1
|
Li X, Chen W, Jia Z, Xiao Y, Shi A, Ma X. Mitochondrial Dysfunction as a Pathogenesis and Therapeutic Strategy for Metabolic-Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2025; 26:4256. [PMID: 40362504 PMCID: PMC12072025 DOI: 10.3390/ijms26094256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) has emerged as a significant public health concern, attributed to its increasing prevalence and correlation with metabolic disorders, including obesity and type 2 diabetes. Recent research has highlighted that mitochondrial dysfunction can result in the accumulation of lipids in non-adipose tissues, as well as increased oxidative stress and inflammation. These factors are crucial in advancing the progression of MASLD. Despite advances in the understanding of MASLD pathophysiology, challenges remain in identifying effective therapeutic strategies targeting mitochondrial dysfunction. This review aims to consolidate current knowledge on how mitochondrial imbalance affects the development and progression of MASLD, while addressing existing research gaps and potential avenues for future research. This review was conducted after a systematic search of comprehensive academic databases such as PubMed, Embase, and Web of Science to gather information on mitochondrial dysfunction as well as mitochondrial-based treatments for MASLD.
Collapse
Affiliation(s)
- Xiangqiong Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Wenling Chen
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Zhuangzhuang Jia
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Yahui Xiao
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Anhua Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Xuan Ma
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| |
Collapse
|
2
|
Zisis M, Chondrogianni ME, Androutsakos T, Rantos I, Oikonomou E, Chatzigeorgiou A, Kassi E. Linking Cardiovascular Disease and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): The Role of Cardiometabolic Drugs in MASLD Treatment. Biomolecules 2025; 15:324. [PMID: 40149860 PMCID: PMC11940321 DOI: 10.3390/biom15030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
The link between cardiovascular disease (CVD) and metabolic dysfunction-associated steatotic liver disease (MASLD) is well-established at both the epidemiological and pathophysiological levels. Among the common pathophysiological mechanisms involved in the development and progression of both diseases, oxidative stress and inflammation, insulin resistance, lipid metabolism deterioration, hepatokines, and gut dysbiosis along with genetic factors have been recognized to play a pivotal role. Pharmacologic interventions with drugs targeting common modifiable cardiometabolic risk factors, such as T2DM, dyslipidemia, and hypertension, are a reasonable strategy to prevent CVD development and progression of MASLD. Recently, a novel drug for metabolic dysfunction-associated steatohepatitis (MASH), resmetirom, has shown positive effects regarding CVD risk, opening new opportunities for the therapeutic approach of MASLD and CVD. This review provides current knowledge on the epidemiologic association of MASLD to CVD morbidity and mortality and enlightens the possible underlying pathophysiologic mechanisms linking MASLD with CVD. The role of cardiometabolic drugs such as anti-hypertensive drugs, hypolipidemic agents, glucose-lowering medications, acetylsalicylic acid, and the thyroid hormone receptor-beta agonist in the progression of MASLD is also discussed. Metformin failed to prove beneficial effects in MASLD progression. Studies on the administration of thiazolinediones in MASLD suggest effectiveness in improving steatosis, steatohepatitis, and fibrosis, while newer categories of glucose-lowering agents such as GLP-1Ra and SGLT-2i are currently being tested for their efficacy across the whole spectrum of MASLD. Statins alone or in combination with ezetimibe have yielded promising results. The conduction of long-duration, large, high-quality, randomized-controlled trials aiming to assess by biopsy the efficacy of cardiometabolic drugs to reverse MASLD progression is of great importance.
Collapse
Affiliation(s)
- Marios Zisis
- Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (M.Z.); (I.R.)
| | - Maria Eleni Chondrogianni
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Ilias Rantos
- Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (M.Z.); (I.R.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, University of Athens Medical School, 11527 Athens, Greece;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Hu Y, Xu R, Feng J, Zhang Q, Zhang L, Li Y, Sun X, Gao J, Chen X, Du M, Chen Z, Liu X, Fan Y, Zhang Y. Identification of potential pathogenic hepatic super-enhancers regulatory network in high-fat diet induced hyperlipidemia. J Nutr Biochem 2024; 126:109584. [PMID: 38242178 DOI: 10.1016/j.jnutbio.2024.109584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Hyperlipidemia (HLP) is a prevalent metabolic disorder and a significant risk factor for cardiovascular disease. According to recent discoveries, super-enhancers (SEs) play a role in the increased expression of genes that encode important regulators of both cellular identity and the progression of diseases. However, the underlying function of SEs in the development of HLP is still unknown. We performed an integrative analysis of data on H3K27ac ChIP-seq and RNA sequencing obtained from liver tissues of mice under a low-fat diet (LFD) and high-fat diet (HFD) from GEO database. The rank ordering of super enhancers algorithm was employed for the computation and identification of SEs. A total of 1,877 and 1,847 SEs were identified in the LFD and HFD groups, respectively. The SE inhibitor JQ1 was able to potently reverse lipid deposition and the increased intracellular triglyceride and total cholesterol induced by oleic acid, indicating that SEs are involved in regulating lipid accumulation. Two hundred seventy-eight were considered as HFD-specific SEs (HSEs). GO and KEGG pathway enrichment analysis of the upregulated HSEs-associated genes revealed that they were mainly involved in lipid metabolic pathway. Four hub genes, namely Cd36, Pex11a, Ech1, and Cidec, were identified in the HSEs-associated protein-protein interaction network, and validated with two other datasets. Finally, we constructed a HSEs-specific regulatory network with Cidec and Cd36 as the core through the prediction and verification of transcription factors. Our study constructed a HSEs-associated regulatory network in the pathogenesis of HLP, providing new ideas for the underlying mechanisms and therapeutic targets of HLP.
Collapse
Affiliation(s)
- Yingying Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Run Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jing Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qingwei Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lifu Zhang
- Unit 32680, People's Liberation Army of China, Shenyang, China
| | - Yiyang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiuxiu Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jin Gao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ximing Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Menghan Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhouxiu Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China.
| | - Yuhua Fan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China.
