1
|
Zhu M, Zhang T, Xu D, Zhou B, Wang K, Liao C, Cheng Z, Li P, Chen C. Impact of fermented wine lees on gut microbiota and metabolic responses in Guanling crossbred cattle. BMC Microbiol 2024; 24:421. [PMID: 39438796 PMCID: PMC11495091 DOI: 10.1186/s12866-024-03583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The addition of wine lees to diets can make up for the deficiencies caused by traditional forages in beef cattle farming. However, the effects of different wine lees ratios on average daily weight, gastrointestinal microbial community structure and metabolites in Guanling crossbred cattle have been rarely studied. This study assessed the effects of feeds containing wine lees on weight gain, gastrointestinal microbial community structure, and metabolites in Guanling crossbred cattle and elucidated the metabolic responses induced by wine lees. Eighteen cows were randomly assigned to receive fed concentrate (C group), feed containing 15% wine lees (group A), or feed containing 30% wine lees (group B) for 60 days. RESULTS The average daily weight gain of group A and group B increased by 76.75% and 57.65%, respectively, compared with group C. Microbial community analysis showed that wine lees increased the abundance of Prevotella_1 in the rumen, decreased the abundance of Ruminococcaceae UCG 011 and Lachnospiraceae_FCS020_group in the rumen, and increased the abundance of Tyzzerella_4, Family_Xlll_AD3011_group, Granulicella, and Eisenbergiella in the cecum. Metabolomics analyses showed that wine lees decreased the concentrations of indole-3-ethanol in the rumen, and complexity cecal metabolism. Notably, linoleic acid metabolism was significantly enriched in both the rumen and cecum. Mantel test analyses indicated that the adverse effects of WL were reduced by stimulating the metabolism of linoleic acid, α-linolenic acid, and tryptophan, and these changes were mediated by intestinal microorganisms. The Guanling cattle cecum was enriched for several unfavorable metabolic pathways when wine lees concentrations reached 30%, which increased the likelihood of intestinal lesions. CONCLUSION This study shows that WL supplementation alters gut microbiota and metabolic pathways, improving cattle growth and health. Moderate WL levels (15%) enhance gut health and beneficial pathways (e.g., linoleic and alpha-linolenic acid metabolism). However, higher WL inclusion (30%) may activate adverse pathways, raising the risk of intestinal damage. To maximize benefits and minimize risks, WL levels should be carefully managed.
Collapse
Affiliation(s)
- Mingming Zhu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tiantian Zhang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Duhan Xu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bijun Zhou
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kaigong Wang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Chaosheng Liao
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Schaich KM. Epoxides: an underestimated lipid oxidation product. Free Radic Res 2024; 58:517-564. [PMID: 38124354 DOI: 10.1080/10715762.2023.2277142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 12/23/2023]
Abstract
Immense gains in understanding of mechanisms and effects of lipid oxidation have been achieved in the nearly 90 years over which lipid oxidation has been an active research focus. Even so, the substantial questions still being raised about lipid oxidation in this special issue show clearly that missing pieces remain and must be considered for full accounting of this important reaction in any system. In this context, epoxides are spotlighted as a critical overlooked product of lipid autoxidation - underestimated in analysis, underestimated in presence as a functionally active and competitive intermediate and product of lipid oxidation, and underestimated in potential contributions to impact of lipid oxidation on other molecules and cell functions. Logical reasons for ignoring or not finding epoxides are offered in historical development of lipid oxidation knowledge. Reactions generating lipid epoxides in autoxidation are reviewed, limitations in detecting and tracking epoxides are outlined to explain why epoxides may not be detected when they should be present, and justifications for increased research and analysis of epoxides are argued. The main goal is to provide a context for recognizing epoxides as critical products that must be accounted for in determining the state rather than extent of lipid oxidation and in tracking its consequences in oils, foods, personal care products, and tissues. A secondary goal is to stimulate new research using contemporary analyses to fill in the gaps of knowledge about epoxide formation, structure, and reactions in lipid autoxidation.
Collapse
Affiliation(s)
- Karen M Schaich
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
3
|
Naeem Z, Zukunft S, Huard A, Hu J, Hammock BD, Weigert A, Frömel T, Fleming I. Role of the soluble epoxide hydrolase in keratinocyte proliferation and sensitivity of skin to inflammatory stimuli. Biomed Pharmacother 2024; 171:116127. [PMID: 38198951 PMCID: PMC10857809 DOI: 10.1016/j.biopha.2024.116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
The lipid content of skin plays a determinant role in its barrier function with a particularly important role attributed to linoleic acid and its derivatives. Here we explored the consequences of interfering with the soluble epoxide hydrolase (sEH) on skin homeostasis. sEH; which converts fatty acid epoxides generated by cytochrome P450 enzymes to their corresponding diols, was largely restricted to the epidermis which was enriched in sEH-generated diols. Global deletion of the sEH increased levels of epoxides, including the linoleic acid-derived epoxide; 12,13-epoxyoctadecenoic acid (12,13-EpOME), and increased basal keratinocyte proliferation. sEH deletion (sEH-/- mice) resulted in thicker differentiated spinous and corneocyte layers compared to wild-type mice, a hyperkeratosis phenotype that was reproduced in wild-type mice treated with a sEH inhibitor. sEH deletion made the skin sensitive to inflammation and sEH-/- mice developed thicker imiquimod-induced psoriasis plaques than the control group and were more prone to inflammation triggered by mechanical stress with pronounced infiltration and activation of neutrophils as well as vascular leak and increased 12,13-EpOME and leukotriene (LT) B4 levels. Topical treatment of LTB4 antagonist after stripping successfully inhibited inflammation and neutrophil infiltration both in wild type and sEH-/- skin. While 12,13-EpoME had no effect on the trans-endothelial migration of neutrophils, like LTB4, it effectively induced neutrophil adhesion and activation. These observations indicate that while the increased accumulation of neutrophils in sEH-deficient skin could be attributed to the increase in LTB4 levels, both 12,13-EpOME and LTB4 contribute to neutrophil activation. Our observations identify a protective role of the sEH in the skin and should be taken into account when designing future clinical trials with sEH inhibitors.
