1
|
Taylor OB, DeGroff N, El-Hodiri HM, Gao C, Fischer AJ. Sphingosine-1-phosphate signaling regulates the ability of Müller glia to become neurogenic, proliferating progenitor-like cells. eLife 2025; 13:RP102151. [PMID: 40047533 PMCID: PMC11884796 DOI: 10.7554/elife.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.
Collapse
Affiliation(s)
- Olivia B Taylor
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
- Neuroscience Graduate Program, The Ohio State UniversityColumbusUnited States
| | - Nicholas DeGroff
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Heithem M El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Chengyu Gao
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State UniversityColumbusUnited States
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
| |
Collapse
|
2
|
Chen YY, Yang CM, Yang CH, Ho TC, Hsieh YT, Lai TT, Tsai TH, Huang SY. Elevated Very-Long-Chain Ceramides in the Vitreous Humor of Patients With Proliferative Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2025; 66:28. [PMID: 39932474 PMCID: PMC11817849 DOI: 10.1167/iovs.66.2.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
Purpose To quantitate the levels of various ceramide species in the vitreous of patients with proliferative diabetic retinopathy (PDR) and to investigate the role of vitreal ceramides in the pathogenesis of PDR. Study Design A case control study. Methods We collected vitreous samples from 25 type 2 diabetes patients with PDR and 25 age- and sex-matched nondiabetic controls undergoing vitrectomy. The levels of ceramide species (C16:0, 18:0, 20:0, 22:0, 24:1, and 24:0) were measured by ultra-high-performance liquid chromatography-tandem mass spectrometry with positive electrospray ionization mode. The correlation of baseline characteristics, blood test data, and clinical manifestation of PDR were analyzed with vitreal ceramides levels. Results The total level of ceramides was substantially higher in the PDR group than the control group (18.626 ± 19.264 versus 3.524 ± 2.456 pmol/mg protein; P < 0.001). Among ceramides of various acyl chain lengths, the increases of very-long-chain (VLC) ceramides (C22-C24) were more drastic than those of long-chain ceramides (C16-C20). In the PDR group, VLC ceramide species accounted for 76.1%, whereas in the control group, C16 ceramide predominated at 40.5%. Based on the multivariate linear regression analysis, diagnosis of diabetes (β = 14.5751; P = 0.0327) and lower body mass index (β = -2.1396; P = 0.0173) were significantly associated with higher level of VLC ceramides. Intravitreal injection of anti-VEGF leads to insignificant reduction of VLC ceramides (P = 0.068). Conclusions Vitreal ceramide levels were elevated in diabetic subjects, especially the VLC species, which may contribute to the pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Ying-Yi Chen
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzyy-Chang Ho
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Hsieh
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tso-Ting Lai
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Hsun Tsai
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Taylor O, DeGroff N, El-Hodiri H, Gao C, Fischer AJ. Sphingosine-1-phosphate signaling regulates the ability of Müller glia to become neurogenic, proliferating progenitor-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.06.606815. [PMID: 39149287 PMCID: PMC11326190 DOI: 10.1101/2024.08.06.606815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.
Collapse
Affiliation(s)
- Olivia Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nick DeGroff
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Heithem El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Chengyu Gao
- Campus Chemical Instrument Center, Mass Spectrometry & Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Tahia F, Ma D, Stephenson DJ, Basu SK, Del Mar NA, Lenchik N, Kochat H, Brown K, Chalfant CE, Mandal N. Inhibiting De Novo Biosynthesis of Ceramide by L-Cycloserine Can Prevent Light-Induced Retinal Degeneration in Albino BALB/c Mice. Int J Mol Sci 2024; 25:13389. [PMID: 39769156 PMCID: PMC11676690 DOI: 10.3390/ijms252413389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Retinal degenerative diseases lead to irreversible vision loss due to photoreceptor cell death, driven by complex genetic and environmental factors. Ceramide, a sphingolipid metabolite, emerges as a critical mediator in the apoptotic cascade associated with retinal degeneration. Our previous work demonstrated L-Cycloserine's ability to protect photoreceptor-derived cells from oxidative stress by inhibiting the de novo ceramide pathway and thus prompting further investigation on its effect in the in vivo retina. This study investigates the potential of L-Cycloserine to protect albino BALB/c mice against light-induced retinal degeneration (LIRD). L-Cycloserine, in an optimal dose, administered systemically 30 min before LIRD, was found to prevent photoreceptor cell death significantly from light-induced degeneration. We further determined the retinal bioavailability and pharmacokinetic behavior of L-Cycloserine, its effect on sphingolipid profile, expression of sphingolipid biosynthetic, and cell death-promoting genes and proteins from the retina to understand the underlying mechanisms. This study lays the groundwork for further preclinical and clinical investigations into L-Cycloserine's potential as a novel therapeutic in treating retinal degenerative diseases.
Collapse
Affiliation(s)
- Faiza Tahia
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (F.T.); (D.M.)
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.B.); (N.A.D.M.); (N.L.)
| | - Dejian Ma
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (F.T.); (D.M.)
| | - Daniel J. Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (D.J.S.); (C.E.C.)
| | - Sandip K. Basu
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.B.); (N.A.D.M.); (N.L.)
| | - Nobel A. Del Mar
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.B.); (N.A.D.M.); (N.L.)
| | - Nataliya Lenchik
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.B.); (N.A.D.M.); (N.L.)
| | - Harry Kochat
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (H.K.); (K.B.)
| | - Kennard Brown
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (H.K.); (K.B.)
| | - Charles E. Chalfant
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; (D.J.S.); (C.E.C.)
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA 23298, USA
| | - Nawajes Mandal
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (F.T.); (D.M.)
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.B.); (N.A.D.M.); (N.L.)
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Memphis VA Medical Center, Memphis, TN 38104, USA
| |
Collapse
|
5
|
Qi F, Yang L, Chang G, Wang X, Tao G, Xiao H. Comprehensive mendelian randomization reveals atrial fibrillation-breast cancer relationship and explores common druggable targets. Front Pharmacol 2024; 15:1435545. [PMID: 39170695 PMCID: PMC11335625 DOI: 10.3389/fphar.2024.1435545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Atrial fibrillation (AF) and breast cancer pose significant risks to human health. The reasons behind the concurrent occurrence of AF and breast cancer remain unclear, leading to complex treatment approaches. Mendelian Randomization (MR) analyses aim to offer genetic evidence supporting the causation of AF and breast cancer and to investigate common druggable genes associated with both conditions. Methods We used two-samples of MR to sequentially explore the causal relationship between atrial fibrillation and breast cancer, and between atrial fibrillation and breast cancer therapeutic drugs, and verified the stability of the results through colocalization analysis. We utilized the Connectivity map database to infer the direction of drug effects on disease. Finally, we explored druggable genes that play a role in AF and breast cancer and performed a Phenome-wide MR analysis to analyze the potential side effects of drug targets. Results We found 15 breast cancer therapeutic drugs that significantly support a causal association between AF and breast cancer through expression in blood and/or atrial appendage tissue. Among these, activation of ANXA5 by Docetaxel, inhibition of EIF5A by Fulvestrant, and inhibition of GNA12 by Tamoxifen increased the risk of AF, while inhibition of ANXA5 by Gemcitabine and Vinorebine and inhibition of PCGF6 by Paclitaxel reduced the risk of AF. Inhibition of MSH6 and SF3B1 by Cyclophosphamide, as well as inhibition of SMAD4 and PSMD2 and activation of ASAH1 and MLST8 by Doxorubicin can have bidirectional effects on AF occurrence. XBP1 can be used as a common druggable gene for AF and breast cancer, and there are no potential side effects of treatment against this target. Conclusion This study did not find a direct disease causality between AF and breast cancer but identified 40 target genes for 15 breast cancer therapeutic drugs associated with AF, clarified the direction of action of 8 breast cancer therapeutic drugs on AF, and finally identified one common druggable target for AF and breast cancer.
