcription factor targeting both c-kit and SCF for transcription activation. They were poorly expressed in mice fed a lithogenic diet (LD) and mouse ICLCs treated with cholesterol. Upregulation of POU5F1 alleviated ICLC apoptosis, contraction dysfunction, and CG formation in the gallbladder wall of mice. Similarly, the POU5F1 upregulation enhanced the viability of ICLCs in vitro while reducing cell apoptosis. However, these effects were blocked by either c-kit or SCF knockdown. Furthermore, DNA methyltransferase 1 (DNMT1) and DNMT3B were identified as two important regulators suppressing POU5F1 transcription through DNA methylation. Knockdown of either DNMT1 or DNMT3B restored POU5F1 and c-kit/SCF levels, therefore reducing ICLC apoptosis and CG formation. In conclusion, this study demonstrates that DNMT1/DNMT3B-mediated DNA methylation of POU5F1 induces c-kit/SCF downregulation, thus promoting apoptosis of ICLCs and CG formation.
Collapse
Affiliation(s)
- Yingyu Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Beibei Fu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Quanrun He
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Xuesong Bai
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Ying Fan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China.
| |
Collapse
|
2
|
Li X, Yin X, Xu J, Geng L, Liu Z. Relationship between Abnormal Lipid Metabolism and Gallstone Formation. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2025; 85:11-21. [PMID: 39849808 DOI: 10.4166/kjg.2024.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/25/2025]
Abstract
Cholelithiasis is a common biliary system disease with a high incidence worldwide. Abnormal lipid metabolism has been shown to play a key role in the mechanism of gallstones. Therefore, recent research literature on the genes, proteins, and molecular substances involved in lipid metabolism during the pathogenesis of gallstones has been conducted. This study aimed to determine the role of lipid metabolism in the pathogenesis of gallstones and provide insights for future studies using previous research in genomics, metabolomics, transcriptomics, and other fields.
Collapse
Affiliation(s)
- Xiang Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaodan Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Geng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengtao Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Ceci L, Han Y, Krutsinger K, Baiocchi L, Wu N, Kundu D, Kyritsi K, Zhou T, Gaudio E, Francis H, Alpini G, Kennedy L. Gallstone and Gallbladder Disease: Biliary Tract and Cholangiopathies. Compr Physiol 2023; 13:4909-4943. [PMID: 37358507 DOI: 10.1002/cphy.c220028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Cholestatic liver diseases are named primarily due to the blockage of bile flow and buildup of bile acids in the liver. Cholestasis can occur in cholangiopathies, fatty liver diseases, and during COVID-19 infection. Most literature evaluates damage occurring to the intrahepatic biliary tree during cholestasis; however, there may be associations between liver damage and gallbladder damage. Gallbladder damage can manifest as acute or chronic inflammation, perforation, polyps, cancer, and most commonly gallstones. Considering the gallbladder is an extension of the intrahepatic biliary network, and both tissues are lined by biliary epithelial cells that share common mechanisms and properties, it is worth further evaluation to understand the association between bile duct and gallbladder damage. In this comprehensive article, we discuss background information of the biliary tree and gallbladder, from function, damage, and therapeutic approaches. We then discuss published findings that identify gallbladder disorders in various liver diseases. Lastly, we provide the clinical aspect of gallbladder disorders in liver diseases and ways to enhance diagnostic and therapeutic approaches for congruent diagnosis. © 2023 American Physiological Society. Compr Physiol 13:4909-4943, 2023.