Collapse
Affiliation(s)
- Zumer Naeem
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Arnaud Huard
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt am Main 60590, Germany
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; Department of Embryology and Histology, School of Basic Medicine, Tongi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt am Main 60590, Germany
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany; CardioPulmonary Institute, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Quaranta A, Revol-Cavalier J, Wheelock CE. The octadecanoids: an emerging class of lipid mediators. Biochem Soc Trans 2022; 50:1569-1582. [PMID: 36454542 PMCID: PMC9788390 DOI: 10.1042/bst20210644] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 10/27/2023]
Abstract
Oxylipins are enzymatic and non-enzymatic metabolites of mono- or polyunsaturated fatty acids that encompass potent lipid mediators including the eicosanoids and docosanoids. Previously considered of low interest and often dismissed as 'just fat', octadecanoid oxylipins have only recently begun to be recognized as lipid mediators in humans. In the last few years, these compounds have been found to be involved in the mediation of multiple biological processes related to nociception, tissue modulation, cell proliferation, metabolic regulation, inflammation, and immune regulation. At the same time, the study of octadecanoids is hampered by a lack of standardization in the field, a paucity of analytical standards, and a lack of domain expertise. These issues have collectively limited the investigation of the biosynthesis and bioactivity of octadecanoids. Here, we present an overview of the primary enzymatic pathways for the oxidative metabolism of 18-carbon fatty acids in humans and of the current knowledge of the major biological activity of the resulting octadecanoids. We also propose a systematic nomenclature system based upon that used for the eicosanoids in order to avoid ambiguities and resolve multiple designations for the same octadecanoid. The aim of this review is to provide an initial framework for the field and to assist in its standardization as well as to increase awareness of this class of compounds in order to stimulate research into this interesting group of lipid mediators.
Collapse
Affiliation(s)
- Alessandro Quaranta
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Johanna Revol-Cavalier
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Larodan Research Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Craig E. Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
5
|
Naeem Z, Zukunft S, Günther S, Liebner S, Weigert A, Hammock BD, Frömel T, Fleming I. Role of the soluble epoxide hydrolase in the hair follicle stem cell homeostasis and hair growth. Pflugers Arch 2022; 474:1021-1035. [PMID: 35648219 PMCID: PMC9393123 DOI: 10.1007/s00424-022-02709-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are used as traditional remedies to treat hair loss, but the mechanisms underlying their beneficial effects are not well understood. Here, we explored the role of PUFA metabolites generated by the cytochrome P450/soluble epoxide hydrolase (sEH) pathway in the regulation of the hair follicle cycle. Histological analysis of the skin from wild-type and sEH−/− mice revealed that sEH deletion delayed telogen to anagen transition, and the associated activation of hair follicle stem cells. Interestingly, EdU labeling during the late anagen stage revealed that hair matrix cells from sEH−/− mice proliferated at a greater rate which translated into increased hair growth. Similar effects were observed in in vitro studies using hair follicle explants, where a sEH inhibitor was also able to augment whisker growth in follicles from wild-type mice. sEH activity in the dorsal skin was not constant but altered with the cell cycle, having the most prominent effects on levels of the linoleic acid derivatives 12,13-epoxyoctadecenoic acid (12,13-EpOME), and 12,13-dihydroxyoctadecenoic acid (12,13-DiHOME). Fitting with this, the sEH substrate 12,13-EpOME significantly increased hair shaft growth in isolated anagen stage hair follicles, while its diol; 12,13-DiHOME, had no effect. RNA sequencing of isolated hair matrix cells implicated altered Wnt signaling in the changes associated with sEH deletion. Taken together, our data indicate that the activity of the sEH in hair follicle changes during the hair follicle cycle and impacts on two stem cell populations, i.e., hair follicle stem cells and matrix cells to affect telogen to anagen transition and hair growth.
Collapse
Affiliation(s)
- Zumer Naeem
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stephan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger-Institute), Goethe-University Frankfurt, 60528, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany. .,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Mitusińska K, Wojsa P, Bzówka M, Raczyńska A, Bagrowska W, Samol A, Kapica P, Góra A. Structure-function relationship between soluble epoxide hydrolases structure and their tunnel network. Comput Struct Biotechnol J 2021; 20:193-205. [PMID: 35024092 PMCID: PMC8715294 DOI: 10.1016/j.csbj.2021.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/04/2022] Open
Abstract
Enzymes with buried active sites maintain their catalytic function via a single tunnel or tunnel network. In this study we analyzed the functionality of soluble epoxide hydrolases (sEHs) tunnel network, by comparing the overall enzyme structure with the tunnel's shape and size. sEHs were divided into three groups based on their structure and the tunnel usage. The obtained results were compared with known substrate preferences of the studied enzymes, as well as reported in our other work evolutionary analyses data. The tunnel network architecture corresponded well with the evolutionary lineage of the source organism and large differences between enzymes were observed from long fragments insertions. This strategy can be used during protein re-engineering process for large changes introduction, whereas tunnel modification can be applied for fine-tuning of enzyme.