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China.
| |
Collapse
|
4
|
Chiang YP, Li Z, He M, Jones Q, Pan M, Han X, Jiang XC. Sphingomyelin synthase-related protein SMSr is a phosphatidylethanolamine phospholipase C that promotes nonalcoholic fatty liver disease. J Biol Chem 2023; 299:105162. [PMID: 37586586 PMCID: PMC10494463 DOI: 10.1016/j.jbc.2023.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Sphingomyelin synthase (SMS)-related protein (SMSr) is a phosphatidylethanolamine phospholipase C (PE-PLC) that is conserved and ubiquitous in mammals. However, its biological function is still not clear. We previously observed that SMS1 deficiency-mediated glucosylceramide accumulation caused nonalcoholic fatty liver diseases (NAFLD), including nonalcoholic steatohepatitis (NASH) and liver fibrosis. Here, first, we evaluated high-fat diet/fructose-induced NAFLD in Smsr KO and WT mice. Second, we evaluated whether SMSr deficiency can reverse SMS1 deficiency-mediated NAFLD, using Sms1/Sms2 double and Sms1/Sms2/Smsr triple KO mice. We found that SMSr/PE-PLC deficiency attenuated high-fat diet/fructose-induced fatty liver and NASH, and attenuated glucosylceramide accumulation-induced NASH, fibrosis, and tumor formation. Further, we found that SMSr/PE-PLC deficiency reduced the expression of many inflammatory cytokines and fibrosis-related factors, and PE supplementation in vitro or in vivo mimicked the condition of SMSr/PE-PLC deficiency. Furthermore, we demonstrated that SMSr/PE-PLC deficiency or PE supplementation effectively prevented membrane-bound β-catenin transfer to the nucleus, thereby preventing tumor-related gene expression. Finally, we observed that patients with NASH had higher SMSr protein levels in the liver, lower plasma PE levels, and lower plasma PE/phosphatidylcholine ratios, and that human plasma PE levels are negatively associated with tumor necrosis factor-α and transforming growth factor β1 levels. In conclusion, SMSr/PE-PLC deficiency causes PE accumulation, which can attenuate fatty liver, NASH, and fibrosis. These results suggest that SMSr/PE-PLC inhibition therapy may mitigate NAFLD.
Collapse
Affiliation(s)
- Yeun-Po Chiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Zhiqiang Li
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Mulin He
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Quiana Jones
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Meixia Pan
- Lipidomics Core, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Xianlin Han
- Lipidomics Core, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn, New York, USA.
| |
Collapse
|
5
|
Xiang C, Chen X, Yao J, Yang N, Yu J, Qiu Q, Zhang S, Kong X, Zhao L, Fan ZC, Yu P, Teng YO. Design, synthesis and anti-NASH effect evaluation of novel GFT505 derivatives in vitro and in vivo. Eur J Med Chem 2023; 257:115510. [PMID: 37269672 DOI: 10.1016/j.ejmech.2023.115510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is emerging as the largest burden of chronic liver disease worldwide. Nonalcoholic steatohepatitis (NASH) is a progressive form of NAFLD that can progress to cirrhosis and hepatocellular carcinoma. Unfortunately, current treatment options for NASH are very limited. Among the multiple pathways of NASH, peroxisome proliferators-activated receptors (PPARS) are recognized as an important and effective target. GFT 505 is a dual excitement agent for the treatment of PPAR-α/δ for the treatment of NASH. However, its activity and toxicity need to be further improved. Therefore, here we would like to report the design, synthesis and biological evaluation of 11 GFT 505 derivatives. The initial cytotoxicity through proliferation activity of HepG2 cells and in vitro anti-NASH activity evaluation demonstrated that under the same concentration, the compound 3d possess significantly lower cytotoxicity and better anti-NASH activity than that of GFT 505. Moreover, Molecular docking also shows that 3d and PPAR-α/δ can form a stable hydrogen bond and have the lowest binding energy. Therefore this novel molecule 3d was selected to go further in vivo investigation. Methionine-choline deficiency (MCD) induced C57BL/6J NASH model mice was used for the in vivo biological experiments and the compound 3d demostrated lower liver toxicity than that of GFT 505 in the body at the same dose, and it did more effectively improve hyperlipidemia, liver fat degeneration and liver inflammation as well as significantly enhance the content of the GSH which is inportant for the liver protection. This study suggested that the compound 3d is a very promising lead compound for the treatment of NASH.
Collapse
Affiliation(s)
- Cen Xiang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiaoxuan Chen
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiaping Yao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Na Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiajia Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Quanyuan Qiu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shouqing Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiangsun Kong
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Lianbo Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhen-Chuan Fan
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Yu-Ou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
6
|
Lee SM, Muratalla J, Sierra-Cruz M, Cordoba-Chacon J. Role of hepatic peroxisome proliferator-activated receptor γ in non-alcoholic fatty liver disease. J Endocrinol 2023; 257:e220155. [PMID: 36688873 PMCID: PMC10048618 DOI: 10.1530/joe-22-0155] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) belongs to a family of nuclear receptors that could serve as lipid sensors. PPARγ is the target of a group of insulin sensitizers called thiazolidinediones (TZDs) which regulate the expression of genes involved in glucose and lipid metabolism as well as adipokines that regulate metabolic function in other tissues. Non-alcoholic fatty liver disease (NAFLD) has a high prevalence worldwide and is even higher in patients with obesity and insulin resistance. TZD-mediated activation of PPARγ could serve as a good treatment for NAFLD because TZDs have shown anti-fibrogenic and anti-inflammatory effectsin vitro and increase insulin sensitivity in peripheral tissues which improves liver pathology. However, mechanistic studies in mouse models suggest that the activation of PPARγ in hepatocytes might reduce or limit the therapeutic potential of TZD against NAFLD. In this review, we briefly describe the short history of PPAR isoforms, the relevance of their expression in different tissues, as well as the pathogenesis and potential therapeutics for NAFLD. We also discuss some evidence derived from mouse models that could be useful for endocrinologists to assess tissue-specific roles of PPARs, complement reverse endocrinology approaches, and understand the direct role that PPARγ has in hepatocytes and non-parenchymal cells.