Collapse
Affiliation(s)
- Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Yuyan Han
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Kelsey Krutsinger
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | | | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Thompson MD, Hinrichs H, Faerber A, Tarr PI, Davidson NO. Maternal obesogenic diet enhances cholestatic liver disease in offspring. J Lipid Res 2022; 63:100205. [PMID: 35341737 PMCID: PMC9046959 DOI: 10.1016/j.jlr.2022.100205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 10/25/2022] Open
Abstract
Human and animal model data show that maternal obesity promotes nonalcoholic fatty liver disease in offspring and alters bile acid (BA) homeostasis. Here we investigated whether offspring exposed to maternal obesogenic diets exhibited greater cholestatic injury. We fed female C57Bl6 mice conventional chow (CON) or high fat/high sucrose (HF/HS) diet and then bred them with lean males. Offspring were fed 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 2 weeks to induce cholestasis, and a subgroup was then fed CON for an additional 10 days. Additionally, to evaluate the role of the gut microbiome, we fed antibiotic-treated mice cecal contents from CON or HF/HS offspring, followed by DDC for 2 weeks. We found that HF/HS offspring fed DDC exhibited increased fine branching of the bile duct (ductular reaction) and fibrosis but did not differ in BA pool size or intrahepatic BA profile compared to offspring of mice fed CON. We also found that after 10 days recovery, HF/HS offspring exhibited sustained ductular reaction and periportal fibrosis, while lesions in CON offspring were resolved. In addition, cecal microbiome transplant from HF/HS offspring donors worsened ductular reaction, inflammation, and fibrosis in mice fed DDC. Finally, transfer of the microbiome from HF/HS offspring replicated the cholestatic liver injury phenotype. Taken together, we conclude that maternal HF/HS diet predisposes offspring to increased cholestatic injury after DDC feeding and delays recovery after returning to CON diets. These findings highlight the impact of maternal obesogenic diet on hepatobiliary injury and repair pathways during experimental cholestasis.
Collapse
Affiliation(s)
- Michael D Thompson
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Holly Hinrichs
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Austin Faerber
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Phillip I Tarr
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Thompson MD, Kang J, Faerber A, Hinrichs H, Özler O, Cowen J, Xie Y, Tarr PI, Davidson NO. Maternal obesogenic diet regulates offspring bile acid homeostasis and hepatic lipid metabolism via the gut microbiome in mice. Am J Physiol Gastrointest Liver Physiol 2022; 322:G295-G309. [PMID: 34984925 PMCID: PMC8816615 DOI: 10.1152/ajpgi.00247.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mice exposed in gestation to maternal high-fat/high-sucrose (HF/HS) diet develop altered bile acid (BA) homeostasis. We hypothesized that these reflect an altered microbiome and asked if microbiota transplanted from HF/HS offspring change hepatic BA and lipid metabolism to determine the directionality of effect. Female mice were fed HF/HS or chow (CON) for 6 wk and bred with lean males. 16S sequencing was performed to compare taxa in offspring. Cecal microbiome transplantation (CMT) was performed from HF/HS or CON offspring into antibiotic-treated mice fed chow or high fructose. BA, lipid metabolic, and gene expression analyses were performed in recipient mice. Gut microbiomes from HF/HS offspring segregated from CON offspring, with increased Firmicutes to Bacteriodetes ratios and Verrucomicrobial abundance. After CMT was performed, HF/HS-recipient mice had larger BA pools, increased intrahepatic muricholic acid, and decreased deoxycholic acid species. HF/HS-recipient mice exhibited downregulated hepatic Mrp2, increased hepatic Oatp1b2, and decreased ileal Asbt mRNA expression. HF/HS-recipient mice exhibited decreased cecal butyrate and increased hepatic expression of Il6. HF/HS-recipient mice had larger livers and increased intrahepatic triglyceride versus CON-recipient mice after fructose feeding, with increased hepatic mRNA expression of lipogenic genes including Srebf1, Fabp1, Mogat1, and Mogat2. CMT from HF/HS offspring increased BA pool and shifted the composition of the intrahepatic BA pool. CMT from HF/HS donor offspring increased fructose-induced liver triglyceride accumulation. These findings support a causal role for vertical transfer of an altered microbiome in hepatic BA and lipid metabolism in HF/HS offspring.NEW & NOTEWORTHY We utilized a mouse model of maternal obesogenic diet exposure to evaluate the effect on offspring microbiome and bile acid homeostasis. We identified shifts in the offspring microbiome associated with changes in cecal bile acid levels. Transfer of the microbiome from maternal obesogenic diet-exposed offspring to microbiome-depleted mice altered bile acid homeostasis and increased fructose-induced hepatic steatosis.