Collapse
Affiliation(s)
- Fenglin Qi
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lunzhe Yang
- Department of Neurosurgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guanglei Chang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangbin Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guanghong Tao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Xiao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Iezhitsa I, Agarwal R, Agarwal P. Unveiling enigmatic essence of Sphingolipids: A promising avenue for glaucoma treatment. Vision Res 2024; 221:108434. [PMID: 38805893 DOI: 10.1016/j.visres.2024.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Treatment of glaucoma, the leading cause of irreversible blindness, remains challenging. The apoptotic loss of retinal ganglion cells (RGCs) in glaucoma is the pathological hallmark. Current treatments often remain suboptimal as they aim to halt RGC loss secondary to reduction of intraocular pressure. The pathophysiological targets for exploring direct neuroprotective approaches, therefore are highly relevant. Sphingolipids have emerged as significant target molecules as they are not only the structural components of various cell constituents, but they also serve as signaling molecules that regulate molecular pathways involved in cell survival and death. Investigations have shown that a critical balance among various sphingolipid species, particularly the ceramide and sphingosine-1-phosphate play a role in deciding the fate of the cell. In this review we briefly discuss the metabolic interconversion of sphingolipid species to get an insight into "sphingolipid rheostat", the dynamic balance among metabolites. Further we highlight the role of sphingolipids in the key pathophysiological mechanisms that lead to glaucomatous loss of RGCs. Lastly, we summarize the potential drug candidates that have been investigated for their neuroprotective effects in glaucoma via their effects on sphingolipid axis.
Collapse
|
7
|
Mondal K, Del Mar NA, Gary AA, Grambergs RC, Yousuf M, Tahia F, Stephenson B, Stephenson DJ, Chalfant CE, Reiner A, Mandal N. Sphingolipid changes in mouse brain and plasma after mild traumatic brain injury at the acute phases. Lipids Health Dis 2024; 23:200. [PMID: 38937745 PMCID: PMC11209960 DOI: 10.1186/s12944-024-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) causes neuroinflammation and can lead to long-term neurological dysfunction, even in cases of mild TBI (mTBI). Despite the substantial burden of this disease, the management of TBI is precluded by an incomplete understanding of its cellular mechanisms. Sphingolipids (SPL) and their metabolites have emerged as key orchestrators of biological processes related to tissue injury, neuroinflammation, and inflammation resolution. No study so far has investigated comprehensive sphingolipid profile changes immediately following TBI in animal models or human cases. In this study, sphingolipid metabolite composition was examined during the acute phases in brain tissue and plasma of mice following mTBI. METHODS Wildtype mice were exposed to air-blast-mediated mTBI, with blast exposure set at 50-psi on the left cranium and 0-psi designated as Sham. Sphingolipid profile was analyzed in brain tissue and plasma during the acute phases of 1, 3, and 7 days post-TBI via liquid-chromatography-mass spectrometry. Simultaneously, gene expression of sphingolipid metabolic markers within brain tissue was analyzed using quantitative reverse transcription-polymerase chain reaction. Significance (P-values) was determined by non-parametric t-test (Mann-Whitney test) and by Tukey's correction for multiple comparisons. RESULTS In post-TBI brain tissue, there was a significant elevation of 1) acid sphingomyelinase (aSMase) at 1- and 3-days, 2) neutral sphingomyelinase (nSMase) at 7-days, 3) ceramide-1-phosphate levels at 1 day, and 4) monohexosylceramide (MHC) and sphingosine at 7-days. Among individual species, the study found an increase in C18:0 and a decrease in C24:1 ceramides (Cer) at 1 day; an increase in C20:0 MHC at 3 days; decrease in MHC C18:0 and increase in MHC C24:1, sphingomyelins (SM) C18:0, and C24:0 at 7 days. Moreover, many sphingolipid metabolic genes were elevated at 1 day, followed by a reduction at 3 days and an absence at 7-days post-TBI. In post-TBI plasma, there was 1) a significant reduction in Cer and MHC C22:0, and an increase in MHC C16:0 at 1 day; 2) a very significant increase in long-chain Cer C24:1 accompanied by significant decreases in Cer C24:0 and C22:0 in MHC and SM at 3 days; and 3) a significant increase of C22:0 in all classes of SPL (Cer, MHC and SM) as well as a decrease in Cer C24:1, MHC C24:1 and MHC C24:0 at 7 days. CONCLUSIONS Alterations in sphingolipid metabolite composition, particularly sphingomyelinases and short-chain ceramides, may contribute to the induction and regulation of neuroinflammatory events in the early stages of TBI, suggesting potential targets for novel diagnostic, prognostic, and therapeutic strategies in the future.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
- Molecular Diagnostics Laboratory, Department of Basic & Translational Research, Saroj Gupta Cancer Centre & Research Institute, Kolkata, WB, 700 063, India
| | - Nobel A Del Mar
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Ashlyn A Gary
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Richard C Grambergs
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Mohd Yousuf
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Faiza Tahia
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Benjamin Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Daniel J Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Charles E Chalfant
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
- Research Service, Richmond VA Medical Center, Richmond, VA, 23298, USA
| | - Anton Reiner
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA.
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Centre, Memphis, TN, 38163, USA.
- Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
8
|
Yetisgin AA, Durak S, Kutlu O, Cetinel S. Hyaluronan-Sphingosine Polymersomes for Treatment of Ocular Neovascularization: Synthesis and Evaluation. Macromol Biosci 2024; 24:e2300531. [PMID: 38318988 DOI: 10.1002/mabi.202300531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Ocular neovascularization is a hallmark of several sight-threatening diseases, including diabetic retinopathy and age-related macular degeneration. Currently, available treatments are limited and often associated with side effects. Therefore, a novel approach to ocular neovascularization treatment through utilization of polymersomes from self-assembled sphingosine-grafted hyaluronic acid (HA-Sph) amphiphilic polymers is presented. The polymersomes are generated in spherical morphologies and sizes between 97.95 - 161.9 nm with homogenous size distributions. Experiments reveal that HA-Sph polymersomes, with concentrations ≥150 µg mL-1, significantly inhibit the proliferation of human umbilical vein endothelial cells (HUVECs), while concurrently promoting the proliferation of retinal pigment epithelial cells. The polymersomes demonstrate gradual disintegration in vitro, leading to sustained release of sphingosine, which prolongs the inhibition of HUVEC proliferation (from 87.5% at 24 h to 35.2% viability at 96 h). The efficacy of polymersomes in inhibiting angiogenesis is confirmed through tube formation assay, revealing a substantial reduction in tube length compared to the control group. The findings also validate the ocular penetration capability of polymersomes through ex vivo whole porcine eye ocular penetration study, indicating their suitability for topical administration. Potentially, HA-Sph polymersomes can be harnessed to develop intricate drug delivery systems that protect the retina and effectively treat ocular diseases.