Collapse
Affiliation(s)
- Samuel M. Lee
- Department of Medicine. Division of Endocrinology, Diabetes and Metabolism. University of Illinois at Chicago, Chicago. IL
| | - Jose Muratalla
- Department of Medicine. Division of Endocrinology, Diabetes and Metabolism. University of Illinois at Chicago, Chicago. IL
| | - Marta Sierra-Cruz
- Department of Medicine. Division of Endocrinology, Diabetes and Metabolism. University of Illinois at Chicago, Chicago. IL
| | - Jose Cordoba-Chacon
- Department of Medicine. Division of Endocrinology, Diabetes and Metabolism. University of Illinois at Chicago, Chicago. IL
| |
Collapse
|
7
|
Yang Z, Wang L. Current, emerging, and potential therapies for non-alcoholic steatohepatitis. Front Pharmacol 2023; 14:1152042. [PMID: 37063264 PMCID: PMC10097909 DOI: 10.3389/fphar.2023.1152042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been identified as the most common chronic liver disease worldwide, with a growing incidence. NAFLD is considered the hepatic manifestation of a metabolic syndrome that emerges from multiple factors (e.g., oxidative stress, metabolic disorders, endoplasmic reticulum stress, cell death, and inflammation). Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, has been reported to be a leading cause of cirrhosis and hepatic carcinoma, and it is progressing rapidly. Since there is no approved pharmacotherapy for NASH, a considerable number of therapeutic targets have emerged with the deepening of the research on NASH pathogenesis. In this study, the therapeutic potential and properties of regulating metabolism, the gut microbiome, antioxidant, microRNA, inhibiting apoptosis, targeting ferroptosis, and stem cell-based therapy in NASH are reviewed and evaluated. Since the single-drug treatment of NASH is affected by individual heterogeneous responses and side effects, it is imperative to precisely carry out targeted therapy with low toxicity. Lastly, targeted therapeutic agent delivery based on exosomes is proposed in this study, such that drugs with different mechanisms can be incorporated to generate high-efficiency and low-toxicity individualized medicine.
Collapse
Affiliation(s)
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
8
|
Wang S, Yang M, Li P, Sit J, Wong A, Rodrigues K, Lank D, Zhang D, Zhang K, Yin L, Tong X. High-Fat Diet-Induced DeSUMOylation of E4BP4 Promotes Lipid Droplet Biogenesis and Liver Steatosis in Mice. Diabetes 2023; 72:348-361. [PMID: 36508222 PMCID: PMC9935497 DOI: 10.2337/db22-0332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Dysregulated lipid droplet accumulation has been identified as one of the main contributors to liver steatosis during nonalcoholic fatty liver disease (NAFLD). However, the underlying molecular mechanisms for excessive lipid droplet formation in the liver remain largely unknown. In the current study, hepatic E4 promoter-binding protein 4 (E4BP4) plays a critical role in promoting lipid droplet formation and liver steatosis in a high-fat diet (HFD)-induced NAFLD mouse model. Hepatic E4bp4 deficiency (E4bp4-LKO) protects mice from HFD-induced liver steatosis independently of obesity and insulin resistance. Our microarray study showed a markedly reduced expression of lipid droplet binding genes, such as Fsp27, in the liver of E4bp4-LKO mice. E4BP4 is both necessary and sufficient to activate Fsp27 expression and lipid droplet formation in primary mouse hepatocytes. Overexpression of Fsp27 increased lipid droplets and triglycerides in E4bp4-LKO primary mouse hepatocytes and restored hepatic steatosis in HFD-fed E4bp4-LKO mice. Mechanistically, E4BP4 enhances the transactivation of Fsp27 by CREBH in hepatocytes. Furthermore, E4BP4 is modified by SUMOylation, and HFD feeding induces deSUMOylation of hepatic E4BP4. SUMOylation of five lysine residues of E4BP4 is critical for the downregulation of Fsp27 and lipid droplets by cAMP signaling in hepatocytes. Taken together, this study revealed that E4BP4 drives liver steatosis in HFD-fed mice through its regulation of lipid droplet binding proteins. Our study also highlights the critical role of deSUMOylation of hepatic E4BP4 in promoting NAFLD.
Collapse
Affiliation(s)
- Sujuan Wang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Meichan Yang
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, People’s Republic of China
| | - Pei Li
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ
| | - Julian Sit
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Audrey Wong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Kyle Rodrigues
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Daniel Lank
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
- Department of Pharmacology, University of Virginia, Charlottesville, VA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Xin Tong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
9
|
Gallucci GM, Alsuwayt B, Auclair AM, Boyer JL, Assis DN, Ghonem NS. Fenofibrate Downregulates NF-κB Signaling to Inhibit Pro-inflammatory Cytokine Secretion in Human THP-1 Macrophages and During Primary Biliary Cholangitis. Inflammation 2022; 45:2570-2581. [PMID: 35838934 PMCID: PMC10853883 DOI: 10.1007/s10753-022-01713-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022]
Abstract
Chronic liver diseases, e.g., cholestasis, are negatively impacted by inflammation, which further aggravates liver injury. Pharmacotherapy targeting the peroxisome proliferator-activated receptor alpha (PPARα), e.g., fenofibrate, has recently become an off-label therapeutic option for patients with refractory cholestasis. Clinical studies show that fibrates can reduce some pro-inflammatory cytokines in primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC); however, its anti-inflammatory mechanisms have not been established. Numerous cytokines are regulated by the transcription factor nuclear receptor kappa B (NF-κB), and PPARα has been shown to interfere with NF-κB signaling. This study investigates the anti-inflammatory mechanism of fenofibrate by inhibiting NF-κB signaling in human macrophages and clinical outcomes in patients with PBC. For adult patients with PBC and an incomplete biochemical response to ursodiol (13-15 mg/kg/day), the addition of fenofibrate (145-160 mg/day) reduced serum levels of TNF-α, IL-17A, IL-1β, IL-6, IL-8, and MCP-1 and increased IL-10. In THP-1 cells, pretreatment with fenofibrate (125 μM) reduced LPS-stimulated peak concentrations of IL-1β (- 63%), TNF-α (- 88%), and IL-8 (- 54%), in a PPARα-dependent manner. Treatment with fenofibrate prior to LPS significantly decreased nuclear NF-κB p50 and p65 subunit binding by 49% and 31%, respectively. Additionally, fenofibrate decreased nuclear NF-κB p50 and p65 protein expression by 66% and 55% and increased cytoplasmic levels by 53% and 54% versus LPS alone, respectively. Lastly, fenofibrate increased IκBα levels by 2.7-fold (p < 0.001) vs. LPS. These data demonstrate that fenofibrate reduces pro-inflammatory cytokines section by inhibiting in NF-κB signaling, which likely contribute to its anti-inflammatory effects during chronic liver diseases.