Collapse
Affiliation(s)
- Michael D. Thompson
- 1Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Jisue Kang
- 1Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Austin Faerber
- 1Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Holly Hinrichs
- 1Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Oğuz Özler
- 1Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Jamie Cowen
- 1Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Yan Xie
- 2Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Phillip I. Tarr
- 3Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Nicholas O. Davidson
- 2Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
6
|
Trites MJ, Febbraio M, Clugston RD. Absence of CD36 alters systemic vitamin A homeostasis. Sci Rep 2020; 10:20386. [PMID: 33230291 PMCID: PMC7683526 DOI: 10.1038/s41598-020-77411-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022] Open
Abstract
Fatty acid translocase (CD36) is a scavenger receptor with multiple ligands and diverse physiological actions. We recently reported that alcohol-induced hepatic retinoid mobilization is impaired in Cd36-/- mice, leading us to hypothesize that CD36 has a novel role in hepatic vitamin A mobilization. Given the central role of the liver in systemic vitamin A homeostasis we also postulated that absence of CD36 would affect whole-body vitamin A homeostasis. We tested this hypothesis in aging wild type and Cd36-/- mice, as well as mice fed a vitamin A-deficient diet. In agreement with our hypothesis, Cd36-/- mice accumulated hepatic retinyl ester stores with age to a greater extent than wild type mice. However, contrary to expectations, Cd36-/- mice consuming a vitamin A-deficient diet mobilized hepatic retinoid similar to wild type mice. Interestingly, we observed that Cd36-/- mice had significantly reduced white adipose tissue retinoid levels compared to wild type mice. In conclusion, we demonstrate that the absence of CD36 alters whole-body vitamin A homeostasis and suggest that this phenotype is secondary to the impaired chylomicron metabolism previously reported in these mice.
Collapse
Affiliation(s)
- Michael J Trites
- Department of Physiology, University of Alberta, 7-49 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
- Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maria Febbraio
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Robin D Clugston
- Department of Physiology, University of Alberta, 7-49 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.
- Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Vitamin D Status of Mice Deficient in Scavenger Receptor Class B Type 1, Cluster Determinant 36 and ATP-Binding Cassette Proteins G5/G8. Nutrients 2020; 12:nu12082169. [PMID: 32707802 PMCID: PMC7469065 DOI: 10.3390/nu12082169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
Classical lipid transporters are suggested to modulate cellular vitamin D uptake. This study investigated the vitamin D levels in serum and tissues of mice deficient in SR-B1 (Srb1-/-), CD36 (Cd36-/-) and ABC-G5/G8 (Abcg5/g8-/-) and compared them with corresponding wild-type (WT) mice. All mice received triple-deuterated vitamin D3 (vitamin D3-d3) for six weeks. All knockout mice vs. WT mice showed specific alterations in their vitamin D concentrations. Srb1-/- mice had higher levels of vitamin D3-d3 in the serum, adipose tissue, kidney and heart, whereas liver levels of vitamin D3-d3 remained unaffected. Additionally, Srb1-/- mice had lower levels of deuterated 25-hydroxyvitamin D3 (25(OH)D3-d3) in the serum, liver and kidney compared to WT mice. In contrast, Cd36-/- and WT mice did not differ in the serum and tissue levels of vitamin D3-d3, but Cd36-/- vs. WT mice were characterized by lower levels of 25(OH)D3-d3 in the serum, liver and kidney. Finally, Abcg5/g8-/- mice tended to have higher levels of vitamin D3-d3 in the serum and liver. Major alterations in Abcg5/g8-/- mice were notably higher levels of 25(OH)D3-d3 in the serum and kidney, accompanied by a higher hepatic mRNA abundance of Cyp27a1 hydroxylase. To conclude, the current data emphasize the significant role of lipid transporters in the uptake, tissue distribution and activation of vitamin D.