Collapse
Key Words
- CH65-EH, soluble epoxide hydrolase from an unknown source, sampled in hot springs in China
- Protein engineering
- Sibe-EH, soluble epoxide hydrolase from an unknown source, sampled in hot springs in Russia
- Soluble epoxide hydrolases
- StEH1, Solanum tuberosum soluble epoxide hydrolase
- Structure–function relationship
- TrEH, Trichoderma reesei soluble epoxide hydrolase
- Tunnel network
- VrEH2, Vigna radiata soluble epoxide hydrolase
- bmEH, Bacillus megaterium soluble epoxide hydrolase
- hsEH, Homo sapiens soluble epoxide hydrolase
- msEH, Mus musculus soluble epoxide hydrolase
- sEHs, soluble epoxide hydrolases
Collapse
Affiliation(s)
- Karolina Mitusińska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Piotr Wojsa
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Maria Bzówka
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Agata Raczyńska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Weronika Bagrowska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Aleksandra Samol
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Patryk Kapica
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
7
|
Frömel T, Naeem Z, Pirzeh L, Fleming I. Cytochrome P450-derived fatty acid epoxides and diols in angiogenesis and stem cell biology. Pharmacol Ther 2021; 234:108049. [PMID: 34848204 DOI: 10.1016/j.pharmthera.2021.108049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Cytochrome P450 (CYP) enzymes are frequently referred to as the third pathway for the metabolism of arachidonic acid. While it is true that these enzymes generate arachidonic acid epoxides i.e. the epoxyeicosatrienoic acids (EETs), they are able to accept a wealth of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) to generate a large range of regio- and stereo-isomers with distinct biochemical properties and physiological actions. Probably the best studied are the EETs which have well documented effects on vascular reactivity and angiogenesis. CYP enzymes can also participate in crosstalk with other PUFA pathways and metabolize prostaglandin G2 and H2, which are the precursors of effector prostaglandins, to affect macrophage function and lymphangiogenesis. The activity of the PUFA epoxides is thought to be kept in check by the activity of epoxide hydrolases. However, rather than being inactive, the diols generated have been shown to regulate neutrophil activation, stem and progenitor cell proliferation and Notch signaling in addition to acting as exercise-induced lipokines. Excessive production of PUFA diols has also been implicated in pathologies such as severe respiratory distress syndromes, including COVID-19, and diabetic retinopathy. This review highlights some of the recent findings related to this pathway that affect angiogenesis and stem cell biology.
Collapse
Affiliation(s)
- Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Zumer Naeem
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Lale Pirzeh
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany; The Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Keyes GS, Maiden K, Ramsden CE. Stable analogs of 13‑hydroxy-9,10-trans-epoxy-(11E)-octadecenoate (13,9-HEL), an oxidized derivative of linoleic acid implicated in the epidermal skin barrier. Prostaglandins Leukot Essent Fatty Acids 2021; 174:102357. [PMID: 34749189 PMCID: PMC8595794 DOI: 10.1016/j.plefa.2021.102357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/02/2021] [Accepted: 10/20/2021] [Indexed: 11/20/2022]
Abstract
Hydroxy-epoxy- and trihydroxy derivatives of linoleic acid are proposed to play an essential function in formation of the mammalian skin permeability barrier, which could account for the essential nature of its precursor, linoleic acid. Recent literature suggests that a specific oxidized enone derivative of LA esterified in ceramides facilitates binding to proteins, potentially serving a structural role in formation of the epidermal skin barrier. However, it is still to be established if other linoleic acid derivatives are also required for skin barrier formation, and whether the essential role is performed exclusively by an esterified, structural lipid or as an unesterified, labile signaling lipid, or by some combination of these derivatives. Progress in this domain is limited by lack of availability of hydroxy‑epoxy-and trihydroxy- and octadecenoate derivatives of linoleic acid and related compounds, and challenges in maintaining them in the unesterified lipid pool. Here we describe methods for the total synthesis of hydroxy‑epoxy-octadecenoate derivatives of linoleic acid (HEL1), and stable analogs that are designed to be resistant to inactivation by: (a) acylation/esterification (thus trapping these lipids in the free acid pool), (b) dehydrogenation, and (c) analogs combining both modifications. We further provide a total synthesis of corresponding hydroxy‑epoxy- derivatives of sebaleic acid (a regioisomer of linoleic acid present in skin), and of small molecule scaffolds containing the allylic and non-allylic epoxide 7-carbon substructures shared by both families of hydroxy‑epoxy-and trihydroxy- octadecenoates. Finally, we demonstrate that 2,2-dimethyl analogs of hydroxy‑epoxy-and trihydroxy- octadecenoates are resistant to esterification with an in vitro assay and thus provide a novel template for stabilizing labile, bioactive lipids as free acids by preventing acylation/esterification.
Collapse
Affiliation(s)
- Gregory S Keyes
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD, 21224, USA.
| | - Kristen Maiden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD, 21224, USA; Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), Bethesda, MD 20814, USA
| |
Collapse
|
9
|
Bononi G, Tuccinardi T, Rizzolio F, Granchi C. α/β-Hydrolase Domain (ABHD) Inhibitors as New Potential Therapeutic Options against Lipid-Related Diseases. J Med Chem 2021; 64:9759-9785. [PMID: 34213320 PMCID: PMC8389839 DOI: 10.1021/acs.jmedchem.1c00624] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Much of the experimental evidence in the literature has linked altered lipid metabolism to severe diseases such as cancer, obesity, cardiovascular pathologies, diabetes, and neurodegenerative diseases. Therefore, targeting key effectors of the dysregulated lipid metabolism may represent an effective strategy to counteract these pathological conditions. In this context, α/β-hydrolase domain (ABHD) enzymes represent an important and diversified family of proteins, which are involved in the complex environment of lipid signaling, metabolism, and regulation. Moreover, some members of the ABHD family play an important role in the endocannabinoid system, being designated to terminate the signaling of the key endocannabinoid regulator 2-arachidonoylglycerol. This Perspective summarizes the research progress in the development of ABHD inhibitors and modulators: design strategies, structure-activity relationships, action mechanisms, and biological studies of the main ABHD ligands will be highlighted.