Collapse
Affiliation(s)
- Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul, 34956, Turkey
| | - Saliha Durak
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| |
Collapse
|
9
|
Modenini G, Abondio P, Sazzini M, Boattini A. Polymorphic transposable elements provide new insights on high-altitude adaptation in the Tibetan Plateau. Genomics 2024; 116:110854. [PMID: 38701989 DOI: 10.1016/j.ygeno.2024.110854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Several studies demonstrated that populations living in the Tibetan plateau are genetically and physiologically adapted to high-altitude conditions, showing genomic signatures ascribable to the action of natural selection. However, so far most of them relied solely on inferences drawn from the analysis of coding variants and point mutations. To fill this gap, we focused on the possible role of polymorphic transposable elements in influencing the adaptation of Tibetan and Sherpa highlanders. To do so, we compared high-altitude and middle/low-lander individuals of East Asian ancestry by performing in silico analyses and differentiation tests on 118 modern and ancient samples. We detected several transposable elements associated with high altitude, which map genes involved in cardiovascular, hematological, chem-dependent and respiratory conditions, suggesting that metabolic and signaling pathways taking part in these functions are disproportionately impacted by the effect of environmental stressors in high-altitude individuals. To our knowledge, our study is the first hinting to a possible role of transposable elements in the adaptation of Tibetan and Sherpa highlanders.
Collapse
Affiliation(s)
- Giorgia Modenini
- Dept. of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
| | - Paolo Abondio
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Marco Sazzini
- Dept. of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy; Interdepartmental Centre - Alma Mater Research Institute on Global Changes and Climate Change, University of Bologna, Italy
| | - Alessio Boattini
- Dept. of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Tahia F, Basu SK, Prislovsky A, Mondal K, Ma D, Kochat H, Brown K, Stephenson DJ, Chalfant CE, Mandal N. Sphingolipid biosynthetic inhibitor L-Cycloserine prevents oxidative-stress-mediated death in an in vitro model of photoreceptor-derived 661W cells. Exp Eye Res 2024; 242:109852. [PMID: 38460719 PMCID: PMC11089890 DOI: 10.1016/j.exer.2024.109852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Oxidative stress plays a pivotal role in the pathogenesis of several neurodegenerative diseases. Retinal degeneration causes irreversible death of photoreceptor cells, ultimately leading to vision loss. Under oxidative stress, the synthesis of bioactive sphingolipid ceramide increases, triggering apoptosis in photoreceptor cells and leading to their death. This study investigates the effect of L-Cycloserine, a small molecule inhibitor of ceramide biosynthesis, on sphingolipid metabolism and the protection of photoreceptor-derived 661W cells from oxidative stress. The results demonstrate that treatment with L-Cycloserine, an inhibitor of Serine palmitoyl transferase (SPT), markedly decreases bioactive ceramide and associated sphingolipids in 661W cells. A nontoxic dose of L-Cycloserine can provide substantial protection of 661W cells against H2O2-induced oxidative stress by reversing the increase in ceramide level observed under oxidative stress conditions. Analysis of various antioxidant, apoptotic and sphingolipid pathway genes and proteins also confirms the ability of L-Cycloserine to modulate these pathways. Our findings elucidate the generation of sphingolipid mediators of cell death in retinal cells under oxidative stress and the potential of L-Cycloserine as a therapeutic candidate for targeting ceramide-induced degenerative diseases by inhibiting SPT. The promising therapeutic prospect identified in our findings lays the groundwork for further validation in in-vivo and preclinical models of retinal degeneration.
Collapse
Affiliation(s)
- Faiza Tahia
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sandip K Basu
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Amanda Prislovsky
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Memphis VA Medical Center, Memphis, TN, 38104, USA
| | - Koushik Mondal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Dejian Ma
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Harry Kochat
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Kennard Brown
- Office of Executive Vice Chancellor and Chief Operations Officer, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Daniel J Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Charles E Chalfant
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA; Research Service, Richmond Veterans Administration Medical Center, Richmond VA, 23298, USA
| | - Nawajes Mandal
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Memphis VA Medical Center, Memphis, TN, 38104, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
11
|
Hood EM, Lipinski RAJ, Lipinski DM. Downregulation of lysosomal trafficking in ARPE19 cells leads to decreased transfection efficiency at high passage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550695. [PMID: 37546846 PMCID: PMC10402107 DOI: 10.1101/2023.07.26.550695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE ARPE19 cells are a commonly used cell culture model for the study of retinal pigment epithelial cell biology and pathologies. However, numerous studies have demonstrated that ARPE19 undergo morphologic, transcriptomic and genomic alterations over time and with increasing passage number. Herein, we explore the mechanisms underlying increased resistance to the delivery of exogenous genetic material via transfection in ARPE19 cells using mass spectrometry. METHODS ARPE19 cells (N=5 wells/reagent) were seeded in 6-well plates at passages 24 through 30. At 70% confluency an mCherry reporter construct was delivered via transfection using Lipofectamine 3000, Lipofectamine LTX, Lipofectamine Stem, or PEI (polyethylenimine) reagents. After 72 hours, transfection efficiency was quantified by fluorescence microscopy and flow cytometry. Mass spectrometry and immunofluorescence of ARPE19 cells were performed at passages 24 and 30 to evaluate altered protein synthesis and localization between passage numbers. RESULTS ARPE19 transfection showed a maximum transfection efficiency of 32.4% at P26 using Lipofectamine 3000 reagent. All lipofectamine based reagents demonstrated statistically significant decreases in transfection efficiency between passages 24 and 30. Mass spectrometry analysis revealed 18 differentially expressed proteins, including down-regulation of clathrin light chain B (CLTB) and legumain (LGMN) that was confirmed via immunofluorescence imaging, which indicated altered intracellular localization. CONCLUSIONS ARPE19 cells demonstrate passage number dependent changes in lipofectamine-based transfection efficiency. Mass spectrometry and immunofluorescence indicates the observed decrease in transfection efficiency involves the dysregulation of endocytosis and intracellular endolysosomal trafficking at later passages. TRANSLATIONAL RELEVANCE This study contributes to mounting evidence for changes in ARPE19 cell physiology with increasing passage number. This information is of value for the continued use of ARPE19 cells as a model system for RPE biology and the development of therapeutics.
Collapse
Affiliation(s)
- Erika M.S. Hood
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, WI, USA
| | | | - Daniel M. Lipinski
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, WI, USA
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, WI, USA
| |
Collapse
|
12
|
Zhang KR, Jankowski CSR, Marshall R, Nair R, Más Gómez N, Alnemri A, Liu Y, Erler E, Ferrante J, Song Y, Bell BA, Baumann BH, Sterling J, Anderson B, Foshe S, Roof J, Fazelinia H, Spruce LA, Chuang JZ, Sung CH, Dhingra A, Boesze-Battaglia K, Chavali VRM, Rabinowitz JD, Mitchell CH, Dunaief JL. Oxidative stress induces lysosomal membrane permeabilization and ceramide accumulation in retinal pigment epithelial cells. Dis Model Mech 2023; 16:dmm050066. [PMID: 37401371 PMCID: PMC10399446 DOI: 10.1242/dmm.050066] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of age-related macular degeneration, the leading cause of blindness in older adults, with retinal pigment epithelium (RPE) cells playing a key role. To better understand the cytotoxic mechanisms underlying oxidative stress, we used cell culture and mouse models of iron overload, as iron can catalyze reactive oxygen species formation in the RPE. Iron-loading of cultured induced pluripotent stem cell-derived RPE cells increased lysosomal abundance, impaired proteolysis and reduced the activity of a subset of lysosomal enzymes, including lysosomal acid lipase (LIPA) and acid sphingomyelinase (SMPD1). In a liver-specific Hepc (Hamp) knockout murine model of systemic iron overload, RPE cells accumulated lipid peroxidation adducts and lysosomes, developed progressive hypertrophy and underwent cell death. Proteomic and lipidomic analyses revealed accumulation of lysosomal proteins, ceramide biosynthetic enzymes and ceramides. The proteolytic enzyme cathepsin D (CTSD) had impaired maturation. A large proportion of lysosomes were galectin-3 (Lgals3) positive, suggesting cytotoxic lysosomal membrane permeabilization. Collectively, these results demonstrate that iron overload induces lysosomal accumulation and impairs lysosomal function, likely due to iron-induced lipid peroxides that can inhibit lysosomal enzymes.