Collapse
|
8
|
Thompson MD, Derse A, Ferey JLA, Reid M, Xie Y, Christ M, Chatterjee D, Nguyen C, Harasymowicz N, Guilak F, Moley KH, Davidson NO. Transgenerational impact of maternal obesogenic diet on offspring bile acid homeostasis and nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab 2019; 316:E674-E686. [PMID: 30860882 PMCID: PMC6482665 DOI: 10.1152/ajpendo.00474.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 12/18/2022]
Abstract
Studies show maternal obesity is a risk factor for metabolic syndrome and nonalcoholic fatty liver disease (NAFLD) in offspring. Here we evaluated potential mechanisms underlying these phenotypes. Female C57Bl6 mice were fed chow or an obesogenic high-fat/high-sucrose (HF/HS) diet with subsequent mating of F1 and F2 female offspring to lean males to develop F2 and F3 generations, respectively. Offspring were fed chow or fibrogenic (high transfat, cholesterol, fructose) diets, and histopathological, metabolic changes, and bile acid (BA) homeostasis was evaluated. Chow-fed F1 offspring from maternal HF/HS lineages (HF/HS) developed periportal fibrosis and inflammation with aging, without differences in hepatic steatosis but increased BA pool size and shifts in BA composition. F1, but not F2 or F3, offspring from HF/HS showed increased steatosis on a fibrogenic diet, yet inflammation and fibrosis were paradoxically decreased in F1 offspring, a trend continued in F2 and F3 offspring. HF/HS feeding leads to increased periportal fibrosis and inflammation in chow-fed offspring without increased hepatic steatosis. By contrast, fibrogenic diet-fed F1 offspring from HF/HS dams exhibited worse hepatic steatosis but decreased inflammation and fibrosis. These findings highlight complex adaptations in NAFLD phenotypes with maternal diet.
Collapse
Affiliation(s)
- Michael D Thompson
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Alaina Derse
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Jeremie LA Ferey
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Michaela Reid
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Miranda Christ
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Deyali Chatterjee
- Deparment of Pathology, Washington University in St. Louis, St. Louis, Missouri
| | - Chau Nguyen
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Natalia Harasymowicz
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Kelle H Moley
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Nicholas Oliver Davidson
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
9
|
Huang WC, Chen YL, Liu HC, Wu SJ, Liou CJ. Ginkgolide C reduced oleic acid-induced lipid accumulation in HepG2 cells. Saudi Pharm J 2018; 26:1178-1184. [PMID: 30532639 PMCID: PMC6260475 DOI: 10.1016/j.jsps.2018.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022] Open
Abstract
Ginkgolide C, isolated from Ginkgo biloba, is a diterpene lactone that has multiple biological functions and can improve Alzheimer disease and platelet aggregation. Ginkgolide C also inhibits adipogenesis in 3T3-L1 adipocytes. The present study evaluated whether ginkgolide C reduced lipid accumulation and regulated the molecular mechanism of lipogenesis in oleic acid-induced HepG2 hepatocytes. HepG2 cells were treated with 0.5 mM oleic acid for 48 h to induce a fatty liver cell model. Then, the cells were exposed to various concentrations of ginkgolide C for 24 h. Staining with Oil Red O and the fluorescent dye BODIPY 493/503 revealed that ginkgolide C significantly reduced excessive lipid accumulation in HepG2 cells. Ginkgolide C decreased peroxisome proliferator-activated receptor γ and sterol regulatory element-binding protein 1c to block the expression of fatty acid synthase. Ginkgolide C treatment also promoted the expression of adipose triglyceride lipase and the phosphorylation level of hormone-sensitive lipase to enhance the decomposition of triglycerides. In addition, ginkgolide C stimulated CPT-1 to activate fatty acid β-oxidation, significantly increased sirt1 and phosphorylation of AMP-activated protein kinase (AMPK), and decreased expression of acetyl-CoA carboxylase for suppressed fatty acid synthesis in hepatocytes. Taken together, our results suggest that ginkgolide C reduced lipid accumulation and increased lipolysis through the sirt1/AMPK pathway in oleic acid-induced fatty liver cells.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan
| | - Ya-Ling Chen
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan
| | - Hui-Chia Liu
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan
| | - Shu-Ju Wu
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan 33303, Taiwan
| | - Chian-Jiun Liou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan
- Department of Nursing, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan
| |
Collapse
|
10
|
Targeting CD36 as Biomarker for Metastasis Prognostic: How Far from Translation into Clinical Practice? BIOMED RESEARCH INTERNATIONAL 2018; 2018:7801202. [PMID: 30069479 PMCID: PMC6057354 DOI: 10.1155/2018/7801202] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
Abstract
Metastasis requires cellular changes related to cell-to-cell and cell-to-matrix adhesion, immune surveillance, activation of growth and survival signalling pathways, and epigenetic modifications. In addition to tumour cells, tumour stroma is also modified in relationship to the primary tumour as well as to distant metastatic sites (forming a metastatic niche). A common denominator of most stromal partners in tumour progression is CD36, a scavenger receptor for fatty acid uptake that modulates cell-to-extracellular matrix attachment, stromal cell fate (for adipocytes, endothelial cells), TGFβ activation, and immune signalling. CD36 has been repeatedly proposed as a prognostic marker in various cancers, mostly of epithelial origin (breast, prostate, ovary, and colon) and also for hepatic carcinoma and gliomas. Data gathered in preclinical models of various cancers have shown that blocking CD36 might prove beneficial in stopping metastasis spread. However, targeting the receptor in clinical trials with thrombospondin mimetic peptides has proven ineffective, and monoclonal antibodies are not yet available for patient use. This review presents data to support CD36 as a potential prognostic biomarker in cancer, its current stage towards achieving bona fide biomarker status, and knowledge gaps that must be filled before further advancement towards clinical practice.