Collapse
Affiliation(s)
- Gina M Gallucci
- College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Kingston, RI 02881, USA
| | - Bader Alsuwayt
- School of Pharmacy, Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Adam M Auclair
- College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Kingston, RI 02881, USA
| | - James L Boyer
- Yale School of Medicine, Liver Center, New Haven, CT, USA
| | - David N Assis
- Yale School of Medicine, Liver Center, New Haven, CT, USA
| | - Nisanne S Ghonem
- College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Kingston, RI 02881, USA.
| |
Collapse
|
10
|
Xia QS, Gao Y, Wen-Bin W, Wu F, Dong H, Xu LJ, Fang K, Hu ML, Yuan F, Lu FE, Gong J. Ban-xia-xie-xin-tang ameliorates hepatic steatosis by regulating Cidea and Cidec expression in HFD-fed mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154351. [PMID: 35908522 DOI: 10.1016/j.phymed.2022.154351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ban-xia-xie-xin-tang (BXXXT) has been applied in treating metabolic diseases, such as nonalcohol fatty liver disease, diabetes mellitus, and obesity. However, the underlying molecular mechanism of BXXXT in treating diabetes mellitus is unknown. PURPOSE To clarify the underlying molecular mechanism of BXXXT in alleviating hepatic steatosis in high-fat diet (HFD)-fed mice. METHODS After 12 weeks of HFD treatment, mice were administered BXXXT for 4 weeks. The main chemical components of BXXXT were identified by UPLC-TQ-MS/MS. Indicators associated with insulin resistance and lipid metabolism were detected. The effect of improving glucose and lipid metabolism between BXXXT and the different components was compared. Differentially expressed genes (DEGs) were identified by hepatic transcriptomics. Key DEGs and proteins were further detected by real-time quantitative polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence staining. LDs and mitochondria were detected by transmission electron microscopy. RESULTS First of all, our data demonstrated that the capacity to improve glucose and lipid metabolism for BXXXT was significantly superior to different components of BXXXT. BXXXT was found to improve HFD-induced insulin resistance. Moreover, BXXXT decreased weight, serum/hepatic triglycerides, total cholesterol, and FFAs to alleviate HFD-induced hepatic steatosis. According to the results of the hepatic transcription, Cidea and Cidec were identified as critical DEGs for promoting LD fusion and reducing FFAs β-oxidation in mitochondria and peroxisome resulting in hepatic steatosis, which was reversed by BXXXT. CONCLUSION BXXXT ameliorates HFD-induced hepatic steatosis and insulin resistance by increasing Cidea and Cidec-mediated mitochondrial and peroxisomal fatty acid oxidation, which may provide a potential strategy for therapy of NAFLD and T2DM.
Collapse
Affiliation(s)
- Qing-Song Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Beijing Tcmages Pharmaceutical Co., Ltd, Beijing 100000, China
| | - Wu Wen-Bin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li-Jun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Mei-Lin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fen Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fu-Er Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
11
|
Mahmoudi A, Moallem SA, Johnston TP, Sahebkar A. Liver Protective Effect of Fenofibrate in NASH/NAFLD Animal Models. PPAR Res 2022; 2022:5805398. [PMID: 35754743 PMCID: PMC9232374 DOI: 10.1155/2022/5805398] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is initiated by excessive fat buildup in the liver, affecting around 35% of the world population. Various circumstances contribute to the initiation and progression of NAFLD, and it encompasses a wide range of disorders, from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. Although several treatments have been proposed, there is no definitive cure for NAFLD. In recent decades, several medications related to other metabolic disorders have been evaluated in preclinical studies and in clinical trials due to the correlation of NAFLD with other metabolic diseases. Fenofibrate is a fibrate drug approved for dyslipidemia that could be used for modulation of hepatic fat accumulation, targeting peroxisome proliferator-activator receptors, and de novo lipogenesis. This drug offers potential therapeutic efficacy for NAFLD due to its capacity to decrease the accumulation of hepatic lipids, as well as its antioxidant, anti-inflammatory, and antifibrotic properties. To better elucidate the pathophysiological processes underlying NAFLD, as well as to test therapeutic agents/interventions, experimental animal models have been extensively used. In this article, we first reviewed experimental animal models that have been used to evaluate the protective effects of fenofibrate on NAFLD/NASH. Next, we investigated the impact of fenofibrate on the hepatic microcirculation in NAFLD and then summarized the beneficial effects of fenofibrate, as compared to other drugs, for the treatment of NAFLD. Lastly, we discuss possible adverse side effects of fenofibrate on the liver.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Lee S, Usman TO, Yamauchi J, Chhetri G, Wang X, Coudriet GM, Zhu C, Gao J, McConnell R, Krantz K, Rajasundaram D, Singh S, Piganelli J, Ostrowska A, Soto-Gutierrez A, Monga SP, Singhi AD, Muzumdar RH, Tsung A, Dong HH. Myeloid FoxO1 depletion attenuates hepatic inflammation and prevents nonalcoholic steatohepatitis. J Clin Invest 2022; 132:154333. [PMID: 35700043 PMCID: PMC9282937 DOI: 10.1172/jci154333] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatic inflammation is culpable for the evolution of asymptomatic steatosis to nonalcoholic steatohepatitis (NASH). Hepatic inflammation results from abnormal macrophage activation. We found that FoxO1 links overnutrition to hepatic inflammation by regulating macrophage polarization and activation. FoxO1 was upregulated in hepatic macrophages, correlating with hepatic inflammation, steatosis and fibrosis in mice and patients with NASH. Myeloid cell-conditional FoxO1 knockout skewed macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotypes, accompanied by the reduction of macrophage infiltration in liver. These effects mitigated overnutrition-induced hepatic inflammation and insulin resistance, contributing to improved hepatic metabolism and increased energy expenditure in myeloid cell FoxO1 knockout mice on HFD. When fed a NASH-inducing diet, myeloid cell FoxO1 knockout mice were protected from developing NASH, culminating in the reduction of hepatic inflammation, steatosis and fibrosis. Mechanistically, FoxO1 counteracts Stat6 to skew macrophage polarization from M2 toward M1 signatures to perpetuate hepatic inflammation in NASH. FoxO1 appears as a pivotal mediator of macrophage activation in response to overnutrition and a therapeutic target for ameliorating hepatic inflammation to stem the disease progression from benign steatosis to NASH.
