1
|
Llorente A, Arora GK, Murad R, Emerling BM. Phosphoinositide kinases in cancer: from molecular mechanisms to therapeutic opportunities. Nat Rev Cancer 2025; 25:463-487. [PMID: 40181165 DOI: 10.1038/s41568-025-00810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
Phosphoinositide kinases, extending beyond the well-known phosphoinositide 3-kinase (PI3K), are key players in the dynamic and site-specific phosphorylation of lipid phosphoinositides. Unlike PI3Ks, phosphatidylinositol 4-kinases (PI4Ks) and phosphatidylinositol phosphate kinases (PIPKs) do not usually exhibit mutational alterations, but mostly show altered expression in tumours, orchestrating a broad spectrum of signalling, metabolic and immune processes, all of which are crucial in the pathogenesis of cancer. Dysregulation of PI4Ks and PIPKs has been associated with various malignancies, which has sparked considerable interest towards their therapeutic targeting. In this Review we summarize the current understanding of the lesser-studied phosphoinositide kinase families, PI4K and PIPK, focusing on their functions and relevance in cancer. In addition, we provide an overview of ongoing efforts driving the preclinical and clinical development of phosphoinositide kinase-targeting molecules.
Collapse
Affiliation(s)
- Alicia Llorente
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gurpreet K Arora
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rabi Murad
- Bioformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Brooke M Emerling
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Yue Q, Johnsson M, Wilson PW, Andersson B, Schmutz M, Benavides C, Dominguez-Gasca N, Sanchez-Rodriguez E, Rodriguez-Navarro AB, Dunn IC, de Koning DJ. Genetic markers associated with bone strength and density in Rhode Island Red laying hens. Poult Sci 2025; 104:105246. [PMID: 40339236 DOI: 10.1016/j.psj.2025.105246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025] Open
Abstract
Damage to the keel bone in commercial laying hens represent one of the greatest welfare issues in laying hens. This study aims to identify the DNA markers and candidate genes for bone strength and density traits in a Rhode Island Red laying hen population. We conducted genome-wide association studies (GWAS) on bone quality traits using a sample of 925 Rhode Island Red laying hens genotyped with a genotyping array consisting of 60 000 DNA markers. With a univariate linear mixed model, we identified 52 suggestive genetic markers located within 28 candidate genes that are associated with the humerus, keel, and tibia strength and density. We also found overlaps between the GWAS results for medullary bone score and tibia strength and density with published quantitative trait loci (QTL) for eggshell effective layer thickness and abdominal fat weight, respectively. Heritability estimates for the humerus stiffness, tibia stiffness, medullary bone score and minor bone diameter ranged from 0.21 to 0.34. Annotation term enrichment analysis of genes within 2 Megabases of suggestive markers found that mTOR signalling pathway, tryptophan metabolism, TGF-β signalling pathway, and apoptosis were significantly enriched. These loci do not overlap previously published associations, and thus appear to be novel.
Collapse
Affiliation(s)
- Qiaoxian Yue
- Shanxi Agricultural University, Shanxi 030801, China
| | - Martin Johnsson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023 750 07, Uppsala 756 51, Sweden
| | - Peter W Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | | | | | - Cristina Benavides
- Departamento de Mineralogia y Petrologia, Universidad de Granada, Granada 18002, Spain
| | | | | | | | - Ian C Dunn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Dirk-Jan de Koning
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023 750 07, Uppsala 756 51, Sweden.
| |
Collapse
|
3
|
Takita S, Harikrishnan H, Miyagi M, Imanishi Y. Transcriptional downregulation of rhodopsin is associated with desensitization of rods to light-induced damage in a murine model of retinitis pigmentosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.646684. [PMID: 40236225 PMCID: PMC11996569 DOI: 10.1101/2025.04.03.646684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Class I rhodopsin mutations are known for some of the most severe forms of vision impairments in dominantly inherited rhodopsin retinitis pigmentosa. They disrupt the VxPx transport signal, which is required for the proper localization of rhodopsin to the outer segments. While various studies have focused on the light-dependent toxicity of mutant rhodopsin, it remains unclear whether and how these mutations exert dominant-negative effects. Using the class I Rho Q344X rhodopsin knock-in mouse model, we characterized the expression of rhodopsin and other genes by RNA sequencing and qPCR. Those studies indicated that rhodopsin is the most prominently downregulated photoreceptor-specific gene in Rho Q344X/+ mice. Rhodopsin is downregulated significantly prior to the onset of rod degeneration, whereas downregulation of other phototransduction genes, transducin α , and Pde6α, occurs after the onset and correlate with the degree of rod cell loss. Those studies indicated that the mutant rhodopsin gene causes downregulation of wild-type rhodopsin, imposing an mRNA-level dominant negative effect. Moreover, it causes downregulation of the mutant mRNA itself, mitigating the toxicity. The observed dominant effect is likely common among rhodopsin retinitis pigmentosa as we found a similar rhodopsin downregulation in the major class II rhodopsin mutant model, Rho P23H/+ mice, in which mutant rhodopsin is prone to misfold. Potentially due to mitigated toxicity by reduced rhodopsin expression, Rho Q344X/+ mice did not exhibit light-dependent exacerbation of rod degeneration, even after continuous exposure of mice for 5 days at 3000 lux. Thus, this study describes a novel form of dominant negative effect in inherited neurodegenerative disorders.
Collapse
|
4
|
Fan M, Li N, Huang L, Chen C, Dong X, Gao W. Exploring Potential Drug Targets in Multiple Cardiovascular Diseases: A Study Based on Proteome-Wide Mendelian Randomization and Colocalization Analysis. Cardiovasc Ther 2025; 2025:5711316. [PMID: 40026415 PMCID: PMC11870767 DOI: 10.1155/cdr/5711316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Background: Cardiovascular diseases (CVDs) encompass a group of diseases that affect the heart and/or blood vessels, making them the leading cause of global mortality. In our study, we performed proteome-wide Mendelian randomization (MR) and colocalization analyses to identify novel therapeutic protein targets for CVDs and evaluate the potential drug-related protein side effects. Methods: We conducted a comprehensive proteome-wide MR study to assess the causal relationship between plasma proteins and the risk of CVDs. Summary-level data for 4907 circulating protein levels were extracted from a large-scale protein quantitative trait loci (pQTL) study involving 35,559 individuals. Additionally, genome-wide association study (GWAS) data for CVDs were extracted from the UK Biobank and the Finnish database. Colocalization analysis was utilized to identify causal variants shared between plasma proteins and CVDs. Finally, we conducted a comprehensive phenome-wide association study (PheWAS) using the R10 version of the Finnish database. This study was aimed at examining the potential drug-related protein side effects in the treatment of CVDs. A total of 2408 phenotypes were included in the analysis, categorized into 44 groups. Results: The research findings indicate the following associations: (1) In coronary artery disease (CAD), the plasma proteins A4GNT, COL6A3, KLC1, CALB2, KPNA2, MSMP, and ADH1B showed a positive causal relationship (p-fdr < 0.05). LAYN and GCKR exhibited a negative causal relationship (p-fdr < 0.05). (2) In chronic heart failure (CHF), PLG demonstrated a positive causal relationship (p-fdr < 0.05), while AZGP1 displayed a negative causal relationship (p-fdr < 0.05). (3) In ischemic stroke (IS), ALDH2 exhibited a positive causal relationship (p-fdr < 0.05), while PELO showed a negative causal relationship (p-fdr < 0.05). (4) In Type 2 diabetes (T2DM), the plasma proteins MCL1, SVEP1, PIP4K2A, RFK, HEXIM2, ALDH2, RAB1A, APOE, ANGPTL4, JAG1, FGFR1, and MLN demonstrated a positive causal relationship (p-fdr < 0.05). PTPN9, SNUPN, VAT1, COMT, CCL27, BMP7, and MSMP displayed a negative causal relationship (p-fdr < 0.05). Colocalization analysis conclusively identified that AZGP1, ALDH2, APOE, JAG1, MCL1, PTPN9, PIP4K2A, SNUPN, and RAB1A share a single causal variant with CVDs (PPH3 + PPH4 > 0.8). Further phenotype-wide association studies have shown some potential side effects of these nine targets (p-fdr < 0.05). Conclusions: This study identifies plasma proteins with significant causal associations with CVDs, providing a more comprehensive understanding of potential therapeutic targets. These findings contribute to our knowledge of the underlying mechanisms and offer insights into potential avenues for treatment.
Collapse
Affiliation(s)
- Maoxia Fan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Internal Medicine Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Na Li
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong Province, China
| | - Libin Huang
- Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong Province, China
| | - Chen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xueyan Dong
- Internal Medicine Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Wulin Gao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Internal Medicine Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| |
Collapse
|
5
|
Raj D, Nair AV, Singh A, Basu S, Sarkar K, Sharma J, Sharma S, Sharma S, Rathore M, Singh S, Prakash S, Simran, Sahu S, Kaushik AC, Siddiqi MI, Ghoshal UC, Chandra T, Bhosale V, Dasgupta A, Gupta SK, Verma S, Guha R, Chakravortty D, Ammanathan V, Lahiri A. Salmonella Typhimurium effector SseI regulates host peroxisomal dynamics to acquire lysosomal cholesterol. EMBO Rep 2025; 26:656-689. [PMID: 39695325 PMCID: PMC11811301 DOI: 10.1038/s44319-024-00328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 12/20/2024] Open
Abstract
Salmonella enterica serotype Typhimurium (Salmonella) resides and multiplies intracellularly in cholesterol-rich compartments called Salmonella-containing vacuoles (SCVs) with actin-rich tubular extensions known as Salmonella-induced filaments (SIFs). SCV maturation depends on host-derived cholesterol, but the transport mechanism of low-density lipoprotein (LDL)-derived cholesterol to SCVs remains unclear. Here we find that peroxisomes are recruited to SCVs and function as pro-bacterial organelle. The Salmonella effector protein SseI is required for the interaction between peroxisomes and the SCV. SseI contains a variant of the PTS1 peroxisome-targeting sequence, GKM, localizes to the peroxisomes and activates the host Ras GTPase, ADP-ribosylation factor-1 (ARF-1). Activation of ARF-1 leads to the recruitment of phosphatidylinsolitol-5-phosphate-4 kinase and the generation of phosphatidylinsolitol-4-5-bisphosphate on peroxisomes. This enhances the interaction of peroxisomes with lysosomes and allows for the transfer of lysosomal cholesterol to SCVs using peroxisomes as a bridge. Salmonella infection of peroxisome-depleted cells leads to the depletion of cholesterol on the SCVs, resulting in reduced SIF formation and bacterial proliferation. Taken together, our work identified peroxisomes as a target of Salmonella secretory effectors, and as conveyance of host cholesterol to enhance SCV stability, SIF integrity, and intracellular bacterial growth.