Collapse
|
11
|
Shibao CA, Celedonio JE, Tamboli R, Sidani R, Love-Gregory L, Pietka T, Xiong Y, Wei Y, Abumrad NN, Abumrad NA, Flynn CR. CD36 Modulates Fasting and Preabsorptive Hormone and Bile Acid Levels. J Clin Endocrinol Metab 2018; 103:1856-1866. [PMID: 29546316 PMCID: PMC6446573 DOI: 10.1210/jc.2017-01982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/07/2018] [Indexed: 01/16/2023]
Abstract
CONTEXT Abnormal fatty acid (FA) metabolism contributes to diabetes and cardiovascular disease. The FA receptor CD36 has been linked to risk of metabolic syndrome. In rodents CD36 regulates various aspects of fat metabolism, but whether it has similar actions in humans is unknown. We examined the impact of a coding single-nucleotide polymorphism in CD36 on postprandial hormone and bile acid (BA) responses. OBJECTIVE To examine whether the minor allele (G) of coding CD36 variant rs3211938 (G/T), which reduces CD36 level by ∼50%, influences hormonal responses to a high-fat meal (HFM). DESIGN Obese African American (AA) women carriers of the G allele of rs3211938 (G/T) and weight-matched noncarriers (T/T) were studied before and after a HFM. SETTING Two-center study. PARTICIPANTS Obese AA women. INTERVENTION HFM. MAIN OUTCOME MEASURES Early preabsorptive responses (10 minutes) and extended excursions in plasma hormones [C-peptide, insulin, incretins, ghrelin fibroblast growth factor (FGF)19, FGF21], BAs, and serum lipoproteins (chylomicrons, very-low-density lipoprotein) were determined. RESULTS At fasting, G-allele carriers had significantly reduced cholesterol and glycodeoxycholic acid and consistent but nonsignificant reductions of serum lipoproteins. Levels of GLP-1 and pancreatic polypeptide (PP) were reduced 60% to 70% and those of total BAs were 1.8-fold higher. After the meal, G-allele carriers displayed attenuated early (-10 to 10 minute) responses in insulin, C-peptide, GLP-1, gastric inhibitory peptide, and PP. BAs exhibited divergent trends in G allele carriers vs noncarriers concomitant with differential FGF19 responses. CONCLUSIONS CD36 plays an important role in the preabsorptive hormone and BA responses that coordinate brain and gut regulation of energy metabolism.