Collapse
Affiliation(s)
- Sojin Lee
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Taofeek O Usman
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Jun Yamauchi
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Goma Chhetri
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Xingchun Wang
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Gina M Coudriet
- Department of Surgery, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Cuiling Zhu
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Jingyang Gao
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Riley McConnell
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Kyler Krantz
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Jon Piganelli
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Radhika H Muzumdar
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Allan Tsung
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, United States of America
| | - H Henry Dong
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| |
Collapse
|
13
|
Mahmoudi A, Jamialahmadi T, Johnston TP, Sahebkar A. Impact of fenofibrate on NAFLD/NASH: A genetic perspective. Drug Discov Today 2022; 27:2363-2372. [PMID: 35569762 DOI: 10.1016/j.drudis.2022.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), caused by an accumulation of fat deposits in hepatocytes, prevalently affects at least one-third of the world's population. The progression of this disorder can potentially include a spectrum of consecutive stages, specifically: steatosis, steatohepatitis and cirrhosis. Fenofibrate exhibits potential therapeutic efficacy for NAFLD owing to several properties, which include antioxidant, apoptotic, anti-inflammatory and antifibrotic activity. In the present review, we discuss the direct or indirect impact of fenofibrate on genes involved at various stages in the progression of NAFLD. Moreover, we have reviewed studies that compare fenofibrate with other drugs in treating NAFLD, as well as recent clinical trials, in an attempt to identify reliable scientific and clinical evidence concerning the therapeutic effects and benefits of fenofibrate on NAFLD. Teaser.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Zhang J, Cheng P, Dai W, Ji J, Wu L, Feng J, Wu J, Yu Q, Li J, Guo C. Fenofibrate Ameliorates Hepatic Ischemia/Reperfusion Injury in Mice: Involvements of Apoptosis, Autophagy, and PPAR- α Activation. PPAR Res 2021; 2021:6658944. [PMID: 33603777 PMCID: PMC7870311 DOI: 10.1155/2021/6658944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/22/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatic ischemia and reperfusion injury is characterized by hepatocyte apoptosis, impaired autophagy, and oxidative stress. Fenofibrate, a commonly used antilipidemic drug, has been verified to exert hepatic protective effects in other cells and animal models. The purpose of this study was to identify the function of fenofibrate on mouse hepatic IR injury and discuss the possible mechanisms. A segmental (70%) hepatic warm ischemia model was established in Balb/c mice. Serum and liver tissue samples were collected for detecting pathological changes at 2, 8, and 24 h after reperfusion, while fenofibrate (50 mg/kg, 100 mg/kg) was injected intraperitoneally 1 hour prior to surgery. Compared to the IR group, pretreatment of FF could reduce the inflammatory response and inhibit apoptosis and autophagy. Furthermore, fenofibrate can activate PPAR-α, which is associated with the phosphorylation of AMPK.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Ping Cheng
- Department of Gerontology, Shanghai Minhang District Central Hospital, Shanghai 201100, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
15
|
Zhao Q, Tang P, Zhang T, Huang JF, Xiao XR, Zhu WF, Gonzalez FJ, Li F. Celastrol ameliorates acute liver injury through modulation of PPARα. Biochem Pharmacol 2020; 178:114058. [PMID: 32470546 PMCID: PMC7377972 DOI: 10.1016/j.bcp.2020.114058] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
Abstract
Celastrol, derived from the roots of the Tripterygium Wilfordi, has attracted interest for its potential anti-inflammatory and lipid-lowering activities. In the present study, the protective effect of celastrol on carbon tetrachloride (CCl4)-induced acute liver injury was investigated. Celastrol improved the increased transaminase activity, inflammation, and oxidative stress induced by CCl4, resulting in improved metabolic disorders found in mice with liver injury. Dual-luciferase reporter assays and primary hepatocyte studies demonstrated that the peroxisome proliferator-activated receptor α (PPARα) signaling mediated the protective effect of celastrol, which was not observed in Ppara-null mice, and co-treatment of wild-type mice with the PPARα antagonist GW6471. Mechanistically, PPARα deficiency potentiated CCl4-induced liver injury through a deoxycholic acid (DCA)-EGR1-inflammatory factor axis. These data demonstrate a novel role for celastrol in protection against acute liver injury through modulating PPARα signaling.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ping Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Feng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei-Feng Zhu
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Department of Gastroenterology and Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
16
|
Heinecke F, Mazzucco MB, Fornes D, Roberti S, Jawerbaum A, White V. The offspring from rats fed a fatty diet display impairments in the activation of liver peroxisome proliferator activated receptor alpha and features of fatty liver disease. Mol Cell Endocrinol 2020; 511:110818. [PMID: 32298755 DOI: 10.1016/j.mce.2020.110818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
Maternal obesity programs liver derangements similar to those of NAFLD. Our main goal was to evaluate whether these liver anomalies were related to aberrant PPARα function. Obesity was induced in female Albino-Wistar rats by a fatty diet (FD rats). Several parameters related to NAFLD were evaluated in both plasma and livers from fetuses of 21 days of gestation and 140-day-old offspring. FD fetuses and offspring developed increased levels of AST and ALT, signs of inflammation and oxidative and nitrative stress-related damage. FD offspring showed dysregulation of Plin2, CD36, Cyp4A, Aco, Cpt-1, Hadha and Acaa2 mRNA levels, genes involved in lipid metabolism and no catabolic effect of the PPARα agonist clofibrate. These results suggest that the FD offspring is prone to develop fatty liver, a susceptibility that can be linked to PPARα dysfunction, and that this could in turn be related to the liver impairments programmed by maternal obesity.
Collapse
Affiliation(s)
- Florencia Heinecke
- Laboratory of Reproduction and Metabolism, Centre for Pharmacological and Botanical Studies (CEFYBO-CONICET), School of Medicine University of Buenos Aires, Argentina
| | - María Belén Mazzucco
- Laboratory of Reproduction and Metabolism, Centre for Pharmacological and Botanical Studies (CEFYBO-CONICET), School of Medicine University of Buenos Aires, Argentina
| | - Daiana Fornes
- Laboratory of Reproduction and Metabolism, Centre for Pharmacological and Botanical Studies (CEFYBO-CONICET), School of Medicine University of Buenos Aires, Argentina
| | - Sabrina Roberti
- Laboratory of Reproduction and Metabolism, Centre for Pharmacological and Botanical Studies (CEFYBO-CONICET), School of Medicine University of Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Laboratory of Reproduction and Metabolism, Centre for Pharmacological and Botanical Studies (CEFYBO-CONICET), School of Medicine University of Buenos Aires, Argentina
| | - Verónica White
- Laboratory of Reproduction and Metabolism, Centre for Pharmacological and Botanical Studies (CEFYBO-CONICET), School of Medicine University of Buenos Aires, Argentina.