Collapse
Affiliation(s)
- Kevin R. Zhang
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connor S. R. Jankowski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rayna Marshall
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rohini Nair
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Néstor Más Gómez
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahab Alnemri
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingrui Liu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth Erler
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia Ferrante
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brent A. Bell
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bailey H. Baumann
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob Sterling
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brandon Anderson
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sierra Foshe
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Roof
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Hossein Fazelinia
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Lynn A. Spruce
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Venkata R. M. Chavali
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Claire H. Mitchell
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua L. Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Liu JX, Liu M, Yu GZ, Zhao QQ, Wang JL, Sun YH, Koda S, Zhang B, Yu Q, Yan C, Tang RX, Jiang ZH, Zheng KY. Clonorchis sinensis infection induces hepatobiliary injury via disturbing sphingolipid metabolism and activating sphingosine 1-phosphate receptor 2. Front Cell Infect Microbiol 2022; 12:1011378. [PMID: 36339341 PMCID: PMC9627039 DOI: 10.3389/fcimb.2022.1011378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 01/31/2024] Open
Abstract
Clonorchis sinensis (C. sinensis) infection induces severe hepatobiliary injuries, which can cause inflammation, periductal fibrosis, and even cholangiocarcinoma. Sphingolipid metabolic pathways responsible for the generation of sphingosine-1-phosphate (S1P) and its receptor S1P receptors (S1PRs) have been implicated in many liver-related diseases. However, the role of S1PRs in C. sinensis-mediated biliary epithelial cells (BECs) proliferation and hepatobiliary injury has not been elucidated. In the present study, we found that C. sinensis infection resulted in alteration of bioactive lipids and sphingolipid metabolic pathways in mice liver. Furthermore, S1PR2 was predominantly activated among these S1PRs in BECs both in vivo and in vitro. Using JTE-013, a specific antagonist of S1PR2, we found that the hepatobiliary pathological injuries, inflammation, bile duct hyperplasia, and periductal fibrosis can be significantly inhibited in C. sinensis-infected mice. In addition, both C. sinensis excretory-secretory products (CsESPs)- and S1P-induced activation of AKT and ERK1/2 were inhibited by JTE-013 in BECs. Therefore, the sphingolipid metabolism pathway and S1PR2 play an important role, and may serve as potential therapeutic targets in hepatobiliary injury caused by C. sinensis-infection.
Collapse
Affiliation(s)
- Ji-Xin Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- Department of Clinical Pathogen Biology, Qiqihaer Medical University, Qiqihaer, China
| | - Man Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Guo-Zhi Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Qian-Qian Zhao
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jian-Ling Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yan-Hong Sun
- Department of Pathogen Biology, Qiqihaer Medical University, Qiqihaer, China
| | - Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Beibei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Zhi-Hua Jiang
- Institute of Parasitic Disease Control and Prevention, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
14
|
A Comprehensive Profiling of Cellular Sphingolipids in Mammalian Endothelial and Microglial Cells Cultured in Normal and High-Glucose Conditions. Cells 2022; 11:cells11193082. [PMID: 36231042 PMCID: PMC9563724 DOI: 10.3390/cells11193082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Sphingolipids (SPLs) play a diverse role in maintaining cellular homeostasis. Dysregulated SPL metabolism is associated with pathological changes in stressed and diseased cells. This study investigates differences in SPL metabolism between cultured human primary retinal endothelial (HREC) and murine microglial cells (BV2) in normal conditions (normal glucose, NG, 5 mM) and under high-glucose (HG, 25 mM)-induced stress by sphingolipidomics, immunohistochemistry, biochemical, and molecular assays. Measurable differences were observed in SPL profiles between HREC and BV2 cells. High-glucose treatment caused a >2.5-fold increase in the levels of Lactosyl-ceramide (LacCer) in HREC, but in BV2 cells, it induced Hexosyl-Ceramides (HexCer) by threefold and a significant increase in Sphingosine-1-phosphate (S1P) compared to NG. Altered SPL profiles coincided with changes in transcript levels of inflammatory and vascular permeability mediators in HREC and inflammatory mediators in BV2 cells. Differences in SPL profiles and differential responses to HG stress between endothelial and microglial cells suggest that SPL metabolism and signaling differ in mammalian cell types and, therefore, their pathological association with those cell types.
Collapse
|
15
|
Wilkerson JL, Basu SK, Stiles MA, Prislovsky A, Grambergs RC, Nicholas SE, Karamichos D, Allegood JC, Proia RL, Mandal N. Ablation of Sphingosine Kinase 1 Protects Cornea from Neovascularization in a Mouse Corneal Injury Model. Cells 2022; 11:2914. [PMID: 36139489 PMCID: PMC9497123 DOI: 10.3390/cells11182914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate the role of sphingosine kinase 1 (SphK1), which generates sphingosine-1-phosphate (S1P), in corneal neovascularization (NV). Wild-type (WT) and Sphk1 knockout (Sphk1-/-) mice received corneal alkali-burn treatment to induce corneal NV by placing a 2 mm round piece of Whatman No. 1 filter paper soaked in 1N NaOH on the center of the cornea for 20 s. Corneal sphingolipid species were extracted and identified using liquid chromatography/mass spectrometry (LC/MS). The total number of tip cells and those positive for ethynyl deoxy uridine (EdU) were quantified. Immunocytochemistry was done to examine whether pericytes were present on newly forming blood vessels. Cytokine signaling and angiogenic markers were compared between the two groups using multiplex assays. Data were analyzed using appropriate statistical tests. Here, we show that ablation of SphK1 can significantly reduce NV invasion in the cornea following injury. Corneal sphingolipid analysis showed that total levels of ceramides, monohexosyl ceramides (HexCer), and sphingomyelin were significantly elevated in Sphk-/- corneas compared to WT corneas, with a comparable level of sphingosine among the two genotypes. The numbers of total and proliferating endothelial tip cells were also lower in the Sphk1-/- corneas following injury. This study underscores the role of S1P in post-injury corneal NV and raises further questions about the roles played by ceramide, HexCer, and sphingomyelin in regulating corneal NV. Further studies are needed to unravel the role played by bioactive sphingolipids in maintenance of corneal transparency and clear vision.