Collapse
Affiliation(s)
- Giulia Bononi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.,Department of Molecular Sciences and Nanosystems, Ca' Foscari University, 30123 Venezia, Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
10
|
Tyrrell VJ, Ali F, Boeglin WE, Andrews R, Burston J, Birchall JC, Ingram JR, Murphy RC, Piguet V, Brash AR, O'Donnell VB, Thomas CP. Lipidomic and transcriptional analysis of the linoleoyl-omega-hydroxyceramide biosynthetic pathway in human psoriatic lesions. J Lipid Res 2021; 62:100094. [PMID: 34171322 PMCID: PMC8326207 DOI: 10.1016/j.jlr.2021.100094] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022] Open
Abstract
A complex assembly of lipids including fatty acids, cholesterol, and ceramides is vital to the integrity of the mammalian epidermal barrier. The formation of this barrier requires oxidation of the substrate fatty acid, linoleic acid (LA), which is initiated by the enzyme 12R-lipoxygenase (LOX). In the epidermis, unoxidized LA is primarily found in long-chain acylceramides termed esterified omega-hydroxy sphingosine (EOS)/phytosphingosine/hydroxysphingosine (collectively EOx). The precise structure and localization of LOX-oxidized EOx in the human epidermis is unknown, as is their regulation in diseases such as psoriasis, one of the most common inflammatory diseases affecting the skin. Here, using precursor LC/MS/MS, we characterized multiple intermediates of EOx, including 9-HODE, 9,10-epoxy-13-HOME, and 9,10,13-TriHOME, in healthy human epidermis likely to be formed via the epidermal LOX pathways. The top layers of the skin contained more LA, 9-HODE, and 9,10,13-TriHOME EOSs, whereas 9,10-epoxy-13-HOME EOS was more prevalent deeper in the stratum corneum. In psoriatic lesions, levels of native EOx and free HODEs and HOMEs were significantly elevated, whereas oxidized species were generally reduced. A transcriptional network analysis of human psoriatic lesions identified significantly elevated expression of the entire biosynthetic/metabolic pathway for oxygenated ceramides, suggesting a regulatory function for EOx lipids in reconstituting epidermal integrity. The role of these new lipids in progression or resolution of psoriasis is currently unknown. We also discovered the central coordinated role of the zinc finger protein transcription factor, ZIC1, in driving the phenotype of this disease. In summary, long-chain oxygenated ceramide metabolism is dysregulated at the lipidomic level in psoriasis, likely driven by the transcriptional differences also observed, and we identified ZIC1 as a potential regulatory target for future therapeutic interventions.
Collapse
Affiliation(s)
- Victoria J Tyrrell
- Institute of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Nashville, TN, USA
| | - Faraz Ali
- Department of Dermatology and Wound Healing, University Hospital of Wales, Nashville, TN, USA
| | - William E Boeglin
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Robert Andrews
- Institute of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Nashville, TN, USA
| | - James Burston
- Institute of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Nashville, TN, USA
| | - James C Birchall
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Aurora, CO, USA
| | - John R Ingram
- Department of Dermatology and Wound Healing, University Hospital of Wales, Nashville, TN, USA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO, USA
| | - Vincent Piguet
- Department of Dermatology and Wound Healing, University Hospital of Wales, Nashville, TN, USA; Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada; Division of Dermatology, Department of Medicine, Women's College Hospital, Toronto, ON, Canada
| | - Alan R Brash
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Valerie B O'Donnell
- Institute of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Nashville, TN, USA
| | - Christopher P Thomas
- Institute of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Nashville, TN, USA; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Aurora, CO, USA.
| |
Collapse
|
11
|
Kim K, Christov PP, Romaine I, Tian J, Jana S, Lamers AP, Dutter BF, Scaggs T, Jeon K, Guttentag B, Weaver CD, Lindsley CW, Waterson AG, Sulikowski GA. Ten-Year Retrospective of the Vanderbilt Institute of Chemical Biology Chemical Synthesis Core. ACS Chem Biol 2021; 16:787-793. [PMID: 33877812 DOI: 10.1021/acschembio.0c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemical synthesis has been described as a central science. Its practice provides access to the chemical structures of known and/or designed function. In particular, human health is greatly impacted by synthesis that enables advancements in both basic science discoveries in chemical biology as well as translational research that can lead to new therapeutics. To support the chemical synthesis needs of investigators across campus, the Vanderbilt Institute of Chemical Biology established a chemical synthesis core as part of its foundation in 2008. Provided in this Review are examples of synthetic products, known and designed, produced in the core over the past 10 years.
Collapse
Affiliation(s)
- Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Plamen P. Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ian Romaine
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jianhua Tian
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Somnath Jana
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alexander P. Lamers
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Brendan F. Dutter
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Toya Scaggs
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kyouk Jeon
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Benjamin Guttentag
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - C. David Weaver
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alex G. Waterson
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Gary A. Sulikowski
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
12
|
Morisseau C, Kodani SD, Kamita SG, Yang J, Lee KSS, Hammock BD. Relative Importance of Soluble and Microsomal Epoxide Hydrolases for the Hydrolysis of Epoxy-Fatty Acids in Human Tissues. Int J Mol Sci 2021; 22:ijms22094993. [PMID: 34066758 PMCID: PMC8125816 DOI: 10.3390/ijms22094993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/03/2023] Open
Abstract
Epoxy-fatty acids (EpFAs) are endogenous lipid mediators that have a large breadth of biological activities, including the regulation of blood pressure, inflammation, angiogenesis, and pain perception. For the past 20 years, soluble epoxide hydrolase (sEH) has been recognized as the primary enzyme for degrading EpFAs in vivo. The sEH converts EpFAs to the generally less biologically active 1,2-diols, which are quickly eliminated from the body. Thus, inhibitors of sEH are being developed as potential drug therapeutics for various diseases including neuropathic pain. Recent findings suggest that other epoxide hydrolases (EHs) such as microsomal epoxide hydrolase (mEH) and epoxide hydrolase-3 (EH3) can contribute significantly to the in vivo metabolism of EpFAs. In this study, we used two complementary approaches to probe the relative importance of sEH, mEH, and EH3 in 15 human tissue extracts: hydrolysis of 14,15-EET and 13,14-EDP using selective inhibitors and protein quantification. The sEH hydrolyzed the majority of EpFAs in all of the tissues investigated, mEH hydrolyzed a significant portion of EpFAs in several tissues, whereas no significant role in EpFAs metabolism was observed for EH3. Our findings indicate that residual mEH activity could limit the therapeutic efficacy of sEH inhibition in certain organs.