Collapse
Affiliation(s)
- Desh Raj
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Swarnali Basu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Kabita Sarkar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jyotsna Sharma
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shiva Sharma
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanmi Sharma
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Manisha Rathore
- Laboratory Animal Facility Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shriya Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shakti Prakash
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Simran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Neuroscience & Ageing Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shikha Sahu
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medicine, Lucknow, India
| | - Aman Chandra Kaushik
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medicine, Lucknow, India
| | - Tulika Chandra
- Department of Transfusion Medicine, King Georges' Medical University, Lucknow, India
| | - Vivek Bhosale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Arunava Dasgupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shashi Kumar Gupta
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sonia Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Neuroscience & Ageing Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajdeep Guha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Laboratory Animal Facility Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
| | - Veena Ammanathan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Amit Lahiri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
6
|
Guo Y, Zhao Z, Ge F, Yu H, Lyu C, Liu Y, Li J, Chen Y. Deciphering the Population Characteristics of Leiqiong Cattle Using Whole-Genome Sequencing Data. Animals (Basel) 2025; 15:342. [PMID: 39943110 PMCID: PMC11815765 DOI: 10.3390/ani15030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Long-term geographic isolation and breeding programs both influence population characteristics. Leiqiong cattle, a native breed from the southernmost region of China, are renowned for disease and heat resistance, with two subgroups on Hainan Island and the Leizhou Peninsula. However, the genomic differences between them remain unexplored. In this study, we conducted genomic comparisons using whole-genome sequencing data from the two subgroups of Leiqiong cattle and three commercial breeds to assess their population structures. Leiqiong cattle in Hainan exhibited lower genetic diversity and a pure ancestral content due to their isolation from the mainland. In contrast, the subgroup in Guangdong displayed higher genetic diversity and mixed ancestry, influenced by the intrusion of commercial breeds. The genetic divergence between them was evaluated by estimating a genetic distance of 0.08 and a split time of 3400 to 4250 years ago, highlighting the role of geographical barriers in speciation. Notably, two candidate genes were identified through selection sweeps, including PIP4K2A, potentially related to immunity, and TNFSF4, possibly involved in hair follicle development. Our findings reveal the different genetic structures and genomic characteristics in the two subgroups of Leiqiong cattle, providing valuable insights into their evolutionary history and establishing a foundation for future breeding strategies.
Collapse
Affiliation(s)
- Yingwei Guo
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.G.); (F.G.); (C.L.); (Y.L.)
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (H.Y.)
| | - Fei Ge
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.G.); (F.G.); (C.L.); (Y.L.)
| | - Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Z.Z.); (H.Y.)
| | - Chenxiao Lyu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.G.); (F.G.); (C.L.); (Y.L.)
- Institute of Animal Husbandry and Veterinary Science, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yuxin Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.G.); (F.G.); (C.L.); (Y.L.)
| | - Junya Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.G.); (F.G.); (C.L.); (Y.L.)
| | - Yan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.G.); (F.G.); (C.L.); (Y.L.)
| |
Collapse
|
7
|
Takeuchi K, Nagase L, Kageyama S, Kanoh H, Oshima M, Ogawa-Iio A, Ikeda Y, Fujii Y, Kondo S, Osaka N, Masuda T, Ishihara T, Nakamura Y, Hirota Y, Sasaki T, Senda T, Sasaki AT. PI5P4K inhibitors: promising opportunities and challenges. FEBS J 2025. [PMID: 39828902 DOI: 10.1111/febs.17393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/30/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4K), also known as type II PIPKs or PIPKIIs, convert the lipid second messenger PI5P to PI(4,5)P2. The PI5P4K family consists of three isozymes in mammals-PI5P4Kα, β, and γ-which notably utilize both GTP and ATP as phosphodonors. Unlike the other two isozymes, which can utilize both ATP and GTP, PI5P4Kβ exhibits a marked preference for GTP over ATP, acting as an intracellular GTP sensor that alters its kinase activity in response to physiological changes in GTP concentration. Knockout studies have demonstrated a critical role for PI5P4Kα and β in tumorigenesis, while PI5P4Kγ has been implicated in regulating immune and neural systems. Pharmacological targeting of PI5P4K holds promise for the development of new therapeutic approaches against cancer, immune dysfunction, and neurodegenerative diseases. Although several PI5P4K inhibitors have already been developed, challenges remain in PI5P4K inhibitor development, including a discrepancy between in vitro and cellular efficacy. This discrepancy is attributable to mainly three factors. (a) Most PI5P4K inhibitors were developed at low ATP levels, where these enzymes exhibit minimal activity. (b) Non-catalytic functions of PI5P4K require careful interpretation of PI5P4K depletion studies, as their scaffolding roles suppress class I PI3K signaling. (c) The lack of pharmacodynamic markers for in vivo assessment complicates efficacy assessment. To address these issues and promote the development of effective and targeted therapeutic strategies, this review provides an analytical overview of the distinct roles of individual isozymes and recent developments in PI5P4K inhibitors, emphasizing structural insights and the importance of pharmacodynamic marker identification.
Collapse
Affiliation(s)
- Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
- Cellular and Molecular Biology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Lisa Nagase
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Shun Kageyama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Hirotaka Kanoh
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masashi Oshima
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
| | - Aki Ogawa-Iio
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Japan
| | - Yoshiki Ikeda
- Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Japan
| | - Yuki Fujii
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
| | - Sei Kondo
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Natsuki Osaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Takeshi Masuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Tsukasa Ishihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Yoshihisa Hirota
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Japan
- Department of Lipid Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Japan
| | - Atsuo T Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, OH, USA
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Japan
| |
Collapse
|
8
|
Loughran RM, Arora GK, Sun J, Llorente A, Crabtree S, Ly K, Huynh RL, Cho W, Emerling BM. Noncanonical PI(4,5)P 2 coordinates lysosome positioning through cholesterol trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.629779. [PMID: 39803512 PMCID: PMC11722365 DOI: 10.1101/2025.01.02.629779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
In p53-deficient cancers, targeting cholesterol metabolism has emerged as a promising therapeutic approach, given that p53 loss dysregulates sterol regulatory element-binding protein 2 (SREBP-2) pathways, thereby enhancing cholesterol biosynthesis. While cholesterol synthesis inhibitors such as statins have shown initial success, their efficacy is often compromised by the development of acquired resistance. Consequently, new strategies are being explored to disrupt cholesterol homeostasis more comprehensively by inhibiting its synthesis and intracellular transport. In this study, we investigate a previously underexplored function of PI5P4Ks, which catalyzes the conversion of PI(5)P to PI(4,5)P2 at intracellular membranes. Our findings reveal that PI5P4Ks play a key role in facilitating lysosomal cholesterol transport, regulating lysosome positioning, and sustaining growth signaling via the mTOR pathway. While PI5P4Ks have previously been implicated in mTOR signaling and tumor proliferation in p53-deficient contexts, this work elucidates an upstream mechanism that unifies these earlier observations.
Collapse
Affiliation(s)
- Ryan M. Loughran
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute; La Jolla, CA, USA
| | - Gurpreet K. Arora
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute; La Jolla, CA, USA
| | - Jiachen Sun
- Department of Chemistry, University of Illinois Chicago (UIC); Chicago, IL, USA
| | - Alicia Llorente
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute; La Jolla, CA, USA
| | - Sophia Crabtree
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute; La Jolla, CA, USA
| | - Kyanh Ly
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute; La Jolla, CA, USA
| | - Ren-Li Huynh
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute; La Jolla, CA, USA
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois Chicago (UIC); Chicago, IL, USA
| | - Brooke M. Emerling
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute; La Jolla, CA, USA
| |
Collapse
|
9
|
Triscott J, Lehner M, Benjak A, Reist M, Emerling BM, Ng CK, de Brot S, Rubin MA. Loss of PI5P4Kα Slows the Progression of a Pten Mutant Basal Cell Model of Prostate Cancer. Mol Cancer Res 2025; 23:33-45. [PMID: 39382632 PMCID: PMC7616865 DOI: 10.1158/1541-7786.mcr-24-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/10/2024]
Abstract
Although early prostate cancer depends on the androgen receptor signaling pathway, which is predominant in luminal cells, there is much to be understood about the contribution of epithelial basal cells in cancer progression. Herein, we observe cell type-specific differences in the importance of the metabolic enzyme phosphatidylinositol 5-phosphate 4-kinase alpha (PI5P4Kα; gene name PIP4K2A) in the prostate epithelium. We report the development of a basal cell-specific genetically engineered mouse model targeting Pip4k2a alone or in combination with the tumor suppressor phosphatase and tensin homolog (Pten). PI5P4Kα is enriched in basal cells, and no major histopathologic changes were detectable following gene deletion. Notably, the combined loss of Pip4k2a slowed the development of Pten mutant mouse prostatic intraepithelial neoplasia. Through the inclusion of a lineage tracing reporter, we utilize single-cell RNA sequencing to evaluate changes resulting from in vivo downregulation of Pip4k2a and characterize cell populations influenced in the established Probasin-Cre- and cytokeratin 5-Cre-driven genetically engineered mouse model. Transcriptomic pathway analysis points toward the disruption of lipid metabolism as a mechanism for reduced tumor progression. This was functionally supported by shifts of carnitine lipids in LNCaP prostate cancer cells treated with siPIP4K2A. Overall, these data nominate PI5P4Kα as a target for PTEN mutant prostate cancer. Implications: PI5P4Kα is enriched in prostate basal cells, and its targeted loss slows the progression of a model of advanced prostate cancer.
Collapse
Affiliation(s)
- Joanna Triscott
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Marika Lehner
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Andrej Benjak
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Matthias Reist
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Brooke M. Emerling
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, California
| | - Charlotte K.Y. Ng
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Simone de Brot
- Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Mark A. Rubin
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
| |
Collapse
|
10
|
Luo WF, Song DM, Shen T, He YB, Du HY, Si MJ, Fang LW. Exploring new mechanisms in cancer molecular pathways and pathogenic cell transformation: PIP4K2A as a prognostic marker and therapeutic target in cutaneous malignant melanoma. Discov Oncol 2024; 15:697. [PMID: 39579298 PMCID: PMC11585527 DOI: 10.1007/s12672-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Cutaneous malignant melanoma is a very aggressive and metastatic form of skin cancer, typically linked with poor outcomes. Advances in genomic analysis have underscored the crucial role of T cells in tumor immunity. Immune checkpoint inhibitors have notably transformed melanoma treatment by boosting T cell activity. Studies of gene expression have found that the phosphatidylinositol-4-phosphate kinase 2A (PIP4K2A) gene is abnormally expressed in various tumors, indicating its potential role in tumor progression. Utilizing single-cell sequencing and machine learning, researchers can now explore the complex interactions between T cells and melanoma cells at a genomic level. This study aimed to investigate the role of the PIP4K2A gene in cutaneous malignant melanoma, with a focus on its influence on T cell-mediated immune responses. METHODS Samples from cutaneous melanoma patients were analysed by single-cell transcriptome for differentially expressed genes and signalling pathways associated with cutaneous melanoma. Then, genes were identified and predictive models were built based on the transcriptomic data using machine learning models to assess whether the expression level of PIP4K2A could effectively predict the malignancy and prognosis of cutaneous melanoma. In addition, we also performed drug therapy predictive analysis and immunotherapy analysis.Finally, the critical role of PIP4K2A in cutaneous melanoma was further confirmed by immunohistochemistry. RESULTS The PIP4K2A gene exhibited a significantly elevated expression level in cutaneous malignant melanoma, showing a strong correlation with the clinical stage and patient prognosis. At the therapeutic level, high PIP4K2A expression is less responsive to immunotherapy, and this gene is a risk factor for drug therapy in cutaneous malignant melanoma. Additionally, our experimental outcomes validated this observation. CONCLUSIONS The PIP4K2A gene could be a crucial prognostic marker for cutaneous malignant melanoma, as it significantly affects T cell activity within the tumor microenvironment. This study offers essential insights into melanoma pathogenesis and assists in pinpointing new early diagnostic markers and therapeutic targets. Utilizing advanced genomic tools and computational techniques, the research enhances our understanding of T cell dynamics in melanoma, facilitating the development of personalized medicine and more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Wen-Fei Luo
- Jinzhou Medical University, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ding-Ming Song
- Department of Urology, Jinzhou Medical University, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Tong Shen
- Department of Urology, Jinzhou Medical University, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yi-Bo He
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Hong-Yang Du
- Department of Dermatology, Jinzhou Medical University, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Ming-Jue Si
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lu-Wei Fang
- Department of Dermatology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Rodriguez-Muñoz A, Motahari-Rad H, Martin-Chaves L, Benitez-Porres J, Rodriguez-Capitan J, Gonzalez-Jimenez A, Insenser M, Tinahones FJ, Murri M. A Systematic Review of Proteomics in Obesity: Unpacking the Molecular Puzzle. Curr Obes Rep 2024; 13:403-438. [PMID: 38703299 PMCID: PMC11306592 DOI: 10.1007/s13679-024-00561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE OF REVIEW The present study aims to review the existing literature to identify pathophysiological proteins in obesity by conducting a systematic review of proteomics studies. Proteomics may reveal the mechanisms of obesity development and clarify the links between obesity and related diseases, improving our comprehension of obesity and its clinical implications. RECENT FINDINGS Most of the molecular events implicated in obesity development remain incomplete. Proteomics stands as a powerful tool for elucidating the intricate interactions among proteins in the context of obesity. This methodology has the potential to identify proteins involved in pathological processes and to evaluate changes in protein abundance during obesity development, contributing to the identification of early disease predisposition, monitoring the effectiveness of interventions and improving disease management overall. Despite many non-targeted proteomic studies exploring obesity, a comprehensive and up-to-date systematic review of the molecular events implicated in obesity development is lacking. The lack of such a review presents a significant challenge for researchers trying to interpret the existing literature. This systematic review was conducted following the PRISMA guidelines and included sixteen human proteomic studies, each of which delineated proteins exhibiting significant alterations in obesity. A total of 41 proteins were reported to be altered in obesity by at least two or more studies. These proteins were involved in metabolic pathways, oxidative stress responses, inflammatory processes, protein folding, coagulation, as well as structure/cytoskeleton. Many of the identified proteomic biomarkers of obesity have also been reported to be dysregulated in obesity-related disease. Among them, seven proteins, which belong to metabolic pathways (aldehyde dehydrogenase and apolipoprotein A1), the chaperone family (albumin, heat shock protein beta 1, protein disulfide-isomerase A3) and oxidative stress and inflammation proteins (catalase and complement C3), could potentially serve as biomarkers for the progression of obesity and the development of comorbidities, contributing to personalized medicine in the field of obesity. Our systematic review in proteomics represents a substantial step forward in unravelling the complexities of protein alterations associated with obesity. It provides valuable insights into the pathophysiological mechanisms underlying obesity, thereby opening avenues for the discovery of potential biomarkers and the development of personalized medicine in obesity.