Collapse
Affiliation(s)
- Joseph L. Wilkerson
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sandip K. Basu
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Megan A. Stiles
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amanda Prislovsky
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Richard C. Grambergs
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jeremy C. Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Richard L. Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nawajes Mandal
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
- Departments of Anatomy and Neurobiology, and Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
- Memphis VA Medical Center, Memphis, TN 38104, USA
| |
Collapse
|
16
|
Alshaikh RA, Ryan KB, Waeber C. Sphingosine 1-phosphate, a potential target in neovascular retinal disease. Br J Ophthalmol 2022; 106:1187-1195. [PMID: 33962970 DOI: 10.1136/bjophthalmol-2021-319115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Neovascular ocular diseases (such as age-related macular degeneration, diabetic retinopathy and retinal vein occlusion) are characterised by common pathological processes that contribute to disease progression. These include angiogenesis, oedema, inflammation, cell death and fibrosis. Currently available therapies target the effects of vascular endothelial growth factor (VEGF), the main mediator of pathological angiogenesis. Unfortunately, VEGF blockers are expensive biological therapeutics that necessitate frequent intravitreal administration and are associated with multiple adverse effects. Thus, alternative treatment options associated with fewer side effects are required for disease management. This review introduces sphingosine 1-phosphate (S1P) as a potential pharmacological target for the treatment of neovascular ocular pathologies. S1P is a sphingolipid mediator that controls cellular growth, differentiation, survival and death. S1P actions are mediated by five G protein-coupled receptors (S1P1-5 receptors) which are abundantly expressed in all retinal and subretinal structures. The action of S1P on S1P1 receptors can reduce angiogenesis, increase endothelium integrity, reduce photoreceptor apoptosis and protect the retina against neurodegeneration. Conversely, S1P2 receptor signalling can increase neovascularisation, disrupt endothelial junctions, stimulate VEGF release, and induce retinal cell apoptosis and degeneration of neural retina. The aim of this review is to thoroughly discuss the role of S1P and its different receptor subtypes in angiogenesis, inflammation, apoptosis and fibrosis in order to determine which of these S1P-mediated processes may be targeted therapeutically.
Collapse
Affiliation(s)
- Rasha A Alshaikh
- School of Pharmacy, University College Cork, Cork, Ireland
- Department of Pharmaceutical Technology, Tanta University, Tanta, Egypt
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland
- SSPC The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork, Ireland
| | - Christian Waeber
- School of Pharmacy, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Kikuchi Y, Sugano E, Yuki S, Tabata K, Endo Y, Takita Y, Onoguchi R, Ozaki T, Fukuda T, Takai Y, Kurose T, Tanaka K, Honma Y, Perez E, Stock M, Fernández JR, Tamura M, Voronkov M, Stock JB, Tomita H. SIG-1451, a Novel, Non-Steroidal Anti-Inflammatory Compound, Attenuates Light-Induced Photoreceptor Degeneration by Affecting the Inflammatory Process. Int J Mol Sci 2022; 23:ijms23158802. [PMID: 35955937 PMCID: PMC9369167 DOI: 10.3390/ijms23158802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration is a progressive retinal disease that is associated with factors such as oxidative stress and inflammation. In this study, we evaluated the protective effects of SIG-1451, a non-steroidal anti-inflammatory compound developed for treating atopic dermatitis and known to inhibit Toll-like receptor 4, in light-induced photoreceptor degeneration. SIG-1451 was intraperitoneally injected into rats once per day before exposure to 1000 lx light for 24 h; one day later, optical coherence tomography showed a decrease in retinal thickness, and electroretinogram (ERG) amplitude was also found to have decreased 3 d after light exposure. Moreover, SIG-1451 partially protected against this decrease in retinal thickness and increase in ERG amplitude. One day after light exposure, upregulation of inflammatory response-related genes was observed, and SIG-1451 was found to inhibit this upregulation. Iba-1, a microglial marker, was suppressed in SIG-1451-injected rats. To investigate the molecular mechanism underlying these effects, we used lipopolysaccharide (LPS)-stimulated rat immortalised Müller cells. The upregulation of C-C motif chemokine 2 by LPS stimulation was significantly inhibited by SIG-1451 treatment, and Western blot analysis revealed a decrease in phosphorylated I-κB levels. These results indicate that SIG-1451 indirectly protects photoreceptor cells by attenuating light damage progression, by affecting the inflammatory responses.
Collapse
Affiliation(s)
- Yuki Kikuchi
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Eriko Sugano
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Shiori Yuki
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Kitako Tabata
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Yuka Endo
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Yuya Takita
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Reina Onoguchi
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Taku Ozaki
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Tomokazu Fukuda
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Yoshihiro Takai
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa 619-0216, Kyoto, Japan
| | - Takahiro Kurose
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa 619-0216, Kyoto, Japan
| | - Koichi Tanaka
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa 619-0216, Kyoto, Japan
| | - Yoichi Honma
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa 619-0216, Kyoto, Japan
| | - Eduardo Perez
- Signum Biosciences, 4999 Pearl East Circle, Boulder, CO 80301, USA
| | - Maxwell Stock
- Signum Biosciences, 4999 Pearl East Circle, Boulder, CO 80301, USA
| | | | - Masanori Tamura
- Signum Biosciences, 4999 Pearl East Circle, Boulder, CO 80301, USA
| | - Michael Voronkov
- Signum Biosciences, 4999 Pearl East Circle, Boulder, CO 80301, USA
| | - Jeffry B. Stock
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Hiroshi Tomita
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
- Correspondence: ; Tel.: +81-19-621-6427
| |
Collapse
|
18
|
Zhang H, Nagree MS, Liu H, Pan X, Medin JA, Lipinski DM. rAAV-mediated over-expression of acid ceramidase prevents retinopathy in a mouse model of Farber lipogranulomatosis. Gene Ther 2022; 30:297-308. [PMID: 35902747 DOI: 10.1038/s41434-022-00359-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Farber disease (FD) is a rare monogenic lysosomal storage disorder caused by mutations in ASAH1 that results in a deficiency of acid ceramidase (ACDase) activity and the abnormal systemic accumulation of ceramide species, leading to multi-system organ failure involving neurological decline and retinopathy. Here we describe the effects of rAAV-mediated ASAH1 over-expression on the progression of retinopathy in a mouse model of FD (Asah1P361R/P361R) and its littermate controls (Asah1+/+ and Asah1+/P361R). Using a combination of non-invasive multimodal imaging, electrophysiology, post-mortem histology and mass spectrometry we demonstrate that ASAH1 over-expression significantly reduces central retinal thickening, ceramide accumulation, macrophage activation and limits fundus hyper-reflectivity and auto-fluorescence in FD mice, indicating rAAV-mediated over-expression of biologically active ACDase protein is able to rescue the anatomical retinal phenotype of Farber disease. Unexpectedly, ACDase over-expression in Asah1+/+ and Asah1+/P361R control eyes was observed to induce abnormal fundus hyper-reflectivity, auto-fluorescence and retinal thickening that closely resembles a FD phenotype. This study represents the first evidence of a gene therapy for Farber disease-related retinopathy. Importantly, the described gene therapy approach could be used to preserve vision in FD patients synergistically with broader enzyme replacement strategies aimed at preserving life.
Collapse
Affiliation(s)
- Hanmeng Zhang
- Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Murtaza S Nagree
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Pediatrics: Section of Hematology/Oncology/BMT, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Haoyuan Liu
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Xiaoqing Pan
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Jeffrey A Medin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Pediatrics: Section of Hematology/Oncology/BMT, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel M Lipinski
- Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA. .,Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
19
|
Tucci S. An Altered Sphingolipid Profile as a Risk Factor for Progressive Neurodegeneration in Long-Chain 3-Hydroxyacyl-CoA Deficiency (LCHADD). Int J Mol Sci 2022; 23:ijms23137144. [PMID: 35806149 PMCID: PMC9266703 DOI: 10.3390/ijms23137144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/03/2022] Open
Abstract
Long-chain 3-hydroxyacyl-CoA deficiency (LCHADD) and mitochondrial trifunctional protein (MTPD) belong to a group of inherited metabolic diseases affecting the degradation of long-chain chain fatty acids. During metabolic decompensation the incomplete degradation of fatty acids results in life-threatening episodes, coma and death. Despite fast identification at neonatal screening, LCHADD/MTPD present with progressive neurodegenerative symptoms originally attributed to the accumulation of toxic hydroxyl acylcarnitines and energy deficiency. Recently, it has been shown that LCHADD human fibroblasts display a disease-specific alteration of complex lipids. Accumulating fatty acids, due to defective β-oxidation, contribute to a remodeling of several lipid classes including mitochondrial cardiolipins and sphingolipids. In the last years the face of LCHADD/MTPD has changed. The reported dysregulation of complex lipids other than the simple acylcarnitines represents a novel aspect of disease development. Indeed, aberrant lipid profiles have already been associated with other neurodegenerative diseases such as Parkinson’s Disease, Alzheimer’s Disease, amyotrophic lateral sclerosis and retinopathy. Today, the physiopathology that underlies the development of the progressive neuropathic symptoms in LCHADD/MTPD is not fully understood. Here, we hypothesize an alternative disease-causing mechanism that contemplates the interaction of several factors that acting in concert contribute to the heterogeneous clinical phenotype.