Collapse
|
13
|
Wertz PW. Lipid Metabolic Events Underlying the Formation of the Corneocyte Lipid Envelope. Skin Pharmacol Physiol 2021; 34:38-50. [PMID: 33567435 DOI: 10.1159/000513261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/22/2020] [Indexed: 11/19/2022]
Abstract
Cornified cells of the stratum corneum have a monolayer of an unusual lipid covalently attached to the outer surface. This is referred to as the corneocyte lipid envelope (CLE). It consists of a monolayer of ω-hydroxyceramides covalently attached to the outer surface of the cornified envelope. The CLE is essential for proper barrier function of the skin and is derived from linoleate-rich acylglucosylceramides synthesized in the viable epidermis. Biosynthesis of acylglucosylceramide and its conversion to the cornified envelope is complex. Acylglucosylceramide in the bounding membrane of the lamellar granule is the precursor of the CLE. The acylglucosylceramide in the limiting membrane of the lamellar granule may be oriented with the glucosyl moiety on the inside. Conversion of the acylglucosylceramide to the CLE requires removal of the glucose by action of a glucocerebrosidase. The ester-linked fatty acid may be removed by an as yet unidentified esterase, and the resulting ω-hydroxyceramide may become ester linked to the outer surface of the cornified envelope through action of transglutaminase 1. Prior to removal of ester-linked fatty acids, linoleate is oxidized to an epoxy alcohol through action of 2 lipoxygenases. This can be further oxidized to an epoxy-enone, which can spontaneously attach to the cornified envelope through Schiff's base formation. Mutations of genes coding for enzymes involved in biosynthesis of the CLE result in ichthyosis, often accompanied by neurologic dysfunction. The CLE is recognized as essential for barrier function of skin, but many questions about details of this essentiality remain. What are the relative roles of the 2 mechanisms of lipid attachment? What is the orientation of acylglucosylceramide in the bounding membrane of lamellar granules? Some evidence supports a role for CLE as a scaffold upon which intercellular lamellae unfold, but other evidence does not support this role. There is also controversial evidence for a role in stratum corneum cohesion. Evidence is presented to suggest that covalently bound ω-hydroxyceramides serve as a reservoir for free sphingosine that can serve in communicating with the viable epidermis and act as a potent broad-acting antimicrobial at the skin surface. Many questions remain.
Collapse
|
14
|
Edin ML, Yamanashi H, Boeglin WE, Graves JP, DeGraff LM, Lih FB, Zeldin DC, Brash AR. Epoxide hydrolase 3 (Ephx3) gene disruption reduces ceramide linoleate epoxide hydrolysis and impairs skin barrier function. J Biol Chem 2021; 296:100198. [PMID: 33334892 PMCID: PMC7948417 DOI: 10.1074/jbc.ra120.016570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian epoxide hydrolase (EPHX)3 is known from in vitro experiments to efficiently hydrolyze the linoleate epoxides 9,10-epoxyoctadecamonoenoic acid (EpOME) and epoxyalcohol 9R,10R-trans-epoxy-11E-13R-hydroxy-octadecenoate to corresponding diols and triols, respectively. Herein we examined the physiological relevance of EPHX3 to hydrolysis of both substrates in vivo. Ephx3−/− mice show no deficiency in EpOME-derived plasma diols, discounting a role for EPHX3 in their formation, whereas epoxyalcohol-derived triols esterified in acylceramides of the epidermal 12R-lipoxygenase pathway are reduced. Although the Ephx3−/− pups appear normal, measurements of transepidermal water loss detected a modest and statistically significant increase compared with the wild-type or heterozygote mice, reflecting a skin barrier impairment that was not evident in the knockouts of mouse microsomal (EPHX1/microsomal epoxide hydrolase) or soluble (EPHX2/sEH). This barrier phenotype in the Ephx3−/− pups was associated with a significant decrease in the covalently bound ceramides in the epidermis (40% reduction, p < 0.05), indicating a corresponding structural impairment in the integrity of the water barrier. Quantitative LC-MS analysis of the esterified linoleate-derived triols in the murine epidermis revealed a marked and isomer-specific reduction (∼85%) in the Ephx3−/− epidermis of the major trihydroxy isomer 9R,10S,13R-trihydroxy-11E-octadecenoate. We conclude that EPHX3 (and not EPHX1 or EPHX2) catalyzes hydrolysis of the 12R-LOX/eLOX3-derived epoxyalcohol esterified in acylceramide and may function to control flux through the alternative and crucial route of metabolism via the dehydrogenation pathway of SDR9C7. Importantly, our findings also identify a functional role for EPHX3 in transformation of a naturally esterified epoxide substrate, pointing to its potential contribution in other tissues.
Collapse
Affiliation(s)
- Matthew L Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, USA
| | - Haruto Yamanashi
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - William E Boeglin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Joan P Graves
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, USA
| | - Laura M DeGraff
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, USA
| | - Fred B Lih
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, USA
| | - Darryl C Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, USA.
| | - Alan R Brash
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
15
|
The Multifaceted Role of Epoxide Hydrolases in Human Health and Disease. Int J Mol Sci 2020; 22:ijms22010013. [PMID: 33374956 PMCID: PMC7792612 DOI: 10.3390/ijms22010013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
Epoxide hydrolases (EHs) are key enzymes involved in the detoxification of xenobiotics and biotransformation of endogenous epoxides. They catalyze the hydrolysis of highly reactive epoxides to less reactive diols. EHs thereby orchestrate crucial signaling pathways for cell homeostasis. The EH family comprises 5 proteins and 2 candidate members, for which the corresponding genes are not yet identified. Although the first EHs were identified more than 30 years ago, the full spectrum of their substrates and associated biological functions remain partly unknown. The two best-known EHs are EPHX1 and EPHX2. Their wide expression pattern and multiple functions led to the development of specific inhibitors. This review summarizes the most important points regarding the current knowledge on this protein family and highlights the particularities of each EH. These different enzymes can be distinguished by their expression pattern, spectrum of associated substrates, sub-cellular localization, and enzymatic characteristics. We also reevaluated the pathogenicity of previously reported variants in genes that encode EHs and are involved in multiple disorders, in light of large datasets that were made available due to the broad development of next generation sequencing. Although association studies underline the pleiotropic and crucial role of EHs, no data on high-effect variants are confirmed to date.