Collapse
Affiliation(s)
- Alba Rodriguez-Muñoz
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
| | - Hanieh Motahari-Rad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Laura Martin-Chaves
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Javier Benitez-Porres
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- Department of Human Physiology, Physical Education and Sport, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Jorge Rodriguez-Capitan
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | | | - Maria Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - Francisco J Tinahones
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Mora Murri
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain.
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain.
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Lima K, Nogueira FL, Cipelli M, Carvalho MFL, Pereira-Martins DA, da Silva WF, Cavaglieri RDC, Nardinelli L, Leal ADM, Velloso EDRP, Bendit I, Câmara NOS, Schuringa JJ, Machado-Neto JA, Rego EM. Potency and efficacy of pharmacological PIP4K2 inhibitors in acute lymphoblastic leukemia. Eur J Pharmacol 2024; 977:176723. [PMID: 38851560 DOI: 10.1016/j.ejphar.2024.176723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Acute lymphoblastic leukemia (ALL), a complex malignancy, displays varying expression profiles of PIP4K2-related genes in adult patients. While PIP4K2A expression is elevated in ALL bone marrow cells compared to healthy bone marrow cells, PIP4K2B is downregulated, and PIP4K2C remains relatively unchanged. Despite the correlation between increased PIP4K2A expression and increased percentage of peripheral blood blasts, clinical outcomes do not strongly correlate with the expression of these genes. Here we investigated the therapeutic potential of three PIP4K2 inhibitors (THZ-P1-2, a131, and CC260) in ALL cell models. THZ-P1-2 emerges as the most effective inhibitor, inducing cell death and mitochondrial damage while reducing cell viability and metabolism significantly. Comparative analyses highlight the superior efficacy of THZ-P1-2 over a131 and CC260. Notably, THZ-P1-2 uniquely disrupts autophagic flux and inhibits the PI3K/AKT/mTOR pathway, indicating a distinct molecular mechanism. In summary, our findings elucidate the differential expression of PIP4K2-related genes in ALL and underscore the potential role of PIP4K2A in disease pathogenesis. The therapeutic promise of THZ-P1-2 in ALL treatment, along with its distinct effects on cell death mechanisms and signaling pathways, enriches our understanding of PIP4K2's involvement in ALL development and offers targeted therapy prospects.
Collapse
Affiliation(s)
- Keli Lima
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil; Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Frederico Lisboa Nogueira
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Marcella Cipelli
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Diego Antonio Pereira-Martins
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil; Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wellington Fernandes da Silva
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Rita de Cássia Cavaglieri
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Luciana Nardinelli
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Aline de Medeiros Leal
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Elvira Deolinda Rodrigues Pereira Velloso
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Israel Bendit
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | | | - Jan Jacob Schuringa
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Eduardo Magalhães Rego
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Kofuji S, Wolfe K, Sumita K, Kageyama S, Yoshino H, Hirota Y, Ogawa-Iio A, Kanoh H, Sasaki M, Kofuji K, Davis MI, Pragani R, Shen M, Boxer MB, Nakatsu F, Nigorikawa K, Sasaki T, Takeuchi K, Senda T, Kim SM, Edinger AL, Simeonov A, Sasaki AT. A high dose KRP203 induces cytoplasmic vacuoles associated with altered phosphoinositide segregation and endosome expansion. Biochem Biophys Res Commun 2024; 718:149981. [PMID: 38735134 PMCID: PMC11416131 DOI: 10.1016/j.bbrc.2024.149981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
In animal cells, vacuoles are absent, but can be induced by diseases and drugs. While phosphoinositides are critical for membrane trafficking, their role in the formation of these vacuoles remains unclear. The immunosuppressive KRP203/Mocravimod, which antagonizes sphingosine-1-phosphate receptors, has been identified as having novel multimodal activity against phosphoinositide kinases. However, the impact of this novel KRP203 activity is unknown. Here, we show that KRP203 disrupts the spatial organization of phosphoinositides and induces extensive vacuolization in tumor cells and immortalized fibroblasts. The KRP203-induced vacuoles are primarily from endosomes, and augmented by inhibition of PIKFYVE and VPS34. Conversely, overexpression of PTEN decreased KRP203-induced vacuole formation. Furthermore, V-ATPase inhibition completely blunted KRP203-induced vacuolization, pointing to a critical requirement of the endosomal maturation process. Importantly, nearly a half of KRP203-induced vacuoles are significantly decorated with PI4P, a phosphoinositide typically enriched at the plasma membrane and Golgi. These results suggest a model that noncanonical spatial reorganization of phosphoinositides by KRP203 alters the endosomal maturation process, leading to vacuolization. Taken together, this study reveals a previously unrecognized bioactivity of KRP203 as a vacuole-inducing agent and its unique mechanism of phosphoinositide modulation, providing a new insight of phosphoinositide regulation into vacuolization-associated diseases and their molecular pathologies.
Collapse
Affiliation(s)
- Satoshi Kofuji
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kara Wolfe
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Kazutaka Sumita
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Department of Endovascular Surgery, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Shun Kageyama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Hirofumi Yoshino
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yoshihisa Hirota
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Saitama, 337-8570, Japan
| | - Aki Ogawa-Iio
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma-ku, Saitama, 337-8570, Japan
| | - Hirotaka Kanoh
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Mika Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Kaori Kofuji
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Mindy I Davis
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Rajan Pragani
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Matthew B Boxer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Fubito Nakatsu
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Kiyomi Nigorikawa
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Toshiya Senda
- Structural Biology Research Center, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan; Department of Accelerator Science, SOKENDAI, Japan; Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Seong M Kim
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, California, 92697, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, California, 92697, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Atsuo T Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, 45267, USA; Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima, 734-8551, Japan.
| |
Collapse
|
14
|
Bandyopadhyay S, Adebayo D, Obaseki E, Hariri H. Lysosomal membrane contact sites: Integrative hubs for cellular communication and homeostasis. CURRENT TOPICS IN MEMBRANES 2024; 93:85-116. [PMID: 39181579 DOI: 10.1016/bs.ctm.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Lysosomes are more than just cellular recycling bins; they play a crucial role in regulating key cellular functions. Proper lysosomal function is essential for growth pathway regulation, cell proliferation, and metabolic homeostasis. Impaired lysosomal function is associated with lipid storage disorders and neurodegenerative diseases. Lysosomes form extensive and dynamic close contacts with the membranes of other organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and lipid droplets. These membrane contacts sites (MCSs) are vital for many lysosomal functions. In this chapter, we will explore lysosomal MCSs focusing on the machinery that mediates these contacts, how they are regulated, and their functional implications on physiology and pathology.
Collapse
Affiliation(s)
- Sumit Bandyopadhyay
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Daniel Adebayo
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Eseiwi Obaseki
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Hanaa Hariri
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
15
|
Beaven AH, Bikkumalla V, Chon NL, Matthews AE, Lin H, Knight JD, Sodt AJ. Synaptotagmin 7 C2 domains induce membrane curvature stress via electrostatic interactions and the wedge mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575084. [PMID: 38313280 PMCID: PMC10837831 DOI: 10.1101/2024.01.10.575084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Synaptotagmin 7 (Syt-7) is part of the synaptotagmin protein family that regulates exocytotic lipid membrane fusion. Among the family, Syt-7 stands out by its membrane binding strength and stabilization of long-lived membrane fusion pores. Given that Syt-7 vesicles form long-lived fusion pores, we hypothesize that its interactions with the membrane stabilize the specific curvatures, thicknesses, and lipid compositions that support a metastable fusion pore. Using all-atom molecular dynamics simulations and FRET-based assays of Syt-7's membrane-binding C2 domains (C2A and C2B), we found that Syt-7 C2 domains sequester anionic lipids, are sensitive to cholesterol, thin membranes, and generate lipid membrane curvature by two competing, but related mechanisms. First, Syt-7 forms strong electrostatic contacts with the membrane, generating negative curvature stress. Second, Syt-7's calcium binding loops embed in the membrane surface, acting as a wedge to thin the membrane and induce positive curvature stress. These curvature mechanisms are linked by the protein insertion depth as well as the resulting protein tilt. Simplified quantitative models of the curvature-generating mechanisms link simulation observables to their membrane-reshaping effectiveness.
Collapse
Affiliation(s)
- Andrew H. Beaven
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD
| | | | - Nara L. Chon
- Department of Chemistry, University of Colorado Denver, Denver, CO
| | | | - Hai Lin
- Department of Chemistry, University of Colorado Denver, Denver, CO
| | | | - Alexander J. Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
16
|
Lourdes SR, Gurung R, Giri S, Mitchell CA, McGrath MJ. A new role for phosphoinositides in regulating mitochondrial dynamics. Adv Biol Regul 2024; 91:101001. [PMID: 38057188 DOI: 10.1016/j.jbior.2023.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Phosphoinositides are a minor group of membrane-associated phospholipids that are transiently generated on the cytoplasmic leaflet of many organelle membranes and the plasma membrane. There are seven functionally distinct phosphoinositides, each derived via the reversible phosphorylation of phosphatidylinositol in various combinations on the inositol ring. Their generation and termination is tightly regulated by phosphatidylinositol-kinases and -phosphatases. These enzymes can function together in an integrated and coordinated manner, whereby the phosphoinositide product of one enzyme may subsequently serve as a substrate for another to generate a different phosphoinositide species. This regulatory mechanism not only enables the transient generation of phosphoinositides on membranes, but also more complex sequential or bidirectional conversion pathways, and phosphoinositides can also be transferred between organelles via membrane contacts. It is this capacity to fine-tune phosphoinositide signals that makes them ideal regulators of membrane organization and dynamics, through their recruitment of signalling, membrane altering and lipid transfer proteins. Research spanning several decades has provided extensive evidence that phosphoinositides are major gatekeepers of membrane organization, with roles in endocytosis, exocytosis, autophagy, lysosome dynamics, vesicular transport and secretion, cilia, inter-organelle membrane contact, endosome maturation and nuclear function. By contrast, there has been remarkably little known about the role of phosphoinositides at mitochondria - an enigmatic and major knowledge gap, with challenges in reliably detecting phosphoinositides at this site. Here we review recent significant breakthroughs in understanding the role of phosphoinositides in regulating mitochondrial dynamics and metabolic function.