Collapse
Affiliation(s)
- Sara Tucci
- Pharmacy, Medical Center, University of Freiburg, 79106 Freiburg, Germany;
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Centre-University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
20
|
Mondal K, Porter H, Cole J, Pandya HK, Basu SK, Khanam S, Chiu CY, Shah V, Stephenson DJ, Chalfant CE, Mandal N. Hydroxychloroquine Causes Early Inner Retinal Toxicity and Affects Autophagosome-Lysosomal Pathway and Sphingolipid Metabolism in the Retina. Mol Neurobiol 2022; 59:3873-3887. [PMID: 35426574 PMCID: PMC10259418 DOI: 10.1007/s12035-022-02825-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/01/2022] [Indexed: 01/21/2023]
Abstract
Hydroxychloroquine (HCQ) is an anti-malarial drug but also widely used to treat autoimmune diseases like arthritis and lupus. Although there have been multiple reports of the adverse effect of prolonged HCQ usage on the outer retina, leading to bull's-eye maculopathy, the effect of HCQ toxicity on the inner retina as well as on overall visual functions has not been explored in detail. Furthermore, lack of an established animal model of HCQ toxicity hinders our understanding of the underlying molecular mechanisms. Here, using a small clinical study, we confirmed the effect of HCQ toxicity on the inner retina, in particular the reduction in central inner retinal thickness, and established a mouse model of chronic HCQ toxicity that recapitulates the effects observed in human retina. Using the mouse model, we demonstrated that chronic HCQ toxicity results in loss of inner retinal neurons and retinal ganglion cells (RGC) and compromises visual functions. We further established that HCQ treatment prevents autophagosome-lysosome fusion and alters the sphingolipid homeostasis in mouse retina. Our results affirm the notion that HCQ treatment causes early damage to the inner retina and affects visual functions before leading to characteristic toxicity in the macular region of the outer retina, 'bull's-eye maculopathy.' We also provide insights into the underlying molecular mechanisms of HCQ retinal toxicity that may involve autophagy-lysosomal defects and alterations in sphingolipid metabolism.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Ophthalmology, Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hunter Porter
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK-73104, USA
| | - Jerome Cole
- Department of Ophthalmology, Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hemang K Pandya
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK-73104, USA
| | - Sandip K Basu
- Department of Ophthalmology, Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sufiya Khanam
- Department of Ophthalmology, Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Chi-Yang Chiu
- Division of Biostatistics, Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Vinay Shah
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK-73104, USA
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
- The Moffitt Cancer Center, Tampa, FL, 33620, USA
- Research Service, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA
| | - Nawajes Mandal
- Department of Ophthalmology, Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK-73104, USA.
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
21
|
Mondal K, Takahashi H, Cole J, Del Mar NA, Li C, Stephenson DJ, Allegood J, Cowart LA, Chalfant CE, Reiner A, Mandal N. Systemic Elevation of n-3 Polyunsaturated Fatty Acids (n-3-PUFA) Is Associated with Protection against Visual, Motor, and Emotional Deficits in Mice following Closed-Head Mild Traumatic Brain Injury. Mol Neurobiol 2021; 58:5564-5580. [PMID: 34365584 PMCID: PMC8655834 DOI: 10.1007/s12035-021-02501-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/17/2021] [Indexed: 12/30/2022]
Abstract
Traumatic brain injury (TBI) causes neuroinflammation and neurodegeneration leading to various pathological complications such as motor and sensory (visual) deficits, cognitive impairment, and depression. N-3 polyunsaturated fatty acid (n-3 PUFA) containing lipids are known to be anti-inflammatory, whereas the sphingolipid, ceramide (Cer), is an inducer of neuroinflammation and degeneration. Using Fat1+-transgenic mice that contain elevated levels of systemic n-3 PUFA, we tested whether they are resistant to mild TBI-mediated sensory-motor and emotional deficits by subjecting Fat1-transgenic mice and their WT littermates to focal cranial air blast (50 psi) or sham blast (0 psi, control). We observed that visual function in WT mice was reduced significantly following TBI but not in Fat1+-blast animals. We also found Fat1+-blast mice were resistant to the decline in motor functions, depression, and fear-producing effects of blast, as well as the reduction in the area of oculomotor nucleus and increase in activated microglia in the optic tract in brain sections seen following blast in WT mice. Lipid and gene expression analyses confirmed an elevated level of the n-3 PUFA eicosapentaenoic acid (EPA) in the plasma and brain, blocking of TBI-mediated increase of Cer in the brain, and decrease in TBI-mediated induction of Cer biosynthetic and inflammatory gene expression in the brain of the Fat1+ mice. Our results demonstrate that suppression of ceramide biosynthesis and inflammatory factors in Fat1+-transgenic mice is associated with significant protection against the visual, motor, and emotional deficits caused by mild TBI. This study suggests that n-3 PUFA (especially, EPA) has a promising therapeutic role in preventing neurodegeneration after TBI.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Haruka Takahashi
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
- Department of Animal Science, Iwate University, Morioka, Japan
| | - Jerome Cole
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Nobel A Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Chunyan Li
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23219, USA
- Hunter Holmes McGuire VA Medical Center, Richmond, VA, 23249, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
- The Moffitt Cancer Center, Tampa, FL, 33620, USA
- Research Service, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA
| | - Anton Reiner
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Nawajes Mandal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA.
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA.
- Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
22
|
Shiwani HA, Elfaki MY, Memon D, Ali S, Aziz A, Egom EE. Updates on sphingolipids: Spotlight on retinopathy. Biomed Pharmacother 2021; 143:112197. [PMID: 34560541 DOI: 10.1016/j.biopha.2021.112197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 02/05/2023] Open
Abstract
The sphingolipids ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (Sph), and sphingosine-1-phosphate (S1P)) are key signaling molecules that regulate many patho-biological processes. During the last decade, they have gained increasing attention since they may participate in important and numerous retinal processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Cer for instance has emerged as a key mediator of inflammation and death of neuronal and retinal pigment epithelium cells in experimental models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. S1P may have opposite biological actions, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1- phosphate may also contribute to uveitis. Furthermore, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), have been shown to preserve neuronal viability and retinal function. Collectively, the expanding role for these sphingolipids in the modulation of vital processes in retina cell types and in their dysregulation in retinal degenerations makes them attractive therapeutic targets.