Collapse
|
16
|
Sarparast M, Dattmore D, Alan J, Lee KSS. Cytochrome P450 Metabolism of Polyunsaturated Fatty Acids and Neurodegeneration. Nutrients 2020; 12:E3523. [PMID: 33207662 PMCID: PMC7696575 DOI: 10.3390/nu12113523] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients' quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
| | - Devon Dattmore
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
17
|
Takeichi T, Hirabayashi T, Miyasaka Y, Kawamoto A, Okuno Y, Taguchi S, Tanahashi K, Murase C, Takama H, Tanaka K, Boeglin WE, Calcutt MW, Watanabe D, Kono M, Muro Y, Ishikawa J, Ohno T, Brash AR, Akiyama M. SDR9C7 catalyzes critical dehydrogenation of acylceramides for skin barrier formation. J Clin Invest 2020; 130:890-903. [PMID: 31671075 DOI: 10.1172/jci130675] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
The corneocyte lipid envelope, composed of covalently bound ceramides and fatty acids, is important to the integrity of the permeability barrier in the stratum corneum, and its absence is a prime structural defect in various skin diseases associated with defective skin barrier function. SDR9C7 encodes a short-chain dehydrogenase/reductase family 9C member 7 (SDR9C7) recently found mutated in ichthyosis. In a patient with SDR9C7 mutation and a mouse Sdr9c7-KO model, we show loss of covalent binding of epidermal ceramides to protein, a structural fault in the barrier. For reasons unresolved, protein binding requires lipoxygenase-catalyzed transformations of linoleic acid (18:2) esterified in ω-O-acylceramides. In Sdr9c7-/- epidermis, quantitative liquid chromatography-mass spectometry (LC-MS) assays revealed almost complete loss of a species of ω-O-acylceramide esterified with linoleate-9,10-trans-epoxy-11E-13-ketone; other acylceramides related to the lipoxygenase pathway were in higher abundance. Recombinant SDR9C7 catalyzed NAD+-dependent dehydrogenation of linoleate 9,10-trans-epoxy-11E-13-alcohol to the corresponding 13-ketone, while ichthyosis mutants were inactive. We propose, therefore, that the critical requirement for lipoxygenases and SDR9C7 is in producing acylceramide containing the 9,10-epoxy-11E-13-ketone, a reactive moiety known for its nonenzymatic coupling to protein. This suggests a mechanism for coupling of ceramide to protein and provides important insights into skin barrier formation and pathogenesis.
Collapse
Affiliation(s)
- Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Hirabayashi
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akane Kawamoto
- Biological Science Research Laboratories, Kao Corporation, Haga, Tochigi, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Shijima Taguchi
- Division of Dermatology, Mito Kyodo General Hospital, Mito, Ibaraki, Japan
| | - Kana Tanahashi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chiaki Murase
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Takama
- Department of Dermatology, Aichi Medical University, Nagakute, Japan
| | - Kosei Tanaka
- Analytical Science Research Laboratories, Kao Corporation, Haga, Tochigi, Japan
| | | | - M Wade Calcutt
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Daisuke Watanabe
- Department of Dermatology, Aichi Medical University, Nagakute, Japan
| | - Michihiro Kono
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinao Muro
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junko Ishikawa
- Biological Science Research Laboratories, Kao Corporation, Haga, Tochigi, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Alan R Brash
- Departments of Pharmacology and Biochemistry and
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
18
|
Sisignano M, Steinhilber D, Parnham MJ, Geisslinger G. Exploring CYP2J2: lipid mediators, inhibitors and therapeutic implications. Drug Discov Today 2020; 25:1744-1753. [DOI: 10.1016/j.drudis.2020.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 12/30/2022]
|
19
|
Fuchs D, Tang X, Johnsson AK, Dahlén SE, Hamberg M, Wheelock CE. Eosinophils synthesize trihydroxyoctadecenoic acids (TriHOMEs) via a 15-lipoxygenase dependent process. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158611. [PMID: 31918007 DOI: 10.1016/j.bbalip.2020.158611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/04/2019] [Accepted: 12/31/2019] [Indexed: 11/17/2022]
Abstract
Trihydroxyoctadecenoic acids (TriHOMEs) are linoleic acid-derived lipid mediators reported to be dysregulated in obstructive lung disease. In contrast to many other oxylipins, TriHOME biosynthesis in humans is still poorly understood. The association of TriHOMEs with inflammation prompted the current investigation into the ability of human granulocytes to synthesize the 16 different 9,10,13-TriHOME and 9,12,13-TriHOME isomers and of the TriHOME biosynthetic pathway. Following incubation with linoleic acid, eosinophils and (to a lesser extent) the mast cell line LAD2, but not neutrophils, formed TriHOMEs. Stereochemical analysis revealed that TriHOMEs produced by eosinophils predominantly evidenced the 13(S) configuration, suggesting 15-lipoxygenase (15-LOX)-mediated synthesis. TriHOME formation was blocked following incubation with the 15-LOX inhibitor BLX-3887 and was shown to be largely independent of soluble epoxide hydrolase and cytochrome P450 activities. TriHOME synthesis was abolished when linoleic acid was replaced with 13-HODE, but increased in incubations with 13-HpODE, indicating the intermediary role of epoxy alcohols in TriHOME formation. In contrast to eosinophils, LAD2 cells formed TriHOMEs having predominantly the 13(R) configuration, demonstrating that there are multiple synthetic routes for TriHOME formation. These findings provide for the first-time insight into the synthetic route of TriHOMEs in humans and expand our understanding of their formation in inflammatory diseases.