Collapse
Affiliation(s)
- Sonia Raveena Lourdes
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Rajendra Gurung
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Saveen Giri
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | - Meagan J McGrath
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Jin Y, Xue J. Lipid kinases PIP5Ks and PIP4Ks: potential drug targets for breast cancer. Front Oncol 2023; 13:1323897. [PMID: 38156113 PMCID: PMC10753794 DOI: 10.3389/fonc.2023.1323897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Phosphoinositides, a small group of lipids found in all cellular membranes, have recently garnered heightened attention due to their crucial roles in diverse biological processes and different diseases. Among these, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the most abundant bis-phosphorylated phosphoinositide within the signaling system, stands notably connected to breast cancer. Not only does it serve as a key activator of the frequently altered phosphatidylinositol 3-kinase (PI3K) pathway in breast cancer, but also its conversion to phosphatidylinositol-3,4,5-triphosphate (PI(3,4,5)P3) is an important direction for breast cancer research. The generation and degradation of phosphoinositides intricately involve phosphoinositide kinases. PI(4,5)P2 generation emanates from the phosphorylation of PI4P or PI5P by two lipid kinase families: Type I phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and Type II phosphatidylinositol-5-phosphate 4-kinases (PIP4Ks). In this comprehensive review, we focus on these two lipid kinases and delineate their compositions and respective cellular localization. Moreover, we shed light on the expression patterns and functions of distinct isoforms of these kinases in breast cancer. For a deeper understanding of their functional dynamics, we expound upon various mechanisms governing the regulation of PIP5Ks and PIP4Ks activities. A summary of effective and specific small molecule inhibitors designed for PIP5Ks or PIP4Ks are also provided. These growing evidences support PIP5Ks and PIP4Ks as promising drug targets for breast cancer.
Collapse
Affiliation(s)
- Yue Jin
- Department of Molecular Diagnosis, Northern Jiangsu People’s Hospital, Yangzhou University Clinical Medical College, Yangzhou, China
| | - Jian Xue
- Department of Emergency Medicine, Yizheng People’s Hospital, Yangzhou University Clinical Medical College, Yangzhou, China
| |
Collapse
|
18
|
Llorente A, Loughran RM, Emerling BM. Targeting phosphoinositide signaling in cancer: relevant techniques to study lipids and novel avenues for therapeutic intervention. Front Cell Dev Biol 2023; 11:1297355. [PMID: 37954209 PMCID: PMC10634348 DOI: 10.3389/fcell.2023.1297355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Phosphoinositides serve as essential players in numerous biological activities and are critical for overall cellular function. Due to their complex chemical structures, localization, and low abundance, current challenges in the phosphoinositide field include the accurate measurement and identification of specific variants, particularly those with acyl chains. Researchers are intensively developing innovative techniques and approaches to address these challenges and advance our understanding of the impact of phosphoinositide signaling on cellular biology. This article provides an overview of recent advances in the study of phosphoinositides, including mass spectrometry, lipid biosensors, and real-time activity assays using fluorometric sensors. These methodologies have proven instrumental for a comprehensive exploration of the cellular distribution and dynamics of phosphoinositides and have shed light on the growing significance of these lipids in human health and various pathological processes, including cancer. To illustrate the importance of phosphoinositide signaling in disease, this perspective also highlights the role of a family of lipid kinases named phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks), which have recently emerged as exciting therapeutic targets for cancer treatment. The ongoing exploration of phosphoinositide signaling not only deepens our understanding of cellular biology but also holds promise for novel interventions in cancer therapy.
Collapse
Affiliation(s)
| | | | - Brooke M. Emerling
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, United States
| |
Collapse
|
19
|
Abstract
The accidental discovery of PI5P (phosphatidylinositol-5-phosphate) was published 25 years ago, when PIP5K type II (phosphoinositide-4-phosphate 5-kinase) was shown to actually be a 4-kinase that uses PI5P as a substrate to generate PI(4,5)P2. Consequently, PIP5K type II was renamed to PI5P4K, or PIP4K for short, and PI5P became the last of the 7 signaling phosphoinositides to be discovered. Much of what we know about PI5P comes from genetic studies of PIP4K, as the pathways for PI5P synthesis, the downstream targets of PI5P and how PI5P affects cellular function all remain largely enigmatic. Nevertheless, PI5P and PI5P-dependent PI(4,5)P2 synthesis have been clearly implicated in metabolic homeostasis and in diseases such as cancer. Here, we review the past 25 years of PI5P research, with particular emphasis on the impact this small signaling lipid has on human health.
Collapse
Affiliation(s)
- Lucia E. Rameh
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Raymond D. Blind
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
20
|
Hart NR. A theoretical model of dietary lipid variance as the origin of primary ciliary dysfunction in preeclampsia. Front Mol Biosci 2023; 10:1173030. [PMID: 37251083 PMCID: PMC10210153 DOI: 10.3389/fmolb.2023.1173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Serving as the cell's key interface in communicating with the outside world, primary cilia have emerged as an area of multidisciplinary research interest over the last 2 decades. Although the term "ciliopathy" was first used to describe abnormal cilia caused by gene mutations, recent studies focus on abnormalities of cilia that are found in diseases without clear genetic antecedents, such as obesity, diabetes, cancer, and cardiovascular disease. Preeclampsia, a hypertensive disease of pregnancy, is intensely studied as a model for cardiovascular disease partially due to many shared pathophysiologic elements, but also because changes that develop over decades in cardiovascular disease arise in days with preeclampsia yet resolve rapidly after delivery, thus providing a time-lapse view of the development of cardiovascular pathology. As with genetic primary ciliopathies, preeclampsia affects multiple organ systems. While aspirin delays the onset of preeclampsia, there is no cure other than delivery. The primary etiology of preeclampsia is unknown; however, recent reviews emphasize the fundamental role of abnormal placentation. During normal embryonic development, trophoblastic cells, which arise from the outer layer of the 4-day-old blastocyst, invade the maternal endometrium and establish extensive placental vascular connections between mother and fetus. In primary cilia of trophoblasts, Hedgehog and Wnt/catenin signaling operate upstream of vascular endothelial growth factor to advance placental angiogenesis in a process that is promoted by accessible membrane cholesterol. In preeclampsia, impaired proangiogenic signaling combined with an increase in apoptotic signaling results in shallow invasion and inadequate placental function. Recent studies show primary cilia in preeclampsia to be fewer in number and shortened with functional signaling abnormalities. Presented here is a model that integrates preeclampsia lipidomics and physiology with the molecular mechanisms of liquid-liquid phase separation in model membrane studies and the known changes in human dietary lipids over the last century to explain how changes in dietary lipids might reduce accessible membrane cholesterol and give rise to shortened cilia and defects in angiogenic signaling, which underlie placental dysfunction of preeclampsia. This model offers a possible mechanism for non-genetic dysfunction in cilia and proposes a proof-of-concept study to treat preeclampsia with dietary lipids.
Collapse
|
21
|
Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 2023; 22:357-386. [PMID: 36376561 PMCID: PMC9663198 DOI: 10.1038/s41573-022-00582-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Lipid phosphoinositides are master regulators of almost all aspects of a cell's life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.
Collapse
Affiliation(s)
- John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Joanna Triscott
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Ji W, Wang ES, Manz TD, Jiang J, Donovan KA, Abulaiti X, Fischer ES, Cantley LC, Zhang T, Gray NS. Development of potent and selective degraders of PI5P4Kγ. Eur J Med Chem 2023; 247:115027. [PMID: 36584631 PMCID: PMC10150581 DOI: 10.1016/j.ejmech.2022.115027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks), a family of three members in mammals (α, β and γ), have emerged as potential therapeutic targets due to their role in regulating many important cellular signaling pathways. In comparison to the PI5P4Kα and PI5P4Kβ, which usually have similar expression profiles across cancer cells, PI5P4Kγ exhibits distinct expression patterns, and pathological functions for PI5P4Kγ have been proposed in the context of cancer and neurodegenerative diseases. PI5P4Kγ has very low kinase activity and has been proposed to inhibit the PI4P5Ks through scaffolding function, providing a rationale for developing a selective PI5P4Kγ degrader. Here, we report the development and characterization of JWZ-1-80, a first-in-class PI5P4Kγ degrader. JWZ-1-80 potently degrades PI5P4Kγ via the ubiquitin-proteasome system and exhibits proteome-wide selectivity and is therefore a useful tool compound for further dissecting the biological functions of PI5P4Kγ.
Collapse
Affiliation(s)
- Wenzhi Ji
- Chemical and Systems Biology, Chem-H, Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA
| | - Eric S Wang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Theresa D Manz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Xianmixinuer Abulaiti
- Chemical and Systems Biology, Chem-H, Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY, USA
| | - Tinghu Zhang
- Chemical and Systems Biology, Chem-H, Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA.
| | - Nathanael S Gray
- Chemical and Systems Biology, Chem-H, Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Triscott J, Reist M, Küng L, Moselle FC, Lehner M, Gallon J, Ravi A, Arora GK, de Brot S, Lundquist M, Gallart-Ayala H, Ivanisevic J, Piscuoglio S, Cantley LC, Emerling BM, Rubin MA. PI5P4Kα supports prostate cancer metabolism and exposes a survival vulnerability during androgen receptor inhibition. SCIENCE ADVANCES 2023; 9:eade8641. [PMID: 36724278 PMCID: PMC9891700 DOI: 10.1126/sciadv.ade8641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/03/2023] [Indexed: 05/07/2023]
Abstract
Phosphatidylinositol (PI)regulating enzymes are frequently altered in cancer and have become a focus for drug development. Here, we explore the phosphatidylinositol-5-phosphate 4-kinases (PI5P4K), a family of lipid kinases that regulate pools of intracellular PI, and demonstrate that the PI5P4Kα isoform influences androgen receptor (AR) signaling, which supports prostate cancer (PCa) cell survival. The regulation of PI becomes increasingly important in the setting of metabolic stress adaptation of PCa during androgen deprivation (AD), as we show that AD influences PI abundance and enhances intracellular pools of PI-4,5-P2. We suggest that this PI5P4Kα-AR relationship is mitigated through mTORC1 dysregulation and show that PI5P4Kα colocalizes to the lysosome, the intracellular site of mTORC1 complex activation. Notably, this relationship becomes prominent in mouse prostate tissue following surgical castration. Finally, multiple PCa cell models demonstrate marked survival vulnerability following stable PI5P4Kα inhibition. These results nominate PI5P4Kα as a target to disrupt PCa metabolic adaptation to castrate resistance.