| |
Collapse
|
17
|
Herrera-Marcos LV, Sancho-Knapik S, Gabás-Rivera C, Barranquero C, Gascón S, Romanos E, Martínez-Beamonte R, Navarro MA, Surra JC, Arnal C, García-de-Jalón JA, Rodríguez-Yoldi MJ, Tena-Sempere M, Sánchez-Ramos C, Monsalve M, Osada J. Pgc1a is responsible for the sex differences in hepatic Cidec/Fsp27β mRNA expression in hepatic steatosis of mice fed a Western diet. Am J Physiol Endocrinol Metab 2020; 318:E249-E261. [PMID: 31846369 DOI: 10.1152/ajpendo.00199.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatic fat-specific protein 27 [cell death-inducing DNA fragmentation effector protein C (Cidec)/Fsp27] mRNA levels have been associated with hepatic lipid droplet extent under certain circumstances. To address its hepatic expression under different dietary conditions and in both sexes, apolipoprotein E (Apoe)-deficient mice were subjected to different experimental conditions for 11 wk to test the influence of cholesterol, Western diet, squalene, oleanolic acid, sex, and surgical castration on Cidec/Fsp27 mRNA expression. Dietary cholesterol increased hepatic Cidec/Fsp27β expression, an effect that was suppressed when cholesterol was combined with saturated fat as represented by Western diet feeding. Using the latter diet, neither oleanolic acid nor squalene modified its expression. Females showed lower levels of hepatic Cidec/Fsp27β expression than males when they were fed Western diets, a result that was translated into a lesser amount of CIDEC/FSP27 protein in lipid droplets and microsomes. This was also confirmed in low-density lipoprotein receptor (Ldlr)-deficient mice. Incubation with estradiol resulted in decreased Cidec/Fsp27β expression in AML12 cells. Whereas male surgical castration did not modify the expression, ovariectomized females did show increased levels compared with control females. Females also showed increased expression of peroxisome proliferator-activated receptor-γ coactivator 1-α (Pgc1a), suppressed by ovariectomy, and the values were significantly and inversely associated with those of Cidec/Fsp27β. When Pgc1a-deficient mice were used, the sex differences in Cidec/Fsp27β expression disappeared. Therefore, hepatic Cidec/Fsp27β expression has a complex regulation influenced by diet and sex hormonal milieu. The mRNA sex differences are controlled by Pgc1a.
Collapse
Affiliation(s)
- Luis V Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Sara Sancho-Knapik
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Clara Gabás-Rivera
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Gascón
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Romanos
- Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María A Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - José A García-de-Jalón
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - María J Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Tena-Sempere
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba e Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Sánchez-Ramos
- Instituto de Investigaciones Biomedicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomedicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Obesity is a pandemic, yet preventable healthcare problem. Insulin resistance, diabetes mellitus, dyslipidemia, and cardiovascular complications are core manifestation of obesity. While adipose tissue is a primary site of energy storage, it is also an endocrine organ, secreting a large number of adipokines and cytokines. Nonetheless in obesity, the secretion of cytokines and free fatty acids increases significantly and is associated with the degree of adiposity and insulin resistance. Fat-specific protein 27 (FSP27) has emerged as one of the major proteins that promote physiological storage of fat in adipose tissue. RECENT FINDINGS Review of number of recent findings suggests that FSP27 plays a crucial role in physiological storage of fat within the adipose tissue especially in humans. However, in disease conditions such as obesity, FSP27 may contribute to ectopic fat accumulation in non-adipose tissue. More studies are required to highlight the tissue-specific role of FSP27, especially in humans.
Collapse
Affiliation(s)
- Shakun Karki
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, 88 East Newton St, Boston, MA, 02118, USA.
| |
Collapse
|
19
|
Hu DD, Zhao Q, Cheng Y, Xiao XR, Huang JF, Qu Y, Li X, Tang YM, Bao WM, Yang JH, Jiang T, Hu JP, Gonzalez FJ, Li F. The Protective Roles of PPARα Activation in Triptolide-Induced Liver Injury. Toxicol Sci 2019; 171:1-12. [PMID: 31241159 PMCID: PMC11514144 DOI: 10.1093/toxsci/kfz146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Triptolide (TP), one of the main active ingredients in Tripterygium wilfordii Hook F, is clinically used to treat immune diseases but is known to cause liver injury. The aim of this study was to investigate the biomarkers for TP-induced hepatotoxicity in mice and to determine potential mechanisms of its liver injury. LC/MS-based metabolomics was used to determine the metabolites that were changed in TP-induced liver injury. The accumulation of long-chain acylcarnitines in serum indicated that TP exposure disrupted endogenous peroxisome proliferator-activated receptor α (PPARα) signaling. Triptolide-induced liver injury could be alleviated by treatment of mice with the PPARα agonist fenofibrate, whereas the PPARα antagonist GW6471 increased hepatotoxicity. Furthermore, fenofibrate did not protect Ppara-/- mice from TP-induced liver injury, suggesting an essential role for the PPARα in the protective effect of fenofibrate. Elevated long-chain acylcarnitines may protect TP-induced liver injury through activation of the NOTCH-NRF2 pathway as revealed in primary mouse hepatocytes and in vivo. In agreement with these observations in mice, the increase in long-chain acylcarnitines was observed in the serum of patients with cholestatic liver injury compared with healthy volunteers. These data demonstrated the role of PPARα and long-chain acylcarnitines in TP-induced hepatotoxicity, and suggested that modulation of PPARα may protect against drug-induced liver injury.
Collapse
Affiliation(s)
- Dan-Dan Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming 650500, China
| | - Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan Cheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xue-Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jian-Feng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan Qu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xian Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming 650500, China
| | - Ying-Mei Tang
- Department of Gastroenterology, Yunnan Research Center for Liver Diseases, The 2nd Affiliated Hospital of Kunming Medical University, Kunming 650033, China
| | - Wei-Min Bao
- Department of General Surgery, Yunnan Provincial 1st People’s Hospital, Kunming 650032, China
| | - Jin-Hui Yang
- Department of Gastroenterology, Yunnan Research Center for Liver Diseases, The 2nd Affiliated Hospital of Kunming Medical University, Kunming 650033, China
| | - Tao Jiang
- Department of Gastroenterology, Yunnan Research Center for Liver Diseases, The 2nd Affiliated Hospital of Kunming Medical University, Kunming 650033, China
| | - Jia-Peng Hu
- Clinical Laboratory, The 2nd Affiliated Hospital of Kunming Medical University, Kunming 650033, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland 20892
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
20
|
Mineo C. A Novel Proangiogenic Function of Fsp27 in Endothelium: You Only Live Thrice? J Am Heart Assoc 2019; 8:e013042. [PMID: 31433705 PMCID: PMC6585346 DOI: 10.1161/jaha.119.013042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
See Article Karki et al.