Collapse
Affiliation(s)
- Haaris A Shiwani
- Department of Ophthalmology, Royal Preston Hospital, United Kingdom.
| | | | - Danyal Memon
- Department of Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Suhayb Ali
- Department of Acute Medicine, Ulster Hospital, Belfast, United Kingdom
| | - Abdul Aziz
- Department of Respiratory Medicine, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Emmanuel E Egom
- Institut du Savoir Montfort (ISM), Hôpital Montfort, University of Ottawa, Ottawa, ON, Canada; Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon.
| |
Collapse
|
23
|
Inhibition of Ceramide Synthesis Reduces α-Synuclein Proteinopathy in a Cellular Model of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22126469. [PMID: 34208778 PMCID: PMC8234676 DOI: 10.3390/ijms22126469] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is a proteinopathy associated with the aggregation of α-synuclein and the formation of lipid–protein cellular inclusions, named Lewy bodies (LBs). LB formation results in impaired neurotransmitter release and uptake, which involve membrane traffic and require lipid synthesis and metabolism. Lipids, particularly ceramides, are accumulated in postmortem PD brains and altered in the plasma of PD patients. Autophagy is impaired in PD, reducing the ability of neurons to clear protein aggregates, thus worsening stress conditions and inducing neuronal death. The inhibition of ceramide synthesis by myriocin (Myr) in SH-SY5Y neuronal cells treated with preformed α-synuclein fibrils reduced intracellular aggregates, favoring their sequestration into lysosomes. This was associated with TFEB activation, increased expression of TFEB and LAMP2, and the cytosolic accumulation of LC3II, indicating that Myr promotes autophagy. Myr significantly reduces the fibril-related production of inflammatory mediators and lipid peroxidation and activates NRF2, which is downregulated in PD. Finally, Myr enhances the expression of genes that control neurotransmitter transport (SNARE complex, VMAT2, and DAT), whose progressive deficiency occurs in PD neurodegeneration. The present study suggests that counteracting the accumulation of inflammatory lipids could represent a possible therapeutic strategy for PD.
Collapse
|
24
|
Nikolova E, Tonev D, Zhelev N, Neychev V. Prospects for Radiopharmaceuticals as Effective and Safe Therapeutics in Oncology and Challenges of Tumor Resistance to Radiotherapy. Dose Response 2021; 19:1559325821993665. [PMID: 33716590 PMCID: PMC7923993 DOI: 10.1177/1559325821993665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/26/2022] Open
Abstract
The rapid advances in nuclear medicine have resulted in significant advantages for the field of oncology. The focus is on the application of radiopharmaceuticals as therapeuticals. In addition, the latest developments in cell biology (the understanding of the cell structure, function, metabolism, genetics, signaling, transformation) have given a strong scientific boost to radiation oncology. In this regard, the article discusses what is soon going to be a new jump in radiation oncology based on the already accumulated considerable knowledge at the cellular level about the mechanisms of cell transformation and tumor progression, cell response to radiation, cell resistance to apoptosis and radiation and cell radio-sensitivity. The mechanisms of resistance of tumor cells to radiation and the genetically determined individual sensitivity to radiation in patients (which creates the risk of radiation-induced acute and late side effects) are the 2 major challenges to overcome in modern nuclear medicine. The paper focuses on these problems and makes a detailed summary of the significance of the differences in the ionizing properties of radiopharmaceuticals and the principle of their application in radiation oncology that will shed additional light on how to make the anti-cancer radiotherapies more efficient and safe, giving some ideas for optimizations.
Collapse
Affiliation(s)
- Ekaterina Nikolova
- Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Dimitar Tonev
- Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nikolai Zhelev
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, Scotland, United Kingdom.,Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Vladimir Neychev
- University of Central Florida, College of Medicine, Orlando, FL, USA
| |
Collapse
|
25
|
Simon MV, Basu SK, Qaladize B, Grambergs R, Rotstein NP, Mandal N. Sphingolipids as critical players in retinal physiology and pathology. J Lipid Res 2021; 62:100037. [PMID: 32948663 PMCID: PMC7933806 DOI: 10.1194/jlr.tr120000972] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Sphingolipids have emerged as bioactive lipids involved in the regulation of many physiological and pathological processes. In the retina, they have been established to participate in numerous processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Dysregulation of sphingolipids is therefore crucial in the onset and progression of retinal diseases. This review examines the involvement of sphingolipids in retinal physiology and diseases. Ceramide (Cer) has emerged as a common mediator of inflammation and death of neuronal and retinal pigment epithelium cells in animal models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. Sphingosine-1-phosphate (S1P) has opposite roles, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1-phosphate may also contribute to uveitis. Notably, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), preserves neuronal viability and retinal function. These findings underscore the relevance of alterations in the sphingolipid metabolic network in the etiology of multiple retinopathies and highlight the potential of modulating their metabolism for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- M Victoria Simon
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Sandip K Basu
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bano Qaladize
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Richard Grambergs
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina.
| | - Nawajes Mandal
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
26
|
Jiang Y, Chiu CY, Yan Q, Chen W, Gorin MB, Conley YP, Lakhal-Chaieb ML, Cook RJ, Amos CI, Wilson AF, Bailey-Wilson JE, McMahon FJ, Vazquez AI, Yuan A, Zhong X, Xiong M, Weeks DE, Fan R. Gene-Based Association Testing of Dichotomous Traits With Generalized Functional Linear Mixed Models Using Extended Pedigrees: Applications to Age-Related Macular Degeneration. J Am Stat Assoc 2020; 116:531-545. [PMID: 34321704 PMCID: PMC8315575 DOI: 10.1080/01621459.2020.1799809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
Genetics plays a role in age-related macular degeneration (AMD), a common cause of blindness in the elderly. There is a need for powerful methods for carrying out region-based association tests between a dichotomous trait like AMD and genetic variants on family data. Here, we apply our new generalized functional linear mixed models (GFLMM) developed to test for gene-based association in a set of AMD families. Using common and rare variants, we observe significant association with two known AMD genes: CFH and ARMS2. Using rare variants, we find suggestive signals in four genes: ASAH1, CLEC6A, TMEM63C, and SGSM1. Intriguingly, ASAH1 is down-regulated in AMD aqueous humor, and ASAH1 deficiency leads to retinal inflammation and increased vulnerability to oxidative stress. These findings were made possible by our GFLMM which model the effect of a major gene as a fixed mean, the polygenic contributions as a random variation, and the correlation of pedigree members by kinship coefficients. Simulations indicate that the GFLMM likelihood ratio tests (LRTs) accurately control the Type I error rates. The LRTs have similar or higher power than existing retrospective kernel and burden statistics. Our GFLMM-based statistics provide a new tool for conducting family-based genetic studies of complex diseases. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Collapse
Affiliation(s)
- Yingda Jiang
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Chi-Yang Chiu
- Division of Biostatistics, Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Baltimore, MD
| | - Qi Yan
- Division of Pulmonary Medicine, Allergy and Immunology, Children’s Hospital of Pittsburgh at The University of Pittsburgh, Pittsburgh, PA
| | - Wei Chen
- Division of Pulmonary Medicine, Allergy and Immunology, Children’s Hospital of Pittsburgh at The University of Pittsburgh, Pittsburgh, PA
| | - Michael B. Gorin
- Department of Ophthalmology, David Geffen School of Medicine, UCLA Stein Eye Institute, Los Angeles, CA
| | - Yvette P. Conley
- Department of Health Promotion and Development, University of Pittsburgh, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | | | - Richard J. Cook
- Department of Statistics and Actuarial Science, Waterloo, ON, Canada
| | | | - Alexander F. Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Baltimore, MD
| | - Joan E. Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Baltimore, MD
| | - Francis J. McMahon
- Human Genetics Branch and Genetic Basis of Mood and Anxiety Disorders Section, National Institute of Mental Health, NIH, Bethesda, MD
| | - Ana I. Vazquez
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
| | - Ao Yuan
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC
| | - Xiaogang Zhong
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC
| | - Momiao Xiong
- Human Genetics Center, University of Texas, Houston, TX
| | - Daniel E. Weeks
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Ruzong Fan
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Baltimore, MD
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
27
|
Duarte C, Akkaoui J, Yamada C, Ho A, Mao C, Movila A. Elusive Roles of the Different Ceramidases in Human Health, Pathophysiology, and Tissue Regeneration. Cells 2020; 9:cells9061379. [PMID: 32498325 PMCID: PMC7349419 DOI: 10.3390/cells9061379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022] Open
Abstract
Ceramide and sphingosine are important interconvertible sphingolipid metabolites which govern various signaling pathways related to different aspects of cell survival and senescence. The conversion of ceramide into sphingosine is mediated by ceramidases. Altogether, five human ceramidases—named acid ceramidase, neutral ceramidase, alkaline ceramidase 1, alkaline ceramidase 2, and alkaline ceramidase 3—have been identified as having maximal activities in acidic, neutral, and alkaline environments, respectively. All five ceramidases have received increased attention for their implications in various diseases, including cancer, Alzheimer’s disease, and Farber disease. Furthermore, the potential anti-inflammatory and anti-apoptotic effects of ceramidases in host cells exposed to pathogenic bacteria and viruses have also been demonstrated. While ceramidases have been a subject of study in recent decades, our knowledge of their pathophysiology remains limited. Thus, this review provides a critical evaluation and interpretive analysis of existing literature on the role of acid, neutral, and alkaline ceramidases in relation to human health and various diseases, including cancer, neurodegenerative diseases, and infectious diseases. In addition, the essential impact of ceramidases on tissue regeneration, as well as their usefulness in enzyme replacement therapy, is also discussed.