Collapse
Affiliation(s)
- Joanna Triscott
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Matthias Reist
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Lukas Küng
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - Francielle C. Moselle
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Marika Lehner
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
| | - John Gallon
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Archna Ravi
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA 92037, USA
| | - Gurpreet K. Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA 92037, USA
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Mark Lundquist
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Salvatore Piscuoglio
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Brooke M. Emerling
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA 92037, USA
| | - Mark A. Rubin
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Bern Center for Precision Medicine, University of Bern and Inselspital, Bern 3008, Switzerland
| |
Collapse
|
24
|
Qiu Z, Lin Z, Hu A, Liu Y, Zeng W, Zhao X, Shi X, Luo J, Song B. GRAMD1/ASTER-mediated cholesterol transport promotes Smoothened cholesterylation at the endoplasmic reticulum. EMBO J 2023; 42:e111513. [PMID: 36524353 PMCID: PMC9890235 DOI: 10.15252/embj.2022111513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Hedgehog (Hh) signaling pathway plays a pivotal role in embryonic development. Hh binding to Patched1 (PTCH1) derepresses Smoothened (SMO), thereby activating the downstream signal transduction. Covalent SMO modification by cholesterol in its cysteine-rich domain (CRD) is essential for SMO function. SMO cholesterylation is a calcium-accelerated autoprocessing reaction, and STIM1-ORAI1-mediated store-operated calcium entry promotes cholesterylation and activation of endosome-localized SMO. However, it is unknown whether the Hh-PTCH1 interplay regulates the activity of the endoplasmic reticulum (ER)-localized SMO. Here, we found that PTCH1 inhibited the COPII-dependent export of SMO from the ER, whereas Hh promoted this process. The RRxWxR amino acid motif in the cytosolic tail of SMO was essential for COPII recognition, ciliary localization, and signal transduction activity. Hh and PTCH1 regulated cholesterol modification of the ER-localized SMO, and SMO cholesterylation accelerated its exit from ER. The GRAMD1/ASTER sterol transport proteins facilitated cholesterol transfer to ER from PM, resulting in increased SMO cholesterylation and enhanced Hh signaling. Collectively, we reveal a regulatory role of GRAMD-mediated cholesterol transport in ER-resident SMO maturation and Hh signaling.
Collapse
Affiliation(s)
- Zhi‐Ping Qiu
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell HomeostasisWuhan UniversityWuhanChina
| | - Zi‐Cun Lin
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell HomeostasisWuhan UniversityWuhanChina
| | - Ao Hu
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell HomeostasisWuhan UniversityWuhanChina
| | - Yuan‐Bin Liu
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell HomeostasisWuhan UniversityWuhanChina
| | - Wan‐Er Zeng
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell HomeostasisWuhan UniversityWuhanChina
| | - Xiaolu Zhao
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell HomeostasisWuhan UniversityWuhanChina
| | - Xiong‐Jie Shi
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell HomeostasisWuhan UniversityWuhanChina
| | - Jie Luo
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell HomeostasisWuhan UniversityWuhanChina
| | - Bao‐Liang Song
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell HomeostasisWuhan UniversityWuhanChina
| |
Collapse
|
25
|
Llorente A, Arora GK, Grenier SF, Emerling BM. PIP kinases: A versatile family that demands further therapeutic attention. Adv Biol Regul 2023; 87:100939. [PMID: 36517396 PMCID: PMC9992244 DOI: 10.1016/j.jbior.2022.100939] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Phosphoinositides are membrane-localized phospholipids that regulate a plethora of essential cellular processes. These lipid signaling molecules are critical for cell homeostasis and therefore their levels are strictly regulated by the coordinated action of several families of lipid kinases and phosphatases. In this review, we provide a focused perspective on the phosphatidylinositol phosphate kinase (PIPK) family and the three subfamilies that compose it: Type I PIPKs or phosphatidylinositol-4-phosphate 5-kinases (PI4P5Ks), Type II PIPKs or phosphatidylinositol-5-phosphate 4-kinases (PI5P4Ks), and Type III PIPKs or phosphatidylinositol-3-phosphate 5-kinases (PIKfyve). Each subfamily is responsible for catalyzing a hydroxyl phosphorylation on specific phosphoinositide species to generate a double phosphorylated lipid, therefore regulating the levels of both substrate and product. Here, we summarize our current knowledge about the functions and regulation of each PIPK subfamily. Further, we highlight the roles of these kinases in various in vivo genetic models and give an overview of their involvement in multiple pathological conditions. The phosphoinositide field has been long focused on targeting PI3K signaling, but growing evidence suggests that it is time to draw attention to the other phosphoinositide kinases. The discovery of the involvement of PIPKs in the pathogenesis of multiple diseases has prompted substantial efforts to turn these enzymes into pharmacological targets. An increasingly refined knowledge of the biology of PIPKs in a variety of in vitro and in vivo models will facilitate the development of effective approaches for therapeutic intervention with the potential to translate into meaningful clinical benefits for patients suffering from cancer, immunological and infectious diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Alicia Llorente
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Gurpreet K Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Shea F Grenier
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Brooke M Emerling
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA.
| |
Collapse
|
26
|
The PIP4K2 inhibitor THZ-P1-2 exhibits antileukemia activity by disruption of mitochondrial homeostasis and autophagy. Blood Cancer J 2022; 12:151. [PMID: 36347832 PMCID: PMC9643393 DOI: 10.1038/s41408-022-00747-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
The treatment of acute leukemia is challenging because of the genetic heterogeneity between and within patients. Leukemic stem cells (LSCs) are relatively drug-resistant and frequently relapse. Their plasticity and capacity to adapt to extracellular stress, in which mitochondrial metabolism and autophagy play important roles, further complicates treatment. Genetic models of phosphatidylinositol-5-phosphate 4-kinase type 2 protein (PIP4K2s) inhibition have demonstrated the relevance of these enzymes in mitochondrial homeostasis and autophagic flux. Here, we uncovered the cellular and molecular effects of THZ-P1-2, a pan-inhibitor of PIP4K2s, in acute leukemia cells. THZ-P1-2 reduced cell viability and induced DNA damage, apoptosis, loss of mitochondrial membrane potential, and the accumulation of acidic vesicular organelles. Protein expression analysis revealed that THZ-P1-2 impaired autophagic flux. In addition, THZ-P1-2 induced cell differentiation and showed synergistic effects with venetoclax. In primary leukemia cells, LC-MS/MS-based proteome analysis revealed that sensitivity to THZ-P1-2 is associated with mitochondrial metabolism, cell cycle, cell-of-origin (hematopoietic stem cell and myeloid progenitor), and the TP53 pathway. The minimal effects of THZ-P1-2 observed in healthy CD34+ cells suggest a favorable therapeutic window. Our study provides insights into the pharmacological inhibition of PIP4K2s targeting mitochondrial homeostasis and autophagy, shedding light on a new class of drugs for acute leukemia.
Collapse
|
27
|
Fujiki Y, Okumoto K, Honsho M, Abe Y. Molecular insights into peroxisome homeostasis and peroxisome biogenesis disorders. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119330. [PMID: 35917894 DOI: 10.1016/j.bbamcr.2022.119330] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Peroxisomes are single-membrane organelles essential for cell metabolism including the β-oxidation of fatty acids, synthesis of etherlipid plasmalogens, and redox homeostasis. Investigations into peroxisome biogenesis and the human peroxisome biogenesis disorders (PBDs) have identified 14 PEX genes encoding peroxins involved in peroxisome biogenesis and the mutation of PEX genes is responsible for the PBDs. Many recent findings have further advanced our understanding of the biology, physiology, and consequences of a functional deficit of peroxisomes. In this Review, we discuss cell defense mechanisms that counteract oxidative stress by 1) a proapoptotic Bcl-2 factor BAK-mediated release to the cytosol of H2O2-degrading catalase from peroxisomes and 2) peroxisomal import suppression of catalase by Ser232-phosphorylation of Pex14, a docking protein for the Pex5-PTS1 complex. With respect to peroxisome division, the important issue of how the energy-rich GTP is produced and supplied for the division process was recently addressed by the discovery of a nucleoside diphosphate kinase-like protein, termed DYNAMO1 in a lower eukaryote, which has a mammalian homologue NME3. In regard to the mechanisms underlying the pathogenesis of PBDs, a new PBD model mouse defective in Pex14 manifests a dysregulated brain-derived neurotrophic factor (BDNF)-TrkB pathway, an important signaling pathway for cerebellar morphogenesis. Communications between peroxisomes and other organelles are also addressed.
Collapse
Affiliation(s)
- Yukio Fujiki
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | - Kanji Okumoto
- Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
28
|
Banerjee A, Ray A, Barpanda A, Dash A, Gupta I, Nissa MU, Zhu H, Shah A, Duttagupta SP, Goel A, Srivastava S. Evaluation of autoantibody signatures in pituitary adenoma patients using human proteome arrays. Proteomics Clin Appl 2022; 16:e2100111. [PMID: 35939377 DOI: 10.1002/prca.202100111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To identify the specific diagnostic biomarkers related to pituitary adenomas (PAs), we performed serological antibody profiles for three types of PAs, namely Acromegaly, Cushing's and Nonfunctional Pituitary Adenomas (NFPAs), using the human proteome (HuProt) microarray. This is the first study describing the serum autoantibody profile of PAs. EXPERIMENTAL DESIGN We performed serological autoantibody profiling of four healthy controls, four Acromegaly, three Cushing's and three NFPAs patient samples to obtain their autoantibody profiles, which were used for studying expression, interaction and altered biological pathways. Further, significant autoantibodies of PAs were compared with data available for glioma, meningioma and AAgAtlas for their specificity. RESULTS Autoantibody profile of PAs led to the identification of differentially expressed significant proteins such as AKNAD1 (AT-Hook Transcription Factor [AKNA] Domain Containing 1), NINJ1 (Nerve injury-induced protein 1), L3HYPDH (Trans-3-hydroxy-L-proline dehydratase), RHOG (Rho-related GTP-binding protein) and PTP4A1 (Protein Tyrosine Phosphatase Type IVA 1) in Acromegaly. Protein ABR (Active breakpoint cluster region-related protein), ST6GALNAC6 (ST6 N-acetylgalactosaminide alpha-2, 6-sialyltransferase 6), NOL3 (Nucleolar protein 3), ANXA8 (Annexin A8) and POLR2H (RNA polymerase II, I and III subunit H) showed an antigenic response in Cushing's patient's serum samples. Protein dipeptidyl peptidase 3 (DPP3) and reticulon-4 (RTN4) exhibited a very high antigenic response in NFPA patients. These proteins hold promise as potential autoantibody biomarkers in PAs.
Collapse
Affiliation(s)
- Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Arka Ray
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Abhilash Barpanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ankita Dash
- Miranda House, University of Delhi, University Enclave, New Delhi, Delhi, India
| | - Ishika Gupta
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences/High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abhidha Shah
- Department of Neurosurgery at King Edward Memorial Hospital and Seth G. S. Medical College, Parel, Mumbai, India
| | - Siddhartha P Duttagupta
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Atul Goel
- Department of Neurosurgery at King Edward Memorial Hospital and Seth G. S. Medical College, Parel, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
29
|
Wolff DW, Bianchi-Smiraglia A, Nikiforov MA. Compartmentalization and regulation of GTP in control of cellular phenotypes. Trends Mol Med 2022; 28:758-769. [PMID: 35718686 PMCID: PMC9420775 DOI: 10.1016/j.molmed.2022.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Genetic or pharmacological inhibition of enzymes involved in GTP biosynthesis has substantial biological effects, underlining the need to better understand the function of GTP levels in regulation of cellular processes and the significance of targeting GTP biosynthesis enzymes for therapeutic intervention. Our current understanding of spatiotemporal regulation of GTP metabolism and its role in physiological and pathological cellular processes is far from complete. Novel methodologies such as genetically encoded sensors of free GTP offered insights into intracellular distribution and function of GTP molecules. In the current Review, we provide analysis of recent discoveries in the field of GTP metabolism and evaluate the key enzymes as molecular targets.