Collapse
Affiliation(s)
- David Fuchs
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xiao Tang
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Karin Johnsson
- Unit of Lung and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Unit of Lung and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mats Hamberg
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Guneri D, Voegeli R, Munday MR, Lane ME, Rawlings AV. 12R-lipoxygenase activity is reduced in photodamaged facial stratum corneum. A novel activity assay indicates a key function in corneocyte maturation. Int J Cosmet Sci 2019; 41:274-280. [PMID: 30993698 PMCID: PMC6852689 DOI: 10.1111/ics.12532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Abstract
Background During the late stage of keratinocyte differentiation, corneocytes gain a strong protein–lipid structure: the corneocyte envelopes (CE), composed of the inner corneocyte protein envelope (CPE) and the outer corneocyte lipid envelope (CLE). The hydrophobicity of CEs depends on the covalent attachment of linoleoyl‐acyl‐ceramides by transglutaminases (TG). These ceramides are processed by a range of other enzymes, including 12R‐lipoxygenase (12R‐LOX), before the covalent attachment of the free ω‐hydroxyceramides to the CPE surface to form the CLE. The mechanical strength of CE is obtained with the formation of isodipeptide bonds by TG. The increase in hydrophobicity and rigidity leads to CE maturation which supports the integrity and mechanical resistance of the stratum corneum (SC). Objectives The aim of this work was to develop and validate a novel enzyme activity assay for 12R‐LOX in tape strippings of photo‐exposed (PE) cheek and photo‐protected (PP) post‐auricular SC of healthy Chinese volunteers (n = 12; age 25 ± 3 years). Results A fluorescence‐based assay was developed with ethyl linoleic acid as the substrate and a polyclonal antibody against 12R‐LOX as an inhibitor. The specificity was shown by the lack of effect by a LOX inhibitor (ML351) and an epidermal‐type lipoxygenase 3 (eLOX3) antibody on the acquired 12R‐LOX activity. Reduced 12R‐LOX activity was observed in the outer compared to the inner SC layers. Moreover, dramatically lower activity was shown in the PE vs. PP samples. Furthermore, the enzyme activity has a positive correlation (r = 0.94 ± 0.03) with CE maturity, in particular hydrophobicity, and a negative correlation (r = −0.96 ± 0.01) with transepidermal water loss (TEWL). Conclusion This novel enzyme assay revealed a lower 12R‐LOX activity in tape strippings from PE cheek for the first time. This finding is in line with less mature CEs and higher TEWL compared to PP post‐auricular samples. This study indicates a strong link between 12R‐LOX activity and CE maturation and SC integrity.
Collapse
Affiliation(s)
- D Guneri
- UCL School of Pharmacy, London, UK
| | - R Voegeli
- DSM Nutritional Products Ltd, Kaiseraugust, Switzerland
| | | | - M E Lane
- UCL School of Pharmacy, London, UK
| | - A V Rawlings
- UCL School of Pharmacy, London, UK.,AVR Consulting Ltd, Northwich, UK
| |
Collapse
|
21
|
Cayer LGJ, Mendonça AM, Pauls SD, Winter T, Leng S, Taylor CG, Zahradka P, Aukema HM. Adipose tissue oxylipin profiles vary by anatomical site and are altered by dietary linoleic acid in rats. Prostaglandins Leukot Essent Fatty Acids 2019; 141:24-32. [PMID: 30661602 DOI: 10.1016/j.plefa.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 12/16/2022]
Abstract
Dietary PUFA and their effects on adipose tissue have been well studied, but oxylipins, the oxygenated metabolites of PUFA, have been sparsely studied in adipose tissue. To determine the oxylipin profile and to examine their potential importance in various adipose sites, female and male rats were provided control, high linoleic acid (LA), or high LA and high α-linolenic acid (LA + ALA) diets for six weeks. Analysis of gonadal (GAT), mesenteric (MAT), perirenal (PAT), and subcutaneous adipose tissues (SAT) revealed higher numbers of oxylipins in MAT and SAT, primarily due to 20-22 carbon cytochrome P450 oxylipins, as well as metabolites of cyclooxygenase derived oxylipins. LA oxylipins made up 75-96% of the total oxylipin mass and largely determined the total relative amounts between depots (GAT > MAT > PAT > SAT). However, when the two most abundant LA oxylipins (TriHOMEs) were excluded, MAT had the highest mass of oxylipins and exhibited the most sex differences. These differences existed despite comparable PUFA composition between depots. Dietary LA increased oxylipins derived from n-6 PUFA, and the addition of ALA generally returned n-6 PUFA oxylipins to levels similar to control and elevated some n-3 oxylipins. These data on oxylipin profiles in adipose depots from different anatomical sites and the effects of diet and sex provide fundamental knowledge that will aid future studies investigating the physiological effects of adipose tissue.
Collapse
Affiliation(s)
- Lucien G J Cayer
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada
| | - Anne M Mendonça
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; School of Medicine, Federal University of Uberlândia, Brazil
| | - Samantha D Pauls
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada
| | - Shan Leng
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada.
| |
Collapse
|
22
|
Chiba T, Nakahara T, Kohda F, Ichiki T, Manabe M, Furue M. Measurement of trihydroxy-linoleic acids in stratum corneum by tape-stripping: Possible biomarker of barrier function in atopic dermatitis. PLoS One 2019; 14:e0210013. [PMID: 30608955 PMCID: PMC6319710 DOI: 10.1371/journal.pone.0210013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Epidermal ceramides are indispensable lipids that maintain the functions of the stratum corneum. Esterified omega-hydroxyacyl-sphingosine (EOS) ceramide with a linoleate moiety is one of the most important ceramide species for forming cornified lipid envelopes. This linoleate moiety is eventually metabolized to trihydroxy-linoleic acid (triol, 9,10,13-trihydroxy-11E-octadecenoic acid). Thus, we assumed that a decrease of triols might reflect skin barrier dysfunction. Against this background, the purposes of this study were to measure the triols by a simple tape-stripping method and to determine the correlation between the amount of triols and transepidermal water loss (TEWL) as an indicator of barrier dysfunction in atopic dermatitis patients. Twenty Japanese subjects with normal skin and 20 atopic dermatitis patients were enrolled in this study. TEWL was measured and triols of the stratum corneum were analyzed by tape-stripping. The results showed for the first time that triols in the stratum corneum could be simply measured using the tape-stripping method. The triol levels in atopic dermatitis patients were much higher than those in healthy subjects. Moreover, the triol levels correlated with TEWL of non-lesional forearm skin in patients with atopic dermatitis. The results suggest that the assaying of triol levels via non-invasive tape-stripping could be beneficial for monitoring barrier function in atopic dermatitis.