Collapse
Affiliation(s)
- Cyndya A Shibao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Correspondence and Reprint Requests: Charles Robb Flynn, PhD, Department of Surgery, MRBIV Room 8465A, 2213 Garland Avenue, Vanderbilt University Medical Center, Nashville, Tennessee 37232. E-mail: ; or Cyndya Shibao, MD, Department of Medicine, Division of Medicine, 562 Preston Research Building, Vanderbilt University Medical Center, Nashville, Tennessee 37232. E-mail:
| | - Jorge E Celedonio
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robyn Tamboli
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Reem Sidani
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Latisha Love-Gregory
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Terri Pietka
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Yanhua Xiong
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yan Wei
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Naji N Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Charles Robb Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Correspondence and Reprint Requests: Charles Robb Flynn, PhD, Department of Surgery, MRBIV Room 8465A, 2213 Garland Avenue, Vanderbilt University Medical Center, Nashville, Tennessee 37232. E-mail: ; or Cyndya Shibao, MD, Department of Medicine, Division of Medicine, 562 Preston Research Building, Vanderbilt University Medical Center, Nashville, Tennessee 37232. E-mail:
| |
Collapse
|
12
|
Cifarelli V, Abumrad NA. Intestinal CD36 and Other Key Proteins of Lipid Utilization: Role in Absorption and Gut Homeostasis. Compr Physiol 2018; 8:493-507. [PMID: 29687890 PMCID: PMC6247794 DOI: 10.1002/cphy.c170026] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several proteins have been implicated in fatty acid (FA) transport by enterocytes including the scavenger receptor CD36 (SR-B2), the scavenger receptor B1 (SR-B1) a member of the CD36 family and the FA transport protein 4 (FATP4). Here, we review the regulation of enterocyte FA uptake and its function in lipid absorption including prechylomicron formation, assembly and transport. Emphasis is given to CD36, which is abundantly expressed along the digestive tract of rodents and humans and has been the most studied. We also address the pleiotropic functions of CD36 that go beyond lipid absorption and metabolism to include recent evidence of its impact on intestinal homeostasis and barrier maintenance. Areas of progress involving contribution of membrane phospholipid remodeling and of cytosolic FA-binding proteins, FABP1 and FABP2 to fat absorption will be covered. © 2018 American Physiological Society. Compr Physiol 8:493-507, 2018.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| | - Nada A. Abumrad
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The establishment of mouse models of gallstones, and the contribution of mouse models to genetic studies of gallstone disease, as well as the latest advances in the pathophysiology of gallstones from mouse experiments are summarized. RECENT FINDINGS The combined uses of genomic strategies and phenotypic studies in mice have successfully led to the identification of many Lith genes, which pave the way for the discovery of human LITH genes. The physical-chemical, genetic, and molecular biological studies of gallstone disease in mice with knockout or transgene of specific target genes have provided many novel insights into the complex pathophysiological mechanisms of this very common hepatobiliary disease worldwide, showing that interactions of five primary defects play a critical role in the pathogenesis of cholesterol gallstones. Based on mouse studies, a new concept has been proposed that hepatic hypersecretion of biliary cholesterol is induced by multiple Lith genes, with insulin resistance as part of the metabolic syndrome interacting with cholelithogenic environmental factors to cause the phenotype. SUMMARY The mouse model of gallstones is crucial for elucidating the physical-chemical and genetic mechanisms of cholesterol crystallization and gallstone formation, which greatly increase our understanding of the pathogenesis of this disease in humans.
Collapse
Affiliation(s)
- Tony Y. Wang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica ‘A. Murri’, University of Bari ‘Aldo Moro’ Medical School, Bari, Italy
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David Q.-H. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Gallstone disease is a major epidemiologic and economic burden worldwide, and the most frequent form is cholesterol gallstone disease. RECENT FINDINGS Major pathogenetic factors for cholesterol gallstones include a genetic background, hepatic hypersecretion of cholesterol, and supersaturated bile which give life to precipitating cholesterol crystals that accumulate and grow in a sluggish gallbladder. Additional factors include mucin and inflammatory changes in the gallbladder, slow intestinal motility, increased intestinal absorption of cholesterol, and altered gut microbiota. Mechanisms of disease are linked with insulin resistance, obesity, the metabolic syndrome, and type 2 diabetes. The role of nuclear receptors, signaling pathways, gut microbiota, and epigenome are being actively investigated. SUMMARY Ongoing research on cholesterol gallstone disease is intensively investigating several pathogenic mechanisms, associated metabolic disorders, new therapeutic approaches, and novel strategies for primary prevention, including lifestyles.
Collapse
Affiliation(s)
| | - David Q.-H. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, Bari, Italy
| |
Collapse
|