Collapse
Affiliation(s)
- David W Wolff
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA.
| | - Anna Bianchi-Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Mikhail A Nikiforov
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
30
|
Zhu Y, Lin X, Zhou X, Prochownik EV, Wang F, Li Y. Posttranslational control of lipogenesis in the tumor microenvironment. J Hematol Oncol 2022; 15:120. [PMID: 36038892 PMCID: PMC9422141 DOI: 10.1186/s13045-022-01340-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Metabolic reprogramming of cancer cells within the tumor microenvironment typically occurs in response to increased nutritional, translation and proliferative demands. Altered lipid metabolism is a marker of tumor progression that is frequently observed in aggressive tumors with poor prognosis. Underlying these abnormal metabolic behaviors are posttranslational modifications (PTMs) of lipid metabolism-related enzymes and other factors that can impact their activity and/or subcellular localization. This review focuses on the roles of these PTMs and specifically on how they permit the re-wiring of cancer lipid metabolism, particularly within the context of the tumor microenvironment.
Collapse
Affiliation(s)
- Yahui Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.,School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xingrong Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Xiaojun Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, The Department of Microbiology and Molecular Genetics, The Pittsburgh Liver Research Center and The Hillman Cancer Center of UPMC, The University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China.
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China. .,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
31
|
Ravi A, Palamiuc L, Emerling BM. Crucial Players for Inter-Organelle Communication: PI5P4Ks and Their Lipid Product PI-4,5-P 2 Come to the Surface. Front Cell Dev Biol 2022; 9:791758. [PMID: 35071233 PMCID: PMC8776650 DOI: 10.3389/fcell.2021.791758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
While organelles are individual compartments with specialized functions, it is becoming clear that organellar communication is essential for maintaining cellular homeostasis. This cooperation is carried out by various interactions taking place on the membranes of organelles. The membranes themselves contain a multitude of proteins and lipids that mediate these connections and one such class of molecules facilitating these relations are the phospholipids. There are several phospholipids, but the focus of this perspective is on a minor group called the phosphoinositides and specifically, phosphatidylinositol 4,5-bisphosphate (PI-4,5-P2). This phosphoinositide, on intracellular membranes, is largely generated by the non-canonical Type II PIPKs, namely, Phosphotidylinositol-5-phosphate-4-kinases (PI5P4Ks). These evolutionarily conserved enzymes are emerging as key stress response players in cells. Further, PI5P4Ks have been shown to modulate pathways by regulating organelle crosstalk, revealing roles in preserving metabolic homeostasis. Here we will attempt to summarize the functions of the PI5P4Ks and their product PI-4,5-P2 in facilitating inter-organelle communication and how they impact cellular health as well as their relevance to human diseases.
Collapse
Affiliation(s)
- Archna Ravi
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, United States
| | - Lavinia Palamiuc
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, United States
| | - Brooke M Emerling
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, United States
| |
Collapse
|
32
|
Arora GK, Palamiuc L, Emerling BM. Expanding role of PI5P4Ks in cancer: A promising druggable target. FEBS Lett 2022; 596:3-16. [PMID: 34822164 PMCID: PMC9154051 DOI: 10.1002/1873-3468.14237] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Cancer cells are challenged by a myriad of microenvironmental stresses, and it is their ability to efficiently adapt to the constantly changing nutrient, energy, oxidative, and/or immune landscape that allows them to survive and proliferate. Such adaptations, however, result in distinct vulnerabilities that are attractive therapeutic targets. Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are a family of druggable stress-regulated phosphoinositide kinases that become conditionally essential as a metabolic adaptation, paving the way to targeting cancer cell dependencies. Further, PI5P4Ks have a synthetic lethal interaction with the tumor suppressor p53, the loss of which is one of the most prevalent genetic drivers of malignant transformation. PI5P4K's emergence as a crucial axis in the expanding landscape of phosphoinositide signaling in cancer has already stimulated the development of specific inhibitors. Thus, a better understanding of the biology of the PI5P4Ks will allow for targeted and effective therapeutic interventions. Here, we attempt to summarize the mounting roles of the PI5P4Ks in cancer, including evidence that targeting them is a therapeutic vulnerability and promising next-in-line treatment for multiple cancer subtypes.
Collapse
Affiliation(s)
- Gurpreet K Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Lavinia Palamiuc
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Brooke M Emerling
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys, La Jolla, CA, USA
| |
Collapse
|
33
|
Analyses of Long Noncoding RNA and mRNA Profiles in Subjects with the Phlegm-Dampness Constitution. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4896282. [PMID: 34926685 PMCID: PMC8683173 DOI: 10.1155/2021/4896282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022]
Abstract
Background Constitution in traditional Chinese medicine (TCM) plays a key role in the genesis, development, and prognosis of diseases. Phlegm-dampness constitution (PDC) is one of the nine constitutions in TCM, susceptible to metabolic disorders, which is mainly manifested by profuse phlegm, loose abdomen, and greasy face. Epidemiologic, genomic, and epigenetic studies have been carried out in previous works, confirming that PDC represents a distinctive population with microcosmic changes related to metabolic disorders. However, whether long noncoding RNAs (lncRNAs) play a regulatory role in metabolic disease in subjects with PDC remains largely unknown. We aimed to investigate distinct lncRNA and mRNA expression signatures and lncRNA-mRNA regulatory networks in the phlegm-dampness constitution (PDC). Methods The peripheral blood mononuclear cells (PBMCs) were isolated from the subjects with PDC (n = 13) and balanced constitution (BC) (n = 9). The profiles of lncRNAs and mRNAs in PBMCs were analyzed using microarray and further validated with RT-qPCR. Subsequently, pathway analysis was performed to investigate the function of differentially expressed mRNAs by using Ingenuity Pathway Analysis (IPA). Results Results suggested that some mRNAs, which were regulated by the differentially expressed lncRNAs, were mainly enriched in lipid metabolism and immune inflammation-related pathways. This was consistent with the molecular characteristics of previous studies, indicating that the clinical characteristics of metabolic disorders in PDC might be regulated by lncRNAs. Furthermore, by making coexpression network construction as well as cis-regulated target gene analysis, several lncRNA-mRNA pairs with potential regulatory relationships were identified by bioinformatic analyses, including RP11-317J10.2-CA3, RP11-809C18.3-PIP4K2A, LINC0069-RFTN1, TTTY15-ARHGEF9, and AC135048.13-ORAI3. Conclusions This study first revealed that the expression characteristics of lncRNAs/mRNAs may be potential biomarkers, indicating that the distinctive physical and clinical characteristics of PDC might be partially attributed to the specific expression signatures of lncRNAs/mRNAs.
Collapse
|
34
|
Qiu ZP, Hu A, Song BL. The 3-beta-hydroxysteroid-Delta(8), Delta(7)-isomerase EBP inhibits cholesterylation of Smoothened. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159041. [PMID: 34450268 DOI: 10.1016/j.bbalip.2021.159041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022]
Abstract
Hedgehog (Hh) pathway plays a central role in vertebrate embryonic development and carcinogenesis. The G-protein coupled receptor-like protein Smoothened (SMO) is one of the major members in Hh pathway. Covalent modification of cholesterol on the 95th asparagine (D95) of human SMO, which is regulated by Hh and PTCH1, is critical for SMO activation. However, it is not known whether SMO cholesterylation is regulated by other proteins. In this study, we identified Emopamil binding protein (EBP, also known as 3-beta-hydroxysteroid-Delta(8),Delta(7)-isomerase) as a SMO-interacting protein. Overexpression of EBP suppressed SMO cholesterylation and Hh pathway activity, whereas genetic disruption of EBP enhanced SMO cholesterylation and the downstream signaling. EBP-mediated inhibition of SMO cholesterylation was independent of its isomerase activity, but dependent on the C-terminus of EBP that was required for SMO binding. The X-linked dominant chondrodysplasia punctate 2 (CDPX2)-associated EBP mutants inhibited SMO cholesterylation too. Together, this study shows that EBP modulates SMO cholesterylation through direct binding and suggests a possible mechanism of CDPX2 pathogenesis.
Collapse
Affiliation(s)
- Zhi-Ping Qiu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ao Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
35
|
Ravi A, Palamiuc L, Loughran RM, Triscott J, Arora GK, Kumar A, Tieu V, Pauli C, Reist M, Lew RJ, Houlihan SL, Fellmann C, Metallo C, Rubin MA, Emerling BM. PI5P4Ks drive metabolic homeostasis through peroxisome-mitochondria interplay. Dev Cell 2021; 56:1661-1676.e10. [PMID: 33984270 DOI: 10.1016/j.devcel.2021.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
PI5P4Ks are a class of phosphoinositide kinases that phosphorylate PI-5-P to PI-4,5-P2. Distinct localization of phosphoinositides is fundamental for a multitude of cellular functions. Here, we identify a role for peroxisomal PI-4,5-P2 generated by the PI5P4Ks in maintaining energy balance. We demonstrate that PI-4,5-P2 regulates peroxisomal fatty acid oxidation by mediating trafficking of lipid droplets to peroxisomes, which is essential for sustaining mitochondrial metabolism. Using fluorescent-tagged lipids and metabolite tracing, we show that loss of the PI5P4Ks significantly impairs lipid uptake and β-oxidation in the mitochondria. Further, loss of PI5P4Ks results in dramatic alterations in mitochondrial structural and functional integrity, which under nutrient deprivation is further exacerbated, causing cell death. Notably, inhibition of the PI5P4Ks in cancer cells and mouse tumor models leads to decreased cell viability and tumor growth, respectively. Together, these studies reveal an unexplored role for PI5P4Ks in preserving metabolic homeostasis, which is necessary for tumorigenesis.
Collapse
Affiliation(s)
- Archna Ravi
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Lavinia Palamiuc
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ryan M Loughran
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Joanna Triscott
- Department of Biomedical Research and Bern Center for Precision Medicine, University of Bern and Inselspital Bern, Bern 3008, Switzerland
| | - Gurpreet K Arora
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Avi Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vivian Tieu
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Chantal Pauli
- Institute of Pathology and Molecular Pathology, University Hospital Zürich and the University of Zurich (UZH), Zurich 8006, Switzerland
| | - Matthias Reist
- Department of Biomedical Research and Bern Center for Precision Medicine, University of Bern and Inselspital Bern, Bern 3008, Switzerland
| | - Rachel J Lew
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Shauna L Houlihan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christof Fellmann
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christian Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark A Rubin
- Department of Biomedical Research and Bern Center for Precision Medicine, University of Bern and Inselspital Bern, Bern 3008, Switzerland
| | - Brooke M Emerling
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
36
|
Chornyi S, IJlst L, van Roermund CWT, Wanders RJA, Waterham HR. Peroxisomal Metabolite and Cofactor Transport in Humans. Front Cell Dev Biol 2021; 8:613892. [PMID: 33505966 PMCID: PMC7829553 DOI: 10.3389/fcell.2020.613892] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are membrane-bound organelles involved in many metabolic pathways and essential for human health. They harbor a large number of enzymes involved in the different pathways, thus requiring transport of substrates, products and cofactors involved across the peroxisomal membrane. Although much progress has been made in understanding the permeability properties of peroxisomes, there are still important gaps in our knowledge about the peroxisomal transport of metabolites and cofactors. In this review, we discuss the different modes of transport of metabolites and essential cofactors, including CoA, NAD+, NADP+, FAD, FMN, ATP, heme, pyridoxal phosphate, and thiamine pyrophosphate across the peroxisomal membrane. This transport can be mediated by non-selective pore-forming proteins, selective transport proteins, membrane contact sites between organelles, and co-import of cofactors with proteins. We also discuss modes of transport mediated by shuttle systems described for NAD+/NADH and NADP+/NADPH. We mainly focus on current knowledge on human peroxisomal metabolite and cofactor transport, but also include knowledge from studies in plants, yeast, fruit fly, zebrafish, and mice, which has been exemplary in understanding peroxisomal transport mechanisms in general.