Collapse
Affiliation(s)
- Chieko Mineo
- Department of PediatricsCenter for Pulmonary and Vascular BiologyUniversity of Texas Southwestern Medical CenterDallasTX
| |
Collapse
|
21
|
Sans A, Bonnafous S, Rousseau D, Patouraux S, Canivet CM, Leclere PS, Tran-Van-Nhieu J, Luci C, Bailly-Maitre B, Xu X, Lee AH, Minehira K, Anty R, Tran A, Iannelli A, Gual P. The Differential Expression of Cide Family Members is Associated with Nafld Progression from Steatosis to Steatohepatitis. Sci Rep 2019; 9:7501. [PMID: 31097771 PMCID: PMC6522528 DOI: 10.1038/s41598-019-43928-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 05/03/2019] [Indexed: 01/22/2023] Open
Abstract
Improved understanding of the molecular mechanisms responsible for the progression from a “non-pathogenic” steatotic state to Non-Alcoholic Steatohepatitis is an important clinical requirement. The cell death-inducing DFF45 like effector (CIDE) family members (A, B and FSP27) regulate hepatic lipid homeostasis by controlling lipid droplet growth and/or VLDL production. However, CIDE proteins, particularly FSP27, have a dual role in that they also regulate cell death. We here report that the hepatic expression of CIDEA and FSP27 (α/β) was similarly upregulated in a dietary mouse model of obesity-mediated hepatic steatosis. In contrast, CIDEA expression decreased, but FSP27-β expression strongly increased in a dietary mouse model of steatohepatitis. The inverse expression pattern of CIDEA and FSP27β was amplified with the increasing severity of the liver inflammation and injury. In obese patients, the hepatic CIDEC2 (human homologue of mouse FSP27β) expression strongly correlated with the NAFLD activity score and liver injury. The hepatic expression of CIDEA tended to increase with obesity, but decreased with NAFLD severity. In hepatic cell lines, the downregulation of FSP27β resulted in the fractionation of lipid droplets, whereas its overexpression decreased the expression of the anti-apoptotic BCL2 marker. This, in turn, sensitized cells to apoptosis in response to TNF α and saturated fatty acid. Considered together, our animal, human and in vitro studies indicate that differential expression of FSP27β/CIDEC2 and CIDEA is related to NAFLD progression and liver injury.
Collapse
Affiliation(s)
- Arnaud Sans
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France.,Université Côte d'Azur, CHU, INSERM, U1065, C3M, Nice, France
| | - Stéphanie Bonnafous
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France.,Université Côte d'Azur, CHU, INSERM, U1065, C3M, Nice, France
| | | | - Stéphanie Patouraux
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France.,Université Côte d'Azur, CHU, INSERM, U1065, C3M, Nice, France
| | - Clémence M Canivet
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France.,Université Côte d'Azur, CHU, INSERM, U1065, C3M, Nice, France
| | | | - Jeanne Tran-Van-Nhieu
- HU Henri Mondor, Department of Pathology, AP-HP - Université Paris Est Créteil, Créteil, France
| | - Carmelo Luci
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France
| | | | - Xu Xu
- Weill Cornell Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, New York, USA
| | - Ann-Hwee Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, USA
| | - Kaori Minehira
- University of Lausanne, Department of Physiology, Lausanne, Switzerland
| | - Rodolphe Anty
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France.,Université Côte d'Azur, CHU, INSERM, U1065, C3M, Nice, France
| | - Albert Tran
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France.,Université Côte d'Azur, CHU, INSERM, U1065, C3M, Nice, France
| | - Antonio Iannelli
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France.,Université Côte d'Azur, CHU, INSERM, U1065, C3M, Nice, France
| | - Philippe Gual
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France.
| |
Collapse
|
22
|
Zhao X, Xue J, Xie M. Osthole inhibits oleic acid/lipopolysaccharide-induced lipid accumulation and inflammatory response through activating PPARα signaling pathway in cultured hepatocytes. Exp Gerontol 2019; 119:7-13. [PMID: 30659956 DOI: 10.1016/j.exger.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/29/2018] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
Osthole, a coumarin derivative, can increase hepatic peroxisome proliferator-activated receptor α (PPARα) expression and reduce hepatic steatosis and inflammatory response in rats with non-alcoholic steatohepatitis (NASH). In this study, a cell model of NASH was induced with oleic acid (OA)/lipopolysaccharide (LPS) and treated for 36 h with different osthole concentrations. Results showed that intracellular lipid and inflammatory cytokine levels gradually decreased after osthole treatment. These effects, however, were abolished or attenuated after PPARα gene silencing. Accordingly, PPARα gene silencing reversed the osthole-mediated expressions of proteins involved in lipid synthesis and fatty acid oxidation. PPARα gene silencing also abrogated the inhibitory effect of osthole on nuclear factor kappa B p65 protein expression. These findings demonstrate that osthole activates PPARα signaling pathway to inhibit lipid accumulation and inflammatory response in OA/LPS-stimulated hepatocytes.
Collapse
Affiliation(s)
- Xi Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226001, Jiangsu Province, China; Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Jie Xue
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Meilin Xie
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
23
|
Wang J, Yan C, Xu C, Chua BT, Li P, Chen FJ. Polybasic RKKR motif in the linker region of lipid droplet (LD)-associated protein CIDEC inhibits LD fusion activity by interacting with acidic phospholipids. J Biol Chem 2018; 293:19330-19343. [PMID: 30361435 DOI: 10.1074/jbc.ra118.004892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LDs) are intracellular organelles and a central site for lipid synthesis, storage, and mobilization. The size of LDs reflects the dynamic regulation of lipid metabolism in cells. Previously, we found that cell death-inducing DFFA-like effector C (CIDEC) mediates LD fusion and growth by lipid transfer through LD-LD contact sites in adipocytes and hepatocytes. The CIDE-N domains of CIDEC molecules form homodimers, whereas the CIDE-C domain plays an important role in LD targeting and enrichment. Here, using targeted protein deletions and GFP expression coupled with fluorescence microscopy, we identified a polybasic RKKR motif in the linker region that connects the CIDE-N and CIDE-C domains of CIDEC and functions as a regulatory motif for LD fusion. We found that deletion of the linker region or mutation of the RKKR motif increases the formation of supersized LDs compared with LD formation in cells with WT CIDEC. This enhanced LD fusion activity required the interaction between CIDE-N domains. Mechanistically, we found that the RKKR motif interacts with acidic phospholipids via electrostatic attraction. Loss of this motif disrupted the protein-lipid interaction, resulting in enhanced lipid droplet fusion activity and thus formation of larger LDs. In summary, we have uncovered a CIDEC domain that regulates LD fusion activity, a finding that provides insights into the inhibitory regulation of LD fusion through CIDEC-lipid interactions.