Collapse
Affiliation(s)
- Carolina Duarte
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
- Correspondence: (C.D.); (A.M.); Tel.: +1-954-262-7306 (A.M.)
| | - Juliet Akkaoui
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
| | - Chiaki Yamada
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
| | - Anny Ho
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
| | - Cungui Mao
- Department of Medicine, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA;
- Cancer Center, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Alexandru Movila
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA
- Correspondence: (C.D.); (A.M.); Tel.: +1-954-262-7306 (A.M.)
| |
Collapse
|
28
|
Simón MV, Prado Spalm FH, Vera MS, Rotstein NP. Sphingolipids as Emerging Mediators in Retina Degeneration. Front Cell Neurosci 2019; 13:246. [PMID: 31244608 PMCID: PMC6581011 DOI: 10.3389/fncel.2019.00246] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
The sphingolipids ceramide (Cer), sphingosine-1-phosphate (S1P), sphingosine (Sph), and ceramide-1-phosphate (C1P) are key signaling molecules that regulate major cellular functions. Their roles in the retina have gained increasing attention during the last decade since they emerge as mediators of proliferation, survival, migration, neovascularization, inflammation and death in retina cells. As exacerbation of these processes is central to retina degenerative diseases, they appear as crucial players in their progression. This review analyzes the functions of these sphingolipids in retina cell types and their possible pathological roles. Cer appears as a key arbitrator in diverse retinal pathologies; it promotes inflammation in endothelial and retina pigment epithelium (RPE) cells and its increase is a common feature in photoreceptor death in vitro and in animal models of retina degeneration; noteworthy, inhibiting Cer synthesis preserves photoreceptor viability and functionality. In turn, S1P acts as a double edge sword in the retina. It is essential for retina development, promoting the survival of photoreceptors and ganglion cells and regulating proliferation and differentiation of photoreceptor progenitors. However, S1P has also deleterious effects, stimulating migration of Müller glial cells, angiogenesis and fibrosis, contributing to the inflammatory scenario of proliferative retinopathies and age related macular degeneration (AMD). C1P, as S1P, promotes photoreceptor survival and differentiation. Collectively, the expanding role for these sphingolipids in the regulation of critical processes in retina cell types and in their dysregulation in retina degenerations makes them attractive targets for treating these diseases.
Collapse
Affiliation(s)
- M Victoria Simón
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Facundo H Prado Spalm
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Marcela S Vera
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
29
|
Qi H, Cole J, Grambergs RC, Gillenwater JR, Mondal K, Khanam S, Dutta S, Stiles M, Proia RL, Allegood J, Mandal N. Sphingosine Kinase 2 Phosphorylation of FTY720 is Unnecessary for Prevention of Light-Induced Retinal Damage. Sci Rep 2019; 9:7771. [PMID: 31123291 PMCID: PMC6533254 DOI: 10.1038/s41598-019-44047-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian Sphingosine kinase 2 is the primary enzyme responsible for phosphorylating FTY720 to its active form, FTY720-P. Systemic FTY720 treatment confers significant protection to murine retinas from light- and disease-mediated photoreceptor cell death. It is not clear whether FTY720-P, FTY720, or both are responsible for this photoreceptor protection. We investigated Sphingosine kinase 2 knockout (Sphk2 KO) mouse retinas, tested their sensitivity to light, and measured what degree of protection from light-induced damage they receive from systemic FTY720 treatment. Sphk2 KO retinas were found to be similar to their wild-type counterparts in sensitivity to light damage. Additionally, FTY720 treatment protected Sphk2 KO retinas from light-induced damage despite significant retardation of FTY720 phosphorylation in Sphk2 KO mice. We conclude that FTY720 serves an active role in preventing photoreceptor cell death. Furthermore, we conclude that the phosphorylation of FTY720 is not necessary to provide this protective effect.
Collapse
Affiliation(s)
- Hui Qi
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73104, USA
| | - Jerome Cole
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Richard C Grambergs
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - John R Gillenwater
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Koushik Mondal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sufiya Khanam
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Soma Dutta
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Megan Stiles
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73104, USA
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 2329, USA
| | - Nawajes Mandal
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73104, USA. .,Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
30
|
Role of Bioactive Sphingolipids in Inflammation and Eye Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:149-167. [PMID: 31562629 DOI: 10.1007/978-3-030-21735-8_14] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation is a common underlying factor in a diversity of ocular diseases, ranging from macular degeneration, autoimmune uveitis, glaucoma, diabetic retinopathy and microbial infection. In addition to the variety of known cellular mediators of inflammation, such as cytokines, chemokines and lipid mediators, there is now considerable evidence that sphingolipid metabolites also play a central role in the regulation of inflammatory pathways. Various sphingolipid metabolites, such as ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P), and lactosylceramide (LacCer) can contribute to ocular inflammatory diseases through multiple pathways. For example, inflammation generates Cer from sphingomyelins (SM) in the plasma membrane, which induces death receptor ligand formation and leads to apoptosis of retinal pigment epithelial (RPE) and photoreceptor cells. Inflammatory stress by reactive oxygen species leads to LacCer accumulation and S1P secretion and induces proliferation of retinal endothelial cells and eventual formation of new vessels. In sphingolipid/lysosomal storage disorders, sphingolipid metabolites accumulate in lysosomes and can cause ocular disorders that have an inflammatory etiology. Sphingolipid metabolites activate complement factors in the immune-response mediated pathogenesis of macular degeneration. These examples highlight the integral association between sphingolipids and inflammation in ocular diseases.
Collapse
|
31
|
Inflammatory Ocular Diseases and Sphingolipid Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:139-152. [DOI: 10.1007/978-3-030-21162-2_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|