Collapse
Affiliation(s)
- Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
37
|
Charles KN, Shackelford JE, Faust PL, Fliesler SJ, Stangl H, Kovacs WJ. Functional Peroxisomes Are Essential for Efficient Cholesterol Sensing and Synthesis. Front Cell Dev Biol 2020; 8:560266. [PMID: 33240873 PMCID: PMC7677142 DOI: 10.3389/fcell.2020.560266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/22/2020] [Indexed: 01/14/2023] Open
Abstract
Cholesterol biosynthesis is a multi-step process involving several subcellular compartments, including peroxisomes. Cells adjust their sterol content by both transcriptional and post-transcriptional feedback regulation, for which sterol regulatory element-binding proteins (SREBPs) are essential; such homeostasis is dysregulated in peroxisome-deficient Pex2 knockout mice. Here, we compared the regulation of cholesterol biosynthesis in Chinese hamster ovary (CHO-K1) cells and in three isogenic peroxisome-deficient CHO cell lines harboring Pex2 gene mutations. Peroxisome deficiency activated expression of cholesterogenic genes, however, cholesterol levels were unchanged. 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) protein levels were increased in mutant cells, whereas HMGCR activity was significantly decreased, resulting in reduced cholesterol synthesis. U18666A, an inhibitor of lysosomal cholesterol export, induced cholesterol biosynthetic enzymes; yet, cholesterol synthesis was still reduced. Interestingly, peroxisome deficiency promoted ER-to-Golgi SREBP cleavage-activating protein (SCAP) trafficking even when cells were cholesterol-loaded. Restoration of functional peroxisomes normalized regulation of cholesterol synthesis and SCAP trafficking. These results highlight the importance of functional peroxisomes for maintaining cholesterol homeostasis and efficient cholesterol synthesis.
Collapse
Affiliation(s)
- Khanichi N. Charles
- Department of Biology, San Diego State University, San Diego, CA, United States
| | | | - Phyllis L. Faust
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Steven J. Fliesler
- Departments of Ophthalmology and Biochemistry and Gradate Program in Neuroscience, University at Buffalo-The State University of New York (SUNY), Buffalo, NY, United States
- Research Service, Veterans Administration Western New York Healthcare System, Buffalo, NY, United States
| | - Herbert Stangl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Werner J. Kovacs
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Pemberton JG, Kim YJ, Humpolickova J, Eisenreichova A, Sengupta N, Toth DJ, Boura E, Balla T. Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. J Cell Biol 2020; 219:133809. [PMID: 32211894 PMCID: PMC7054996 DOI: 10.1083/jcb.201906130] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/08/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
Phosphatidylinositol (PI) is an essential structural component of eukaryotic membranes that also serves as the common precursor for polyphosphoinositide (PPIn) lipids. Despite the recognized importance of PPIn species for signal transduction and membrane homeostasis, there is still a limited understanding of the relationship between PI availability and the turnover of subcellular PPIn pools. To address these shortcomings, we established a molecular toolbox for investigations of PI distribution within intact cells by exploiting the properties of a bacterial enzyme, PI-specific PLC (PI-PLC). Using these tools, we find a minor presence of PI in membranes of the ER, as well as a general enrichment within the cytosolic leaflets of the Golgi complex, peroxisomes, and outer mitochondrial membrane, but only detect very low steady-state levels of PI within the plasma membrane (PM) and endosomes. Kinetic studies also demonstrate the requirement for sustained PI supply from the ER for the maintenance of monophosphorylated PPIn species within the PM, Golgi complex, and endosomal compartments.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Eisenreichova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Nivedita Sengupta
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Daniel J Toth
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
39
|
Chen C, Li J, Qin X, Wang W. Peroxisomal Membrane Contact Sites in Mammalian Cells. Front Cell Dev Biol 2020; 8:512. [PMID: 32714927 PMCID: PMC7344225 DOI: 10.3389/fcell.2020.00512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes participate in essential cellular metabolic processes, such as oxidation of fatty acids (FAs) and maintenance of reactive oxygen species (ROS) homeostasis. Peroxisomes must communicate with surrounding organelles to exchange information and metabolites. The formation of membrane contact sites (MCSs), where protein-protein or protein-lipid complexes tether the opposing membranes of two organelles, represents an essential means of organelle crosstalk. Peroxisomal MCS (PO-MCS) studies are emerging but are still in the early stages. In this review, we summarize the identified PO-MCSs with the ER, mitochondria, lipid droplets, and lysosomes in mammalian cells and discuss their tethering mechanisms and physiological roles. We also highlight several features of PO-MCSs that may help future studies.
Collapse
Affiliation(s)
- Chao Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuhui Qin
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Sivakumaren SC, Shim H, Zhang T, Ferguson FM, Lundquist MR, Browne CM, Seo HS, Paddock MN, Manz TD, Jiang B, Hao MF, Krishnan P, Wang DG, Yang TJ, Kwiatkowski NP, Ficarro SB, Cunningham JM, Marto JA, Dhe-Paganon S, Cantley LC, Gray NS. Targeting the PI5P4K Lipid Kinase Family in Cancer Using Covalent Inhibitors. Cell Chem Biol 2020; 27:525-537.e6. [PMID: 32130941 PMCID: PMC7286548 DOI: 10.1016/j.chembiol.2020.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/14/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
The PI5P4Ks have been demonstrated to be important for cancer cell proliferation and other diseases. However, the therapeutic potential of targeting these kinases is understudied due to a lack of potent, specific small molecules available. Here, we present the discovery and characterization of a pan-PI5P4K inhibitor, THZ-P1-2, that covalently targets cysteines on a disordered loop in PI5P4Kα/β/γ. THZ-P1-2 demonstrates cellular on-target engagement with limited off-targets across the kinome. AML/ALL cell lines were sensitive to THZ-P1-2, consistent with PI5P4K's reported role in leukemogenesis. THZ-P1-2 causes autophagosome clearance defects and upregulation in TFEB nuclear localization and target genes, disrupting autophagy in a covalent-dependent manner and phenocopying the effects of PI5P4K genetic deletion. Our studies demonstrate that PI5P4Ks are tractable targets, with THZ-P1-2 as a useful tool to further interrogate the therapeutic potential of PI5P4K inhibition and inform drug discovery campaigns for these lipid kinases in cancer metabolism and other autophagy-dependent disorders.
Collapse
Affiliation(s)
- Sindhu Carmen Sivakumaren
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyeseok Shim
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark R Lundquist
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Christopher M Browne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcia N Paddock
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Theresa D Manz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbruecken, Germany
| | - Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ming-Feng Hao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Pranav Krishnan
- Department of Medicine, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diana G Wang
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - T Jonathan Yang
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Nicholas P Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James M Cunningham
- Department of Medicine, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Su S, Raouf B, He X, Cai N, Li X, Yu J, Li J, Yu F, Wang M, Tang Y. Genome Wide Analysis for Growth at Two Growth Stages in A New Fast-Growing Common Carp Strain (Cyprinus carpio L.). Sci Rep 2020; 10:7259. [PMID: 32350307 PMCID: PMC7190712 DOI: 10.1038/s41598-020-64037-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 04/08/2020] [Indexed: 12/30/2022] Open
Abstract
In order to identify candidate genes or loci associated with growth performance of the newly established common carp strain, Xinlong, we conducted a genome-wide association analysis using 2b-RAD technology on 123 individuals. We constructed two sets of libraries associated with growth-related parameters (weight, length, width and depth) measured at two different grow-out stages. Among the 413,059 SNPs identified using SOAP SNP calling, 147,131 were tested for GWAS after quality filtering. Finally, 39 overlapping SNPs, assigned to four genomic locations, were associated with growth traits in two stages. These loci were assigned to functional classes related to immune response, response to stress, neurogenesis, cholesterol metabolism and development, and proliferation and differentiation of cells. By overlapping results of Plink and EMMAX analyses, we identified three genes: TOX, PLK2 and CD163 (both methods P < 0.05). Our study results could be used for marker-assisted selection to further improve the growth of the Xinlong strain, and illustrate that largely different sets of genes drive the growth of carp in the early and late grow-out stages.
Collapse
Affiliation(s)
- Shengyan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China.
| | - Bouzoualegh Raouf
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Xinjin He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China.,College of Animal science, Shanxi Agricultural University, Taigu, PR China
| | - Nana Cai
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Xinyuan Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Juhua Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - JianLin Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Fan Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Meiyao Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China.
| |
Collapse
|
42
|
Manz TD, Sivakumaren SC, Ferguson FM, Zhang T, Yasgar A, Seo HS, Ficarro SB, Card JD, Shim H, Miduturu CV, Simeonov A, Shen M, Marto JA, Dhe-Paganon S, Hall MD, Cantley LC, Gray NS. Discovery and Structure-Activity Relationship Study of ( Z)-5-Methylenethiazolidin-4-one Derivatives as Potent and Selective Pan-phosphatidylinositol 5-Phosphate 4-Kinase Inhibitors. J Med Chem 2020; 63:4880-4895. [PMID: 32298120 DOI: 10.1021/acs.jmedchem.0c00227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to their role in many important signaling pathways, phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are attractive targets for the development of experimental therapeutics for cancer, metabolic, and immunological disorders. Recent efforts to develop small molecule inhibitors for these lipid kinases resulted in compounds with low- to sub-micromolar potencies. Here, we report the identification of CVM-05-002 using a high-throughput screen of PI5P4Kα against our in-house kinase inhibitor library. CVM-05-002 is a potent and selective inhibitor of PI5P4Ks, and a 1.7 Å X-ray structure reveals its binding interactions in the ATP-binding pocket. Further investigation of the structure-activity relationship led to the development of compound 13, replacing the rhodanine-like moiety present in CVM-05-002 with an indole, a potent pan-PI5P4K inhibitor with excellent kinome-wide selectivity. Finally, we employed isothermal cellular thermal shift assays (CETSAs) to demonstrate the effective cellular target engagement of PI5P4Kα and -β by the inhibitors in HEK 293T cells.
Collapse
Affiliation(s)
- Theresa D Manz
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States.,Department of Pharmaceutical and Medicinal Chemistry, Saarland University, 66123 Saarbruecken, Germany
| | - Sindhu Carmen Sivakumaren
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 United States
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Scott B Ficarro
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, United States.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Joseph D Card
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, United States.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Hyeseok Shim
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, New York 10065, United States
| | - Chandrasekhar V Miduturu
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 United States
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 United States
| | - Jarrod A Marto
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, United States.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850 United States
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, New York 10065, United States
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
43
|
Qin Y, Ting F, Kim MJ, Strelnikov J, Harmon J, Gao F, Dose A, Teng BB, Alipour MA, Yao Z, Crooke R, Krauss RM, Medina MW. Phosphatidylinositol-(4,5)-Bisphosphate Regulates Plasma Cholesterol Through LDL (Low-Density Lipoprotein) Receptor Lysosomal Degradation. Arterioscler Thromb Vasc Biol 2020; 40:1311-1324. [PMID: 32188273 DOI: 10.1161/atvbaha.120.314033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE TMEM55B (transmembrane protein 55B) is a phosphatidylinositol-(4,5)-bisphosphate (PI[4,5]P2) phosphatase that regulates cellular cholesterol, modulates LDLR (low-density lipoprotein receptor) decay, and lysosome function. We tested the effects of Tmem55b knockdown on plasma lipids in mice and assessed the roles of LDLR lysosomal degradation and change in (PI[4,5]P2) in mediating these effects. Approach and Results: Western diet-fed C57BL/6J mice were treated with antisense oligonucleotides against Tmem55b or a nontargeting control for 3 to 4 weeks. Hepatic Tmem55b transcript and protein levels were reduced by ≈70%, and plasma non-HDL (high-density lipoprotein) cholesterol was increased ≈1.8-fold (P<0.0001). Immunoblot analysis of fast protein liquid chromatography (FPLC) fractions revealed enrichment of ApoE-containing particles in the LDL size range. In contrast, Tmem55b knockdown had no effect on plasma cholesterol in Ldlr-/- mice. In primary hepatocytes and liver tissues from Tmem55b knockdown mice, there was decreased LDLR protein. In the hepatocytes, there was increased lysosome staining and increased LDLR-lysosome colocalization. Impairment of lysosome function (incubation with NH4Cl or knockdown of the lysosomal proteins LAMP1 or RAB7) abolished the effect of TMEM55B knockdown on LDLR in HepG2 (human hepatoma) cells. Colocalization of the recycling endosome marker RAB11 (Ras-related protein 11) with LDLR in HepG2 cells was reduced by 50% upon TMEM55B knockdown. Finally, knockdown increased hepatic PI(4,5)P2 levels in vivo and in HepG2 cells, while TMEM55B overexpression in vitro decreased PI(4,5)P2. TMEM55B knockdown decreased, whereas overexpression increased, LDL uptake in HepG2 cells. Notably, the TMEM55B overexpression effect was reversed by incubation with PI(4,5)P2. Conclusions: These findings indicate a role for TMEM55B in regulating plasma cholesterol levels by affecting PI(4,5)P2-mediated LDLR lysosomal degradation.