Collapse
Affiliation(s)
- Jia Wang
- From the State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Chengsong Yan
- the State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, and
| | - Chenqi Xu
- the State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, and
| | - Boon Tin Chua
- the Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Peng Li
- From the State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084,
| | - Feng-Jung Chen
- From the State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, .,the Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| |
Collapse
|
24
|
Rodriguez‐Cuenca S, Carobbio S, Barceló‐Coblijn G, Prieur X, Relat J, Amat R, Campbell M, Dias AR, Bahri M, Gray SL, Vidal‐Puig A. P465L-PPARγ mutation confers partial resistance to the hypolipidaemic action of fibrates. Diabetes Obes Metab 2018; 20:2339-2350. [PMID: 29790245 PMCID: PMC6589924 DOI: 10.1111/dom.13370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022]
Abstract
AIMS Familial partial lipodystrophic syndrome 3 (FPLD3) is associated with mutations in the transcription factor PPARγ. One of these mutations, the P467L, confers a dominant negative effect. We and others have previously investigated the pathophysiology associated with this mutation using a humanized mouse model that recapitulates most of the clinical symptoms observed in patients who have been phenotyped under different experimental conditions. One of the key clinical manifestations observed, both in humans and mouse models, is the ectopic accumulation of fat in the liver. With this study we aim to dissect the molecular mechanisms that contribute to the excessive accumulation of lipids in the liver and characterize the negative effect of this PPARγ mutation on the activity of PPARα in vivo when activated by fibrates. MATERIAL AND METHODS P465L-PPAR mutant and wild-type mice were divided into 8 experimental groups, 4 different conditions per genotype. Briefly, mice were fed a chow diet or a high-fat diet (HFD 45% Kcal from fat) for a period of 28 days and treated with WY14643 or vehicle for five days before culling. At the end of the experiment, tissues and plasma were collected. We performed extensive gene expression, fatty acid composition and histological analysis in the livers. The serum collected was used to measure several metabolites and to perform basic lipoprotein profile. RESULTS P465L mice showed increased levels of insulin and free fatty acids (FFA) as well as increased liver steatosis. They also exhibit decreased levels of very low density lipoproteins (VLDL) when fed an HFD. We also provide evidence of impaired expression of a number of well-established PPARα target genes in the P465L mutant livers. CONCLUSION Our data demonstrate that P465L confers partial resistance to the hypolipidemic action of fibrates. These results show that the fatty liver phenotype observed in P465L mutant mice is not only the consequence of dysfunctional adipose tissue, but also involves defective liver metabolism. All in all, the deleterious effects of P465L-PPARγ mutation may be magnified by their collateral negative effect on PPARα function.
Collapse
Affiliation(s)
- Sergio Rodriguez‐Cuenca
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
| | - Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxtonUK
| | - Gwendolyn Barceló‐Coblijn
- Institut d'Investigació Sanitària Illes Balears (IdISBa, Balearic Islands Health Research Institute)PalmaSpain
| | - Xavier Prieur
- Département des Sciences de la Vie, L'Institut du Thorax, INSERM, CNRSUniversité de NantesNantesFrance
| | - Joana Relat
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Science, Food and Nutrition Torribera Campus. University of Barcelona (UB), Santa Coloma de Gramenet (Spain); INSA‐UB, Nutrition and Food Safety Research InstituteUniversity of BarcelonaBarcelonaSpain
| | - Ramon Amat
- Cell Signaling Unit, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Mark Campbell
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
| | - Ana Rita Dias
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
| | - Myriam Bahri
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxtonUK
| | - Sarah L. Gray
- Northern Medical ProgramUniversity of Northern British ColumbiaPrince GeorgeCanada
| | - Antonio Vidal‐Puig
- University of Cambridge Metabolic Research Laboratories, Level 4Wellcome Trust‐MRC Institute of Metabolic ScienceCambridgeUK
| |
Collapse
|
25
|
Rajamoorthi A, Lee RG, Baldán Á. Therapeutic silencing of FSP27 reduces the progression of atherosclerosis in Ldlr -/- mice. Atherosclerosis 2018; 275:43-49. [PMID: 29859472 PMCID: PMC6113075 DOI: 10.1016/j.atherosclerosis.2018.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/08/2018] [Accepted: 05/23/2018] [Indexed: 11/22/2022]
Abstract
Background and aims Obesity, hepatosteatosis, and hypertriglyceridemia are components of the metabolic syndrome and independent risk factors for cardiovascular disease. The lipid droplet-associated protein CIDEC (cell death-inducing DFFA-like effector C), known in mice as FSP27 (fat-specific protein 27), plays a key role in maintaining triacylglyceride (TAG) homeostasis in adipose tissue and liver, and controls circulating TAG levels in mice. Importantly, mutations and SNPs in CIDEC are associated with dyslipidemia and altered metabolic function in humans. Here we tested whether systemic silencing of Fsp27 using antisense oligonucleotides (ASOs) was atheroprotective in LDL receptor knock-out (Ldlr−/−) mice. Methods Atheroprone Ldlr−/− mice were fed a high-fat, high-cholesterol diet for 12 weeks while simultaneously dosed with saline, ASO-ctrl, or ASO-Fsp27. Results Data show that, compared to control treatments, silencing Fsp27 significantly reduced body weight gain and visceral adiposity, prevented diet-induced hypertriglyceridemia, and reduced athero-sclerotic lesion size both in en face aortas and in the aortic root. Conclusions Our findings suggest that therapeutic silencing of Fsp27 with ASOs may be beneficial in the prevention and management of atherogenic disease in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Ananthi Rajamoorthi
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Richard G Lee
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - Ángel Baldán
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University, Saint Louis, MO, 63104, USA; Center for Cardiovascular Research, Saint Louis, MO, 63104, USA; Liver Center, Saint Louis University, Saint Louis, MO, 63104, USA.
| |
Collapse
|