Collapse
Affiliation(s)
- Takahito Chiba
- Department of Dermatology and Plastic Surgery, Akita University Graduate School of Medicine, Akita, Japan
- * E-mail:
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Futoshi Kohda
- Department of Dermatology, Aso Iizuka Hospital, Fukuoka, Japan
| | - Toshio Ichiki
- Department of Dermatology, Aso Iizuka Hospital, Fukuoka, Japan
| | - Motomu Manabe
- Department of Dermatology and Plastic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Davis RW, Allweil A, Tian J, Brash AR, Sulikowski GA. Stereocontrolled synthesis of four isomeric linoleate triols of relevance to skin barrier formation and function. Tetrahedron Lett 2018; 59:4571-4573. [PMID: 30906077 DOI: 10.1016/j.tetlet.2018.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Linoleate triol esters are intermediates along the pathway of formation of the mammalian skin permeability barrier. In connection with the study of their involvement in barrier formation we required access to isomerically pure and defined samples of four linoleate triol esters. A common synthetic strategy was developed starting from isomeric alkynols derived from d-tartaric acid and 2-deoxy-d-ribose.
Collapse
Affiliation(s)
- Robert W Davis
- Department of Chemistry, Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexander Allweil
- Department of Chemistry, Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Jianhua Tian
- Department of Chemistry, Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Alan R Brash
- Department of Pharmacology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Gary A Sulikowski
- Department of Chemistry, Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA.,Department of Pharmacology, Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
24
|
Hirabayashi T, Murakami M, Kihara A. The role of PNPLA1 in ω-O-acylceramide synthesis and skin barrier function. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:869-879. [PMID: 30290227 DOI: 10.1016/j.bbalip.2018.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 12/14/2022]
Abstract
The human genome encodes nine enzymes belonging to the patatin-like phospholipase domain-containing lipase (PNPLA)/Ca2+-independent phospholipase A2 (iPLA2) family. Although most PNPLA/iPLA2 enzymes are widely distributed and act on phospholipids or neutral lipids as (phospho)lipases to play homeostatic roles in lipid metabolism, the function of PNPLA1 remained a mystery until a few years ago. However, the recent finding that mutations in the human PNPLA1 gene are linked to autosomal recessive congenital ichthyosis (ARCI), as well as evidence obtained from biochemical and gene knockout studies, has shed light on the function of this enzyme in skin-specific sphingolipid metabolism rather than glycerophospholipid metabolism. PNPLA1 is specifically expressed in differentiated keratinocytes and plays a crucial role in the biosynthesis of ω-O-acylceramide, a particular class of sphingolipids that is essential for skin barrier function. PNPLA1 acts as a unique transacylase that specifically transfers linoleic acid from triglyceride to ω-hydroxy fatty acid in ceramide, thus giving rise to ω-O-acylceramide. In this review, we overview the biosynthetic route and biological role of epidermal ω-O-acylceramide, highlight the function of PNPLA1 as a bona fide acylceramide synthase required for proper skin barrier function and keratinocyte differentiation, and summarize the mutations of PNPLA1 currently identified in ARCI patients. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- Tetsuya Hirabayashi
- Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
25
|
Lipids and the Permeability and Antimicrobial Barriers of the Skin. J Lipids 2018; 2018:5954034. [PMID: 30245886 PMCID: PMC6139190 DOI: 10.1155/2018/5954034] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/26/2018] [Indexed: 01/13/2023] Open
Abstract
The primary purpose of the epidermis of terrestrial vertebrates is to produce the stratum corneum, which serves as the interface between the organism and the environment. As such, the stratum corneum provides a permeability barrier which both limits water loss through the skin and provides a relatively tough permeability barrier. This provides for a degree of resistance to mechanical trauma and prevents or limits penetration of potentially harmful substances from the environment. The stratum corneum consists of an array of keratinized cells embedded in a lipid matrix. It is this intercellular lipid that determines the permeability of the stratum corneum. The main lipids here are ceramides, cholesterol, and fatty acids. In addition, the skin surface of mammals, including humans, is coated by a lipid film produced by sebaceous glands in the dermis and secreted through the follicles. Human sebum consists mainly of squalene, wax monoesters, and triglycerides with small proportions of cholesterol and cholesterol esters. As sebum passes through the follicles, some of the triglycerides are hydrolyzed by bacteria to liberate free fatty acids. Likewise, near the skin surface, where water becomes available, some of the ceramides are acted upon by an epithelial ceramidase to liberate sphingosine, dihydrosphingosine, and 6-hydroxysphingosine. Some of the free fatty acids, specifically lauric acid and sapienic acid, have been shown to have antibacterial, antifungal, and antiviral activity. Also, the long-chain bases have broad spectrum antibacterial activity.
Collapse
|
26
|
Fuchs D, Hamberg M, Sköld CM, Wheelock ÅM, Wheelock CE. An LC-MS/MS workflow to characterize 16 regio- and stereoisomeric trihydroxyoctadecenoic acids. J Lipid Res 2018; 59:2025-2033. [PMID: 30065010 DOI: 10.1194/jlr.d087429] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/28/2018] [Indexed: 12/15/2022] Open
Abstract
Trihydroxyoctadecenoic acids (TriHOMEs) are linoleic acid-derived oxylipins with potential physiological relevance in inflammatory processes as well as in maintaining an intact skin barrier. Due to the high number of possible TriHOME isomers with only subtle differences in their physicochemical properties, the stereochemical analysis is challenging and usually involves a series of laborious analytical procedures. We herein report a straightforward analytical workflow that includes reversed-phase ultra-HPLC-MS/MS for rapid quantification of 9,10,13- and 9,12,13-TriHOME diastereomers and a chiral LC-MS method capable of resolving all sixteen 9,10,13-TriHOME and 9,12,13-TriHOME regio- and stereoisomers. We characterized the workflow (accuracy, 98-120%; precision, coefficient of variation ≤6.1%; limit of detection, 90-98 fg on column; linearity, R2 = 0.998) and used it for stereochemical profiling of TriHOMEs in bronchoalveolar lavage fluid (BALF) of individuals with chronic obstructive pulmonary disease (COPD). All TriHOME isomers were increased in the BALF of COPD patients relative to that of smokers (P ≤ 0.06). In both COPD patients and smokers with normal lung function, TriHOMEs with the 13(S) configuration were enantiomerically enriched relative to the corresponding 13(R) isomers, suggesting at least partial enzymatic control of TriHOME synthesis. This method will be useful for understanding the synthetic sources of these compounds and for elucidating disease mechanisms.
Collapse
Affiliation(s)
- David Fuchs
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden
| | - C Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden.,Lung-Allergy Clinic, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|