Collapse
Affiliation(s)
- Yuanyuan Qin
- From the Department of Pediatrics, University of California San Francisco, Oakland (Y.Q., F.T., R.M.K., M.W.M.)
| | - Flora Ting
- From the Department of Pediatrics, University of California San Francisco, Oakland (Y.Q., F.T., R.M.K., M.W.M.)
| | - Mee J Kim
- Children's Hospital Oakland Research Institute, CA (M.J.K., J.S., J.H., F.G., A.D.)
| | - Jacob Strelnikov
- Children's Hospital Oakland Research Institute, CA (M.J.K., J.S., J.H., F.G., A.D.)
| | - Joseph Harmon
- Children's Hospital Oakland Research Institute, CA (M.J.K., J.S., J.H., F.G., A.D.)
| | - Feng Gao
- Children's Hospital Oakland Research Institute, CA (M.J.K., J.S., J.H., F.G., A.D.)
| | - Andrea Dose
- Children's Hospital Oakland Research Institute, CA (M.J.K., J.S., J.H., F.G., A.D.)
| | - Ba-Bie Teng
- Center for Human Genetics, University of Texas Health Science Center, Houston (B.-B.T.)
| | - Mohsen Amir Alipour
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada (M.A.A., Z.Y.)
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada (M.A.A., Z.Y.)
| | | | - Ronald M Krauss
- From the Department of Pediatrics, University of California San Francisco, Oakland (Y.Q., F.T., R.M.K., M.W.M.)
| | - Marisa W Medina
- From the Department of Pediatrics, University of California San Francisco, Oakland (Y.Q., F.T., R.M.K., M.W.M.)
| |
Collapse
|
44
|
Manz T, Sivakumaren SC, Yasgar A, Hall MD, Davis MI, Seo HS, Card JD, Ficarro SB, Shim H, Marto JA, Dhe-Paganon S, Sasaki AT, Boxer MB, Simeonov A, Cantley LC, Shen M, Zhang T, Ferguson FM, Gray NS. Structure-Activity Relationship Study of Covalent Pan-phosphatidylinositol 5-Phosphate 4-Kinase Inhibitors. ACS Med Chem Lett 2020; 11:346-352. [PMID: 32184968 PMCID: PMC7074221 DOI: 10.1021/acsmedchemlett.9b00402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022] Open
Abstract
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are important molecular players in a variety of diseases, such as cancer. Currently available PI5P4K inhibitors are reversible small molecules, which may lack selectivity and sufficient cellular on-target activity. In this study, we present a new class of covalent pan-PI5P4K inhibitors with potent biochemical and cellular activity. Our designs are based on THZ-P1-2, a covalent PI5P4K inhibitor previously developed in our lab. Here, we report further structure-guided optimization and structure-activity relationship (SAR) study of this scaffold, resulting in compound 30, which retained biochemical and cellular potency, while demonstrating a significantly improved selectivity profile. Furthermore, we confirm that the inhibitors show efficient binding affinity in the context of HEK 293T cells using isothermal CETSA methods. Taken together, compound 30 represents a highly selective pan-PI5P4K covalent lead molecule.
Collapse
Affiliation(s)
- Theresa
D. Manz
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department
of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbruecken, Germany
| | - Sindhu C. Sivakumaren
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Adam Yasgar
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Matthew D. Hall
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Mindy I. Davis
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Hyuk-Soo Seo
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Joseph D. Card
- Department
of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Oncologic Pathology, Dana-Farber Cancer
Institute, 360 Longwood
Avenue, Boston, Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Scott B. Ficarro
- Department
of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Oncologic Pathology, Dana-Farber Cancer
Institute, 360 Longwood
Avenue, Boston, Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Hyeseok Shim
- Meyer
Cancer Center, Weill Cornell Medicine and
New York Presbyterian Hospital, New York, New York 10065, United States
| | - Jarrod A. Marto
- Department
of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Oncologic Pathology, Dana-Farber Cancer
Institute, 360 Longwood
Avenue, Boston, Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Sirano Dhe-Paganon
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Atsuo T. Sasaki
- Division
of Hematology and Oncology, University of
Cincinnati, 3125 Eden
Avenue, Cincinnati, Ohio 45267-0508, United States
| | - Matthew B. Boxer
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Lewis C. Cantley
- Meyer
Cancer Center, Weill Cornell Medicine and
New York Presbyterian Hospital, New York, New York 10065, United States
| | - Min Shen
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Tinghu Zhang
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Fleur M. Ferguson
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Nathanael S. Gray
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
45
|
Turk BR, Theda C, Fatemi A, Moser AB. X-linked adrenoleukodystrophy: Pathology, pathophysiology, diagnostic testing, newborn screening and therapies. Int J Dev Neurosci 2020; 80:52-72. [PMID: 31909500 PMCID: PMC7041623 DOI: 10.1002/jdn.10003] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Adrenoleukodystrophy (ALD) is a rare X-linked disease caused by a mutation of the peroxisomal ABCD1 gene. This review summarizes our current understanding of the pathogenic cell- and tissue-specific roles of lipid species in the context of experimental therapeutic strategies and provides an overview of critical historical developments, therapeutic trials and the advent of newborn screening in the USA. In ALD, very long-chain fatty acid (VLCFA) chain length-dependent dysregulation of endoplasmic reticulum stress and mitochondrial radical generating systems inducing cell death pathways has been shown, providing the rationale for therapeutic moiety-specific VLCFA reduction and antioxidant strategies. The continuing increase in newborn screening programs and promising results from ongoing and recent therapeutic investigations provide hope for ALD.
Collapse
Affiliation(s)
- Bela R. Turk
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| | - Christiane Theda
- Neonatal ServicesRoyal Women's HospitalMurdoch Children's Research Institute and University of MelbourneMelbourneVICAustralia
| | - Ali Fatemi
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| | - Ann B. Moser
- Hugo W Moser Research InstituteKennedy Krieger InstituteBaltimoreMDUSA
| |
Collapse
|
46
|
Schrader M, Kamoshita M, Islinger M. Organelle interplay-peroxisome interactions in health and disease. J Inherit Metab Dis 2020; 43:71-89. [PMID: 30864148 PMCID: PMC7041636 DOI: 10.1002/jimd.12083] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 01/04/2023]
Abstract
Peroxisomes are multifunctional, dynamic, membrane-bound organelles with important functions in cellular lipid metabolism, rendering them essential for human health and development. Important roles for peroxisomes in signaling and the fine-tuning of cellular processes are emerging, which integrate them in a complex network of interacting cellular compartments. Like many other organelles, peroxisomes communicate through membrane contact sites. For example, peroxisomal growth, positioning, and lipid metabolism involves contacts with the endoplasmic reticulum (ER). Here, we discuss the most recent findings on peroxisome-organelle interactions including peroxisome-ER interplay at membrane contacts sites, and functional interplay with mitochondria, lysosomes, and lipid droplets in mammalian cells. We address tether proteins, metabolic cooperation, and the impact of peroxisome interactions on human health and disease.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, BiosciencesUniversity of ExeterExeterUK
| | - Maki Kamoshita
- College of Life and Environmental Sciences, BiosciencesUniversity of ExeterExeterUK
| | - Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty ManheimUniversity of HeidelbergMannheimGermany
| |
Collapse
|
47
|
Turk BR, Theda C, Fatemi A, Moser AB. X-linked Adrenoleukodystrophy: Pathology, Pathophysiology, Diagnostic Testing, Newborn Screening, and Therapies. Int J Dev Neurosci 2019:S0736-5748(19)30133-9. [PMID: 31778737 DOI: 10.1016/j.ijdevneu.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 01/22/2023] Open
Abstract
Adrenoleukodystrophy (ALD) is a rare X-linked disease caused by a mutation of the peroxisomal ABCD1 gene. This review summarizes our current understanding of the pathogenic cell- and tissue-specific role of lipid species in the context of experimental therapeutic strategies and provides an overview of critical historical developments, therapeutic trials, and the advent of newborn screening in the United States. In ALD, very long chain fatty acid (VLCFA) chain-length-dependent dysregulation of endoplasmic reticulum stress and mitochondrial radical generating systems inducing cell death pathways has been shown, providing the rationale for therapeutic moiety-specific VLCFA reduction and antioxidant strategies. The continuing increase in newborn screening programs and promising results from ongoing and recent therapeutic investigations provide hope for ALD.
Collapse
Affiliation(s)
- Bela R Turk
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| | - Christiane Theda
- Neonatal Services, Royal Women's Hospital, Murdoch Children's Research Institute and University of Melbourne, 20 Flemington Road, Parkville, VIC, 3052, Melbourne, Australia.
| | - Ali Fatemi
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| | - Ann B Moser
- Hugo W Moser Research Institute, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, USA.
| |
Collapse
|
48
|
Staying in Healthy Contact: How Peroxisomes Interact with Other Cell Organelles. Trends Mol Med 2019; 26:201-214. [PMID: 31727543 DOI: 10.1016/j.molmed.2019.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/24/2019] [Accepted: 09/24/2019] [Indexed: 11/24/2022]
Abstract
Peroxisomes share extensive metabolic connections with other cell organelles. Membrane contact sites (MCSs) establish and maintain such interactions, and they are vital for organelle positioning and motility. In the past few years peroxisome interactions and MCSs with other cellular organelles have been explored extensively, resulting in the identification of new MCSs, the tethering molecules involved, and their functional characterization. Defective tethering and compartmental communication can lead to pathological conditions that can be termed 'organelle interaction diseases'. We review peroxisome-organelle interactions in mammals and summarize the most recent knowledge of mammalian peroxisomal organelle contacts in health and disease.
Collapse
|
49
|
Di Mattia T, Tomasetto C, Alpy F. Faraway, so close! Functions of Endoplasmic reticulum-Endosome contacts. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158490. [PMID: 31252175 DOI: 10.1016/j.bbalip.2019.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/27/2023]
Abstract
Eukaryotic cells are partitioned into functionally distinct organelles. Long considered as independent units in the cytosol, organelles are actually in constant and direct interaction with each other, mostly through the establishment of physical connections named membrane contact sites. Membrane contact sites constitute specific active regions involved in organelle dynamics, inter-organelle exchanges and communications. The endoplasmic reticulum (ER), which spreads throughout the cytosol, forms an extensive network that has many connections with the other organelles of the cell. Ample connections between the ER and endocytic organelles are observed in many cell types, highlighting their prominent physiological roles. Even though morphologically similar - a contact is a contact -, the identity of ER-Endosome contacts is defined by their specific molecular composition, which in turn determines the function of the contact. Here, we review the molecular mechanisms of ER-Endosome contact site formation and their associated cellular functions. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Thomas Di Mattia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Catherine Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
50
|
Yang H. Extended synaptotagmins, peroxisome-endoplasmic reticulum contact and cholesterol transport. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1266-1269. [DOI: 10.1007/s11427-019-9573-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
|